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Abstract—In this paper, a multi-target tracking system for counting/confirmation, and (iii) design algorithms thatmé a
collocated video and acoustic sensors is presented. We formulatepower vs. performance trade-off for hybrid node management
the tracking problem using a particle filter based on a state space |, the Jiterature, one finds that fusion of acoustic and video
approach. We first discuss the acoustic state space formulation - ’ . -
whose observations use a sliding window of direction-of-arrival modalities has been aF?P"ed to problems ,SUCh as tracklng
estimates. We then present the video state space that tracks aOf humans under surveillance and smart videoconferencing.
target's position on the image plane based on online adaptive Typically, the sensors are a video camera and an acoustig arr
appearance models. For the joint operation of the filter, we (not necessarily collocated). In [6], the acoustic timengledf-
combine the state vectors of the individual modalities and also 4 rjyals (TDOA's), derived from the peaks of the generalize
introduce a time delay variable to handle the acoustic-video data . . . -
synchronization issue, caused by acoustic propagation de|ays_cross-(_:orrelat|on function, are usgd alo_ng with activeicors
A novel particle filter proposal strategy for joint state space (O achieve robust speaker tracking with fast lock recovery.
tracking is introduced, which places the random support of the In [7], jump Markov models are used for tracking humans
joint filter where the final posterior is likely to lie. By using the using audio-visual cues, based on foreground detecticagém
Kullback-Leibler divergence measure, it is shown that the joint differencing, spatiospectral covariance matrices, aahitig

operation of the filter decreases the worst case divergence did .
individual modalities. The resulting joint tracking filter is quite data. The work by Gatica-Peret al. [8] demonstrates that

robust against video and acoustic occlusions due to our proposal Particle filters, WhOS(_? proposal function uses _aUdiO Cu&@h
strategy. Computer simulations are presented with synthetic and better speaker tracking performance under visual ocaigsio

field data to demonstrate the filter's performance. The videoconferencing papers encourage the fusion of
acoustics and video; however, the approaches in thesegaper
do not extend to the outdoor vehicle tracking problem. They
omit the audio-video synchronization issue that must be-mod

Recently, hybrid nodes that contain an acoustic array c&lled to account for acoustic propagation delays. In vehicle
located with a camera were proposed for vehicle trackifgpcking problems, average target rangesl@j-600m result
problems [1]. To intelligently fuse information coming fro in acoustic propagation delays in the rang@.6f2s. Acoustics
both modalities, novel strategies for detection and data &hd video asynchronization causes biased localization est
sociation have to be developed to exploit the multi mod&hates that can lead to filter divergence. This is becauseaise b
information. Moreover, the fused tracking system should @ the fused cost function increases the video’s suscéiptibi
able to sequentially update the joint state vector thatistms to drift in the background. In addition, motion models shibul
of multiple target motion parameters and relevant featur@gdaptively account for any rapid target motion. Moreover,
(e.g., shape, color and so on), which is usually only paytialthe visual appearance models should be calculated online as
observable by each modality. opposed to using trained models for tracking. Although fixed

It is well known that acoustic and video measurements dféage templates (e.g., wire-frames in [6], [8], [9]) are wer
complementary modalities for object tracking. Individyathe ~Useful for face tracking, they are not effective for tragkin
acoustic sensors can detect targets [2]_[4]' regard|e$bmf vehicles in outdoor environments. Adaptive appearanceﬂBOd
bearing with low power consumption, and the video sensci&€ necessary for achieving robustness [10]-[12].
can provide reliable high-resolution localization estiesa[5], To track vehicles using acoustic and video measurements,
regardless of the target range, with high power consumptioMe Propose a particle filtering solution that can handle mul-
Hence, by fusing the acoustic and video modalities, we {iple sensor modalities. We use a fully joint tracker, which
achieve tracking robustness at low acoustic signal-tseoicombines the video particle filter tracker [11] and a modified

ratios G\R) or during video occlusion, (i) improve targetimplementation of the acoustic particle filter tracker [13]
at the state space level. We emphasize that combining the
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I. INTRODUCTION



space lies. The resulting filter posterior has a lower Kulkba 150

-1.4
Leibler distance to the true target posterior than any dutpr 100

-16

combination of the individual filters. £%0 S ..
The joint filter state vector includes the target headini = © g _'2
direction ¢ (t), the logarithm of velocity over rang@y(t) = %0 o
log (vi /7% (t)), observable only by the acoustics; target shap 1% '
deformation parameterSuy, as, as, a4}y, the vertical 2D im- 0 ® ime 15 0 e 15
age plane translation paramete(t), observable only by 100
the video; and the target DOA(t), observable by both 100
modalities. The subscript refers to thek'® target. We also 50 T 50
incorporate a time delay variable,(¢) into the filter state T o * s

vector to account for acoustic propagation delays need: °

N A i -50
to synchronize the acoustic and video measurements. Ti —SOW

variable is necessary to robustly combine the high resmiuti -100 o 100 200 0 5.0 15
video modality with the lower resolution acoustic modality
and to prevent biases in the state vector estimates. Fig. 1. (Top Left) Particle filter DOA tracking example with two targets.

The filter is initialized using a matching pursuit strategyBottom Left) True track vs. calculated track. Note that the particlefittack

: PR Is estimated using the filter outputs and the correct initisifon. The particle
to generate the partlde distribution for each new targeg 0filterjointly estimates the target headirigoftom Right) and the target velocity

at a time [13], [16]. A partitioning approach is used t@ver range ratioTop Right), while estimating the target bearing. Note that the
create the multiple target state vector, where each martitineading estimates typically tend to be much noisier than thé BSlimates.

is assumed to be independent. Moreover, the particle filter
importance function independently proposes particlee&mh _
target partition to increase the efficiency of the algoritam Wherewuy(t) ~ N (0,%,) with X, = diag{oj ;, 07 1,03 ;. }

moderate increase in computational complexity. andh.(zk(t)) =
The organization of the paper is as follows. Sections | tan—1 {Sinek(t)+7'eXPQk(t) sinm(t)}
and Il present the state space formulation of the individu cos O (1) +7 exp Qg (t) cos oy ()

modalities. Section IV describes a Bayesian framework for Qk(t) — 3 log {1 + 27 exp Qi (¢) cos(8x(t) — dx () +

the joint state space, and Sect. V introduces the proposal 72 eXP(QQk(t))}
strategy for the fully joint particle filter tracker. SeatiovI P (t)
discusses the audio-video synchronization issue and migese 2)

our solution. Section VIl details the practical aspects af t Reference [19] also discusses state update equations based
proposed tracking approach. Finally, Sect. VIl gives eikpe & COnstant acceleration assumption.
mental results using synthetic and field data.

