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Abstract— In this paper, a multi-target tracking system for
collocated video and acoustic sensors is presented. We formulate
the tracking problem using a particle filter based on a state space
approach. We first discuss the acoustic state space formulation
whose observations use a sliding window of direction-of-arrival
estimates. We then present the video state space that tracks a
target’s position on the image plane based on online adaptive
appearance models. For the joint operation of the filter, we
combine the state vectors of the individual modalities and also
introduce a time delay variable to handle the acoustic-video data
synchronization issue, caused by acoustic propagation delays.
A novel particle filter proposal strategy for joint state space
tracking is introduced, which places the random support of the
joint filter where the final posterior is likely to lie. By using the
Kullback-Leibler divergence measure, it is shown that the joint
operation of the filter decreases the worst case divergence of the
individual modalities. The resulting joint tracking filter is quite
robust against video and acoustic occlusions due to our proposal
strategy. Computer simulations are presented with synthetic and
field data to demonstrate the filter’s performance.

I. I NTRODUCTION

Recently, hybrid nodes that contain an acoustic array col-
located with a camera were proposed for vehicle tracking
problems [1]. To intelligently fuse information coming from
both modalities, novel strategies for detection and data as-
sociation have to be developed to exploit the multi modal
information. Moreover, the fused tracking system should be
able to sequentially update the joint state vector that consists
of multiple target motion parameters and relevant features
(e.g., shape, color and so on), which is usually only partially
observable by each modality.

It is well known that acoustic and video measurements are
complementary modalities for object tracking. Individually, the
acoustic sensors can detect targets [2]–[4], regardless ofthe
bearing with low power consumption, and the video sensors
can provide reliable high-resolution localization estimates [5],
regardless of the target range, with high power consumption.
Hence, by fusing the acoustic and video modalities, we (i)
achieve tracking robustness at low acoustic signal-to-noise
ratios (SNR) or during video occlusion, (ii) improve target
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counting/confirmation, and (iii) design algorithms that permit a
power vs. performance trade-off for hybrid node management.

In the literature, one finds that fusion of acoustic and video
modalities has been applied to problems such as tracking
of humans under surveillance and smart videoconferencing.
Typically, the sensors are a video camera and an acoustic array
(not necessarily collocated). In [6], the acoustic time delay-of-
arrivals (TDOA’s), derived from the peaks of the generalized
cross-correlation function, are used along with active contours
to achieve robust speaker tracking with fast lock recovery.
In [7], jump Markov models are used for tracking humans
using audio-visual cues, based on foreground detection, image-
differencing, spatiospectral covariance matrices, and training
data. The work by Gatica-Perezet al. [8] demonstrates that
particle filters, whose proposal function uses audio cues, have
better speaker tracking performance under visual occlusions.

The videoconferencing papers encourage the fusion of
acoustics and video; however, the approaches in these papers
do not extend to the outdoor vehicle tracking problem. They
omit the audio-video synchronization issue that must be mod-
eled to account for acoustic propagation delays. In vehicle
tracking problems, average target ranges of100-600m result
in acoustic propagation delays in the range of0.3-2s. Acoustics
and video asynchronization causes biased localization esti-
mates that can lead to filter divergence. This is because the bias
in the fused cost function increases the video’s susceptibility
to drift in the background. In addition, motion models should
adaptively account for any rapid target motion. Moreover,
the visual appearance models should be calculated online as
opposed to using trained models for tracking. Although fixed
image templates (e.g., wire-frames in [6], [8], [9]) are very
useful for face tracking, they are not effective for tracking
vehicles in outdoor environments. Adaptive appearance models
are necessary for achieving robustness [10]–[12].

To track vehicles using acoustic and video measurements,
we propose a particle filtering solution that can handle mul-
tiple sensor modalities. We use a fully joint tracker, which
combines the video particle filter tracker [11] and a modified
implementation of the acoustic particle filter tracker [13]
at the state space level. We emphasize that combining the
output of two particle filters is different from formulating
one fully joint filter [14] or one interacting filter [1] (e.g.,
one modality driving the other). The generic proposal strategy
described in [15] is used to carefully combine the optimal
proposal strategies for the individual acoustic and video state
spaces such that the random support of the particle filter
is concentrated where the final posterior of the joint state
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space lies. The resulting filter posterior has a lower Kullback-
Leibler distance to the true target posterior than any output
combination of the individual filters.

The joint filter state vector includes the target heading
directionφk(t), the logarithm of velocity over rangeQk(t) =
log (vk/rk(t)), observable only by the acoustics; target shape
deformation parameters{a1, a2, a3, a4}k, the vertical 2D im-
age plane translation parameterηk(t), observable only by
the video; and the target DOAθk(t), observable by both
modalities. The subscriptk refers to thekth target. We also
incorporate a time delay variableτk(t) into the filter state
vector to account for acoustic propagation delays needed
to synchronize the acoustic and video measurements. This
variable is necessary to robustly combine the high resolution
video modality with the lower resolution acoustic modality
and to prevent biases in the state vector estimates.

The filter is initialized using a matching pursuit strategy
to generate the particle distribution for each new target, one
at a time [13], [16]. A partitioning approach is used to
create the multiple target state vector, where each partition
is assumed to be independent. Moreover, the particle filter
importance function independently proposes particles foreach
target partition to increase the efficiency of the algorithmat
moderate increase in computational complexity.

The organization of the paper is as follows. Sections II
and III present the state space formulation of the individual
modalities. Section IV describes a Bayesian framework for
the joint state space, and Sect. V introduces the proposal
strategy for the fully joint particle filter tracker. Section VI
discusses the audio-video synchronization issue and presents
our solution. Section VII details the practical aspects of the
proposed tracking approach. Finally, Sect. VIII gives experi-
mental results using synthetic and field data.

II. A COUSTICSTATE SPACE

The acoustic state space, presented in this section, is a
modified form of the one used in [17]. we choose this par-
ticular acoustic state space because of its flexible observation
model that can handle (i) multiple target harmonics, (ii)
acoustic propagation losses, and (iii) time-varying frequency
characteristics of the observed target acoustic signals, without
changing the filter equations. Figure 1 shows the behavior of
the acoustic state variables for a two-target example using
simulated data.

