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Abstract— We consider the problem of detecting and locating
subsurface objects by using a maneuvering array that receives
scattered seismic surface waves. We demonstrate an adaptive
system that moves an array of receivers according to an optimal
positioning algorithm based on the theory of optimal experiments.
The goal is to minimize the number of distinct measurements
(array movements) needed to localize objects such as buried
landmines. The adaptive localization algorithm has been tested
using data collected in a laboratory facility. The performance of
the algorithm is exhibited for cases with one or two targets,and
in the presence of common types of clutter such as rocks in the
soil. Results are also shown for a case where the propagation
properties of the medium vary spatially. In these tests, the
landmines were located using three or four array movements.
It is envisioned that future systems could incorporate thisnew
method into a portable mobile mine-location system.

I. I NTRODUCTION

Buried landmines and similar subsurface structures pose a
huge threat to resettling civilians. It takes significant time and
resources to clear out regions contaminated by mines, so it
is important to develop efficient detection and localization
systems to find the mines. Existing systems are usually based
on Ground Penetrating Radar (GPR) and Electromagnetic
Induction (EMI) sensing, but recent efforts [1]–[6] have em-
ployed seismic waves to detect subsurface targets.

To detect a landmine, a seismic wave is excited by a source
at a known position and travels through the soil to interact with
underground objects. The resulting propagating waves in an
elastic medium are of two main types: surface waves and body
waves. This paper concentrates on reflected surface waves
(Rayleigh waves) for locating mines, because the Rayleigh
waves carry most of the returned energy. The seismic waves
are sensitive to differences in the mechanical properties of the
soil, mines and clutter, while GPR and EMI sensors respond
to the electrical properties. The mechanical properties and
structure of a landmine are quite different from typical forms
of clutter. The dominant feature of the response of a buried
mine is a soil-loaded resonance of the mine case and trigger
mechanism [2], [7]. This resonance causes an enhanced and
sustained motion of the soil above the mine thus enhancing
the waves scattered from the mine. Hence, it is possible to
use seismic imaging to discriminate landmines from common
types of clutter such as rocks, wood, etc.
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Previous work on the seismic detection of landmines can be
divided into two categories: methods that measure the seismic
wave field directly above a mine and those that only measure
a portion of the wave field at a stand-off distance [4], [5]. The
first technique has been shown to be relatively resistant to
clutter due to the strong resonant response directly above the
mine; however, this method is quite time consuming due to the
large number of measurements needed to ensure that some of
the measurement points are above the mine [3], [6], [7]. Efforts
to speed up these techniques using large arrays of sensors are
ongoing [8], [9]. The second technique is more sensitive to
clutter because the resonant response is much more difficultto
isolate in the scattered waves; however, it is potentially much
faster because fewer measurements are needed. Although the
stand-off recordings might be made by a moving sensor, in
previous work the movement of the sensor was not controlled
adaptively in response to processing.

In this paper, we develop a technique that combines the
strengths of the above techniques. We show how a small array
that makes its first recording at some distance from a target
can be moved to new recording positions that will increase
the ability of the system to find the target’s location. The
array movements are done in an optimal fashion to maximize
the “information gained” about the target at each iteration.
In our case, we use a small3�3 array, so any one image
has low resolution. However, as the array maneuvers, we can
accumulate the measurements, and the cumulative imaging
operation improves the resolution around the target location
by increasing the effective aperture. After the target is located,
a confirmationstep would be performed to decide whether
the target is a landmine by using an imaging technique that
enhances the resonance, e.g., [10].

One applicable theory for optimal sensor placement is the
“theory of optimal experiments” [11], which predicts the re-
sults of experiments based on information-theoretic concepts.
These methods use some form of the Fisher information
matrix, from which the Cramer-Rao bound is obtained. Various
measures of Fisher information are possible, giving different
design criteria, but this paper concentrates on D-optimal design
which maximizes the determinant of the Fisher information
matrix. An example of using the method of optimal experi-
ments for sensor placement can be found in [12], [13], which
deals with the movement of sensors used in direction-of-arrival
(DOA) estimation to localize a source. The D-optimal criterion
is equivalent to minimizing the trace of the Cramer-Rao lower
bound (CRLB), so the result is an optimal observer (sensor)
path that localizes a moving source. In [14], a single moving
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Fig. 1. Surface displacement plots showing wave propagation. TS-50
landmine location denoted by an arrow (40 dB scale). (a) Rayleigh wave
approaching the mine, (b) wave reaches the top of the mine, (c) main pulse
passes the mine, (d) scattered wave with mine still resonating.

sensor is used to localize a vapor emitting source by estimating
the location of the source and minimizing its CR bound at
each step. A recent example of D-optimal experiment design
involves moving an EMI sensor to locate buried targets [15],
and, in [16], D-optimal design is used for optimal sensor
placement to solve an inverse problem.

The paper is organized as follows. Section II describes the
steps in the algorithm including the performance bounds on
target location estimates from which the D-optimal maneuver
algorithm is derived. Section III contains the results of apply-
ing the new algorithm to data collected in a laboratory setting
for scenarios with single targets, multiple targets, and clutter.

II. TARGET LOCATION AND SENSORMANEUVER METHOD

The proposed optimal maneuvering algorithm is an iteration
that involves three main steps: The first is identification ofthe
seismic wave components and separation of the reflected wave
from the incident wave; the second is near-field imaging witha
propagation model to estimate the target location; and the third
is the optimal maneuver calculation to reposition the receiving
array for the next iteration. During the first step, different
seismic wave components have to be identified and separated,
because the imaging in the second step must be done with only
reflected waves. The system uses an active source that is also
in the vicinity of the receivers, so the array will also record a
very strong forward wave. For example, the raw collected data
at four time instants from a TS-50 (anti-personnel) landmine
buried at a depth of 1 cm is shown in Fig. 1. This figure shows
the strong forward seismic wave approaching the mine during
the first two frames, and reflecting from the mine in the third.
In the last frame the weak reflection from the mine can be
seen clearly.

