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Abstract
We propose a novel fully automatic framework to detect which
meeting participant is currently holding the conversational floor
and when the current speaker turn is going to finish. Two sets
of experiments were conducted on a large collection of multi-
party conversations: the AMI meeting corpus. Unsupervised
speaker turn detection was performed by post-processing the
speaker diarization and the speech activity detection outputs. A
supervised end-of-speaker-turn prediction framework, based on
Dynamic Bayesian Networks and automatically extracted mul-
timodal features (related to prosody, overlapping speech, and
visual motion), was also investigated. These novel approaches
resulted in good floor holder detection rates (13.2% Floor Error
Rate), attaining state of the art end-of-speaker-turn prediction
performances.
Index Terms: multiparty conversation, floor control, speaker
turn, non-verbal features, Dynamic Bayesian Network.

1. Introduction
This work automatically analyses multiparty conversations, pre-
dicting: which participant is currently holding the conversa-
tional floor (i.e. the owner of the current speaker turn), and
when the current speaker turn is going to end. This is achieved
by considering only non-verbal participant behaviours [1]. Sev-
eral downstream applications would benefit from automatically
detecting the current floor holder and predicting its change. Hu-
man computer interfaces, such as spoken dialogue systems and
Embodied Conversational Agents, would be able to improve
their engagement in a conversation. Floor control modelling
can be exploited by mediated communication applications, such
as: “virtual video directors”, and teleconference multicasting
systems. In addition it could be employed to facilitate speech
understanding tasks, such as: automatic summarisation, topic
detection, and automatic role recognition.

Sacks et al. [2] observed that during a conversation speak-
ers usually talk one-at-a-time, i.e. speaker overlaps are common
but brief. Speakers take turns while trying to minimise the gap
or overlap between adjacent turns, so that fluent conversations
are formed. Listeners are thus able to roughly predict the end
of the current speaker turn in order to time their own start [3].
A turn taking model was formulated by Sacks et al. [2] in or-
der to describe the floor control process. Each speaker turn is
composed by one or more Turn Constructional Units (TCUs).
These are grammatically and prosodically complete utterances,
often marked by a lowering of pitch and energy towards their
end [3]. TCUs are followed by Transition Relevance Places
(TRPs), points in the conversation where conversational floor
holder changes are more likely. TRPs often correspond to un-
filled pauses, and are marked by turn-yielding cues [3, 4] such
as “the speaker gazing back up to an interlocutor”, gestures,

and posture shifts. The literature on floor control and end-of-
speaker-turn prediction initially focused on dyadic conversa-
tions, such as telephone conversations [5]. Only recently the in-
terest shifted towards a more challenging task: modelling mul-
tiparty conversations such as meetings [6, 7]. Schlangen [5] in-
vestigated the use of syntactic and prosodic features for end-of-
speaker-turn detection/prediction on telephone conversations;
human end-of-turn prediction performances were also reported.
Chen and Harper [6] investigated end-of-speaker-turn detection
on VACE meetings using prosodic, lexical, syntactic, and vi-
sual cues. These feature sets were extracted from manual ortho-
graphic, gestural, and Visual Focus of Attention (VFoA) anno-
tations. Turn detection was performed at the Sentence Unit level
comparing three statistical models. De Kok and Heylen [7] ad-
dressed the end-of-turn prediction task on AMI meetings (at a
frame level) using a similar set of manual annotations (Dialogue
Acts, head gestures, and VFoA) along with prosodic features. A
Conditional Random Fields model was adopted to this end.

At first glance, speaker turn detection may be confused with
speech activity detection [8] and speaker diarization [9]. How-
ever the latter tasks provide a fine grained representation of the
multiparty conversation (tailored for Automatic Speech Recog-
nition applications), aimed at identifying the temporal bound-
aries of each: silence, word, and utterance. Instead speaker turn
detection aims at a coarse grained representation where: each
speaker turn frequently includes multiple utterances (TCUs)
from the same speaker, often separated by long pauses (TRPs).
Backchannels and feedbacks from other speakers are included
into the current speaker turn [5], as they help regulating the turn
taking process without being part of the main conversational
exchange [2].