A. State Equation

The acoustic state vector for targetk has three elements
xk(t) , [ θk(t) , Qk(t) , φk(t) ]

T , where θk(t) is the kth

target DOA,φk(t) is its heading direction, andQk(t) is its
logarithm of the velocity-range ratio. The angular parameters
θk(t) andφk(t) are measured counterclockwise with respect
to thex-axis.

The state update equation is derived from the geometry
imposed by the locally constant velocity model. The resulting
state update equation is nonlinear [18], [19]:

xk(t+ τ) = hτ (xk(t)) + uk(t), (1)

0 5 10 15

−100

−50

0

50

100

150

 time

 θ
  i

n 
[°

]

0 5 10 15

−50

0

50

100

 φ
  i

n 
[°

]

 time
−100 0 100 200

−50

0

50

100

 y

 x

0 5 10 15

−2.2

−2

−1.8

−1.6

−1.4

 time

 lo
g(

v/
r)

Fig. 1. (Top Left) Particle filter DOA tracking example with two targets.
(Bottom Left) True track vs. calculated track. Note that the particle filter track
is estimated using the filter outputs and the correct initial position. The particle
filter jointly estimates the target heading (Bottom Right) and the target velocity
over range ratio (Top Right), while estimating the target bearing. Note that the
heading estimates typically tend to be much noisier than the DOA estimates.

whereuk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
Q,k, σ

2
φ,k}

andhτ (xk(t)) =



tan−1
{

sin θk(t)+τ expQk(t) sinφk(t)
cos θk(t)+τ expQk(t) cosφk(t)

}

Qk(t) −
1
2 log {1 + 2τ expQk(t) cos(θk(t) − φk(t))+

τ2 exp(2Qk(t))
}

φk(t)


 .

(2)
Reference [19] also discusses state update equations basedon
a constant acceleration assumption.

B. Observation Equation

The observationsyt,f = {yt−mτ,f (p)}
M−1
m=0 consist of a

batch of DOA estimates from a beamformer, indexed bym.
Hence, the acoustic data of window-lengthT is segmented into
M segments of lengthτ , equal to a single video frame duration
(typically τ = 1/30s). The target motion should satisfy the
constant velocity assumption during a window-lengthT . For
ground targets,T = 1s is a reasonable choice. Each of these
segments is processed by a beamformer, based on the temporal
frequency structure of the observed target signals, to calculate
possible DOA estimates. This procedure can be repeatedF
times for each narrow-band frequency indexed byf (Fig. 2).
Note that only the peak locations are kept in the beamformer
power pattern. Moreover, the peak values, indexed byp, need
not be ordered or associated with peaks from the previous
time in the batch and the number of peaks retained can be
time-dependent.

The sliding batch of DOA’s,yt,f , is assumed to form a
normally distributed cloud around the true target DOA tracks.
In addition, only one DOA is present for each target at each
frequencyf or the target is missed: multiple DOA measure-
ments imply the presence of clutter or other targets. We also
assume that there is a constant detection probability for each
target denoted byκf , which might depend on the particular
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Fig. 2. A 10-element uniform circular microphone array is usedto record
a target’s acoustic signal, while it is moving on an oval track(refer to
Fig. 11). The acoustic array’s inter-microphone distance is1.1m. Hence, the
maximum beamforming frequency without aliasing is approximately 150Hz.
The acoustic sampling frequency is 44100Hz. (a) The time-frequency plot
of the received signal. We estimated the bearing track of the vehicle using
the MVDR beamformer [2], where the beamforming frequencies are chosen
to be the dashed line for (b), the solid line for (c), and the dotted line for
(d). For each acoustic bearing estimate, 1470 acoustic data samples are used,
corresponding to 30 bearing estimates per second. The bearing tracks in (b-d)
are indexed byf = 1, 2, 3 in the acoustic state space derivation andF = 3.

frequencyf . If the targets are also simultaneously identified,
an additional partition dependency, i.e.,κfk , is added.

For a given target, if we assume that the data is only
due to its partition and clutter (hence, the DOA data
corresponding to other targets are treated as clutter), we
can derive the observation likelihood for the statext =[
xT1 (t), xT2 (t), . . . , xTK(t)

]T
[17] as:

p(yt|xt) =
∏K
k=1 p(yt|xk(t)) =

∏K
k=1

∏F
f=1

∏M−1
m=0



κf0,1

(
γ
2π

)Pm,f + κf1,1
(
γ
2π

)Pm,f−1 ∑Pm,f

p=1

ψt,m,f

 

p

∣∣∣xk

!

Pm,f




,

(3)
where the parametersκfn,K (

∑
n κ

f
n,K = 1) are the elements

of a detection (or confusion) matrix,p = 0, 1, . . . , Pm,f for
eachf andm, andγ ≫ 1 is a constant that depends on the
maximum number of beamformer peaksP , the smoothness of
the beamformer’s steered response, and the number of targets
K. The functionψ in (3) is derived from the assumption
that the associated target DOA’s form a Gaussian distribution
around the true target DOA tracks:

ψt,m,f

(
pi

∣∣∣xi
)

=

1√
2πσ2

θ
(m,f)

exp

{
−

(hθ
mτ (xi(t))−yt+mτ,f (pi))

2

2σ2
θ
(m,f)

}
,

(4)

where the superscriptθ on the state update functionh refers
only to the DOA component of the state update andσ2

θ(m, f)
is supplied by the beamformer, using the curvature of the DOA
power pattern at the peak location.

III. V IDEO STATE SPACE

In this section, we give the details of the video state space.
This video state space is also described in greater detail in[11].
We assume that the camera is stationary and is mounted
at the center of the acoustic microphone array, at a known
height above the ground. We also assume that the camera
calibration parameters are known, which allows us to convert
a location on the image plane to a DOA estimate while having
the same reference axis as the acoustic state space. Figure 3
demonstrates a video tracker based on state space described
in this section.

(a) Frame 1 (b) Frame 8 (c) Frame 15

(d) Frame 22 (e) Frame 29 (f) Frame 36

(g) Frame 43 (h) Frame 50 (i) Frame 57

Fig. 3. Intensity based visual tracking of the white car using the particle filter
based on the video state space described in this section. Thesolid box shows
the mean of the posterior, whereas the dashed box shows the location of
the mode of the posterior. The dot cloud depicts spatial particle distribution.
In this scenario, the white car is occluded for 1 second corresponding to
30 video frames. The particle spread during occlusion increases because the
robust statistics measure [11] renders the likelihood function non-informative.
The filter quickly locks back to the target after occlusion.