B. Observation Equation

Il. ACOUSTICSTATE SPACE . M1 .
The observationy, , = {Yt—mr,5(P)} o consist of a

The acoustic state space, presented in this section, i fch of DOA estimates from a beamformer, indexednby
modified form of the one used in [17]. we choose this pafience, the acoustic data of window-lengtlis segmented into
ticular acoustic state space because of its flexible obsenva p segments of length, equal to a single video frame duration
model that can handle (i) multiple target harmonics, (ijkypically - = 1/30s). The target motion should satisfy the
acoustic propagation losses, and (iii) time-varying Wy onstant velocity assumption during a window-lengthFor
characteristics of the observed target acoustic signatlsout ground targets]’ = 1s is a reasonable choice. Each of these
changing the filter equations. Figure 1 shows the behavior§ggmemS is processed by a beamformer, based on the temporal
the acoustic state variables for a two-target example USiﬂ@quency structure of the observed target signals, tatzte
simulated data. possible DOA estimates. This procedure can be repehted

times for each narrow-band frequency indexedfb{Fig. 2).
A. Sate Equation Note that only the peak locations are kept in the beamformer
power pattern. Moreover, the peak values, indexeg,byeed
not be ordered or associated with peaks from the previous
time in the batch and the number of peaks retained can be

The acoustic state vector for targethas three elements
ai(t) 2 [0:(t), Qu(t), ¢x(t)]", wheredy(t) is the k*
target DOA, ¢ (t) is its heading d_|rect|on, an@y(t) is its time-dependent,
logarithm of the velocity-range ratio. The angular pararet The sliding batch of DOA: . d o f
0r(t) and ¢ (t) are measured counterclockwise with respect € sliding batch o Syt IS assumed to form a
to the z-axis. normal_ly distributed cloud qround the true target DOA tsack

The state update equation is derived from the geome{fr]%add't'on’ only one DOA is present for each target at each

imposed by the locally constant velocity model. The resglti quter?cyfl otrhthe target Is rfnlslszd: multltﬁle ?OA tmesvsurel-
state update equation is nonlinear [18], [19]: ments imply the presence of clutter or other targets. We also

assume that there is a constant detection probability foh ea
et +7) = hy (z(t)) + ug(t), (1) target denoted by:’, which might depend on the particular



I1l. VIDEO STATE SPACE

In this section, we give the details of the video state space.
This video state space is also described in greater defdilin
We assume that the camera is stationary and is mounted
at the center of the acoustic microphone array, at a known
height above the ground. We also assume that the camera
calibration parameters are known, which allows us to cdnver
a location on the image plane to a DOA estimate while having
the same reference axis as the acoustic state space. Figure 3
demonstrates a video tracker based on state space described
in this section.
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Fig. 2. A 10-element uniform circular microphone array is usedecord
a target's acoustic signal, while it is moving on an oval trgcéfer to
Fig. 11). The acoustic array’s inter-microphone distancé.1sn. Hence, the
maximum beamforming frequency without aliasing is approxinyal&lOHz.
The acoustic sampling frequency is 44100Hz. (a) The timedfragy plot
of the received signal. We estimated the bearing track of @t@cle using
the MVDR beamformer [2], where the beamforming frequencies hosen
to be the dashed line for (b), the solid line for (c), and théetbline for
(d). For each acoustic bearing estimate, 1470 acoustic datplss are used,
corresponding to 30 bearing estimates per second. The begairks in (b-d)
are indexed byf = 1,2, 3 in the acoustic state space derivation dnd= 3.

frequencyf. If the targets are also simultaneously identified
an additional partition dependency, i.eﬁ, is added.

For a given target, if we assume that the data is on
due to its partition and clutter (hence, the DOA data (g) Frame 43 (h) Frame 50 (i) Frame 57
corresponding to other targets are treated as clutter), we

. . T _ Fig. 3. Intensity based visual tracking of the white car gdime particle filter
can derive the observation likelihood for the state = based on the video state space described in this sectiorsdlidebox shows

T
[ oT(t), 2It), ... 2k (t) ] [17] as: the mean of the posterior, whereas the dashed box shows thgolof
the mode of the posterior. The dot cloud depicts spatial g@artistribution.
p(Yt|Xt) = HkK_lp(yt|xk(t)) = Hf_l H?—1 HM__O1 In this scenario, the white car is occluded for 1 second spording to
- - - m= 30 video frames. The particle spread during occlusion irsggdecause the
P P P Yem,f | P|zk robust statistics measure [11] renders the likelihood fonaton-informative.
f m, f f m,f m,f 3 H . )
K1 (%) + K11 (%) szl 7 ; The filter quickly locks back to the target after occlusion
; (©)
where the parametevsf%K.(Zn Fon i = 1) are the elements o gate Equation
of a detection (or confusion) matrix, = 0,1,..., P, ¢ for

eachf andm, andy > 1 is a constant that depends on the 1he Vvideo state vector for target has six el-
maximum number of beamformer peaksthe smoothness of Ements: four affine ~deformation  parameters,(t) =
the beamformer’s steered response, and the number ofaarg{;é’thl,t s -5 Gkae] . @ vertical 2-D translation pa-
K. The functiony in (3) is derived from the assumptionf@meter #;(t), and the target DOAGL(t): zx(t) =
that the associated target DOA's form a Gaussian distahuti | a% (t) » 7(t) , 6x(t) | . The affine deformation parame-

around the true target DOA tracks: ters linearly model the object rotation, shear and scakffing
minus translation), whereas the translation parametertizad
Ytm.f (pi xz) = DOA account for the object translation, all on the image plan

