
Tracter: A Lightweight Dataflow Framework

Philip N. Garner, John Dines

Idiap Research Institute, Martigny, Switzerland
pgarner@idiap.ch, dines@idiap.ch

Abstract

Tracter is introduced as a dataflow framework particularly use-
ful for speech recognition. It is designed to work on-line in real-
time as well as off-line, and is the feature extraction means for
the Juicer transducer based decoder. This paper places Tracter
in context amongst the dataflow literature and other commer-
cial and open source packages. Some design aspects and capa-
bilities are discussed. Finally, a fairly large processing graph
incorporating voice activity detection and feature extraction is
presented as an example of Tracter’s capabilites.
Index Terms: Dataflow, speech recognition, open source.

1. Introduction
Tracter is a lightweight software framework for doing signal
processing. It grew out of a requirement at Idiap, and within
the AMI consortium [1], for a real-time capability. Whilst it
remains fundamentally a real-time system, it also works per-
fectly well offline, and has been used to solve a number of other
problems associated with collaborative work in signal process-
ing and automatic speech recognition (ASR).

Signal and image processing usually involve chains of pro-
cessing steps. The results of one processing step are simply
passed to one or more subsequent processing steps until the
required form of result is obtained. For example, analysis of
speech might involve sampling, sample rate conversion, fil-
tering and spectral analysis before being passed to a coder or
speech recogniser. Analogously, visual analysis of faces might
involve video capture followed by illumination normalisation
and feature extraction before being passed to a face recogniser.

Working on an individual component or a small chain of
components is easy. Typically a student might implement them
as subroutines and simply call them in turn with file input and
output. Embedding such components into a larger system, how-
ever, can be difficult. This is especially true when the system is
required to run online. If it is then required that other standard
libraries are used, and that other developers, perhaps at other in-
stitutions, contribute, then the system can become cumbersome.

Dataflow is a programming paradigm that can solve these
and other problems. In dataflow, individual components known
as actors are linked together as vertices in a directed graph.
Each actor processes data received at an input and produces data
at an output. The arcs of the graph serve as buffers, routing data
to other actors. Dataflow is exemplified by several commercial
packages, notably Cantata (part of Khoros1) and Simulink2. In
the academic world, there is the Ptolemy project [2], and the
CLAM system [3]. All these tools build on the visual nature of
the directed graph.

1http://www.khoral.com/
2http://www.mathworks.com/products/simulink/

Source Component Sink

Figure 1: A minimal Tracter graph.

Dataflow has been used in ASR before; the concept goes
back to at least 1985 [4], and is clearly used in the hardware im-
plementation of Gómez et al. [5]. More recently, in SPHINX-4
Lamere et al. [6] define a chain of processing stages connected
by queues. This in turn inspired a similar implementation by
Dixon et al. [7], although those designs apparently allow only
chains rather than graphs. The ATK wrapper for HTK [8] is
also dataflow influenced.

In its most tangible form, Tracter defines a library of com-
ponents that can be linked together into a directed graph in the
spirit of the dataflow paradigms described above. Data enters
one or more sources, is propagated through the graph, and pro-
cessed data is made available at a sink. The graph nature of
Tracter has allowed easy implementation of at least two other-
wise quite difficult to implement aspects of ASR processing in
the context of the Juicer ASR decoder [9] and the AMIDA sys-
tem [10]: Tandem features and voice activity detection (VAD).

In the remaining sections, some design and implementa-
tion aspects of Tracter are discussed, and illustrated by example.
Tracter is available as an open-source library under a permissive
(BSD style) licence.

2. Architecture
2.1. Overview

Tracter is a data-flow framework for signal processing in the
sense of, for instance, Lee and Messerschmitt [11]. It defines a
library of components that each typically do a small amount of
computation, but can become nodes in a directed graph where
they work together (although independently) to do something
more useful. Although Tracter contains several implementa-
tions of basic algorithms, it has developed into a wrapper for
libraries of basic algorithms.