A. State Equation

The video state vector for targetk has six el-
ements: four affine deformation parametersak(t) =
[ ak,1,t , . . . , ak,4,t ]

T , a vertical 2-D translation pa-
rameter ηk(t), and the target DOA θk(t): xk(t) ,[

aTk (t) , ηk(t) , θk(t)
]T

. The affine deformation parame-
ters linearly model the object rotation, shear and scaling (affine
minus translation), whereas the translation parameter andthe
DOA account for the object translation, all on the image plane.
The state update equation consists of a predictive shift anda
diffusion component:

xk(t) = hτ (xk(t− τ)) + uk(t) = x̂k(t− τ) + νk(t) + uk(t),
(5)

where νk(t) is an adaptive velocity component, affecting
only ηk(t) and θk(t) in the state vector. It is calculated
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using a first-order linear prediction method on two successive
frames; x̂k(t − τ) is the maximuma posteriori estimate
of the state at timet − τ ; and uk(t) is an adaptive noise
component, calculated by measuring the difference between
the updated appearance and the calculated appearance at time
t, as described in [11]. Note that the video state mode estimates
x̂k(t−τ) are stored in the memory, because they are later used
for adaptively determining a time delay variable for acoustic-
video synchronization.

The state equation is constructed so that it can effectively
capture rapid target motions. The adaptive velocity component
accounts for the object’s shift within the image frame, whereas
the adaptive noise term captures its drift around its motion.
Hence, the adaptive velocity model simply encodes the object’s
inertia into the tracker and generates particles that are tightly
centered around the object of interest for improved efficiency
(Fig. 4). If we do not account for the object’s shift using the
adaptive noise component, we need to increase the variance
of the drift component to capture the actual movement of the
object. Hence, we may start to lose our focus on the target as
shown in Fig. 4(b) without the adaptive velocity component.In
this case, if the background is somewhat similar to the target,
it is automatically injected into the appearance models through
the EM algorithm. Hence, the background also becomes part
of the tracked object, thereby creating local minima to confuse
the tracker in its later iterations.

The adaptive noise variance is based on residual motion er-
rors generated by the adaptive velocity component. It decreases
when the quality of the prediction from the adaptive velocity
component is high, and increases when the prediction is poor.
Finally, when the tracker is visually occluded (occlusion is
defined in the next subsection), the target motion is charac-
terized using a Brownian motion andνk(t) = 0 is enforced.
Hence, during an occlusion, the state dynamics changes to the
following form:

xk(t) = xk(t− τ) + uk(t). (6)

We avoid the use of the adaptive velocity model during
occlusion because the object motion may change significantly
during an occlusion.

(a) with the adaptive velocity model(b) without the adaptive velocity
model

Fig. 4. Comparison of the proposed particles when the adaptive velocity model
is used. Note that the particles are tightly clustered around the target when
we use the adaptive velocity model. In contrast, without velocity prediction,
we need to use more particles to represent the same posterior, because most
particles have very low weights.

B. Observation Equation

The observation model is a mixture of following adaptive
appearance models: a wanderingWt, a stableSt, and an
optional fixed template modelFt. The wandering modelWt

captures transient appearance changes based on two successive
frames, whereas the stable modelSt encodes appearance
properties that remain relatively constant over a large number
of frames (Fig. 5). The fixed templateFt is useful for tracking
recognized targets, however it is not considered any further
in this paper. The adaptive observation model in this paper
uses the pixel intensity values for these appearance models
for computational efficiency as suggested in [11]. Although
the image intensity values are typically not robust to changes
in illumination, the appearance model described here can adapt
to changes in illumination. However, it is still possible tolose
track if there are sudden changes in illumination. We use a
very simple model to circumvent this problem. We normalize
the mean and the variance of the appearance as seen by each
particle. This makes our tracker immune to uniform scaling
of the intensities. If we know that the illumination changes
are severe, we can adopt an alternative feature at the expense
of computation without chancing our filter mechanics, such as
the spatial phase data of the object [12] that is more robust to
illumination changes.

The observation model is dynamically updated by an on-
line expectation maximization (EM) algorithm that adaptively
calculates the appearance parameters{µi,t, σ2

i,t}, (i = w, s)
of the appearance modelsAt = {Wt,St}, and the model
mixture probabilitiesmi,t, (i = w, s) for each pixel [20], [21].
The details of the EM algorithm for calculating the mixture
probabilities and model parameters can be found in [11],
[12]. Omitting the details of the derivations, the observation
likelihood is given by the following expression:

p(yt|xt) =

K∏

k=1

d∏

j=1





∑

i=w,s

mi,tN(Tk(yt(j));µi,t(j), σ
2
i,t(j))



 ,

(7)
whereTk is the affine transformation that extracts the image
patch of interest by using the state vectorxk(t); d is the
number of pixels in the image patch; and N(x;µ, σ2) is the
density

N(u;µ, σ2) ∝ exp

{
−ρ

(
u− µ

σ

)}
, (8)

whereu is normalized to have unit variance, and

ρ(u) =

{
1
2u

2, if |u| ≤ c;
c |u| − 1

2c
2, o/w.

(9)

The functionρ(·) is Huber’s criterion function, which is com-
monly used for outlier rejection [22]. It provides a compromise
between mean estimators that are susceptible to outliers and
median estimators that are usually robust to outliers. The
constantc is used to determine the outlier pixels that cannot
be explained by the underlying models. Furthermore, methods
from robust statistics allow us to formally decide when the
tracker isvisually occluded, which implies that the particle
with the highest likelihood has more than50% of its pixels,
which are classified as outliers by the appearance model. This
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Online Appearance Model with Fixed Template Size

S: Stable W: Wandering

Good match Poor match
High likelihood Particle Low likelihood Particle

Mapping from the box below
to the template is governed
by the affine deformation
parameters in the particle

Fig. 5. The online appearance model is illustrated. The model has two
components:S (stable) andW (wandering). The stable model temporally
integrates the target image in its bounding box using a forgetting factor. On
the other hand, the wandering model uses two-frame averages. Note that
each model uses a fixed size image template that is updated by an online
EM algorithm [11]. To determine a particle’s likelihood, an image patch is
first determined using the particle elements. Then, the patch is mapped back
to the template domain using the affine transformation parameters, where
it is compared with the updated appearance model. This operation requires
interpolation and contributes to most of the filter’s computational complexity.

criterion is discussed in greater detail in [11].
Deciding on whether or not an object is occluded is an

arduous task. However, this task is alleviated when we also
track the appearance. Our decision is based on the outlier
statistics and is reliable. We provide a Monte Carlo run of
the occlusion decision in the simulations section to show
the reliability of our occlusion strategy. We show that the
variability of the occlusion detection is rather small once
a threshold is chosen. Further examples of this occlusion
strategy can be found in [11]. The influence of an error on
this decision is discussed in our observation model. If we are
late in declaring an occlusion, the appearance of the occluding
object injects itself into the target appearance, thereby causing
local minima in the tracking algorithm. However, given the
complexity of the problem, one should not expect superlative
performance for all the possible cases.