1
Varoz(m. ) P

(hour (@i (8) =Yesmr. s (Pi))* (4) The state update equation consists of a predictive shiftaand
- 202 (m,f) ’ diffusion component:

where the superscrigt on the state update functionrefers zy(t) = hy (2 (t — 7)) + up(t) = @k (t — 7) + v (t) + ug(t),
only to the DOA component of the state update aijdn, f) (5)
is supplied by the beamformer, using the curvature of the DO#here v (t) is an adaptive velocity component, affecting
power pattern at the peak location. only ni(t) and 0(t) in the state vector. It is calculated



using a first-order linear prediction method on two suceessiB. Observation Equation

frames; £;(t — ) is the maximuma posteriori estimate The observation model is a mixture of following adaptive

component calculaed by measiing he difrence benwdlipSIaNce modl: & wanderivy. a stables;, and an
P ' u y uring : [5fional fixed template modef;. The wandering modeiV;

;he ugdat(rai(g %piﬁ)] eirf nlc\le ?nt?1 tTfhcaJ? dulate;j flprr:]ezran;geat Wbtures transient appearance changes based on two $ugEcess
» as describe [11]. Note that the video state mode estin es, whereas the stable modgl encodes appearance

A . a
&y(t—T) are stored m_the memory, because_ they are Ia_ter ust%(igerties that remain relatively constant over a large meam
f(_)r adaptively d_etermmmg atime delay variable for acaust of frames (Fig. 5). The fixed templaf€, is useful for tracking
video synchronization. recognized targets, however it is not considered any furthe
The state equation is constructed so that it can effectivaly this paper. The adaptive observation model in this paper
capture rapid target motions. The adaptive velocity corepbn yses the pixel intensity values for these appearance models
accounts for the object’s shift within the image frame, vel@ar for computational efficiency as suggested in [11]. Although
the adaptive noise term Captures its drift around its motithe image intensity values are typ|ca||y not robust to Cmr]g
Hence, the adaptive velocity model simply encodes the 85jeqn jllumination, the appearance model described here captad
inertia into the tracker and generates particles that gtélyi o changes in illumination. However, it is still possibleltse
centered around the object of interest for improved effiyentrack if there are sudden changes in illumination. We use a
(Fig. 4). If we do not account for the object’s shift using thgery simple model to circumvent this problem. We normalize
adaptive noise component, we need to increase the variagge mean and the variance of the appearance as seen by each
of the drift component to capture the actual movement of thgyrticle. This makes our tracker immune to uniform scaling
object. Hence, we may start to lose our focus on the targetgisthe intensities. If we know that the illumination changes
shown in Fig. 4(b) without the adaptive velocity componémt. are severe, we can adopt an alternative feature at the expens
this case, if the background is somewhat similar to the targgf computation without chancing our filter mechanics, sush a
it is automatically injected into the appearance modelsubh  the spatial phase data of the object [12] that is more roloust t
the EM algorithm. Hence, the background also becomes pg{§mination changes.
of the tracke_:d pbject, thereb_y creating local minima to osaf  The gbservation model is dynamically updated by an on-
the tracker in its later iterations. line expectation maximization (EM) algorithm that adagly
The adaptive noise variance is based on residual motion ealculates the appearance parame{&r&,aﬁt}, (t = w,s)
rors generated by the adaptive velocity component. It dse® of the appearance models;, = {W;,S:}, and the model
when the quality of the prediction from the adaptive velpcitmixture probabilitiesn; ¢, (i = w, s) for each pixel [20], [21].
component is high, and increases when the prediction is pobne details of the EM algorithm for calculating the mixture
Finally, when the tracker is visually occluded (occlusian iprobabilities and model parameters can be found in [11],
defined in the next subsection), the target motion is chardg&?]. Omitting the details of the derivations, the obseiomt
terized using a Brownian motion ang.(¢t) = 0 is enforced. likelihood is given by the following expression:
Hence, during an occlusion, the state dynamics change®to th

- . K d
following form: p(yelx:) = H H Z M N(Te(e(5)); 105, 02, (5)) ¢
zp(t) = xp(t — 7) + ug(t). (6) k=1j=1 |i=w,s 4

We avoid the use of the adaptive velocity model duringhere7; is the affine transformation that extracts the image
occlusion because the object motion may change significanatch of interest by using the state vector(t); d is the
during an occlusion. number of pixels in the image patch; andaNy, 02) is the

density
N(U;M,O’Q)fxeXp{—p (U_u)}, (8)

g

wherew is normalized to have unit variance, and

Lu?, if u| < ¢

plu) = { clu| — 2%02: o/w. ©)

The functionp(-) is Huber’s criterion function, which is com-
monly used for outlier rejection [22]. It provides a compiieen
(a) with the adaptive velocity moddb) without the adaptive velocity Detween mean estimators that are susceptible to outliefs an
model median estimators that are usually robust to outliers. The
Fig. 4. Comparison of the proposed particles when the adapéiiocity model  Constantc is used to determine the outlier pixels that cannot
is used. Note that the particles are tightly clustered aiotine target when be explained by the underlying models. Furthermore, method
we use the adaptive velocity model. In contrast, without eigjoprediction, from robust statistics allow us to formally decide when the
we need to use more particles to represent the same poste@ause most A . . . .
particles have very low weights. trgcker |S\_/|sually _occ_luded, which implies that t_he p_artlcle
with the highest likelihood has more thao% of its pixels,

which are classified as outliers by the appearance mode. Thi




Online Appearance Model with Fixed Template Size

on the image plane. Recovery of visual tracking cannot be
—— TSy guaranteed, except when these changes are not severe. In

B g e g 2 cases, where the track is recovered, we update the appearanc

S: Stable W: Wandering model using the appearance associated with the particke wit
maximum likelihood. We say that track has been regained
b ich after occlusion, when the tracker is not visually occludasl (
High DA B article  Low likelinood Particle defined before) for a fixed set of frames (ten frames for the
experiments in the paper).