If the target is far from the receivers, we can remove the
forward wave with a time gate, but when the target is nearby,
the two waves tend to overlap in time. A frequency-domain

algorithm based on Prony’s method is used to first identify
different wave components and then separate them [17], [18].
This analysis technique requires a linear array of sensors to
collect the space-time data (10 or 15 sensors suffices). At
present, we use a3�10 array and perform the wave separation
on each ten-element linear subarray. Then a3�3 subarray is
retained for the imaging and optimal maneuvering steps.

After the waves have been separated, the next step is to
image the targets to find their locations. The applicable data
model for the reflected waves is the classical model used
in passive array processing. The imaging algorithm works
in the frequency domain, even though the received sensor
data is not narrowband. The nature of the seismic waves
suggests that frequency domain processing is more suitable
for two reasons. First, soil is usually a highly dispersive
medium, where propagation velocity varies with frequency.
Second, targets at various depths can be imaged by varying the
frequency content of the probing pulse. Thus, we formulate a
propagation model and steering vectors that can be used when
velocity varies with frequency.

One goal is to design the system so that the array can
be placed on a mobile platform, which can maneuver as
it senses the environment. Therefore, the size of the array
has to be small, which means a small aperture. This small
aperture will result in low resolution or higher uncertainty
about the location estimate of the target. One way to increase
resolution is to increase the effective aperture by moving the
array and forming a synthetic aperture. Hence, the algorithm
that determines the next optimal position for the array must
also accumulate its measurements from several positions.

The system maneuvers based on its present estimate of
the target location. The 2-D sensor array estimates the target
location with an imaging algorithm. Then, the variance of the
location estimate is calculated by using the Fisher information
matrix (FIM), assuming the location estimate is the true target
location. Based on the expected value of the FIM, the next
optimal array position is calculated by using the theory of
optimal experiments [11], [15], specifically, D-optimal design
which maximizes the determinant of the FIM. The two steps
involved in the maneuver strategy for a mobile array of sensors
are shown in Figs. 2(a) and 2(b).
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Fig. 2. Algorithm steps illustrated: (a) The source generates a probing pulse.
Waves scattered from the target are collected by the receiving array. At stepi ,
the target locationzi is estimated when the array center is at�i (b) Estimate
the next array position�iC1 by using zi and the constrained cumulative
Fisher Information Matrix measure along a circle.
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A. Spectrum Analysis Technique for Wave Separation

The wave separation is based on a parametric modeling
technique previously developed for borehole sonic logging
applications [17]. The collected datas.x; t/ from a linear
array is a function of space and time, and has a 2-D Fourier
representationOS.k; !/

s.x; t/ D
1

4�2

1
Z

�1

1
Z

�1

OS.k; !/ej.kx�!t/dk d!; (1)

wherex is the spatial position,k the spatial wave number, and
! is temporal frequency. By taking a Fourier transform of the
space-time data acrosst only, we obtain

S.x; !/ D
1

2�

1
Z

�1

OS.k; !/ej.kx/dk: (2)

At each temporal frequency!, exponential modeling can be
done across the spatial dimension to approximate the integral
in (2) with a sum (of propagating waves)

S.x; !/ �

P
X

pD1

ap.!/ej�p.!/x; (3)

where P is the model order. The parametersap.!/ and
�p.!/ are calculated with a pole-zero modeling technique
based on the Iterative Quadratic Maximum Likelihood (IQML)
algorithm, which is equivalent to the well-known Steiglitz-
McBride extension of Prony’s method [19]–[22].

The poles from IQML determine the exponents�p.!/ D

kp.!/Cj p̨.!/ whose real part is the wave numberkp.!/ and
whose imaginary part is the attenuationp̨.!/. Wave number
can be converted to phase velocity viavp.!/ D !=kp.!/,
and then we can plot the magnitude ofap versus frequency
and velocity. This type of plot is a 2-D velocity-frequency
spectrum, e.g., Fig. 3(b), from which it is easy to obtain the
dispersion curves for the various modes that make up the
signal. The complex amplitudesap determine the strength of
different wave components. Furthermore, the individual modes
of s.x; t/ can be identified and grouped according to velocity
vp.!/ and frequency. Once we have sorted out a single mode
in the velocity-frequency domain, it is possible to reconstruct
the waveform for that mode in the space-time domain by using
the model

s.x; t/ D
X

i

a.!i /e
.˛.!i /xCj.!i tCk.!i /x//: (4)

where the sum would include only those parametersa.!i /,
˛.!i / andk.!i / corresponding to the mode of interest.

This processing has been applied to data collected in the
laboratory and in the field, and used to extract waves reflected
from buried targets [22]. For example, consider the setup
shown in Fig. 3(a), where a linear array lies between the
source and the target. The target in this case is a VS-1.6 anti-
tank landmine buried at a depth of 8 cm. The array consists of
ten sensors (ground contacting accelerometers) with an inter-
sensor spacing of 3.4 cm. The resulting velocity-frequency
spectrum is shown in Fig. 3(b). The analysis easily separates
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Fig. 3. (a) Array setup with linear array between the source and target. The
first sensor position is indicated by the arrow. (b) Spectrumanalysis: reflected
waves have positive velocity; forward waves, negative velocity.
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Fig. 4. Reconstruction (4) using the subsets selected in Fig. 3(b). Extracted
wave and original at one sensor only: (a) Forward wave, (b) Reflected wave.

the forward and reflected waves on the basis of positive and
negative velocities, or equivalently, wave numbers. Once these
waves are identified in Fig. 3(b), their individual parameters
can be extracted, followed by reconstruction in the space-time
domain using (4). The extracted forward and reverse waves at
the first sensor are shown in Fig. 4, demonstrating that this
method is able to separate and reconstruct these waves.

B. Target Location Estimates and Performance Bounds

Once we have extracted the reflected wave(s) we can address
the problem of finding the target location(s) as a near-field
array processing problem.

1) Data Model for active sensing:Consider a single seis-
mic source illuminatingK targets, and an array ofP seismic
receivers, where the source, targets and receivers are coplanar.
Since we model the soil as a dispersive medium with frequency
dependent velocity, we prefer to do the processing in the
frequency domain.