Another issue in handling occlusion is the change in the
appearance of the target during occlusion. This could happen
due to changes in global illumination, changes in the pose
of the target, or dramatic changes in the projected target size

on the image plane. Recovery of visual tracking cannot be
guaranteed, except when these changes are not severe. In
cases, where the track is recovered, we update the appearance
model using the appearance associated with the particle with
maximum likelihood. We say that track has been regained
after occlusion, when the tracker is not visually occluded (as
defined before) for a fixed set of frames (ten frames for the
experiments in the paper).

IV. BAYESIAN FRAMEWORK FORTRACKING THE JOINT

STATE SPACE

In this section, a Bayesian framework is described for
combining the acoustic (S1) and video (S2) state spaces
that share a common state parameter. The results below can
be generalized to time-varying systems including nuisance
parameters. It is assumed that the state dimensions are constant
even if the system is time-varying. Define

Si : xi,t =

[
χt
ψi,t

]
∼ qi(xi,t|xi,t−1)

yi,t ∼ fi(yi,t|xi,t),

(10)

where the observed data in each space is represented by
{yi,t, i = 1, 2}, χt = θt (overlapping state parameter),
ψ1,t = [ Q(t) , φ(t) ]

T , andψ2,t =
[

aT (t) , η(t)
]T

. The
state transition density functionsqi(·|−) are given by (1)
and (5). The observations are explained through the density
functions fi(·|−), given by (3) and (7). The observation
sets yi are modeled as statistically independent given the
state through conditionally independent observation densities.
This assumption is justified in our problem: for example, a
vehicle’s time-frequency signature is independent of its colors
or textures. In most cases, it may be necessary to verify this
assumption mathematically for the problem at hand [14], [23]
by using the specific observation models.

To track the joint state vectorxt = [χt, ψ1,t, ψ2,t] with a
particle filter, the following target posterior should be deter-
mined:

p(xt|xt−1, y1,t, y2,t) ∝ p(y1,t, y2,t|xt)p(xt|xt−1)

= πt(y1,t, y2,t)πt−1(xt),
(11)

where πs(·) = p(·|xs). Note that the Markovian property
is enforced in (11). That is, given the previous state and
the current data observations, the current state distribution
does not depend on the previous state track and the previous
observations.

Equation (11) allows the target posterior to be calculated
up to a proportionality constant, where the proportionality is
independent of the current statext. The first pdf on the right
hand side of (11) is called the joint-data likelihood and can
be simplified, using the conditional independence assumption
on the observations:

πt(y1,t, y2,t) = f1(y1,t|x1,t)f2(y2,t|x2,t). (12)

The second pdf in (11), corresponding to a joint state
update, requires more attention. State spacesS1 andS2 may
have different updates for the common parameter set since
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they had different models.1 This poses a challenge in terms
of formulating the common state update forxt. Instead of
assuming a given analytical form for the joint state update as
in [14], we combine the individual state update marginal pdfs
for the common state parameter as follows:

πt−1(χt) = cp1(χt)
o1p2(χt)

o2r(χt)
o3 , (13)

where c ≥ 1 is a constant,pi(χt) , p(χt|xi,t−1) is the
marginal density, the probabilitiesoi for i = 1, 2 (

∑
i oi = 1)

define an ownership of the underlying phenomenon by the
state models, andr(χt) is a (uniform/reference) prior in
the natural space of the parameterχt [24] to account for
unexplained observations by the state models.

If we denote the Kullback-Leibler distance asD, then

D(α(χt)||πt−1(χt)) = − log c+
∑

i

oiD(α(χt)||pi(χt))

(14)
where α is the unknown trueχt distribution. Hence,
D(α||πt−1) ≤ maxi{D(α||pi)}. πt−1(χt) always has a
smaller KL distance to the true distribution than the maximum
KL distance ofpi(χt). This implies that (13) alleviates the
worst case divergence from the true distribution [25]. Hence,
this proves that one of the trackers does assist the other in this
framework.

The ownership probabilities,oi, can be determined using
an error criteria. For example, one way is to monitor how
well each partitionxi,t in xt explains the information streams
yi,t through their state-observation equation pair defined by
Si, (10). Then, the respective likelihood functions can be
aggregated with an exponential envelope to recursively solve
for the oi’s (e.g., using an EM algorithm). In this case,
the target posterior will be dynamically shifting towards the
better self-consistent model while still taking into account
the information coming from the other, possibly incomplete,
model, which might be temporarily unable to explain the data
stream.

If one believes that both models explain the underlying
process equally well regardless of their self-consistency, one
can seto1 = o2 = 1/2 to have the marginal distribution
of χt resemble the product of the marginal distributions
imposed by both state spaces. The proposal strategy in the
next section is derived with this assumption on the ownership
probabilities, because, interestingly, it is possible to show that
assuming equal ownership probabilities along with (13) leads
to the following conditional independence relation on the state
spaces:

πt−1(x1,t)πt−1(x2,t) = q1(x1,t|x1,t−1)q2(x2,t|x2,t−1). (15)

Equation (15) finally results in the following update equa-
tion:

1There is no exact state update function for all targets. Individual state
spaces may employ different functions for robustness, which is the case in
our problem.

