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Abstract

Automatic language identification (LID) systems generabyploit acoustic knowledge, possi-
bly enriched by explicit language specific phonotactic @idal constraints. This paper investigates
a new LID approach based on hierarchical multilayer peroepMLP) classifiers, where the first
layer is a “universal phoneme set MLP classifier”. The résgi¢multilingual) phoneme posterior se-
quence is fed into a second MLP taking a larger temporal gbirtto account. The second MLP can
learn/exploit implicitly different types of patterns/orination such as confusion between phonemes
and/or phonotactics for LID. We investigate the viabiliti/tbe proposed approach by comparing
it against two standard approaches which use phonotaditeaital constraints with the universal
phoneme set MLP classifier as emission probability estima@n SpeechDat(ll) datasets of five
European languages, the proposed approach yields signifideetter performance compared to the
two standard approaches.

Index Terms. Language identification, multilingual processing, hierarchical MLP.

1 Introduction

The goal of automatic language identification (LID) is to classify a giventirgmeech utterance as
belonging to one out oV languages. Various possible applications of LID can be found in multilingual
speech processing, call routing and interactive voice response apis.

There are a variety of cues, including phonological, morphological, syjoghor prosodic cues, that
can be exploited by an LID system [1]. In literature, different appneatave been proposed to perform
LID, such as using only low level spectral information [2], using phoneew®gnizers in conjunction
with phonotactic constraints [3, 4] or using medium to high level information (exjcal constraints,
language models) through speech recognition [5]. Among these, the orostan approach is to use
phoneme recognizers along with phonotactic constraints. The phonepgnizsr can be language-
dependent [4] (using a language specific phoneme set) or it can bheapaindependent [6] (using a
multilingual phoneme set). The phonotactic constraints are typically modeledpbgrzame bigram
estimated on phonetically labeled data.

In this paper, we propose a hierarchical MLP-based approachrfgudaye identification. The pro-
posed approach tries to model information, such as confusion amongipksrand phonotactics present
in long temporal sequences (L50-300 ms) of phoneme posterior probabilities. We demonstrate the vi-
ability of the proposed approach using five European languages fe®pdechDat(ll) corpus.



The remainder of this paper is organized as follows. In Section 2, wemtrdge motivation for the
proposed approach. Section 3 describes the used database ana &bagfly describes the investigated
systems. Section 5 discusses the experimental results and Section 6 estickigaper.

2 Motivation

The hierarchical MLP-based approach for language identificatiomsthaedposed in this paper is inspired
by a recently proposed hierarchical MLP-based approach forgzhermposterior estimation [7] [8] .

In the hierarchical MLP-based phoneme posterior estimation approestharii MLP is trained to
classify phonemes in a conventional manner using standard cepstrakias input. A second MLP
is then trained to classify phonemes but with the phoneme posterior probalfjitisterior features)
estimated from the first MLP with a temporal context of around 150-230 nmpasfeature. On phoneme
recognition tasks as well as speech recognition tasks, it has beentfratritie hierarchical approach
yields a better performance compared to conventional single MLP-bagpedaehes [8]. Upon analysis
of the second MLP using Volterra series, it was found that the secorid Méarns phonetic-temporal
patterns present in the posterior features. The learned phonetic-sdnpptterns consist of acoustic
confusions among phonemes and phonotactic constraints of the lan@liage [

In the context of language identification, such phonetic-temporal pattettd possibly be exploited
by first training an MLP to classify a “universal” phoneme set (multilingyadesh units), and then
modeling the resulting posterior features (with a long temporal context) bgandeMLP to classify
languages. It can be expected, that information related to phonotacstraiots and acoustic confu-
sion among phonemes (present in the posterior features spanning argyaé context) is language
specific.

The motivation behind using a universal phoneme set is that it allows datimgland discriminant
training between phonemes across languages. Furthermore it can helptatrdpping systems for
unseen languages [9].