The components generally run serially, not in parallel;
Tracter does not do concurrent dataflow in the sense of Kahn
process networks [12]. It is not a language either. However,
the components do have some things in common with process
networks. For instance, reads are blocking but writes are not.

A minimal Tracter graph is shown in figure 1. Tracter dis-
tinguishes sources and sinks from other components; it allows
an arbitrary graph of actors to be assembled, with an arbitrary
number of sources and sinks. It is mostly synchronous [11] in
the sense that a given actor firing normally consumes and pro-
duces predictable amounts of data. However, this is not true for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.khoral.com/
http://www.mathworks.com/products/simulink/

the VAD gate (see section 4.2). The major difference in com-
parison with Lee and Messerschmitt is that the actors do not run
concurrently. They are scheduled sequentially using the pull
formalism described below, and by Manolescu [13]. The same
formalism has been used in the design of SPHINX-4 by Lamere
et al. [6], and by Dixon et al. [7]. Manolescu [13] notes that
much the same programming pattern is used by UNIX streams;
that in turn is the method used by the SPTK3 toolkit to similar
ends.

2.2. Marshalling

Marshalling is taken here to be the means by which data is
guided (marshalled) through the graph. In the original dataflow
literature, summarised by Lee and Parks [12], the actors in the
network were all separate processes. Calculations were trig-
gered by data arriving at actor inputs. This marshalling method
can be referred to as push, in that processing is driven from the
source (input) of the graph. Push processing lends itself to cal-
culations that are certain to run in real-time, and is exemplified
by analogue to digital converters (ADCs), where a clock drives
the ADC, and subsequently interrupts the host CPU.

The opposite, pull, method is driven from the sink (output)
of the graph. A request for data is sent from the sink and prop-
agates through the graph, returning when data is available. Pull
lends itself to processing that does not necessarily run in real
time, since actors are not asked for more data until they have
fulfilled a given request.

In writing a (real-time) ASR system, the focus tends to be
on the decoder. Certainly, the decoder is the most CPU inten-
sive component. By contrast, the front-end or feature-extraction
components are comparatively simple. Indeed, from the de-
coder author’s point of view, the features tend to exist pre-
calculated in a file. This naturally leads to a request-driven pull
decoder architecture of the general form:

feature* f;
while(f = frontend.Read())

decode(f);

In this form, the Read() method amounts to reading the next
line of a file.

Tracter is, in its simplest form, an interface between the de-
coder’s pull architecture and the ADC’s push architecture. More
generally, Tracter allows a directed graph of components that
are all pull driven4. In an ASR system, this allows the design to
be decoder-centric:

• The decoder is a Tracter sink that calls Read() on some
input component.

• That input component (which may simply be a source)
calls its inputs, which in turn call their inputs.

• Eventually, one or more sources are called, which read
the raw data.

In the ADC case, it is the sources that interface the push and
pull mechanisms using an appropriate buffer. If, as is the case
in AMIDA, the source is a TCP socket, it simply calls the
BSD socket API function recv(), which is itself a pull-driven
method.

The pull marshalling has one other advantage: processing
is only done on data for which the processing result is required.

3http://sp-tk.sourceforge.net/
4This is the origin of the name. The misspelling is deliberate, in the

spirit of Juicer

Concatenate

Cepstrum

0

Delta

1

Delta

2

Figure 2: Tracter sub-graph to append dynamic features.

Figure 3: A cached component.

This is particularly useful in the context of VAD, where cer-
tain features and certainly decoding only need to be done on
speech frames. Reciprocally, noise processing can be restricted
to purely noise frames.

2.3. Capabilities

Figure 2 shows the sub-graph that is used to append dynamic
features to cepstra for ASR. Any order of dynamic features can
be added. Notice that the first delta component will need to
read a few frames behind and ahead of the concatenation com-
ponents in order to calculate a derivative. On the subsequent
frame, all but one of the previously calculated frames will be
required again. This leads naturally to a caching requirement.
In dataflow, the cache is implemented as a buffer on each arc. In
Tracter, this concept is simplified into the concept of a cached
component. This is illustrated in figure 3. When data is re-
quested from the component, the cache is first checked for those
data. If any are not present then the Fetch() method is called.
The signal processing functionalty is therefore implemented as
a Fetch() method.