πt−1(xt) = πt−1(ψ1,t, ψ2,t|χt)πt−1(χt)

= πt−1(ψ1,t|χt)πt−1(ψ2,t|χt)πt−1(χt)

=
πt−1(x1,t)πt−1(x2,t)

πt−1(χt)

⇒ πt−1(xt) =
q1(x1,t|x1,t−1)q2(x2,t|x2,t)

πt−1(χt)
,

(16)

where

πt−1(χt) ∝

[∫∫
q1(x1,t|x1,t−1)dψ1,tq2(x2,t|x2,t)dψ2,t

]1/2

.

(17)

V. PROPOSALSTRATEGY

A proposal function, denoted asg(xt|xt−1, yt), determines
the random support for the particle candidates to be weighted
by the particle filter. Two very popular choices are (i) the
state updateg ∝ qi(xt|xt−1) and (ii) the full posteriorg ∝
fi(yt|xt)qi(xt|xt−1). The first one is attractive because it is
analytically tractable. The second one is better because it
incorporates the latest data while proposing particles, and it
results in less variance in the importance weights of the parti-
cle filter since, in effect, it directly samples the posterior [26],
[27]. Moreover, it can be analytically approximated for faster
particle generation by using local linearization techniques (see
[27]), where the full posterior is approximated by a Gaussian.
The analytical form of the proposal functions for acoustic
and video state spaces, obtained by local linearization of the
posterior, is given by

g(xt|xt−1, yt) ∼ N (µg,Σg) , (18)

where the Gaussian density parameters are

Σg =
(
Σ−1
y + Σ−1

u

)−1
,

µg = Σg
(
Σ−1
y xmode + Σ−1

u hτ (x(t− τ))
)
,

(19)

and wherexmode is the mode of the data likelihood, and
Σ−1
y (k) is the Hessian of data likelihood atxmode. The details

of these proposal functions can be found in [11], [13]. Hence,
in either way of proposing particles, one can assume that an
analytical relation forgi, defining the support of the actual
posterior for each state space, can be obtained.

Figure 6 describes the proposal strategy used for the joint
state space. Each state space has a proposal strategy described
by the analytical functions{gi, i = 1, 2} defined over the
whole state spaces. Then, the proposal functions of each state
gi are used to propose particles for the joint space by carefully
combining the supports of the individual posteriors. First,
marginalize out the parametersψi,t:

ĝi(χt|xi,t−1, yi,t) =

∫
gi(xi,t|xi,t−1, yi,t)dψi,t. (20)

The functions,̂gi, describe the random support for the common
state parameterχt and can be combined in the same way as
the joint state update (13). Hence, the following function

ĝ(χt|xt−1, y1,t, y2,t) ∝ [ĝ1(χt|x1,t−1, y1,t)ĝ2(χt|x2,t−1, y2,t)]
1/2

(21)
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χtχtχtS1 S2

ψ
(j)
1,t

χ
(j)
t

ψ
(j)
2,t

ψ1,t

ψ1,t

ψ2,t

ψ2,t

g1
g2

ĝ

ĝ

∫
dψ1,t

∫
dψ2,t

ĝ1

ĝ2

g1(χ
(j)
t , ψ1,t)

g2(χ
(j)
t , ψ2,t)

Support
for ψ1,t

Support
for ψ2,t

Fig. 6. The supports,gi’s, for the posterior distribution in each state space,Si,
are shown on the axesχt vs.ψi,t. Particles for the joint state are generated by
first generatingχt’s from the combined supports of the marginal distributions
of χt. Then, theψi,t’s are sampled from thegi’s as constrained by the given
χt realization.

can be used to generate the candidatesχ
(j)
t for the overlapping

state parameters. Then usingχ(j)
t , one can generateψ(j)

i,t from

gi(χ
(j)
t , ψi,t|xi,t−1, yi,t) and formx

(j)
t = [χ

(j)
t , ψ

(j)
t , ϕ

(j)
t ].

In general, Mont́e-Carlo simulation methods can be used
to simulate the marginal integrals in this section [28].
Here, we show how to calculate the marginal integrals
of the state models. Simulation of the other integrals are
quite similar. Givenχ(j)

t , draw M samples usingψ(m)
i,t ∼

gi(χ
(j)
t , ψi,t|xi,t−1, yi,t).2 Then,

∫
q1(χ

(j)
t , ψi,t|x1,t−1)dψi,t ≈

1

M

M∑

m=1

q1(χ
(j)
t , ψ

(m)
i,t |x1,t−1)

g1(χ
(j)
t , ψ

(m)
i,t |x1,t−1, y1,t)

.

(22)
The pseudo-code for the joint strategy is given in Table I.

Finally, the importance weights for the particles generated by
the joint strategy described in this section can be calculated
as follows:

w(j) ∝
p(x

(j)
t |xt−1, y1,t, y2,t)ĝ(χ

(j)
t |xt−1, y1,t, y2,t)

g1(χ
(j)
t , ψ

(j)
1,t |x1,t−1, y1,t)g2(χ

(j)
t , ψ

(j)
2,t |x2,t−1, y2,t)

.

(23)

VI. T IME DELAY PARAMETER

The joint acoustic video particle filter sequentially estimates
its state vector at video frame rate, as the acoustic data
arrives. Hence, the joint filter state estimates are delayedwith
respect to the actual event that produces the state, becausethe
acoustic information propagates much slower than the video
information. Although it is possible to formulate a filter sothat
estimates are computed as the video data arrives, the resulting
filter cannot use the delayed acoustic data. Hence, it is not con-
sidered here. The adaptive time delay estimation also allows
position tracking on the ground plane. However, small errors
in the time delay estimates translate into rather large errors

2It is actually not necessary to draw the samples directly from
gi(χ

(j)
t , ψi,t|−). An easier distribution function approximating onlyqi can

be used for simulating the marginalization integral (22).

TABLE I

PSEUDOCODE FORJOINT PROPOSALSTRATEGY

i. Given the state updateqi and observation relationsfi for
the individual state spaces{Si, i = 1, 2}, determine
analytical relations for the proposal functionsgi’s. For
the individual proposal functionsgi, it is important to
approximate the true posterior as close as possible
because these approximations are used to define the
random support for the final joint posterior. For this
purpose, Gaussian approximation of the posterior (18) or
linearization of the state equations can be used [27].

ii. Determine the support for the common state parameter
χt using (21). The expression for̂g may have to be
approximated or simulated to generate candidatesχ

(j)
t ,

j = 1, 2, . . . , N whereN is the number of particles.
iii. Given χ(j)

t ,

• calculate the marginal integrals by using (22) to
determinegi,

• generateψ(j)
i,t ∼ gi(χ

(j)
t , ψi,t|xi,t−1, yi,t),

• form x
(j)
t = [χ

(j)
t , ψ

(j)
1,t , ψ

(j)
2,t ], and

• calculate the importance weights,w(j)’s, using (23).

in target range estimates, resulting in large errors in target
position estimates. Hence, the main reason for estimating time
delay is to ensure the stability of the joint filter.