The received seismic data at frequency! can be written as

y.!/ D G.!/D.!/g1.!/ C n.!/; (5)

where g1.!/ is a K �1 vector that models the propagation
from the single seismic source to the targets,D.!/ is aK�K

diagonal matrix whose elements are the scattering coefficients
from the K targets,G.!/ is a P �K matrix that represents
the propagation from the targets back to the receiver array,
and n.!/ is additive noise [23]–[26]. The elements of the
propagation matrices are given by the 2-D Green’s function.
Since only the reflected signals are of interest, the active
system in (5) can be simplified to the following equivalent
passive system

y.!/ D G.!/s.!/ C n.!/; (6)
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whereD.!/g1.!/ has been replaced by aK�1 signal vector
s.!/ that represents the reflected signals from targets. Equa-
tion (6) has the same mathematical form as the narrow-band
data model [27] used in conventional array signal processing
and this similarity will be exploited while calculating the
maximum likelihood location estimate.

In the seismic problem, the elements of the propagation
matrix G.!/ are given by the illuminating Green’s vector
(steering vector) [23]–[25], [28],

g.z; x; !/ D Œ Qg.z; x1; !/; : : : ; Qg.z; xP ; !/�T ; (7)

wherez is the target location,xi the i th sensor position in the
2-D plane, andQg the 2-D Green’s function, whose analytical
form is

Qg.r; r 0; !/ D
i

4
H

.1/
0

�

!

v.!/
jr � r 0j

�

; (8)

where H
.1/
0 is the zero-order Hankel function of the first

kind, and v.!/ is the frequency-dependent Rayleigh wave
velocity, which is an accurate model for a vertically stratified
media, but an approximate model in the presence of lateral
inhomogeneities. Spectrum analysis of the surface waves [22]
(Section II-A) is used to determinev.!/.

To minimize confusion when we refer to existing array
processing literature results, we change the notation for the
propagation matrix fromG to A (called the steering matrix),
and the final form of the data model becomes [27]:

y.!/ D A.�; z; !/s.!/ C n.!/; (9)

wherey.!/ is the array output vector,n.!/ is complex additive
noise, ands.!/ is the signal vector. The steering matrix
A.�; z; !/ has elements given by the Green’s function (7),
which depends on the array center position� and the (un-
known) target locationz. Our objective is to determine the
target location(s)z given the received array datay.!/.

2) Target Location Estimation:Let the data vectorY D
�

yT .!1/ ; : : : ; yT .!N /
�T

, Y 2 CPN �1, be formed by
aggregating the Fourier transform ofy at N frequencies,!i .
Under the assumption of independent, identically distributed
(i.i.d.) Gaussian noise, the likelihood function (a probability
density) for the current received data [29] is:

p.Y/ D

N
Y

lD1

1

�P �2P
n

exp

�

�
1

�2
n

ky.!l / � A.!l/s.!l /k
2

�

(10)
From (10), we obtain the negative log-likelihood function

L� D NP log.��2
n / C

1

�2
n

N
X

lD1

ky.!l/ � A.!l /s.!l /k
2: (11)

and the Maximum-Likelihood (ML) estimate is determined by
minimizing L�. In (11), both the target signal and the noise
variance are unknown, but the gradient ofL� is separable so
that we can first solve for the noise variance from the derivative
of L� with respect to�2

n

O�2
n D

1

NP

N
X

lD1

ky.!l/ � A.!l /s.!l /k
2: (12)
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Fig. 5. Target location estimate done using the ML cost function (14); inverse
of J.z/ is plotted (dB scale).

Using (12) we can then solve for the signal from the derivative
of L� with respect toOs.!l/

Os.!l / D
�

AH .!l/A.!l /
��1

AH .!l/y.!l/; (13)

where AH is complex conjugate transpose ofA. Substitut-
ing (12) and (13) into (11), we can rewrite the ML cost
function that must be minimized as a function ofz

J.z/ D

N
X

lD1









�

I � A.!l /
�

AH .!l /A.!l/
��1

AH .!l /

�

y.!l /









2

D

N
X

lD1

trace
˚

P ?
A .!l/Ry.!l /

	

; (14)

where P ?
A .!l/ D I � A.!l/

�

AH .!l/A.!l /
��1

AH .!l/, is
the projection onto the null space ofAH .!l / and Ry.!l/ D

y.!l/yH .!l/ is the single snapshot covariance matrix estimate
at !l . The target location estimate is then obtained by mini-
mizing the cost functionJ.z/, i.e., zest D arg min

z
J.z/.

An example of estimating the target location for the TS-
50 data in Fig. 1 is shown with the surface plot in Fig. 5.
The surface plot (of the the inverse ofJ.z/) was obtained by
using (14) and evaluating this cost function at each pointz
over a 2-D grid. The target location estimate is the minimum
indicated with a square.

3) Cramer-Rao Lower Bound for the Estimate ofz: The
Cramer-Rao lower bound (CRLB) is an information theoretic
inequality which provides a lower bound for the variances of
the unbiased estimators. If an estimator achieves the CRLB,
then it is also a solution of the likelihood equation. The
Cramer-Rao lower bound is the inverse of the Fisher informa-
tion matrix (FIM). Assuming that the variance of the additive
noise in (5) is known, the log-likelihood function (11) for a
single targethas one term that depends onz:

L.�; z/
:

D �
1

�2
n

N
X

lD1

ky.!l/ � a.�; z; !l /s.!l /k
2; (15)

wherea.�; z; !/ is the propagation (steering) vector from the
array center� to the location estimatez. The .i; j /th element
of the matrixF is given by the partial derivative of (15) with
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respect to thei th andj th parameters of the vectorz [29]:

Fi;j .z; �/ D Ey

�

@2L.z; �/

@zi @zj

�

D �
2

�2
n

N
X

lD1

<

(

�

@a.z; �; !l /

@zi

�H
@a.z; �; !l/

@zj

)

;

whereEyf:g denotes the expected value. The partial derivative
of the steering vector is calculated with respect to the target
coordinates for a fixed array center.