Mapping from the box below
to the template is governed e
by the affine deformation me ]
parameters in the particlg

—.
IV. BAYESIAN FRAMEWORK FORTRACKING THE JOINT
STATE SPACE

In this section, a Bayesian framework is described for
combining the acousticS;) and video &) state spaces
that share a common state parameter. The results below can
be generalized to time-varying systems including nuisance
parameters. It is assumed that the state dimensions ar&nbns
even if the system is time-varying. Define

Si: Tit = { 1Z<»tt ] N%’(ﬂ?i,t|$i,t—1)
3

Yit ~ fi(yi,t|xi,t)a

where the observed data in each space is represented by
{yit,i = 1,2}, x+ = 6, (overlapping state parameter),
v = [Q), o(t) ", andvs, = [a7(1) , n(t)]". The
state transition density functiong;(-|—) are given by (1)
and (5). The observations are explained through the density
Fig. 5. The online appearance model is illustrated. The mods! two functions f;((-), given by (3) and (7) The Obse_rvatlon
components:S (stable) and (wandering). The stable model temporallySEtS y; are modeled as statistically independent given the
i?]tegr?r:grs :]f;en ‘tjar?ﬁé iw;ggei?nitsrggggfﬂiggegogv zsljrn;mae fg%;actor- u?ar; state through conditionally independent observation itiess
tea?chO model usés a fixed sizegimage template that is updategﬁt?)./liaa onThIs_ assu'mptlon 1S JUStIﬂ?d n OUIj problem: for exqmple, a
EM algorithm [11]. To determine a particle’s likelihood, amdge patch is Vehicle’s time-frequency signature is independent of @®is
first determined using the particle elements. Then, the patchapped back or textures. In most cases, it may be necessary to verify this
e e e ot n Pra 1S assumpion mathematically for the problem at hand [14]][23
interpolation and contributes to most of the filter's compiotaal complexity. DY using the specific observation models.
To track the joint state vectat; = [x¢, Y14, ¢2,] With a

particle filter, the following target posterior should betate
criterion is discussed in greater detail in [11]. mined:

Deciding on whether or not an object is occluded is an  p(z¢|zi—1, 1,6, y2.¢) < P(Y1,t, Yo,elwe)p(ze|zi—1)
arduous task. However, this task is alleviated when we also
track the appearance. Our decision is based on the outlier
statistics and is reliable. We provide a Monte Carlo run d&fhere 7s(-) = p(:|z;). Note that the Markovian property
the occlusion decision in the simulations section to sho enforced in (11). That is, given the previous state and
the reliability of our occlusion strategy. We show that théhe current data observations, the current state disiiut
variability of the occlusion detection is rather small oncéoes not depend on the previous state track and the previous
a threshold is chosen. Further examples of this occlusi@Rservations.
strategy can be found in [11]. The influence of an error on Equation (11) allows the target posterior to be calculated
this decision is discussed in our observation model. If vee awp to a proportionality constant, where the proportiowaitit
late in declaring an occlusion, the appearance of the orjudindependent of the current state. The first pdf on the right
object injects itself into the target appearance, therelyging hand side of (11) is called the joint-data likelihood and can
local minima in the tracking algorithm. However, given thée simplified, using the conditional independence assumpti
complexity of the problem, one should not expect supe#ati@n the observations:
performance for all the possible cases.

Another issue in handling occlusion is the change in the
appearance of the target during occlusion. This could happe The second pdf in (11), corresponding to a joint state
due to changes in global illumination, changes in the pos@date, requires more attention. State spaeand S, may
of the target, or dramatic changes in the projected target shave different updates for the common parameter set since

(10)

(11)
=7t (Y1,6, Y2,6)Te—1(2t),

'/Tt(yl,tv y2,t) = fl(yl,t|m1,t)f2(y2,t|x2,t)' (12)



they had different modefs.This poses a challenge in terms
of formulating the common state update foy. Instead of

assuming a given analytical form for the joint state update a
in [14], we combine the individual state update marginalspdf

mi—1(z) = m—1 (1,0, Yol xe) me—1 (xt)
Te—1 (1, xe)Te—1 (V2| xe ) me—1(X¢)

for the common state parameter as follows: _ i1 (21,6)me-1(%2,0) (16)
me—1(Xt)
— o1 02 03
meorbxe) = ep ()P 06) 0™, (1) _ el e @)
= Wtfl(l’t) = s

wherec > 1 is a constantp;(x:) = p(x¢|zii—1) is the m—1(xt)

marginal density, the probabilities for i =1,2 (3,0, =1) \where

define an ownership of the underlying phenomenon by the 1/2
state models, and-(x:) is a (uniform/reference) prior in . () U/Q1(I1.t|$1 1)d1 G2 (0 ¢ |20 )dipo tl
the natural space of the parametgr [24] to account for T ’ T '

unexplained observations by the state models. a7
If we denote the Kullback-Leibler distance &5 then V. PROPOSALSTRATEGY
D(a(xe)||mi—1(x¢)) = —loge + ZOiD(a(Xt)Hpi(Xt)) A proposal function, denoted agx;|z;_1,y;), determines
i the random support for the particle candidates to be waighte

. o (14) by the particle filter. Two very popular choices are (i) the

where o is the unknown truey, distribution. Hence, sate update; o g;(z:|z:_1) and (i) the full posteriorg o
D(aflm-1) < max;{D(a||p;)}. m—1(x;) aways has a (. 14)q;(x:|z,_,). The first one is attractive because it is
smaller KL distance to the true distribution than the maximu 5na\vtically tractable. The second one is better because it
KL distance ofp;(x.). This implies that (13) alleviates thejncorporates the latest data while proposing particles, ian
worst case divergence from the true distribution [25]. HENCregyits in less variance in the importance weights of thé-par
this proves that one of the trackers does assist the othisin {,e fiter since, in effect, it directly samples the postefis],
framework. [27]. Moreover, it can be analytically approximated fortéas