2.4. Cache size

In the original dataflow literature, the buffers on the graph arcs
were able to grow indefinitely. This presents a run-time over-
head associated with memory allocation. ADCs, on the other
hand, use fixed size circular buffers. In Tracter, the caches
are there to buffer input data for the downstream component(s).
Tracter caches are allocated at construction time, and do not
change thereafter. This is achieved by a message passing algo-
rithm that functions as follows:

1. The sink tells each of its input components the size of the
maximum request it will make for data, plus an offset in
time (to facilitate reading ahead or behind).

2. Each input component keeps a record of the maximum
read ahead and read behind over all components reading
from it.

3. Based on these maxima, the component adjusts its cache
size.

4. Based on these maxima, the component iterates over its
input components as in step 1.

http://sp-tk.sourceforge.net/

The algorithm is not explicitly multi-pass, but upstream sub-
graphs may be iterated over several times in response to mes-
sages from components with multiple downstream connections.
The algorithm is sufficient but not optimal; the final cache sizes
are never too small, but can be larger than necessary.

3. Programming
3.1. API

Tracter is written in C++. It has a hierarchical API that distin-
guishes the following layers:

Factories define a graph of components that constitute some
useful block. A factory is actually a very thin layer; it
just instantiates a graph of components, so the overhead
after calling the factory is zero.

Components are the main level. A component is a vertex in
a directed graph of processing elements. Components
necessarily have inputs and outputs. Components imple-
ment dataflow.

Objects in Tracter are things that have a name and can hence
receive parameters. They don’t necessarily take part in
dataflow operations. Factories are objects, as are compo-
nents.

The most important level in Tracter, and the only one discussed
in this paper, is the component level.

Various standard components are implemented in Tracter.
These include sources for reading from files, sockets and var-
ious sound APIs. Several standard graphs are also available
as factories for computation of common ASR features such as
MFCCs and PLPs.

3.2. Third party libraries

Although some functionality is implemented natively in Tracter,
it is really a framework, not a function library. For instance, it
contains FFT components, but not an FFT implementation. This
is left to function libraries. Similarly, the nature of a collabo-
rative project is that many modules are written by many differ-
ent people in different institutions. Tracter components present
a fairly simple internal interface that has allowed wrapping of
several other component packages. Notably,

FFT libraries Kissfft5 and FFTW6 provide portable and rea-
sonable quality Fourier transform packages.

Resampling libraries libresample7 and SRC8 provide resam-
pling.

Torch [14] is a machine learning package developed at Idiap.
It is used to implement a multi-layer perception (MLP)
that is used in the AMIDA segmenter.

BSAPI is a speech API developed at Brno University of Tech-
nology. It is the prefered development medium for the
Brno speech group, and implements some of the more
advanced features used in the AMIDA system.

HTK [15] is a commonly used toolkit in ASR, and is used in
AMIDA to extract features and for adaptation. Tracter
provides wrappers for HTK modules HCopy and HParm.

5http://kissfft.sourceforge.net/
6http://www.fftw.org/
7http://www-ccrma.stanford.edu/˜jos/resample/

Free_Resampling_Software.html
8http://www.mega-nerd.com/SRC/

SPTK is a library very much in the spirit of Tracter. SPTK
processing steps use UNIX pipes to communicate; these
processing steps can easily be re-wrapped as Tracter
components. SPTK notably contains the reference mel-
generalised cepstrum implementation.

4. Example
Figure 4 shows a fairly complicated Tracter graph to calculate
features, with VAD similar to that in [10]. The main feature
extraction steps are implemented using BSAPI wrapper com-
ponents. The two main aspects are discussed below.