C. Movement of the Seismic Array via Optimal Experiments

Previously, we described how to determine the target lo-
cation estimate and the corresponding FIM which represents
the uncertainty about the estimate as a function of the array
center position�. Suppose that we are at stepi with a target
location estimatezi obtained when the array is at position
�i , and now we are interested in determining the next optimal
array center position candidate�iC1. Our approach is to select
the new sensor position to reduce the expected uncertainty in
the estimated target coordinates by minimizing the determinant
of the CRLB, or, equivalently, by maximizing the determinant
of the FIM as a function of the array center�. In the literature
of optimal experiments, this technique is called D-optimal
design [11] (see [15] for an application to magnetic sensors).

Let q represent the determinant of the FIM. The cumulative
effect of the measurements up to stepi can be written as:

q .f�1; : : : ; �i g/ D jF.�1; : : : ; �i /j D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i
X

j D1

F.�j /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; (16)

where j � j stands for determinant andF.�i / represents the
FIM at stepi . The logarithmic increase due to the additional
measurements at stepi C 1 is given by

ıq.�iC1/ D ln q
�˚

�1; : : : ; �i ; �iC1

	�

� ln q .f�1; : : : ; �i g/

D ln
ˇ

ˇI C F.�iC1/B�1
i

ˇ

ˇ ; (17)

whereI is an identity matrix, andBi D
i

P

j D1

F.�j /. Therefore,

to maximize the expected information gain, the next optimal
array center should be determined by

�iC1 D arg max
�

˚

ln
ˇ

ˇI C F.�iC1/B�1
j

ˇ

ˇ

	

: (18)

1) Constraints:In this optimization problem (18), there are
hidden constraints that come from the configuration of the
seismic measurement system. First of all, we need to make
sure that thearray always receives backscattered waves. If the
array lies on the far side of the target, the forward scattered
waves are weak and are mixed with the very strong forward
probing pulse, so it is difficult to extract the reflected wave
using the Prony analysis. One way to impose this condition is
to restrict the movement of the array center to be less than a
fixed step size ofr . In effect, this means that we calculate the
maximum of (18) on a circle of radiusr , with the center of
the circle at the previous optimum array center position.
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Fig. 6. (a) Circle constraint for optimum movement to the next array position.
Mine location is indicated by smaller circle. The surface plot shows the
determinant of the FIM (linear scale). (b) Location estimate after the three
optimal moves; inverse ofJ.z/ is plotted (dB scale).

Another way to constraint the array movement would be to
add a penalty term as in [15]:

	.�/ D ıq.�iC1/ � �

q

.�iC1 � �i /
T ˙�1.�iC1 � �i /; (19)

where� � 0 is the penalty factor that must be chosen relative
to the size ofıq.�iC1/, and ˙ is a diagonal matrix, whose
diagonal elements are chosen to ensure smooth movement of
the array from the previous position. However, this approach
constrains the step size indirectly, and does not guaranteethat
the array will stay between the source and the target.

An example of the circle constraint is shown in Fig. 6(a),
where a circle of radius of 25 cm is used. Based on the initial
target location estimate of the TS-50 landmine in Fig. 5, the
unconstrained optimal array position would be determined
by using (18) evaluated at each grid point where the new
array center could be located. The circle constraint restricts
this evaluation to the small subset of points on the circle
in Fig. 6(a), so it is also much more efficient than the
unconstrained approach or the penalty function method.

Once the next optimum array position is determined and
the array is moved to the new position, a new batch of data is
collected. This new data is appended to the existing data, and
the new target location estimate, as well as the next optimum
array movement, are determined by using the cumulative data.
Further steps are shown in Fig. 6(b). With each successive
step the target location estimate is improved in the sense that
there is a decrease in the uncertainty ellipse of the estimate.
Intuitively, the explanation is that the cumulative estimation is
effectively increasing the aperture.

III. PROCESSING OFEXPERIMENTAL DATA

Several tests were conducted with anti-personnel and anti-
tank landmines with and without buried clutter objects in an
experimental model [2] to evaluate the optimal maneuvering
algorithms. The experiments included a TS-50 anti-personnel
(AP) landmine, a VS-2.2 anti-tank (AT) landmine, a VS-1.6
AT landmine, and several rocks that were similar in size
to the landmines. The TS-50 is a plastic landmine, 9 cm in
diameter and 4.6 cm in height; the VS-2.2 is a non-metallic
landmine (24.2cm diameter, 11.8 cm tall); and the VS-1.6 is
a slightly smaller non-metallic landmine (23.3 cm diameter,
9.2 cm tall). The experimental model with the sensor array
and seismic source is shown in Fig. 7. Damp, compacted
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Fig. 7. Experimental setup showing the sensor array of3�10 elements, the
seismic source, and a buried target. Although the source is on the right in this
photo, all figures that show processing have the source on theleft.

sand has been used as a soil surrogate in the experimental
model as its properties closely resemble those of typical
soils [4], [5], [30]–[33], and it can easily be reconditioned
for consistency amongst multiple measurements. To prepare
the model for an experiment after burying landmines and
clutter, the sand is wetted and packed using a hand tamper
to recondition the soil as a homogeneous medium. Targets
and clutter can be buried in a 2 m by 2 m scannable region
in the center of the model. The seismic source is a ground-
coupled electrodynamic transducer located at a fixed position
approximately 40 cm from the edge of the scan region. It
generates seismic waves with a 4.096 s chirp swept from
100 Hz to 2 kHz. Surface motions were measured using a
3�10 array of ground-contacting accelerometer sensors [34]
with inter-element spacings of 10.2 cm and 3.4 cm. The sensor
array was moved through the scan region using a computer-
controlled, three-axis positioning system. Post-processing of
the acquired data included convolution to shape the received
pulse into a 450 Hz center-frequency differentiated Gaussian
pulse prior to the processing. For typical measurements, the
ambient noise is approximately 45 dB below the level of the
interrogation (incident) signal, while the signal clutterlevel
in clean sand is approximately 30 dB below the interrogation
signal. The signals scattered from the mines are much weaker
than the interrogation signal and are often below the level of
the clutter signals.