The ownership probabilitiesy;, can be determined usingParticle generation by using local linearization techessee
an error criteria. For example, one way is to monitor hol¢71), where the full posterior is approximated by a Gaussia
well each partitionz; ; in 2, explains the information streamsThe analytical form of the proposal functions for acoustic
y;.. through their state-observation equation pair defined @d video state spaces, obtained by local linearizatiomef t
S;, (10). Then, the respective likelihood functions can bosterior, is given by
aggregated with an exponential envelope to recursivelyesol -
for the o;’s (e.g., using an EM algorithm). In this case, 9(@ilze—1,9e) ~ N (19, %) (18)
the target posterior will be dynamically shifting towardet where the Gaussian density parameters are

better self-consistent model while still taking into acabu _ o\ -1
J Zg:(zyl"'zul) )

the information coming from the other, possibly incomplete ) . (19)
model, which might be temporarily unable to explain the data tg = B¢ (5,  Tmode + Xy, e (z(t — 7)),
stream. and wherez,,.q. is the mode of the data likelihood, and

If one believes that both models explain the underlying, ' (k) is the Hessian of data likelihood @f,oq.. The details
process equally well regardless of their self-consistenog ©f these proposal functions can be found in [11], [13]. Hence
can seto; = o, = 1/2 to have the marginal distributionin either way of proposing particles, one can assume that an
of y; resemble the product of the marginal distributiongnalytical relation forg;, defining the support of the actual
imposed by both state spaces. The proposal strategy in B@sterior for each state space, can be obtained.
next section is derived with this assumption on the ownershi Figure 6 describes the proposal strategy used for the joint
probabilities, because, interestingly, it is possiblelovs that ~State space. Each state space has a proposal strategyeescri
assuming equal ownership probabilities along with (13)iseaby the analytical functiongg;,i = 1,2} defined over the

to the following conditional independence relation on tteges Whole state spaces. Then, the proposal functions of eath sta
spaces: g; are used to propose particles for the joint space by cayefull

combining the supports of the individual posteriors. First
Ti-1(w1,0)Ti-1(22,0) = @ (@1,el@1,0-1)g2(22,¢|22,0-1)- (15)  marginalize out the parameters,:

Equation (15) finally results in the following update equa- g, (y,|x;—1,vi¢) = /gi(xi i1, yi)dibi g (20)
tion: 7 7 o " "
The functionsg;, describe the random support for the common
state parametey, and can be combined in the same way as
the joint state update (13). Hence, the following function

IThere is no exact state update function for all targets.viddal state . ) ~ o 1/2
spaces may employ different functions for robustness, wrscthé case in IOl @e—1, Y16, y2,6) < [91 (Xt |21 ,0-1, Y1,0) G2 (Xt |T2,0-1, Y2,0)]
our problem. (22)
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TABLE |
PSeuDOCODE FORJOINT PROPOSALSTRATEGY
V2t
i. Given the state updatg and observation relation for
the individual state spac€sS;,i = 1,2}, determine
‘ analytical relations for the proposal functiogss. For
P 0 . the individual proposal functiong;, it is important to
: ' AV ; ' . . .
Suppou\i g1(x¢, Y1) " . Support Epproxm?r:e the trure )zi)nstgmr)]r asr closeda}[s %o?isr:blfh
for ¢ N\ | 92(xt” hat) ~ __/ for 4o ¢ ecause these approximations are usec to getine the
o random support for the final joint posterior. For this
- SO Pt T O Vot purpose, Gaussian approximation of the posterior (18) or
1t Vst linearization of the state equations can be used [27].

Fig. 6. The supportsy;’s, for the posterior distribution in each state spagg, t. Determme the support for t_he cgmmon state parameter
are shown on the axeg vs.1; ;. Particles for the joint state are generated by Xt USING (21). The expression fgrmay have to be

first generatingy:’s from the combined supports of the marginal distributions approximated or simulated to generate candidgﬁé&
of x¢. Then, they; ,’s are sampled from thg;’s as constrained by the given

X+ realization, j_: 1, 2,(.4). ., N where N is the number of particles.
iii. Given x,”’,
) « calculate the marginal integrals by using (22) to
can be used to generate the qandidaﬁééfor the overlapping determiney;, }
state parameters. Then usi@ﬁ), one can generatﬁff,? from R generate/)f?t> ~ gi(xg'7),1/)i7t|x1;¢_1,ym),
gi(Xz(fj)awi,tlxi,t—layi,t) and formxﬁj) = [ng)’ g'j)y‘ﬁij)]- o form xgj) = [ng)v ijt), é]t)]' and

In general, Mor&-Carlo simulation methods can be used « calculate the importance weights(?)’s, using (23).
to simulate the marginal integrals in this section [28].
Here, we show how to calculate the marginal integrafS
of the state models. Simulation of the other integrals are

quite similar. Givenx{’), draw M samples USinQ/Jg,T) ~ in target range estimates, resulting in large errors inetarg

gi(XEj),wi,t|$i,t—1, yi+)-2 Then, position estimates. Hence, the main reason for estimaitimg t
N G) . (m) delay is to ensure the stability of the joint filter.
/q (X(j) Wiz Vi s ~ 1 Z a(xq Vit 21,61
1\WX¢ 7 Yit|T1,t—1 it~ T - po .
- M m=1 gl(ng), ¢'L'(,t )‘.’L'l’t,h yl,t) —®| Batch Memory |------ = JT
(22)

. o 101} =Tt r)e(t—7)
The pseudo-code for the joint strategy is given in Table I. | 0, (t

. \ . ; )
Finally, the importance weights for the particles genetang AD »—»@—*
the joint strategy described in this section can be caledlat {01} d(t),03
as follows: »JT
j . G 0
w(]) x p(xgj)“rt—layl,tay?,t)g(xgj)“rt—layl,hy?,t) ) VD -ri}; Motion :/Iode Est. 92(1;)