4.1. Library wrapping

The graph illustrates how different libraries can be combined
into the same chain:

1. The MLP component is a wrapper for the Torch3 MLP
implementation.

2. The BSAPIFrontEnd and BSAPITransform com-
ponents are wrappers for the BSAPI library.

There is some element of duplication of functionality. For in-
stance, BSAPI also implements MLPs and Tracter has PLP fea-
tures. However, the versatility is essential for collaboration be-
tween groups with different software bases.

4.2. Voice Activity Detection

One of the main features of a real-time ASR system is voice
activity detection (VAD). VAD is implemented in Tracter us-
ing a gate method. A VADGate component distinguishes a
downstream subgraph containing the decoder from an upstream
graph connected to the actual media. Requests from down-
stream for indexed data are translated to requests upstream with
modified indexes. The indexes are changed by means of a sec-
ond input to the VAD gate that indicates speech activity.

This design is not necessarily the most efficient possibility
because the VAD logic must confirm that speech has begun,
typically by waiting for some minimum time, before the VAD
gate will let the appropriate frames downstream. However, the
design is otherwise very flexible and allows the decoder to be
developed completely offline and independently.

5. Conclusions
Whilst none of the elements of Tracter are especially novel,
the authors believe that the combination of a dataflow archi-
tecture, the ability to wrap other packages, and the permissive
licence is unique and useful. Tracter has allowed construction
of non-trivial ASR based systems across multiple laboratories,
and continues to be used for this purpose. It is freely available
for download as an open source BSD licenced package9. Some
GPL licenced parts are packaged separately10 to avoid licence
incompatibility.

6. Acknowlegements
Besides the authors, significant contributions have been made
to Tracter by Mike Flynn, Martin Karafiát, Danil Korchagin and
Vinny Wan. We are also grateful to Olivier Bornet and Alexan-
dre Nanchen for help with packaging and porting.

9http://juicer.amiproject.org/tracter/
10http://juicer.amiproject.org/tracter-gpl/

http://kissfft.sourceforge.net/
http://www.fftw.org/
http://www-ccrma.stanford.edu/~jos/resample/Free_Resampling_Software.html
http://www-ccrma.stanford.edu/~jos/resample/Free_Resampling_Software.html
http://www.mega-nerd.com/SRC/
http://juicer.amiproject.org/tracter/
http://juicer.amiproject.org/tracter-gpl/

This work was supported by the European Union 6th

and 7th Framework Programme IST Integrating Projects
“Augmented Multi-party Interaction with Distance Access”
(AMIDA, FP6-033812) and “Together Anywhere Together
Anytime” (TA2, FP7-214793), and the Swiss National Center of
Competence in Research (NCCR) on “Interactive Multi-modal
Information Management” (IM2).

7. References
[1] T. Hain, L. Burget, J. Dines, P. N. Garner, A. El Hannani, M. Hui-

jbregts, M. Karafiat, M. Lincoln, and V. Wan, “The AMIDA 2009
meeting transcription system,” in Proceedings of Interspeech,
Makuhari, Japan, September 2010.

[2] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong, “Taming
heterogeneity—the Ptolemy approach,” Proceedings of the IEEE,
vol. 91, no. 1, pp. 127–144, January 2003.

[3] X. Amatriain, “CLAM, a framework for audio and music applica-
tion development,” IEEE Software, pp. 82–85, January/February
2007.

[4] T. S. Ananthararnan and R. Bisiani, “Custom data-flow machines
for speech recognition,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, April
1985, pp. 1847–1850.

[5] P. Gómez, A. Álvarez, R. Martı́nez, M. Pérez-Castellanos,
V. Rodellar, and V. Nieto, “A DSP-based modular architecture for
noise cancellation and speech recognition,” in Proceedings of the
IEEE International Symposium on Circuits and Systems, vol. V,
Monterey, CA, May 1998, pp. 178–181.

[6] P. Lamere, P. Kwok, W. Walker, E. Gouvêa, R. Singh, B. Raj, and
P. Wolf, “Design of the CMU SPHINX-4 decoder,” in Proceed-
ings of EUROSPEECH, 2003.