Beamformer

Vid. Mo. Detector Motion Mode Est.

Motion Mode Est.

Batch Memory

Batch Memory

Time Alignment

AD

VD

d(t),σ2
d

JT

JT

JT

θ1(t)

θ2(t)

{θ1}t

{θ2}t

{θ1}(t−T+τ):(t−τ)

{θ2}(t−T+τ):(t−τ)

Fig. 7. At time t, τ seconds of acoustic data (AD) and a frame of video
data (VD) are processed to obtain possible target DOA’s{θi}t. This prepro-
cessing is done by a beamformer block and a video motion detectorblock,
respectively. With the guidance of the joint tracker (JT), these DOA’s are
used to determine the DOA mode tracks,θi(t) (Fig. 8), to estimate the time
delayd(t). The estimated time delay parameters are then used in the proposal
function of the joint tracker.

To synchronize the audio-video information, we add an
additional time delay variabledk(t) for each targetk to form
an augmented joint filter state:

xk(t) ,
[

aTk (t) , ηk(t) , θk(t) , Qk(t) , φk(t) , dk(t)
]T
.

(24)
The time delaydk(t) is defined geometrically as:

dk(t) = ||ξ − χk (t− dk(t)) ||/c, (25)
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whereξ = [sx, sy]
T is the hybrid node position in 2D, χt =

[xk,target(t), yk,target(t)]
T is thekth target position, andc is

the speed of sound. Using the geometry of the problem, it is
possible to derive an update equation fordk(t):

dk(t+ τ) = dk(t) exp{ud,k(t)}√
1 + 2τ exp{Qk(t)} cos (θk(t) − φk(t)) + τ2 exp{2Qk(t)},

(26)
where the Gaussian state noiseud,k(t) is injected as multi-
plicative.

We suppress the partition dependence on the variables from
now on for brevity. Figure 7 illustrates the mechanics of time
delay estimation. To determined(t), we first determine the
mode of the acoustic state vector within a batch period of
T seconds. Given the calculated acoustic data mode, which is
also used in the proposal stage of the particle filter,x1,mode(t),
an analytical relation for acoustic DOA trackθ1(t) (Fig. 8) is
determined, using the state update function (2). This functional
estimateθ1(t) of the acoustic DOA’s and acoustic data is used
to determine an average variance of the DOA’sσ̃2

1,θ around the
functional, between timest andt−T . Note that̃σ2

θ is estimated
using the missing and spurious data assumptions similar to the
ones presented in Sect. II.

Next, we search the stored mode estimates of the video
state, which is used in the video state update function (5),
to determineM = T/τ (i.e., the number of video frames
per second) closest video DOA estimates. These DOA’s are
used, along with the constant velocity motion assumption, to
determine a functional estimateθ2(t) of the DOA track and an
average DOA variancẽσ2

2,θ, based on the video observations,
as shown in Fig. 8. The observation likelihood for the time
delay variabled(t) is approximated by the following Gaussian:

p(d(t)|y1,t,y2,t) ≈ N
(
µd

(
1 + TeQmode

cos [(θ1(t− T ) + θ1(t))/2 − φmode] + T 2e2Qmode/4
) 1

2 , σ2
d

)
,

(27)
where the mean is the average distance between the func-

tional inverses ofθ1(t) andθ2(t):

µd =

∣∣∣∣∣∣

∫ θ1(t−T )

θ1(t)

[
θ−1
1 (θ′) − θ−1

2 (θ′)
]
dθ′

θ1(t) − θ1(t− T )

∣∣∣∣∣∣
. (28)

The varianceσ2
d is determined by dividing the average DOA

variances by the functional slope average:

σ2
d =

∣∣∣∣∣
θ1(t) − θ1(t− T )
∫ t
t−T

∂θ1(t′)
∂t′ dt′

∣∣∣∣∣ σ̃
2
1,θ +

∣∣∣∣∣
θ1(t) − θ1(t− T )
∫ t
t−T

∂θ2(t′)
∂t′ dt′

∣∣∣∣∣ σ̃
2
2,θ.

(29)
In the joint filter, the particles for the time delay parameter
are independently proposed with a Gaussian approximation to
the full time delay posterior, using (26) and (27) [27].

VII. A LGORITHM DETAILS

The joint acoustic-video particle filter tracker code is given
in Table II. In the following subsections, we discuss other
practical aspects of the filter.

t− T tt− τt− T − τ Time

DOA

T

dk(t′)

τ

θ1(t)

θ2(t)

θ1(t)

θ1(t− T )

Fig. 8. The time delaydk(t) between the acoustic and video DOA tracks,
θ1(t) andθ2(t), respectively.

A. Initialization

The organic initialization algorithms for the video and
acoustic trackers are employed to initialize the joint filter.
The joint filter initialization requires an interplay between the
modalities, because the state vector is only partially observable
by either modality. In most cases, the video initializer is
cued by the acoustics, because the video modality consumes
significantly more power. Below, we describe the general case
where each modality is turned on.

Briefly, the organic initialization algorithms work as fol-
lows. In video, motion cues and background modeling are
used to initialize target appearance models,aTk (t), ηk(t), and
θk(t) by placing a bounding box on targets and by coherent
temporal processing of the video frames [11]. In acoustics,
the temporal consistency of the observed DOA’s is used to
initialize target partitions by using a modified Metropolis-
Hastings algorithm [13], [29].

To initialize targets, a matching-pursuit idea is used [13],
[16]. The most likely target is initialized first and then its
corresponding data is gated out [30]. Note that the target
motion parameters alleviate the data association issues be-
tween the video and acoustic sensors, because both modalities
are collocated. Hence, the overlapping state parameterθ is
used to fuse the video shape parameters and acoustic motion
parameters.