(C)NAC)) (@ ) |
91(x¢ 31/}1,15 |71,6-1,y1,6) g2 (X¢ ﬂﬂgt | 72,61, yQ’E%B) ! {92}(t_T+T):(t_T)
T

—»I Batch Memory

TP g : : ; Fig. 7. At time ¢, 7 seconds of acoustic datdAD) and a frame of video
The joint acoustic video particle filter sequentially estiss data D) are processed to obtain possible target DOs}¢. This prepro-

its state vector at video frame rate, as the acoustic datasing is done by a beamformer block and a video motion detbliok,

arrives. Hence, the joint filter state estimates are delayidu respectively. With the guidance of the joint trackdiT}, these DOASs are

respect to the actual event that produces the state, bettmjsé'dsed to determine the DOA mode tracks(¢) (Fig. 8), to estimate the time
o . T delayd(t). The estimated time delay parameters are then used in the pfopos

acoustic information propagates much slower than the vidg@ction of the joint tracker.

information. Although it is possible to formulate a filter $at

estimates are computed as the video data arrives, theingsult To synchronize the audio-video information, we add an

filter cannot use the delayed acoustic data. Hence, it isoret c additional time delay variabléy (¢) for each targek to form

sidered here. The adaptive time delay estimation also alloan augmented joint filter state:

position tracking on the ground plane. However, small arror

T
in the time delay estimates translate into rather largererrgs(t) = [ ak (t) . mk(t) . Ou(t) . Qu(t) . r(t) , du(t) (]24-)

VI. TIME DELAY PARAMETER

2t is actually not necessary to draw the samples directly froithe time delaydy(t) is defined geometrically as:
gi(x?),wi,q—). An easier distribution function approximating onjy can
be used for simulating the marginalization integral (22). di(t) = |1€ — xi (t — di (1)) ||/c, (25)



where¢ = [s,, s,]T is the hybrid node position in12, x, = !
[k target (), Yk targer (t)]” is the kM target position, and is

the speed of sound. Using the geometry of the problem, it is
possible to derive an update equation dQKt): Or(t

dy, (t + T) =d; (t) exp{udﬁk(t)}
V1 + 27 exp{Qr(t)} cos (1(t) — ¢ (t)) + 72 eXP@Qk((é)G}), 01(t)

where the Gaussian state noiggy(t) is injected as multi-
plicative.

We suppress the partition dependence on the variables from
now on for brevity. Figure 7 illustrates the mechanics ofetim
delay estimation. To determiné(t), we first determine the ! o
mode of the acoustic state vector within a batch period of ;_7_, =" “™~¢y_7 " "y Time
T seconds. Given the calculated acoustic data mode, which is
also used in the proposal stage of the particle filtgr,oqe(t), Fig. 8. The time delayiy(t) between the acoustic and video DOA tracks,

. . . z. . 01(t) andO2(t), respectively.
an analytical relation for acoustic DOA traék(¢) (Fig. 8) is
determined, using the state update function (2). This fanat
estimate? (¢) of the acoustic DOA's and acoustic data is used |nitialization
to determine an average variance of the DGA's, around the
functional, between timelsandt—T'. Note thaiz; is estimated

using the missing and spurious data assumptions simildueto Sr AR TR : .
The joint filter initialization requires an interplay beterethe

ones presented in Sect. Il. Jalities. b the stat tor | tiallv oo
Next, we search the stored mode estimates of the vidgp Ca1tes, Decause Ine state vectoris only partia’ly ias .
o . : . either modality. In most cases, the video initializer is
state, which is used in the video state update function ( . . .
ed by the acoustics, because the video modality consumes

to determineM = T/r (i.e., the number of video frames_. " :
. . .__significantly more power. Below, we describe the genera¢ cas
per second) closest video DOA estimates. These DOAs ar L

ere each modality is turned on.

used, along with the constant velocity motion assumption, ¥v Briefly, the organic initialization algorithms work as fol-

determine a functional estimatig(t) of the DOA track and an lows. In video, motion cues and background modeling are

average DOA variance; ,, based on the video observationsUSed to initialize target appearance modef§(t), s (t), and
as shown in Fig. 8. The observation likelihood for the tim get app » MeAt),

. . . : . Ux(t) by placing a bounding box on targets and by coherent
delay variablel(t) is approximated by the following GaUSSIantemporal processing of the video frames [11]. In acoustics,

p(d(t)|y1,e,y2.4) &N (pa (1 + TeQmoae the temporal consistency of the observed DOAs is used to
cos [(01(t —T) + 61(1))/2 — dmode] +T2€2Qmode/4)% ,o2), initia!ize target_ partitions by using a modified Metropelis
(27 Hastings algorithm [13], [29].
where the mean is the average distance between the fu %O Initialize tar.gets, a matt;hipg_—_pqrsuit i.dea Is used ‘[13]
tional inverses oy (¢) andfs (£): ﬂ ]. The most I|kely_ target is initialized first and then its
corresponding data is gated out [30]. Note that the target
f;l(t*ﬂ [071(0") — 651(6")] do’ motion parameters alleviate the data association issues be
= |20 (28) tween the video and acoustic sensors, because both meslaliti
01(t) = 02(t = T) are collocated. Hence, the overlapping state paranteter

The variancer? is determined by dividing the average DOAused to fuse the video shape parameters and acoustic motion

variances by the functional slope average: parameters.
y P ge- When a target is detected by the organic initialization
0:1(t) —0,(t—=1T) 01(t) —0,(t—1T)

- - algorithms, the time delay variable is estimated using the
t 801(t’)dt, ft " 662(t/)dt/
tf

The organic initialization algorithms for the video and
gcoustic trackers are employed to initialize the joint filte

Hd

2 _ ) : T
Oa = 1,6 92,0 scheme described in Sect. VI. The initialization schemd 8j [

t=T ot o (29) is used to determine the target motion parameters, where
In the joint filter, the particles for the time delay pararmetéhe video DOA mode estimates are used as an independent

are independently proposed with a Gaussian approximamonolbservatior_]_dimension to improve the_ accuracy. Finally, a
the full time delay posterior, using (26) and (27) [27]. target partition is deleted by the tracking algorithm at the
proposal stage if both acoustic and video modalities do not

see any data in the vicinity of the proposed target state.