3 Database

We use data from SpeechDat(ll) that currently consists of recordiiogs14 different European coun-
tries. In order to be representative, the SpeechDat(ll) databasegader-balanced, dialect-balanced
according to the dialect distribution in a language region and age-balahicediatabases are subdivided
into different corpora. For our preliminary study, we usgatpus A that contains three read application
words per speaker. The terapplication wordsdescribes a set of about 30 words such as “help” or
“cancel”, which could be used in interactive voice response applications

In the presented work, the datasets of five languages, namely British IEGEN), Swiss French
(SF), Swiss German (SZz), Italian (IT), and Spanish (ES) were use8wiss German, there are 2000
recorded speakers. As standardized by SpeechDat(ll), datatfets minimum of 2000 speakers have
pre-defined test sets that contain the data of 500 speakers. The raqidi0h speakers are sub-divided
into a development set (10%, 150 speakers) and a training set (188Resp). To avoid any bias in
terms of available amount of data towards a particular language, the samemuirspeakers was used
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in all languages, even if other databases provide data from more th@nd#tdent speakers. For this
purpose, a subset of 2000 speakers was chosen from the whaletdajausing the same procedure as
for the test set creation and then the subset was split into training, devehbpand test set. Hence, we
did not use the pre-defined test sets, but rather used the scripts kvatlgb0] to ensure that the splits
can be reproduced.

Table 1 gives information about the data of each language, including thberwf utterances, the
mean duration of the utterances and the minimal utterance duration (aftelaetidéy detection).

Table 1:Statistics of the datasets. The number of utterances that are availabledotazayuage as well
as mean and minimal duration of the utterances are displayed.

Language utterances duration
total testsef mean min
English (EN) 5207 1305| 1.20s 0.31f9
Spanish (ES) 5817 1447| 1.23s 0.315
Italian (IT) 5416  1368| 1.53s 0.31s
Swiss French (SF)| 5668  1429| 1.34s 0.325
Swiss German (SZ) 5720 1426| 1.21s 0.329

We use the lexicon provided along with the database. The lexicon contardspnanunciations in
terms of the SAMPA phoneme set. Table 2 displays the number of phonemes that are useddolieans
the application words of different languages. Note that some languagestdise all the available
phonemes for the application words task.

Table 2:Number of phonemes used per language for the application words task.

Language | EN | ES| IT | SF| SZ
#phonemes 33| 29| 35| 36 | 46

In order to create a universal phoneme set, we merged the phonemshalathe same SAMPA
symbol across languages. In Table 3, the poly-phonemes which atebyseore than one language
are displayed and it is shown by how many languages a particular polyepteis shared. For each
language, the remaining mono-phonemes are also given. As seen in Tédeltlian and the Swiss
German databases have the most mono-phonemes in their dictionaries. digbldidplays the phoneme
sharing factor of all the languages that shows by how many languaggshtmemes of a particular
language are shared on average. The Spanish phonemes for irstarst@ared by 3.3 language on
average.

http://www.phon.ucl.ac.uk/home/sampa/index.html



Table 3:Universal SAMPA phoneme set with all the poly- and mono-phonerh@scesis shared across
all languages, thus the universal phoneme set consists of 92 pheneme

Poly-phonemes (37)
Shared by| phonetic symbols
5 lang. d,klnstagfpm
4 lang. e, v,b, a
3 lang. @,r,S,w,i,u
2 lang. tS,dzZ, l,u;,i;,al,N,h,R,x,E,0,J,2,9,0
Mono-phonemes (54)
Language| phonetic symbols

EN {,0:el,Q, 1@, @U, 3:
ES iD,mT,B, LG
IT 'u, 'o, nn, I, 'a, 'E, i, SS, ddz, mm, e, ttS, ss
SF A Ol av, &,y 0~,2Z, e~ H
SZ ?,U,aU, 2:6, a;, OY, 2;,ts,y:, e, 0., E;, C, ii6,
Y, E6, 0:6, U6
| Silence | sil (shared by all languages) \

Table 4:The number of mono-phonemes per language and the phoneme diaatordor all languages.