For these experiments, aprobe phaseand asearch phase
were used. In theprobe phase, measurements were made at
two or three predetermined positions in front of the seismic
source to interrogate the entire scan region for targets viathe
ML imaging algorithm (14) (using only one probe position was
unreliable). The probe phase provides an initial low-resolution
location estimate for thesearch phasewhich then performs the
optimal maneuvers to better locate the targets. The new array
positions are calculated from the FIM, and the target location
is refined according to (14) and (18).
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Fig. 8. Experiment S-1. Single target case: (a) After theprobe phase(two
fixed positions). (b) After three optimal moves, the resolution of the estimate
around the true target location is significantly increased,and the uncertainty
reduced. ML surfaces, the inverse ofJ.z/, are plotted on a dB scale.

A. Single Target Case (Experiment S-1)

The first experiment involved a single VS-1.6 AT landmine
buried 5 cm deep in the experimental model, as shown in
Fig. 7. Figure 8(a) shows the two probe-phase measurement
positions (indicated by the3�3 array of sensor positions), the
actual landmine burial location (indicated by the circle),and
the initial target location estimate (indicated by the diamond)
made via the ML imaging algorithm during theprobe phase.
For every3�10 array measurement position, the data collected
across each 10-element line of the array was processed by the
Prony-based velocity spectrum analysis in order to separate
the direct and scattered waves. The reflected waves were
resynthesized at three out of the ten sensors in each line and
retained to form a3�3 array for imaging.

During thesearch phase, the optimal array movement was
constrained by the circle constraint, using a 25 cm radius to
control the step size. The initial and final location estimates,
shown in Fig. 8(a) and (b), show the improvement in the
target estimate. With the circle constraint, we observe that
the array not only moves toward the target but also increases
the effective array aperture, thereby reducing the size of
the uncertainty ellipse around the target location estimate.
The final target location estimate was directly on top of the
landmine burial position. The five array measurements made
in this case consist of 150 individual sensor measurements.
This is a substantial reduction in the amount of data required
to locate buried targets as approximately 3600 individual
sensor measurements (or 120 array measurements) would be
necessary to scan the entire4 m2 region.

B. Single Target in Clutter (rocks)

To test the behavior of the algorithm in clutter, rocks are
introduced in addition to landmines. The rocks scatter seismic
waves, like land mines, so discriminating the rocks from
landmines with the method of optimal maneuvers depends
upon the relative strengths of their scattered waves. However,
a rock that is approximately the same size and buried at the
same depth as a landmine will generally scatter less than
the landmine due to the resonance of the landmine. Two
experiments are presented that demonstrate that the algorithm
is not confused by rocks that scatter less than the landmine.

1) Experiment C-1:The first experiment is with a small TS-
50 AP mine buried at a depth of 1 cm surrounded by four rocks
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Fig. 9. Experiment C-1: TS-50 surrounded by four rocks. (a) Experimental
setup showing rocks and the mine. (b) Final location estimate after three
optimal moves; rock positions denoted by squares.
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Fig. 10. Experiment C-2: VS-2.2 surrounded by nine rocks. (a) Experimental
setup showing rocks and the mine. (b) Final location estimate after three
optimal moves; rock positions denoted by squares.

which are nearly the same size as the mine but buried deeper.
The locations and burial depths of the rocks and the mine
are shown in Fig. 9(a). The location estimate using optimal
maneuvers is shown in Fig. 9(b), and the array is able to pick
out the target in the presence of these rocks, primarily because
it is close to the surface.

2) Experiment C-2:In the second experiment, Fig. 10(a),
a VS-2.2 AT mine is surrounded by nine rocks, one of which
is nearly as big as the VS-2.2 but buried deeper. The three
optimal moves to locate the mine are shown in Fig. 10(b).
Since the VS-2.2 is large and the rocks buried at shallower
depths are smaller, its signature is stronger than any of the
rocks. Thus the algorithm picks out the VS-2.2 from the rocks
rather easily, although the final location estimate is at thefront
edge of the mine.

C. Multi-target case: Experiment M-1

In the first multi-target experiment, we assume that the
number of targets is known. Two VS-1.6 anti-tank (AT) mines
are buried at a depth of 5 cm. During the probe phase, three
fixed array positions with respect to the source are used to
find the starting locations for the search phase. The three fixed
array positions are shown only as their centers (+ signs), but
the shape and size of the array is the same3�3 array used
before. The ML estimates of the two target locations are shown
in Fig. 11. Since two initial ML estimates have been obtained,
the method for maneuvering the array optimally with the FIM
must be modified. The FIM is now of size4�4, so we partition
the matrix into four2�2 submatrices related to the individual
targets and their cross terms.

 X(cm)

 Y
(c

m
)

50 100 150

20

40

60

80

100

120

140

160

180

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

1

2

3

1

2

Fig. 11. Experiment M-1: Initial estimates from theprobe phasefor the
two targets case. Three fixed array positions centered at 1, 2and 3. The true
locations of two targets (circles) and their initial estimates (diamonds) are
also shown. ML surfaces, the inverse ofJ.z/, are plotted on a dB scale.
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Fig. 12. Experiment M-1 (two targets): Next optimal array position (linear
scale). (a) Surface plot obtained using (18) with a circle of25 cm. (b) Values
along the circle from�90ı to 90ı by using (17).

Since we want to minimize the determinant of the FIM
as in (18), there are various options available. One is to use
the full 4�4 FIM matrix in (18), and the other would be to
devise a partitioned approach with the two smaller2�2 FIMs,
one for each target. The second approach is inherently more
complicated and might involve multi-objective optimization to
satisfy both measures.

Thus we use the4 � 4 approach and determine the next
array position by using (18) with a circle constraint. A circle
of radius 25 cm is used, and the array center at position-2 is
used as the center of the first circle. The surface obtained by
using the4�4 FIM is shown in Fig. 12(a) and the values on
the circle from�90ı to 90ı are shown in Fig. 12(b). There are
two well defined peaks with one direction favored more than
the other. The higher peak in this plot is picked to generate
the next optimal array position.