VIlI. ALGORITHM DETAILS . _
B. Multi Target Posterior
The joint acoustic-video particle filter tracker code isegiv.  The joint filter treats the multiple targets independently,
in Table Il. In the following subsections, we discuss otharsing a partition approach. The proposal and particle vteigh
practical aspects of the filter. ing of each target partitions are independent. This allows



a parallel implementation of the filter where a new singleumber of particles to regain track until the failed modai#
target tracking joint filter is employed for each new targetectified.
Hence, the complexity of the filter increases linearly witk t  The video modality regains the track immediately, as the
number of targets. Note that for each target partition, it terget comes out of occlusion. The spread of particles (tite d
crucial that data corresponding to the other target pamsti cloud in Fig. 9) gives an idea of the observability of the it
are treated as clutter. This approach is different from ¢iiretj location parameter on the image plane. Further, the dramati
probability density association (JPDA) approach that wouteduction in this spread as the target comes out of occlusion
be optimal for assigning probabilities to each partition bglemonstrates the previously unobservable visual compenen
adding mixtures that consist of data permutations andtjwarti recovering the track. It is also interesting to compare firead
combinations [30]. In JPDA, no data would be assigned tf particles in Fig. 9 with the pure visual tracking exampie i
more than one target. However, in our approach, the saiffig. 3, where the spread of particle increases isotropiaail
DOA might be assigned to multiple targets. the image plane, due to complete occlusion. Hence, the joint
Notably, it is shown in [13] that the independence assumpracking reduces the uncertainty through the second ntgdali
tion in this paper for the joint state space is reasonable for this example, the simulation parameters are given iteTab
the acoustic tracker. There is a slight performance detjcada I1l. The acoustic bearing data is generated by adding Gawnissi
in bearing estimation, when the targets cross; howeves itrioise to the bearing track that corresponds to the groutld. tru
not noticeable in most cases. Moreover, the JPDA approathe acoustic bearing variance is 4 degrees betweens to
is not required by the video tracker. When the targets crogs= 5s, when the vehicle engine is getting occluded by the
if the targets are not occluding each other as their DOAlgee. It is 2 degrees when the vehicle engine is not occluded.
cross, the vertical 2-D translation parametgi(t) resolves  Figure 10 shows the results of a Monte-Carlo run, where
the data association issue between the partitions. Theomotihe filter is rerun with different acoustic noise realizagoThe
parameters also resolve the data association, similaréo threshold for declaring an occlusion is set as 40%. Figu(a)10
acoustic tracker, to alleviate the filter performance. Eréh shows the joint bearing estimate results whereas Fig. Ed(t)
is occlusion, it is handled separately using robust siegists (c) show the acoustics-only and video-only tracking result
described below. respectively. In Fig. 10(a), there is a small positive biashie
bearing estimates at the end due to the target's pose change.
As can be seen in Fig. 9(h) and (i), the rear end of the vehicle
. ] ) ) . ) is visible after the vehicle comes out of the occlusion. The
In video, if the number of outlier pixels, defined in (9)gnjine appearance model locks on the front of the vehicle,
is above some threshold, occlusion is declared. In that, caggose appearance was stored before the occlusion. Hence,
the updates on the appearance model and the adaptive yelogjt rear end of the vehicle is ignored, causing the bias. We
component in the state update (5) are stopped. The current &g i, Fig. 10(c) that the video-only tracker cannot hartuke t
pearance model is kept and the state is diffused with ingT@aspersistent occlusion without the help of the acoustics.
diffusion variance. The data likelihood for the occludedyé&t Note the time evolution of the estimate variances shown
is setto 1 for' an unir!formative response under t'he 'infl'uenme,:igs_ 10(d) and (e) for the joint tracker and the acoustics
of robust statistics. Similarly, the acoustic data likeb is |y tracker. When the video modality is unable to contribute
set to 1 when the number of DOAs within the batch gate Qe variance of the estimate approaches acoustics-onijtses

C. Occlusion Handling

a partition is less than some threshold (e.g., M/2). When the video recovers, the estimate variance drops sharply
Figures 10(f) and (g) show the distribution of the vertical
VIII. SIMULATIONS displacement parameter. When the occlusion is over at

Our objective with the simulations is to demonstrate tHéS; the video quickly resolves its ambiguity in the vertical
robustness and capabilities of the proposed tracker. Wadero displacement (Fig. 10(g)), whereas the variance of thecart
two examples. In the first example, a vehicle is visuallfisplacement in Fig. 10(f) increases linearly with time doe
occluded and the acoustic mode enables track recovery.diqergence. Figures 10(h) and (i) demonstrate the ocalusio
the second example, we provide joint tracking of two targeR§obability of the target.

and provide time delay estimation results. TABLE Il

SIMULATION PARAMETERS
A. Tracking through Occlusion

Figure 9 shows the tracking results for a car that is occludgd Num;(ir) ?]fofsaergdesN diag[0.02,0 (1)8300 002,0.2,7]
by a tree. The role of the DOA variable in the state spaceffs 0 noiseag,,f — g —
crucial for this case. In the absence of information from any Q noisecq x 0.055 1
one of the modalities, the DOA still remains observable and ¢ noisecy 4°
estimated from the modality that is not occluded. Howeve, t|| Video Measurement noisey 0.1,°
rest of the states corresponding to the failed modality fesnal||APP. Model Template Size 15x15 (in pixels)
unobservable, and the variance of the particles along thesdéamformer batch period; 305

Frame Size 720 x 480

dimensions continues to increase as the occlusion persists
Hence, it is therefore sometimes necessary to use an iimgeas
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TABLE Il
JOINT ACOUSTICVIDEO PARTICLE FILTER TRACKER PSEUDO-CODE

1. For each particlé (i = 1,2,...,N) and each partitiot (k =1,2,..., K)
o Sample the time delagl,(j)(t) ~ gd(dk(t)|y1,t,ygyt,x,(j)(t —1T)), wheregy(-) is the Gaussian approximation to (26)
and (27). ' _ ' _
« Using the procedure illustrated in Table I, samgl& (t), v\ (t), andp " (t) from 2{” (t — T) with the time
synchronized acoustic and video data andy, ;40 (4)-

2. Calculate the weightw*g’) using (23). Determine visual and acoustic occlusions bkitapat the likelihood estimates of
each particlep(yi ¢|x(t),v(t)) (acoustics) ang(ya ¢|x ¥ (t), ¢ (t)) (video).