When a target is detected by the organic initialization
algorithms, the time delay variable is estimated using the
scheme described in Sect. VI. The initialization scheme in [13]
is used to determine the target motion parameters, where
the video DOA mode estimates are used as an independent
observation dimension to improve the accuracy. Finally, a
target partition is deleted by the tracking algorithm at the
proposal stage if both acoustic and video modalities do not
see any data in the vicinity of the proposed target state.

B. Multi Target Posterior

The joint filter treats the multiple targets independently,
using a partition approach. The proposal and particle weight-
ing of each target partitions are independent. This allows
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a parallel implementation of the filter where a new single
target tracking joint filter is employed for each new target.
Hence, the complexity of the filter increases linearly with the
number of targets. Note that for each target partition, it is
crucial that data corresponding to the other target partitions
are treated as clutter. This approach is different from the joint
probability density association (JPDA) approach that would
be optimal for assigning probabilities to each partition by
adding mixtures that consist of data permutations and partition
combinations [30]. In JPDA, no data would be assigned to
more than one target. However, in our approach, the same
DOA might be assigned to multiple targets.

Notably, it is shown in [13] that the independence assump-
tion in this paper for the joint state space is reasonable for
the acoustic tracker. There is a slight performance degradation
in bearing estimation, when the targets cross; however, it is
not noticeable in most cases. Moreover, the JPDA approach
is not required by the video tracker. When the targets cross,
if the targets are not occluding each other as their DOA’s
cross, the vertical 2-D translation parameterηk(t) resolves
the data association issue between the partitions. The motion
parameters also resolve the data association, similar to the
acoustic tracker, to alleviate the filter performance. If there
is occlusion, it is handled separately using robust statistics as
described below.

C. Occlusion Handling

In video, if the number of outlier pixels, defined in (9),
is above some threshold, occlusion is declared. In that case,
the updates on the appearance model and the adaptive velocity
component in the state update (5) are stopped. The current ap-
pearance model is kept and the state is diffused with increasing
diffusion variance. The data likelihood for the occluded target
is set to 1 for an uninformative response under the influence
of robust statistics. Similarly, the acoustic data likelihood is
set to 1 when the number of DOA’s within the batch gate of
a partition is less than some threshold (e.g., M/2).

VIII. S IMULATIONS

Our objective with the simulations is to demonstrate the
robustness and capabilities of the proposed tracker. We provide
two examples. In the first example, a vehicle is visually
occluded and the acoustic mode enables track recovery. In
the second example, we provide joint tracking of two targets
and provide time delay estimation results.

A. Tracking through Occlusion

Figure 9 shows the tracking results for a car that is occluded
by a tree. The role of the DOA variable in the state space is
crucial for this case. In the absence of information from any
one of the modalities, the DOA still remains observable and is
estimated from the modality that is not occluded. However, the
rest of the states corresponding to the failed modality remains
unobservable, and the variance of the particles along these
dimensions continues to increase as the occlusion persists.
Hence, it is therefore sometimes necessary to use an increasing

number of particles to regain track until the failed modality is
rectified.

The video modality regains the track immediately, as the
target comes out of occlusion. The spread of particles (the dot
cloud in Fig. 9) gives an idea of the observability of the vertical
location parameter on the image plane. Further, the dramatic
reduction in this spread as the target comes out of occlusion,
demonstrates the previously unobservable visual components
recovering the track. It is also interesting to compare the spread
of particles in Fig. 9 with the pure visual tracking example in
Fig. 3, where the spread of particle increases isotropically on
the image plane, due to complete occlusion. Hence, the joint
tracking reduces the uncertainty through the second modality.
For this example, the simulation parameters are given in Table
III. The acoustic bearing data is generated by adding Gaussian
noise to the bearing track that corresponds to the ground truth.
The acoustic bearing variance is 4 degrees betweent = 1s to
t = 5s, when the vehicle engine is getting occluded by the
tree. It is 2 degrees when the vehicle engine is not occluded.

Figure 10 shows the results of a Monte-Carlo run, where
the filter is rerun with different acoustic noise realizations. The
threshold for declaring an occlusion is set as 40%. Figure 10(a)
shows the joint bearing estimate results whereas Fig. 10(b)and
(c) show the acoustics-only and video-only tracking results,
respectively. In Fig. 10(a), there is a small positive bias in the
bearing estimates at the end due to the target’s pose change.
As can be seen in Fig. 9(h) and (i), the rear end of the vehicle
is visible after the vehicle comes out of the occlusion. The
online appearance model locks on the front of the vehicle,
whose appearance was stored before the occlusion. Hence,
the rear end of the vehicle is ignored, causing the bias. We
see in Fig. 10(c) that the video-only tracker cannot handle this
persistent occlusion without the help of the acoustics.

Note the time evolution of the estimate variances shown
in Figs. 10(d) and (e) for the joint tracker and the acoustics-
only tracker. When the video modality is unable to contribute,
the variance of the estimate approaches acoustics-only results.
When the video recovers, the estimate variance drops sharply.
Figures 10(f) and (g) show the distribution of the vertical
displacement parameter. When the occlusion is over att =
6s, the video quickly resolves its ambiguity in the vertical
displacement (Fig. 10(g)), whereas the variance of the vertical
displacement in Fig. 10(f) increases linearly with time dueto
divergence. Figures 10(h) and (i) demonstrate the occlusion
probability of the target.

TABLE III

SIMULATION PARAMETERS

Number of particles,N 1000
ϕ(t) noiseΣϕ diag[0.02, 0.002, 0.002, 0.2, 2]
θ noiseσθ,k 1 ◦

Q noiseσQ,k 0.05s−1

φ noiseσφ,k 4 ◦

Video Measurement noiseσθ 0.1,◦

App. Model Template Size 15×15 (in pixels)
Beamformer batch period,τ 1

30
s

Frame Size 720× 480
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TABLE II

JOINT ACOUSTICV IDEO PARTICLE FILTER TRACKER PSEUDO-CODE

1. For each particlei (i = 1, 2, . . . , N ) and each partitionk (k = 1, 2, . . . ,K)

• Sample the time delayd(i)
k (t) ∼ gd(dk(t)|y1,t, y2,t, x

(i)
k (t− T )), wheregd(·) is the Gaussian approximation to (26)

and (27).
• Using the procedure illustrated in Table I, sampleχ(i)

k (t), ψ(i)
k (t), andϕ(i)

k (t) from x
(i)
k (t− T ) with the time

synchronized acoustic and video datay1,t andy2,t−d(i)(t).