The succeeding array positions are obtained optimally and
the surface plot at the fourth step and the last step are shown
in Fig. 13(a) and (b). From this figure, we can make two
interesting observations: once the optimal maneuver algorithm
picks one target, the algorithm continues to move toward that
target. While the array moves toward target-1, the signature of
target-2 becomes weaker but does not disappear. At the last
step shown in Fig. 13(b), target-1 has been localized to within
its radius and there is appreciable reduction in the size of its
uncertainty ellipse. However, the weak signature of target-2
is still somewhat present, and with a very accurate location
estimate; most likely because the ML imaging algorithm is
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Fig. 13. Experiment M-1, two VS-1.6 landmines: (a) Optimal maneuvers up
to step 4. (b) After seven steps. ML surfaces, the inverse ofJ.z/, are plotted
on a dB scale.
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Fig. 14. Experiment M-1, two VS-1.6 landmines: estimating the second target
after removing the effect of the first target from the array data. (a) Probe phase
with the array at positions 1, 2 and 3. (b) Final estimate after three optimal
maneuvers. ML surfaces, the inverse ofJ.z/, are plotted on a dB scale.

using seven array measurements at the end.
Once we have completely localized the first target, we would

return to the original starting positions and remove the effects
of the already localized target from the array data. The remain-
ing targets can then be localized. The removal technique used
will be based on the CLEAN algorithm originally developed
for radio astronomy [25], [35]. Suppose that there areM

targets, and out of these we have estimated all the locations
except for themth target. Then the “cleaned” array data at a
frequency!l which can be used for this target is given by:

ym.!l / D y.!l/ �

M
X

j D1;j ¤m

g.pj ; !l/sj .!l / (20)

whereg is the steering vector whose elements are given by
the known 2-D Green’s function,pj is thej th target location
estimate, andsj .!l/ is the signal reflected from thej th target
which can be estimated using (13). Once we remove the first
target using (20), the FIM will be reduced to a2�2 matrix.
The probe phase for the second target uses the previous starting
position as shown in Fig. 14(a), the only difference being that
the effect of target-1 has now been completely removed from
the array data. The next few optimal moves to locate target-
2 are shown in Fig. 14(b). Now this second target has been
completely localized in addition to considerable reduction in
the size of its uncertainty ellipse.

D. Multi-target case: Experiment M-2

In most realistic situations, there is noa priori knowledge
of the number of targets, and a different strategy must be
developed. At each iteration, we could assume that there is

Y

X

Fig. 15. Experiment M-2 setup with a VS-2.2 landmine and a rock of
comparable size at the same distance from the source.

only one strong target, and then locate this target using optimal
moves. Once it is localized, we then remove the contributionof
this target from the array data by using the CLEAN algorithm,
and proceed to find the next strongest target, repeating these
operations until all possible targets are localized. In order
to determine that there are no targets remaining, a power
distribution function is proposed based on the metric in [35].
It uses the array data at the probe phase only.

P.p; !l / D

N
X

lD1

jgH .p; !l/y.!l /j
2

kg.p; !l /k2
(21)

This power distribution is calculated for positionsp in the area
of interest, using the Green’s function vector (steering vector)
g.p; !l/ andy.!l/ is the array data at frequency!l .

For a stopping criterion, a scalar metric is calculated based
on the matrix norm ofP.p; !l /—the Euclidean norm (Lf ).
When there are strong targets present in a uniform background,
we get a distribution with higher values forLf . However, once
we locate the targets, and remove their contributions from the
array data, the power distribution decreases along with the
values of the norm. Hence, one way to decide when to stop is
to calculate this distribution along with the matrix norm, after
localizing each target. If the values in the metric become very
small compared to the starting value, then this indicates that
no stronger targets remain.

To simulate this scenario, an AT mine (VS-2.2) and a rock
of nearly same size and shape, Fig. 15, are buried at a depth of
6 cm. Both of these targets are at nearly the same distance from
the source, with the rock being slightly closer. Assuming that
there is only one target, we let the array maneuver optimally.
After three iterations, the rock, which is stronger in this case is
localized as shown in Fig. 16(a). After this, the same steps are
repeated, with the contributions of the already localized target
removed from the array. This time the array moves toward the
second target (the AT mine) and localizes it in three optimal
moves as shown in Fig. 16(b).

After each probe phase we calculate the power distribution
and its norm. At first there are two strong targets. The
histogram of this power distribution is shown in Fig. 17(a),
with a calculated norm of 31.58. Once this target is localized,
we remove its contribution from the array at the same probe
position. The second power histogram is shown in Fig. 17(b)
with a norm value of 12.45. The third power histogram when
both targets have been removed is shown in Fig. 17(c), and the
calculated norm value is 7.24. This final norm value should be
the same as for an empty sandbox and can be used to define
a stopping criterion (see Table I).
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Fig. 16. Experiment M-2: VS-2.2 mine and a large rock. (a) Thefirst target
localized is the strongest target, in this case the rock. (b)After “CLEAN”-ing
the data, the algorithm locates the second strongest target, which in this case
is an AT mine. ML surfaces, the inverse ofJ.z/, are plotted on a dB scale.
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Fig. 17. Experiment M-2: Power histogram at the probe phase.(a) With
both targets present. (b) With one strong target removed (the rock). (c) With
both strong targets removed (both the mine and the rock).

E. Stopping Criterion for Multi-target Cases

Based on the two previous examples we can formulate a
general strategy for dealing with multi-target cases when we
don’t havea priori knowledge about the number of targets. As
we locate the targets one at a time and remove the strongest
target with the CLEAN algorithm, we return to the probe stage
and recalculate the power distribution, along with its norm. As
we remove each localized target contribution from the array,
the power values will decrease. This reduction can be used as
a guide for stopping if we know the metric values for an empty
sandbox. Using several different experiments, we summarize
the power values in Table I. The metric converges to nearly the
same value (approximately 7.5) after the processing removes
all the strong targets. This lower limit value corresponds to an
empty sandbox, when there are no targets present.