« A particle isvisually occluded if a sufficient number of pixels in the template are outliess the appearance model.
The number of outlier pixels is calculated by (7) and (9): tluenber of terms in the summation for whigiw)
function is evaluated on the regidn| > c. If the number of such pixels is higher thaa%, it is claimed that the
appearance, as hypothesized by the particle, is visuatijuded.

« If the particle that has the maximum video likelihood is \dBy occluded, then declare that the target has been
occluded for the frame. In this case, the states represdmytedt) are unobservable and their sampling is done
separately as in [11].

« Similarly, a particle isacoustically occluded, if the observation DOAsy, ; differ significantly from the value of DOA
hypothesized by the mode particle. By counting the DQAs..,..- in the gate of the hypothesized DOAs
B (2 (t)), we declare an acoustic occlusion. If more than half the D®Aeovations in the batch are termed
occluded, the particle is labeled as acoustically occluded

« If the particle that has the maximum acoustic likelihood éswstically occluded, then we term the estimation at time
t to be acoustically occluded. In this case, the statgs are unobservable and are sampled separately as in [13].

« When a particle is occluded, the corresponding time delagiispded from (26).

. Calculate the weights using (23) and normalize. 4

. Perform the estimation [27E{f(x;)} = >, w!” f(x{").

. Resample the particles: Only states that are observalieipate in resampling. For example, if the observatiares
visually occluded then the statedt) are not resampled. Similarly, if the observations are atally occluded, then the
statesy)(t) are not resampled.

« Heapsort the particles in a ascending order according fo \m}ights:xgn — if).

o Generatev ~ U0, 1).

e« FOrj=1,2,...,N
a. u) = j%,
b. Findi, satisfying>>i—! &(" < u() < S0 @!”,
c. Setx!?) =%\,

6. Update the appearance model with the appearance candisgdo the particle with maximum likelihood, if this
likelihood value exceeds the threshold. The appearancesini®aot updated during visual occlusion. Finally, we

reinitialize the appearance model when the tracker is lisuaoccluded forl0 consecutive frames, after visual
occlusions of at least one second.

g b~ w

B. Time Delay Estimation to the estimation biases when filtered with the unsynchezhiz
data.
We performed a simulation with the time delay variable on a
synthetically constructed multi-target data set. The &tion IX. CONCLUSIONS

parameters are given in Table V. The temporal tracks of two In this paper, we presented a particle filter tracker that can
targets are shown in Fig. 11. The simulation parameters aeploit acoustic and video observations for target traghg
given in Table II. The results of the DOA and time delaynerging different state space models that overlap on a cammo
estimation are shown in Fig. 12. The filter handles multiplearameter. By the construction of its proposal functiorg th
targets independently by treating the data of the otheetarg filter mechanics render the particle filter robust againsie
clutter. Note the variance of the time delay estimates dse® occlusions in either modality, when used with Huber’s rabus
as the targets get closer to the hybrid sensors. It is impoiba statistics criterion function. The presented filter alsonde-
account for this time delay, because filter instability asalue strates a scheme for adaptive time-synchronization of tlé m



(g) Frame 180

(h) Frame 195 (i) Frame 210

Fig. 9. Joint tracking of a vehicle that is occluded by a tfgee particle cloud

at each frame represents the discrete support of the posdesiobution of the

vehicle position in the image plane. Note that the particieag during the
occlusion increases along the vertical axis. This sprealdlenly decreases,
once occlusion is gone. The target is occluded in frames 4@@o 1

TABLE IV
SIMULATION PARAMETERS

Number of particles)V 1000
0 noiseoy, i, 1°
Q noisedq 0.05s "
¢ Noiseo, ik 4°
Time delayd noiseoy, 0.2s
Acoustic Measurement noisg 1°
Video Measurement nois&y 0.1,°
Beamformer batch period, %s

modal data for parameter estimation. The time delay vagibl
incorporated into the filter and is modeled as multiplicatit
is the authors’ observation that without the time delayalale,
the joint filter is susceptible to divergence.
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Fig. 10. Results of 300 independent Monte-Carlo simulatiohthe exper-
iment illustrated in Fig. 9. (a) MATLAB’s boxplot of the estireal target
DOA track with the joint tracker. The visual occlusion is Wweent = 1s
andt = 6s. There is a small positive bias in the bearing estimates becau
of effect of the Brownian nature of the video state updateagqn in (13).
(b) The estimated DOA track using acoustics-only. (c) Thémeged DOA
track using video-only. The video cannot handle the pamstsbcclusion by
itself. (d-e) The time evolution of the estimate variancesim for the joint
filter and acoustics only, in their respective order. Whenigeo is unable
to provide information, the joint tracker’ estimation perf@ance becomes
similar to the acoustics-only tracking results. The joirtcler’s variance of
the bearing estimate during the occlusion is slightly smélfian the acoustics-
only variance because it is biased. (f) Vertical displacenemnobservable
during the visual occlusion. Hence, the video-only estinvattance increases
linearly with time. (g) Note the variance of the estimates ditzcally reduces
once the target becomes unoccluded, demonstrating the rgcpeed of the
tracker. (h) The occluded percentage of pixels, correspgntb the MAP
particle. The gradual rise is attributed to the increasiagial occlusion as
the car drives behind the tree, hence there is significang drnee the target
comes out of occlusion. (i) Probability of occlusion for theivie-Carlo runs.
The track recovery after occlusion is robust as illustratgdhe Monte-Carlo
runs.
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