In this work two sets of experiments were performed on
the AMI meeting corpus (Section 2). Unsupervised speaker
turn detection was performed using a sequential approach (Sec-
tion 3). Speech activity detection and speaker diarization offer
fine grained conversation segmentations; probabilistic models
and acoustic features are then employed to post-process them,
forming speaker turns. A supervised approach for on-line joint
floor holder detection and end-of-speaker-turn prediction was
also investigated (Section 4). A Dynamic Bayesian Network
model relates the current floor holder with a multimodal feature
collection (including: prosody, overlapping speech, and visual
activities). Compared to previous works, in particular [6, 7], the
proposed approaches are novel in the following aspects:

• Floor holder detection and end-of-speaker-turn detec-
tion/prediction are performed jointly; previous systems fo-
cused only on speaker turn detection/prediction.

• Fully automatic approach; manual annotations in terms of
words, gestures, and Dialogue Acts were previously adopted
as observable features or to facilitate their extraction [5, 6, 7].
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• We focus on non-verbal communication [1]: our aim is to de-
velop text-independent low-level approaches that do not rely
on manual or automatic orthographic transcriptions.

• Multiple participants are modelled jointly, rather than pro-
cessing each speaker/microphone channel independently.

• Results are reported for the first time using Multiple Distant
Microphones, a challenging but highly portable audio record-
ing setup (which only requires a few table-top microphones).

2. Meeting Data and Annotations
Our experiments are based on the scenario subset of the AMI
meeting corpus [10]: a collection of 138 meetings (72 hours)
elicited using a scenario. Four meeting participants, playing
different roles in a team, took a product development project
from beginning to completion. The aim of this collection was
to obtain a multimodal record of the complete communicative
interaction between the meeting participants. To this end, three
meeting rooms were instrumented with: 4 Individual Head-
set Microphones, 8 Multiple Distant Microphones forming a
table-top microphone array, 4 close-up and 2 room-view video
cameras. Manual orthographic transcriptions and Dialogue Act
(DA) annotations are available for the entire collection [10].
Manual floor annotation 12 randomly selected meetings (4
for each recording site) were manually annotated in terms of
speaker turn segments, also identifying the conversational floor
holder for each segment. The resulting annotation showed a
good human inter-annotator agreement [11] of K = 0.9: 90%
better than one could have expected as simply due to chance.
DA derived floor annotation An alternative speaker turn / floor
holder annotation was also derived from the reference Dialogue
Act annotation (under the assumption of non-schismatic con-
versations). To this end, DA units such as backchannels and DA
fragments which are fully included into longer DA segments are
ignored (i.e. they do not constitute speaker turns [2]); DA seg-
ments are extended in order to include their trailing silences (i.e.
the current speaker holds the conversational floor until someone
grabs it); segments belonging to the same speaker are joined to-
gether. The resulting segmentation is considered as a proxy for
the reference speaker turn / floor holder annotation. The agree-
ment between the resulting proxy annotation and the 12 manu-
ally annotated meetings is K = 0.9. Therefore the DA derived
floor annotation is comparable to the manual floor annotation,
and can be used in its lieu. Note that the DA derived floor an-
notation is available for all the 138 AMI meetings.

3. Unsupervised Experiments
Unsupervised joint floor holder and end-of-speaker-turn detec-
tion were performed on the 12 manually annotated AMI meet-
ings (Section 2) using a two step approach: acoustic segmenta-
tion, followed by segments’ regrouping. During the first step a
low-level segmentation of the conversation is obtained through
Automatic Speaker Diarization (Section 3.0.1) or Speech Activ-
ity Detection (Section 3.0.2). The resulting segments are then
post-processed and merged in order to form speaker turns. To
this end, two alternative approaches were developed: Proba-
bilistic Segment Filtering (Section 3.0.3) and Joint Maximum
Cross-correlation Filtering (Section 3.0.4).

3.0.1. Speech Activity Detection

Speaker activities were estimated from each Individual Head-
set Microphone using the SHOUT toolkit [8]. Automatic de-
tection of speech, silence, and audible non-speech (sound) is

performed in five steps: acoustic features extraction (12 Mel
Frequency Cepstral Coefficients and Zero Crossing Rate fea-
tures); rough speech/non-speech segmentation using out of
domain acoustic models; training of accurate recording spe-
cific speech/silence/sound models, using the initial speech/non-
speech segmentation; merging of sound and speech models
when they are found to be equivalent (according to the Bayesian
Information Criterion); estimation of the final segmentation us-
ing Viterbi decoding.