Language EN | ES| IT| SF| SZ
# of mono-phonemes 7 71 13| 9| 18
phoneme sharing factaqr3.1 | 3.3 | 2.9 3.1 | 25

4 System Description

All the approaches studied here use an MLP trained to classify a ualiy#iteneme set consisting of
92 phonemes. As shown in Fig. 1, the input to the MLP is nine frames of 39 dioral perceptual
linear prediction (PLP) cepstral coefficients consisting of 13 static casifis (including zeroth), their
approximate first and second derivatives. The PLP features weetd at a frame rate of 10 ms with a
frame size of 25 ms after having performed voice activity detection usingéifaWe refer to this MLP
as phoneMLP.

4.1 LID using Phonotactic Constraints (PC)

The phonotactic constraint based approach exploits low-level know/leeg phonemes and phoneme
sequences for language identification. We denote the system basedraiattiic constraints &ystem
PC.

2http://juicer.amiproject.org/tracter/



phoneme
posteriors
92 units

Figure 1:lllustration of the universal phoneme set classifier. The MLP is refeoed phoneMLP.

In System PC, a test utterance is processed by five parallel langpagéies HMM/MLP [11]
phoneme recognizers. Each phoneme recognizer consists of a fullgated ergodic model [4] con-
necting all the 92 phoneme HMMs (each phoneme is modeled with a three staterigitt HMM).

A phoneme bigram language model models only the phoneme transitions allowedgronunciations

of the words corresponding to the language. In this study, the word$hearapplication words corre-
sponding to each language. The phonotactic constraints/phoneme bigraets medobtained from the
respective lexicon. The emission likelihoods of the HMM states are estimairdtfre output of the

phoneMLP. The language corresponding to the phoneme recognipert that yields the highest likeli-
hood score is picked as the recognized language. Figure 2 illustrategsteenSPC, where the parallel
systems correspond to the language-specific phoneme recognizers.

LID
decision

phoneMLP

Figure 2:Using a different system for each language. The system yielding the héges is identified
as the language.

4.2 LID through Speech Recognition (SR)

The approach of performing LID through speech recognition tendsgiekigher level prior knowl-
edge such as, lexicons and language models/syntactical constraintsni¥e the system corresponding
to this approach aSystem SR

In System SR, a test utterance is processed by five parallel hybrid HMM/&peech recognizers
(in this study, isolated word recognizers) one corresponding to eaghdge. The dictionaries contain
all the test words (no out-of-vocabulary words). Each phoneme is ledeéth a three state left-to-right
HMM and the emission likelihoods of the HMM states are estimated from the ouftjplug @honeMLP.
The language corresponding to the speech recognizer that yields tHehwaothesis with maximum
likelihood is chosen as the recognized language. Figure 2 illustrates ttenS8& as well, where the
parallel systems now correspond to the isolated word recognizers efatitflanguages.
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4.3 Hierarchical MLP-based LID (Hier)

We denote the system based on the hierarchical MLP-based approgcsed in this paper é&ystem
Hier. Figure 3 gives a schematic view of the System Hier. In this system, an MifEri@d to as
LID-MLP) is trained to classify languages using the phoneme posteritimated by the phoneMLP
as input feature. We vary the temporal context at the input of the LIDRMhd study its impact on
the performance of the LID system. When varying the temporal context,uimder of hidden units is
accordingly adjusted to keep the number of parameters constant. Giv&rugteeance, the frame-based
log posteriors for each language are summed up and the decision abougiiiegars made by choosing
the language that gets the maximiwsy posterior probability over the whole utterance.

Figure 3: The hierarchical approach. The “phoneMLP” is shown in Fig. 1 and théD-MLP” is
sketched in Fig. 4.

language
posteriors
5 units

phoneme
posteriors
92¢c units

Figure 4:Architecture of the LID-MLP. The input dimensionality depends upon thedeal context ¢
frames) which is varied in this study. At the output are five units, one fdr leaaguage.

In retrospect, it can be observed that the different systems desamili@d section use the output of
the phoneMLP differently. More specifically, System PC and System &RhgsphoneMLP output as
local score (acoustic match) and try to discriminate between languagedawargevel or higher level
“a priori” knowledge (i.e. knowledge driven). However, the Systenrdiges the output of phoneMLP
as a feature, and learns in a data driven manner to discriminate betweaadasg

5 Experimental Results and Discussion

We performed language identification on the test set of the five SpeethDatésets for English, Span-
ish, Italian, Swiss French and Swiss German. In total there are 6975igaisst utterances. The
System Hier was evaluated for different temporal contexts at the ingheafecond MLP (LID-MLP).
The temporal context was varied from one frame (10 ms) up to 310 ms (miniteahuwce duration).
Table 5 presents the performance of different systems.