For the stopping criterion we will use a threshold that is
within ˙10% of the empty sandbox value (Lf D 7:5). For
example, consider the data set with a single TS-50 AP mine,
which is Case 4 in Table I. Its value with the contribution of
the mine removed from the array isLf D 7:41 which is within
10% of 7.5. In a realistic situation, the power distribution
will depend upon various factors including the propagation
properties of the medium, the dynamic range of the seismic
source, as well as the target types, sizes and burial depths.
Therefore, we would have to calibrate the array by using an
area without any targets to calculate the benchmark metric
values for the stopping criterion.

TABLE I

ESTIMATED NORM VALUES FOR POWER DISTRIBUTION FOR DIFFERENT

MULTI -TARGET SCENARIOS.

Lf

Case 1: Single AT mine and large rock (M-2)
Initial 31.58

Rock removed 12.45
Rock and AT mine removed 7.24

Case 2: Single AP mine and 4 rocks
Initial 19.39

Rock removed 11.6
AT mine and one rock removed 7.98

Case 3: Single AT mine and 9 rocks
Initial 22.077

AT Mine removed 12.762
AT mine and big rock at 10 cm removed 8.19

Case 4: Single AP mine (Experiment S-1)
Initial 13.07

AP Mine removed (empty sandbox) 7.41

F. Lateral Soil Inhomogeneity

Sometimes the soil properties will vary laterally due to
changes in the soil composition and/or compaction. This can
easily occur on a dirt or gravel road where the soil is packed
more densely in the tracks by the vehicular traffic. The seismic
wave velocity in the tracks is generally higher than in the
surrounding regions. With such a velocity change, the waves
will take a curved route instead of propagating on a straight
path. This can direct the incident wave away from the mine
or cause an error in the predicted mine location because the
imaging algorithm assumes the waves travel in a straight
path. An experiment was performed to investigate how the
optimal maneuvering algorithm would handle such a case.
A diagram of the experiment is shown in Fig. 18(a) where
a TS-50 mine is buried at a depth of 1 cm, and the water
content plus sand packing was selectively adjusted to form a
high velocity region. This caused a significant portion of the
wave to be directed away from the mine. The field intensity
in the path was 12 dB stronger than that incident on the
mine. Also the wave curves slightly away from the mine.
The results of applying optimal maneuvering to this case are
shown in Fig. 18(b). The algorithm still converges quickly to
the location of the mine (in three optimal moves) even in the
presence of the lateral inhomogeneity. Even though most of
the energy in the surface wave is diverted away from the mine
location, there is enough reflected energy for the algorithmto
make its first move in the correct direction after which the
location becomes easier.

IV. SUMMARY

The algorithm presented in this paper shows that it is
feasible to control a maneuvering array to find buried targets
like landmines. The experiments showed that the maneuvering
system tends to find the strongest reflecting target, but it isable
to find multiple targets and estimate the number of targets from
the data. The algorithm starts from an initial estimate given
by a probe phase, but as long as the probe phase gives some
indication of energy from the approximate direction of the
target, the array maneuvers will improve the location estimate.
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Fig. 18. Lateral inhomogeneity experiment. (a) Layout showing the mine
location and the region of higher velocity. (b) Location results for a TS-50
mine buried at a depth of 1 cm after three optimal moves. The MLsurface,
the inverse ofJ.z/, is plotted on a dB scale.

Although the optimal maneuver method developed here is
for one source and one moving array, this strategy could be
extended to multiple cooperating sources and receivers. The
benefit would be faster coverage of larger regions if all the
sources and receivers were mounted on individual robots. In
order to exploit this configuration, it would be necessary to
develop a distributed optimal maneuvering algorithm.

Future work must also address the identification problem to
distinguish a landmine from a strong clutter reflector. After
the target is located, the array would be positioned on top
of a potential landmine to measure the induced resonance [7]
and make the confirmation. The resonance feature could be
enhanced with an imaging algorithm that generalizes the
method in [10].

REFERENCES

[1] W. R. Scott, Jr., G. D. Larson, J. S. Martin, and G. S. M. II,“Field
testing and development of a seismic landmine detection system,” in
SPIE Proc, vol. 5089, Orlando, FL, April 2003.

[2] W. R. Scott, Jr., J. S. Martin, and G. D. Larson, “Experimental model
for a seismic landmine detection system,”IEEE Trans. Geoscience and
Remote Sensing, vol. 39, pp. 1155–1164, June 2001.

[3] J. Cook and J. J. Wormser, “Semi-remote acoustic, electric and thermal
sensing of small buried nonmetallic objects,”IEEE Trans. Geosci.
Remote Sensing, vol. 11, pp. 135–152, 1973.

[4] “Feasibility of acoustic landmine detection: Final technical report,”
BBN, Tech. Rep. No. 7677, May 1992.

[5] P. Smith, P. S. Wilson, F. W. Bacon, J. F. Manning, J. A. Behrens, and
T. G. Muir, “Measurement and localization of interface wavereflections
from a buried target,”J. Acoust. Soc. Am., vol. 100, pp. 2333–2343,
1998.

[6] J. M. Sabatier and N. Xiang, “An investigation of acoustic-to-seismic
coupling to detect buried antitank landmines,”IEEE Trans. Geosci.
Remote Sensing, vol. 39, pp. 1146–54, July 2001.

[7] C. T. Schroder, “On the interaction of elastic waves withburied land-
mines: An investigation using the finite-difference time-domain method,”
Ph.D. dissertation, Georgia Institute of Technology, 2001.

[8] W. R. Scott, Jr., J. O. Hamblen, G. D. Larson, J. S. Martin,and
G. Larson, “Large vibrometer arrays for seismic landmine detection,,”
in SPIE Proc, vol. 6217, Orlando, FL, April 2006.