3.0.2. Automatic Speaker Diarization

Automatic speaker diarization aims at identifying individual
speaker interventions on a single track audio recording. This
fully unsupervised audio segmentation technique is able to learn
a statistical model for the voice of each speaker, without any
prior knowledge about the number and the identities of the par-
ticipants. The speaker diarization system adopted in our exper-
iments is based on the Hidden Markov Model (HMM) agglom-
erative clustering approach proposed in [9]. 19 MFCCs are ex-
tracted from the raw audio recordings every 10 ms. and modeled
using Gaussian Mixture Models (GMMs). An ergodic HMM
with one state for each audio cluster is used to model the conver-
sation, enforcing a minimum duration constraint of 2 seconds
for each segment. Starting from a large number of audio clus-
ters (30), the most similar ones (according to the BIC) are itera-
tively merged, keeping the overall number of GMM parameters
constant. The merging process is stopped when the HMM like-
lihood starts decreasing (comparing successive iterations). The
outlined diarization framework attained an overall cluster pu-
rity [9] of k = 0.64 on the mix of 4 Individual Headset Micro-
phone signals (IHM-Mix), and a purity of k = 0.52 on beam-
formed Multiple Distant Microphones (MDM, Section 3.1).

3.0.3. Probabilistic Segment Filtering

The speaker diarization output (Section 3.0.2) results in a larger
number of audio clusters (9–15) than the actual number of
meeting participants (n = 4). The resulting segmentation in-
cludes: spoken segments uttered by a single meeting partici-
pant, interleaved with shorter segments characterised by non-
vocal-sounds, noise, and overlapping speech. In order to re-
cover the underlying speaker turn structure, it is desirable to re-
move all these short noisy segments, including them into their
surrounding spoken segments. To this end we employed a Gaus-
sian Naı̈ve Bayes classifier trained on features such as: nor-
malised segment length, proportion of the recording represented
by that audio cluster label, proportion of the segment classi-
fied as voiced during pitch estimation (Section 4.0.1). Each
meeting recording is processed with an individually trained
classifier. Data from the 4 smallest and largest automatically
detected audio clusters provided evidence for the two target
classes (i.e. noisy and spoken segments). All audio segments
are re-classified as spoken or noisy using the learned models,
and then merged accordingly. Note that probabilistic segment
filtering, requiring more than 4 input clusters, could not be ap-
plied to the Speech Activity Detection output (Section 3.0.1).

3.0.4. Joint Maximum Cross-correlation (JMXC) Filtering

Joint Maximum Cross-correlation features, initially proposed
in [12] to address microphones’ crosstalk in multichannel voice
activity detection, can be employed to detect the most active
meeting participant (i.e. speaker) Si, i ∈ [1, n = 4] on each
automatically obtained audio segment ∆t:



Table 1: Unsupervised floor holder (Floor Error Rate percent-
age) and end-of-speaker-turn detection (Precision, Recall, and
F1-score) performances on 12 manually annotated meetings.

Unsupervised Setup FER Prec. Rec. F1
MDM Diarization 57.1 % 0.23 0.55 0.32
+ Prob. segment filtering 48.0 % 0.30 0.34 0.32
IHM-Mix Diarization 34.5 % 0.27 0.51 0.35
+ Prob. segment filtering 28.5 % 0.37 0.42 0.39
+ JMXC filtering 20.4 % 0.43 0.40 0.41
IHM Speech Activity D. 17.3 % 0.35 0.47 0.40
+ JMXC filtering 16.9 % 0.41 0.50 0.45
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φij(∆t) represents the cross-correlation (estimated on raw
acoustic signals) between Individual Headset Microphone chan-
nels i and j; ξij estimates to what extent speaker Sj is responsi-
ble for the cross-correlation peak maxφij(∆t) relative to chan-
nel i and speaker Si. Participant Si is speaking if Ξi(∆t) > 0
(a geometric interpretation for ξij and Ξi can be found in [12]).
Therefore we assume Lt = arg maxi (Ξi(∆t)) as the most ac-
tive speaker in ∆t. Adjacent segments ∆t−1, ∆t sharing the
same speaker label Lt−1 = Lt are then joined together, aiming
at reconstructing the reference speaker turn segmentation.