[7] P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui, “The TITech
large vocabulary WFST speech recognition system,” in Proceed-
ings of the IEEE Workshop on Automatic Speech Recognition and
Understanding. Kyoto, Japan: IEEE, December 2007, pp. 443–
448.

[8] S. Young, “ATK: An application toolkit for HTK,” Machine
Intelligence Laboratory, Cambridge University Engineering
Department, Trumpington Street, Cambridge, CB2 1PZ, England,
Tech. Rep., 2007, version 1.6. [Online]. Available: http:
//mi.eng.cam.ac.uk/research/dialogue/ATK Manual.pdf

[9] D. Moore, J. Dines, M. Magimai Doss, J. Vepa, O. Cheng, and
T. Hain, “Juicer: A weighted finite-state transducer speech de-
coder,” in Proceedings of the 3rd Joint Workshop on Multimodal
Interaction and Related Machine Learning Algorithms, 2006.

[10] P. N. Garner, J. Dines, T. Hain, A. El Hannani, M. Karafiát, D. Ko-
rchagin, M. Lincoln, V. Wan, and L. Zhang, “Real-time ASR from
meetings,” in Proceedings of Interspeech, Brighton, UK, Septem-
ber 2009.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September
1987.

[12] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceed-
ings of the IEEE, vol. 83, no. 5, pp. 773–799, May 1995.

[13] D.-A. Manolescu, “A data flow pattern language,” in Pro-
ceedings of The 4th Pattern Languages of Programming
Conference, September 1997, Monticello, Illinois, USA. Wash-
ington University Technical Report 97-34. [Online]. Available:
http://hillside.net/plop/plop97/Workshops.html

[14] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular
machine learning software library,” Idiap, IDIAP-RR 02-46,
2002. [Online]. Available: http://publications.idiap.ch

[15] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A.
Lui, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and
P. Woodland, The HTK Book. Cambridge University Engineering
Department, December 2006, version 3.4.

HTKSink

BSAPITransform

Subtract

ViterbiVADGate

0

Mean

BSAPIFrontEnd

0

Concatenate

0

Frame

Energy

Normalise

FileSource

ViterbiVAD

1

SilSelect

MLP

Divide

Subtract

0

MLPVariance

Concatenate

0

MLPMean

0

Delta

EnergyNorm

1

Log

1

Delta

2

1

1

1

In this case the source
is a raw file. It could be an
audio device or a socket.

The main PLP
feature calculation
is performed by
BSAPI here. In other
graphs it might be a
complex chain.

BSAPITransform
calculates delta
features. This is an
example of a Tracter
function more easily
implemented in a
library.

PLP features,
normalised
energy and
derivatives.

Mean normalisation.
is achieved with distinct
Mean and Subtract
components.

Variance normalisation
in the same spirit as
mean normalisation.

Torch3 based Multi-layer
perceptron. The component
reads a separate configuration
file with MLP topology.

VAD boolean, in this
case with Viterbi smoother.

Features are fed
to an HTK format
file. The sink could
also be a socket, a text file
or an ASR decoder.

Energy
normalisaton.

In this experimental
VAD, the derivative
calculation uses native
Tracter components.

The VAD gate only lets
features through when
the VAD feature is active.
Notice that the features
are also used as VAD
features

Figure 4: An annotated example graph containing integrated
MLP based VAD, gate and feature calculation.

http://mi.eng.cam.ac.uk/research/dialogue/ATK_Manual.pdf
http://mi.eng.cam.ac.uk/research/dialogue/ATK_Manual.pdf
http://hillside.net/plop/plop97/Workshops.html
http://publications.idiap.ch

	 Introduction
	 Architecture
	 Overview
	 Marshalling
	 Capabilities
	 Cache size

	 Programming
	 API
	 Third party libraries

	 Example
	 Library wrapping
	 Voice Activity Detection

	 Conclusions
	 Acknowlegements
	 References