[9] A. Lal, S. Aranchuk, V. Doushkina, E. Hurtado, C. Hess, J.Kilpatrick,
D. L’Esperance, N. Luo, V. Markov, J. Sabatier, and E. Scott,“Advanced
LDV instruments for buried landmine detection,,” inSPIE Proc, vol.
6217, Orlando, FL, April 2006.

[10] A. Behboodian, W. R. Scott, Jr., and J. H. McClellan, “Signal processing
of elastic surface waves for localizing landmines,” in33rd Asilomar
Conf. Signals, Systems, and Computers, Pacific Grove, CA, 1999.

[11] V. V. Fedorov, Ed.,Theory of Optimal Experiments. SIAM, 1972.
[12] J. Helferty and D. Mudgett, “Optimal observer trajectories for bearings

only tracking by minimizing the trace of the Cramér-Rao lower bound,”
in Proc.32nd IEEE Conf. Decision and Control, San Antonio, TX, USA,
Dec. 1993, pp. 936–939.

[13] J. Helferty, D. Mudgett, J. Dzielski, and J. Kauffmann,“Trajectory opti-
mization for minimum range error in bearings-only source localization,”
in Proc. Engineering in Harmony with Ocean, vol. 2, Victoria ,BC,
Canada, Oct. 1993, pp. 229–234.

[14] Y. Zhou, B. Porat, and A. Nehorai, “Localizing vapor-emitting sources
by moving sensor,”IEEE Trans. Signal Processing, vol. 44, no. 4, pp.
2655–2666, May 1996.

[15] X. Liao and L. Carin, “Application of the theory of optimal experiments
to adaptive electromagnetic-induction sensing of buried targets,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 26, pp. 961–972,
Aug. 2004.

[16] S. Begot, E. Voisin, E. Artioukhine, and J. Kauffmann, “D-optimal
experimental design applied to linear magnetostatic inverse problem,”
IEEE Trans. Magnetics, vol. 38, no. 2, pp. 1065–1068, Mar. 2002.

[17] S. W. Lang, A. L. Kurkjian, J. H. McClellan, C. F. Morris,and T. W.
Parks, “Estimating slowness dispersion from arrays of sonic logging
waveforms,”Geophysics, vol. 52, no. 4, pp. 530–544, April 1987.

[18] M. Alam, J. H. McClellan, and W. R. Scott, Jr., “Multi-channel spectrum
analysis of surface waves,” in37th Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA, 2003.

[19] K. Steiglitz and L. E. McBride, “A technique for the identification of
linear systems,”IEEE Trans. Automat. Contr., vol. 10, pp. 461–464, Oct.
1965.

[20] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter
estimation for superimposed exponential signals in noise,” IEEE Trans.
Acoust., Speech, Signal Processing., vol. 34, pp. 1081–1089, Oct. 1986.

[21] J. H. McClellan and D.-W. Lee, “Exact equivalence of theSteiglitz-
McBride iteration and IQML,”IEEE Trans. Signal Processing, vol. 39,
no. 2, pp. 509–512, 1991.

[22] M. Alam, J. H. McClellan, and W. R. Scott, Jr., “Spectrumanalysis
of seismic surface waves and its applications in seismic landmine
detection,”submitted to J. Acoust. Soc. Am., Jan. 2006.

[23] M. Alam and J. H. McClellan, “Near field imaging of subsurface targets
using active arrays and elastic waves,” in11th IEEE DSP Workshop, vol.
5415, Taos Ski Valley, NM, Aug. 2004.

[24] M. Alam, J. H. McClellan, P. Norville, and W. R. Scott, Jr., “Time-
reverse imaging for the detection of landmines,” inSPIE Proc, vol.
5415, Orlando, FL, April 2004.

[25] M. Alam and J. H. McClellan, “Near field imaging of subsurface targets
using wide-band multi-static RELAX/CLEAN algorithms,” inICASSP
2005, Philadelphia, Mar, 2004.

[26] C. Prada and J. Thomas, “Experimental subwavelength localization of
scatterers by decomposition of the time reversal operator interpreted as
a covariance matrix,”J. Acoust. Soc. Am., vol. 114, pp. 235–243, 2003.

[27] D. H. Johnson and D. E. Dudgeon,Array Signal Processing: Concepts
and Techniques. Prentice Hall, 1993.

[28] L. Borcea, G. Papanicolaou, C. Tsokgka, and J. Berryman, “Imaging and
time reversal in random media,”Inverse Problems, vol. 18, pp. 1247–
1279, 2002.

[29] V. Cevher, “A Bayesian framework for target tracking using acoustic and
image measurements,” Ph.D. dissertation, Georgia Institute of Technol-
ogy, 2005.

[30] M. Westebbe, J. F. Bohme, H. Krummel, and M. B. Matthews,“Model
fitting and testing in near surface seismics using maximum likelihood
in frequency domain,” in32nd Asilomar Conf. Signals, Systems, and
Computers, vol. 2, Pacific Grove, CA, 1999, pp. 1311–1315.

[31] R. Bachrach and A. Nur, “High-resolution shallow-seismic experiments
in sand, Part I: Water table, fluid flow, and saturation,”Geophysics,
vol. 63, no. 2, pp. 1225–1233, Feb. 1998.

[32] R. Bachrach, J. Dvorkin, and A. Nur, “High-resolution shallow-seismic
experiments in sand, Part II: Velocities in shallow unconsolidated sand,”
Geophysics, vol. 63, no. 2, pp. 1234–1240, Feb. 1998.

[33] J. M. Sabatier, H. E. Bass, L. N. Bolen, and K. Attenborough, “Acousti-
cally induced seismic waves,”J. Acoust. Soc. Am., vol. 80, pp. 646–649,
1986.

[34] J. S. Martin, G. Larson, and W. R. Scott, Jr., “Seismic detection of buried
landmines using surface-contacting sensors,”submitted to J. Acoust. Soc.
Am., Jan. 2006.

[35] Y. Wang, J. Li, P. Stoica, M. Shepalk, and T. Nishida, “Wideband relax
and wideband clean for aeroacoustic imaging,”J. Acoust. Soc. Am., vol.
115(2), pp. 757–767, 2004.