3.1. Experimental Setup and Numerical Results

Experimental results of unsupervised floor holder detection are
shown in table 1. They are reported in terms of Floor Error
Rate, intended as the percentage of the recording length where
the conversation floor holder was incorrectly detected. Table 1
also reports the end-of-speaker-turn detection performances in
terms of: precision (probability that an automatically detected
end-of-speaker-turn corresponds to a reference turn-end with a
tolerance of ±0.5 seconds); recall (probability that a reference
turn-end is automatically predicted); and F1-score (unweighted
precision and recall harmonic mean).

Numerical experiments were performed on three different
configurations: speaker diarization (Section 3.0.2) of the micro-
phone array beam-forming output (applying J. Ajmera Beam-
formit 2.0 toolkit to the 8 Multiple Distant Microphone acoustic
signals); speaker diarization of the 4 Individual Headset Micro-
phone channels Mix; Speech Activity Detection (Section 3.0.1)
using the 4 Individual Headset Microphones. On the MDM
setup, probabilistic segment filtering improves floor holder de-
tection but not the overall end-of-speaker-turn detection perfor-
mances (when compared to the baseline MDM diarization sys-
tem). Instead on the IHM-Mix diarization setup, probabilistic
segment filtering is effective on both tasks, resulting in a 6%
FER and a 4% F1-score absolute improvement. JMXC filtering
clearly outperforms probabilistic segment filtering (14% FER
and 6% F1-score improvement) on the IHM-Mix diarization
setup, being also effective on the IHM Speech Activity Detec-
tion (SAD) setup.

Although the IHM-SAD configuration provides the best de-
tection performances on both tasks, by requiring access to each
IHM channel and prior knowledge about the total number of
speakers, this is the most constrained setup. In contrast prob-
abilistic segment filtered MDM diarization, not only results in
the most unobtrusive recording condition, but also avoids prior

Figure 1: DBN model for joint floor holder detection and end-
of-speaker-turn prediction; discrete hidden random variables
H,R,M are represented by unshaded square nodes; observ-
able feature vectors O correspond to shaded circles.

assumptions on the meeting setup.

4. Supervised Experiments
Supervised experiments of joint floor holder detection and end-
of-speaker-turn prediction were performed by modelling a col-
lection of multimodal features (Section 4.0.1) through a genera-
tive Dynamic Bayesian Network (DBN) model (Section 4.0.2).
While sequential unsupervised experiments of section 3 aim at
off-line processing; the supervised framework outlined in this
section is suitable for on-line applications. To this end, the use
of looking forward features such as pauses was avoided [5, 7].
The Viterbi decoding of the speaker independent DBN model
runs twice faster than realtime, on a single core processor with
1Gb of memory.

4.0.1. Multimodal Features

Three feature families were automatically extracted every 30
ms. from each Individual Headset Microphone and each indi-
vidual close-up camera:
Prosodic features including pitch contour F0 (estimated us-
ing the entropic get f0 tool), Root Mean Square signal Energy,
and syllabic Rate Of Speech (ROS) directly estimated from the
acoustic signals without a transcription of what was said [13].
Overlapping speech features based on Joint Maximum Cross-
correlation Ξi(∆t), i = 1, ..., 4 (Section 3.0.4) were extracted
from non-overlapping 30 ms. long audio segments ∆t.
Participant visual activities including motion intensities and
X,Y coordinates of the center of motion, were estimated from
the luminance differences between adjacent video-frames.
The resulting feature sets are concatenated in a single multidi-
mensional observable feature vector (early feature integration).

4.0.2. Dynamic Bayesian Network Model

The DBN model depicted in figure 1 was adopted to predict
the sequence of floor holders from the three multimodal fea-
ture families outlined in section 4.0.1. This ergodic two-level
Hidden Markov Model represents the sequence of speaker-
turn-holders through the Markov chain constituted by nodes
H0:T , which is responsible for a second hidden Markov chain
formed by sub-state nodes M0:T . Therefore each speaker turn
Ht1:t2 : Ht1 = Ht1+1 = ... = Ht2−1 = Ht2; t1 < t2;
t1, t2 ∈ [0, T ]; |H| = 4 is decomposed into a sequence of sub-



Table 2: Supervised floor holder detection and end-of-speaker-
turn prediction, testing our DBN model and 4 different feature
setups (Section 4.0.1) on 12 manually annotated AMI meetings.
All results are significantly different (at a confidence level of
p=0.001) according to the McNemar’s significance test.