The results show that System Hier (with 290 ms temporal context) yields a sagnilfi better per-
formance (McNemar with 99% confidence level) compared to both, Systeam@Bystem PC. Figure 5

6



Table 5:Comparison of different systems. The System Hier performance wasaibwith a temporal
context of 290 ms at the input of the LID-MLP.

System| Errors| LID %
PC| 1236 82.3

SR 360 94.8
Hier 248 96.4

presents the influence of the temporal context on the performance ofefa@dhical MLP-based ap-
proach. It can be observed that an increasing temporal context isgitbe language classification
accuracy and saturates at a temporal context of around 230 ms. Tdsdrsimilar to what has been
observed in the case of hierarchical MLP-based phoneme recogriitioan also be seen that System
Hier improves over System SR at a temporal context of around 130 mswe.aburthermore, it is in-
teresting to notice that with no temporal context (where one may expect cmlgtic confusion related

information to be present), the hierarchical MLP-based approach yaelagter performance than the
phonotactic constraint-based approach.
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Figure 5:Influence of the temporal context to System Hier. The performangsi@i SR is significantly
worse compared to System Hier with a temporal conte70 ms.

In order to better understand the difference between System Hier atehS$&, we analyzed the
confusion between different languages. Tables 6 and 7 display thesommbetween different languages
for System Hier and System SR, respectively. False negatives eepthse number of misclassifications
per language. The false negatives are also given as percentagaaiblfamount of test utterances avail-
able for a particular language. False positives on the other hand, intimatenany times a particular
language was wrongly associated to a test utterance of another language

The misclassification rates are more even across languages in Systemadien Bystem SR. In
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Table 6:Confusion between languages for System Hier (290 ms temporal context).

EN | ES| IT | SF| SZ | false neg.
EN -| 9123 5| 10|47 3.6%
ES 6 -1 32| 6| 11|55 3.8%
IT 4|1 18| -| 4| 7|33 24%
SF 1| 7112 -| 50|70 4.9%
Sz 5| 2|18 18 -1 43 3.0%
falsepos.| 16| 36| 85| 33| 78 248

Table 7:Confusion between languages for System SR.
EN| ES|IT | SF| SZ| false neg.

EN -1 30124 10| 27| 91 7.0%
ES 5 -|15) 2| 2] 24 1.7%
IT 6| 53| -| 6| 2| 67 4.9%
SF 14| 27| 7 -| 57105 7.3%

SZ 25| 13| 8| 27 -| 73 51%
false pos.| 50| 123 | 54| 45| 88 360

the case of System Hier, the languages Italian and Swiss German yield lowssifictdion rates but at
the same time have more false positives. This may be due to the fact that theaseges have a high
number of mono-phonemes (see Table 4). In the case of System SR, thistSlpaguage yields the
lowest misclassification rate but at the same time higher false positives. Thiberatyributed to the
nature of the Spanish mono-phonemes and the high phoneme sharing$aetdable 4). English and
Swiss French also have a high sharing factor, but their mono-phonem&srcmostly vowel sounds,
whereas the Spanish mono-phonemes are rather consonant sounds.

Altogether, the findings of our study suggest that there is a good poténtising the proposed
hierarchical MLP-based approach for language identification.

6 Conclusion and Future Work

In this paper, a hierarchical MLP-based approach that tries to modslepib-temporal patterns in
phoneme posterior sequences was proposed for language identifidatiperimental studies that used
SpeechDat(ll) databases of five languages demonstrated that these@dogpproach can yield a sys-
tem that performs significantly better than systems based on conventignebapes that use phoneme
recognition with phonotactic constraints or a speech recognition system.

In future, we intend to further ascertain the potential of the proposebapip by using more lan-

guages, continuous speech data, and using other techniques ppropieeiterature to create a universal
phoneme set.
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