2. Calculate the weightsw∗(i)
t using (23). Determine visual and acoustic occlusions by looking at the likelihood estimates of

each particle:p(y1,t|χ(i)(t), ψ(i)(t)) (acoustics) andp(y2,t|χ(i)(t), ϕ(i)(t)) (video).

• A particle isvisually occluded if a sufficient number of pixels in the template are outliers for the appearance model.
The number of outlier pixels is calculated by (7) and (9): thenumber of terms in the summation for whichρ(u)
function is evaluated on the region|u| > c. If the number of such pixels is higher than50%, it is claimed that the
appearance, as hypothesized by the particle, is visually occluded.

• If the particle that has the maximum video likelihood is visually occluded, then declare that the target has been
occluded for the frame. In this case, the states representedby ϕ(t) are unobservable and their sampling is done
separately as in [11].

• Similarly, a particle isacoustically occluded, if the observation DOA’sy1,t differ significantly from the value of DOA
hypothesized by the mode particle. By counting the DOA’sy1,t+mτ in the gate of the hypothesized DOA’s
hmτ (x

(i)(t)), we declare an acoustic occlusion. If more than half the DOA observations in the batch are termed
occluded, the particle is labeled as acoustically occluded.

• If the particle that has the maximum acoustic likelihood is acoustically occluded, then we term the estimation at time
t to be acoustically occluded. In this case, the statesψ(t) are unobservable and are sampled separately as in [13].

• When a particle is occluded, the corresponding time delay is sampled from (26).

3. Calculate the weights using (23) and normalize.
4. Perform the estimation [27]:E{f(xt)} =

∑N
i=1 w

(i)
t f(x

(i)
t ).

5. Resample the particles: Only states that are observable participate in resampling. For example, if the observationsare
visually occluded then the statesϕ(t) are not resampled. Similarly, if the observations are acoustically occluded, then the
statesψ(t) are not resampled.

• Heapsort the particles in a ascending order according to their weights:x(i)
t → x̃

(i)
t .

• Generateω ∼ U [0, 1).
• For j = 1, 2, . . . , N

a. u(j) = j−ω
N ,

b. Find i, satisfying
∑i−1
l=1 w̃

(i)
t < u(j) ≤

∑i
l=1 w̃

(i)
t ,

c. Setx(j)
t = x̃

(i)
t .

6. Update the appearance model with the appearance corresponding to the particle with maximum likelihood, if this
likelihood value exceeds the threshold. The appearance model is not updated during visual occlusion. Finally, we
reinitialize the appearance model when the tracker is visually unoccluded for10 consecutive frames, after visual
occlusions of at least one second.

B. Time Delay Estimation

We performed a simulation with the time delay variable on a
synthetically constructed multi-target data set. The simulation
parameters are given in Table IV. The temporal tracks of two
targets are shown in Fig. 11. The simulation parameters are
given in Table II. The results of the DOA and time delay
estimation are shown in Fig. 12. The filter handles multiple
targets independently by treating the data of the other target as
clutter. Note the variance of the time delay estimates decreases
as the targets get closer to the hybrid sensors. It is important to
account for this time delay, because filter instability occurs due

to the estimation biases when filtered with the unsynchronized
data.

IX. CONCLUSIONS

In this paper, we presented a particle filter tracker that can
exploit acoustic and video observations for target tracking by
merging different state space models that overlap on a common
parameter. By the construction of its proposal function, the
filter mechanics render the particle filter robust against target
occlusions in either modality, when used with Huber’s robust
statistics criterion function. The presented filter also demon-
strates a scheme for adaptive time-synchronization of the multi
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(a) Frame 1 (b) Frame 30 (c) Frame 60

(d) Frame 90 (e) Frame 120 (f) Frame 150

(g) Frame 180 (h) Frame 195 (i) Frame 210

Fig. 9. Joint tracking of a vehicle that is occluded by a tree.The particle cloud
at each frame represents the discrete support of the posterior distribution of the
vehicle position in the image plane. Note that the particle spread during the
occlusion increases along the vertical axis. This spread suddenly decreases,
once occlusion is gone. The target is occluded in frames 40 to 180.

TABLE IV

SIMULATION PARAMETERS

Number of particles,N 1000
θ noiseσθ,k 1 ◦

Q noiseσQ,k 0.05s−1

φ noiseσφ,k 4 ◦

Time delayd noiseσd,k 0.2s
Acoustic Measurement noiseσθ 1 ◦

Video Measurement noiseσθ 0.1,◦

Beamformer batch period,τ 1
30

s

modal data for parameter estimation. The time delay variable is
incorporated into the filter and is modeled as multiplicative. It
is the authors’ observation that without the time delay variable,
the joint filter is susceptible to divergence.
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Fig. 10. Results of 300 independent Monte-Carlo simulationsof the exper-
iment illustrated in Fig. 9. (a) MATLAB’s boxplot of the estimated target
DOA track with the joint tracker. The visual occlusion is between t = 1s
and t = 6s. There is a small positive bias in the bearing estimates because
of effect of the Brownian nature of the video state update equation in (13).
(b) The estimated DOA track using acoustics-only. (c) The estimated DOA
track using video-only. The video cannot handle the persistent occlusion by
itself. (d-e) The time evolution of the estimate variances is shown for the joint
filter and acoustics only, in their respective order. When thevideo is unable
to provide information, the joint tracker’ estimation performance becomes
similar to the acoustics-only tracking results. The joint tracker’s variance of
the bearing estimate during the occlusion is slightly smallerthan the acoustics-
only variance because it is biased. (f) Vertical displacement is unobservable
during the visual occlusion. Hence, the video-only estimatevariance increases
linearly with time. (g) Note the variance of the estimates dramatically reduces
once the target becomes unoccluded, demonstrating the recovery speed of the
tracker. (h) The occluded percentage of pixels, corresponding to the MAP
particle. The gradual rise is attributed to the increasing partial occlusion as
the car drives behind the tree, hence there is significant drop once the target
comes out of occlusion. (i) Probability of occlusion for the Monte-Carlo runs.
The track recovery after occlusion is robust as illustratedby the Monte-Carlo
runs.
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