Feature Setup FER Prec. Rec. F1
F0, Energy 13.8 % 0.56 0.42 0.48
F0, Energy, Visual 15.9 % 0.52 0.36 0.42
F0, Energy, ROS 13.2 % 0.57 0.44 0.50
F0, Energy, ROS, JMXC 14.0 % 0.56 0.39 0.46

states Mt1:t2, aiming at modelling the temporal evolution of
the current speaker turn Ht1:t2. Each sub-state Mt, t ∈ [t1, t2]
generates a single observable feature vector Ot. Note that the
mapping between sub-states M and continuous feature vectors
O is implemented through a 2-component GMM. A total of 12
sub-states (|M | = 12), shared by different floor holders, was
adopted in our experiments (Section 4.1). Model parameters,
including: prior probability vectors, transition matrices, sub-
states, and GMMs; are learned from DA derived annotations
(Section 2) during model’s training. The deterministic binary
reset node Rt aims at reinitialising the sub-state variable Mt

when a floor holder change (i.e. the end of a speaker turn) is
predicted. Rt is set to zero during a speaker turn (Ht−1 = Ht).
A floor holder change (Ht−1 6= Ht) triggers the reset node
Rt = 1, forcing the hidden sub-state nodeMt to be reinitialised
in according to its prior probability distribution.

4.1. Experimental Setup and Numerical Results

The DBN model outlined in section 4.0.2 was trained on 123
AMI scenario meetings, employing the DA derived proxy anno-
tation in terms of speaker turns (Section 2). The resulting model
was tested on the same set of 12 manually annotated meetings
used during the unsupervised experiments of section 3.1. Note
that 3 AMI meetings were held out from the training set for hy-
perparameter optimisation. Joint floor holder detection and end-
of-speaker-turn prediction performances are reported in table 2,
using the evaluation metrics outlined in section 3.1 and the man-
ual floor holder annotations of section 2. This novel generative
approach infers the current floor holder from the multimodal
feature vector and the DBN internal state, predicting for every
30 ms. if the current speaker turn ends at that instant.

Different feature setups were investigated following a for-
ward search feature combination scheme (Table 2). Pitch and
energy provided good floor holder detection performances, out-
performing the unsupervised IHM-SAD setup (Table 1). How-
ever the adoption of automatically extracted visual features did
not result in further improvements. Pitch, energy, and syl-
labic Rate Of Speech, proved to be the best feature combina-
tion on both tasks. Their adoption resulted in a low Floor Error
Rate (13.2%) and in the best F1 end-of-turn prediction score
(F1 = 0.5), which favourably compares to the state-of-the-art
(F1 = 0.48) [7]. This feature set successfully fulfils the two-
fold task of modelling participants’ speech activities and Turn
Constructional Unit prosodic completion [3].

5. Conclusions
In this paper two automatic systems for the joint floor holder
detection and end-of-speaker-turn detection/prediction on mul-
tiparty conversations were investigated. The first approach is

fully unsupervised: speaker diarization and speech activity de-
tection outputs are post-processed using probabilistic models
and cross-correlation measures, in order to detect speaker turns.
The second approach aims at supervised on-line end-of-turn
prediction. A multimodal feature set and a DBN model are em-
ployed to detect (every 30 ms.) the current floor holder, and to
predict when the current speaker turn is going to end. More-
over we showed that the manual floor holder annotation can be
reliably derived from the reference Dialogue Act annotation, fa-
cilitating the development of supervised approaches.

Differently from previous works, both approaches are fully
automatic (i.e. no manually derived annotations are used dur-
ing feature extraction) and model all participants/microphone
channels jointly; unsupervised speaker turn detection was also
performed on Multiple Distant Microphones. Numerical exper-
iments on the AMI meeting corpus showed that the DBN based
supervised system outperforms the unsupervised approach. The
current floor holder can be accurately detected with a Floor Er-
ror Rate as low as 13.2%. The end of the current speaker turn
can be reliably predicted from prosodic cues, attaining state of
the art performances.
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