
Decentralized State Initialization with Delay
Compensation for Multi-Modal Sensor

Networks

Milind Borkar, Student Member, IEEE, Volkan Cevher, Member, IEEE,
James H. McClellan, Fellow, IEEE

Abstract

Decentralized processing algorithms are attractive alternatives to centralized algorithms for target
tracking applications in smart sensor networks since they provide the ability to scale, reduce vulner-
ability, reduce communication, and share processing responsibilities among individual nodes. Sharing
the processing responsibilities allows parallel processing of raw data at the individual nodes. However,
this introduces other difficulties in multi-modal smart sensor networks, such as non-observability of the
targets’ states at any individual node and various delays such as varying processing delays, communica-
tion delays and signal propagation delays for the different modalities. In this paper, we provide a novel
algorithm to determine the initial probability distribution of multiple targets’ states in a decentralized
manner. The targets’ state vectors consist of the targets’ positions and velocities on the 2D plane. Our
approach can determine the state vector distribution even if the individual sensors alone are not capable
of observing it. Our approach can also compensate for varying delays among the assorted modalities.
The resulting distribution can be used to initialize various tracking algorithms. Our approach is based
on Monte-Carlo methods, where the state distributions are represented as a weighted set of discrete
state realizations. A robust weighting strategy is formulated to account for missed detections, clutter
and estimation delays. To demonstrate the effectiveness of the algorithm, we simulate a network with
direction-of-arrival nodes and range-doppler nodes.

I. INTRODUCTION

In sensor networks, the data available at the outputs of individual sensing elements can be
processed in either a centralized or a decentralized fashion. Centralized processing is char-
acterized by a single central processor. Raw data from all the sensors is transmitted to the
central processor, which has the responsibility of processing all the incoming data and producing
meaningful outputs. On the other hand, in a decentralized system, multiple processors exist and
the data processing responsibilities are split among these processors. In the extreme case, each
sensor may have a dedicated processor. These processors operate on the raw sensor data and the
outputs are then fused in a decentralized manner. Block diagrams representing centralized and
decentralized processing are given in Figure 1.

In sensor networks, decentralized processing is becoming more popular than centralized ap-
proaches [1]. This is because centralized networks with only one processing node lose their
functionality if the central node is incapacitated. The communication overhead is also significant

M. Borkar and J. H. McClellan are with the Center for Signal and Image Processing, School of ECE, Georgia Institute of
Technology, Atlanta GA 30332-0250. V. Cevher is with the Center for Automation Research, University of Maryland, College
Park, MD 20742

Prepared through collaborative participation in the Advanced Sensors Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-02-0008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

(a) Centralized (b) Decentralized

Fig. 1. Centralized vs. decentralized processing. The solid lines represent raw data whereas the dashed lines represent sufficient
statistics.

because when all the sensing nodes try to transmit raw data to the central processing node,
the required bandwidth increases significantly with the number of nodes. To overcome these
drawbacks, a decentralized processing approach is more attractive.

Decentralized processing stipulates processing capabilities at individual sensors. We denote a
sensor that has the ability to process data and communicate with neighboring sensors in addition
to sensing the environment as a smart sensor. Decentralized processing eliminates the need
for a central processing node. Since a smart sensor can process its own data, it only needs to
transmit sufficient statistics in the communication channel, minimizing the communication among
sensors. Communication consumes more battery power than computation [2], hence smart sensor
networks with decentralized processing have reduced power requirements.

Processing data in multi-modal smart sensor networks to generate global estimates is a chal-
lenging problem. One of the issues is data fusion in an efficient and effective manner. The
decentralized data fusion (DDF) methods given in [1] are highly effective in networks with
sensors sharing the same modality. In the case of multi-modal networks, it is rather difficult to
analytically fuse data and represent global knowledge in a decentralized manner. This difficulty
increases when there are multiple targets. State observability is another issue since each individual
sensor may only be able to observe a limited subspace of the target state. Another issue arises
when the different modalities have varying signal propagation velocities since some subset
of sensor nodes, e.g. acoustic sensors, may contribute delayed information about the target
state, hence leading to biased estimates of the targets’ current states. This effect is magnified
when the targets are moving with high velocities, are at a large range from the sensing node
or are maneuvering. Time delays may also be introduced in the system by processing and
communication latencies and these may be different at different nodes.

In this paper, a novel method for multiple targets’ state initialization in multi-modal smart
sensor networks is proposed in a decentralized framework. Our algorithm addresses issues related
to data fusion, observability, and varying time delays for the multi modal sensor nodes. Monte-
Carlo methods are used to generate discrete approximations to the targets’ state distributions.
These distributions are represented using hypothesized state vectors called particles and their
associated weights. The output of the initialization algorithm can be used to initialize various
decentralized joint tracking (DJT) algorithms such as those described in [3]–[8].

Our algorithm satisfies the typical constraints of a decentralized system. The communication
between individual sensors has a fixed bandwidth. Since the data propagated between sensors is
the cumulative state information, the amount of data passed between individual sensors does not
increase with the number of sensors. The sensor types focused on are direction-of-arrival (DOA)

3

nodes (e.g., acoustic arrays with known microphone positions) and range-doppler nodes (e.g.,
radar sensors). However, the results are general and can be extended to networks using other
sensor modalities. Each smart sensor has a built-in organic pre-processor that runs a tracking
algorithm operating in a state space that is specifically determined by that sensor modality. We
refer to the tracking algorithms running at the individual sensors as organic trackers. The DJT
operates in a state space that may be different from the state spaces of the organic trackers at the
individual nodes. We assume that each organic tracker is capable of detecting a new target. When
an organic tracker detects a new target in its limited subspace, it transmits information throughout
the network to generate the target’s state distribution. We use a robust weighting strategy that
can accommodate clutter, missing data and delays due to signal propagation, processing and
communication. Moreover, communication takes place between neighboring sensors only and
we assume that there is a predefined path for the information flow through the network from the
first sensor to the last sensor. However, the algorithm is still applicable to networks with other
communication strategies.

The organization of the paper is as follows. Section II gives a brief overview of the overall
system design. Section III introduces the acoustic and radar trackers. Section IV proposes our
Monte-Carlo approach for the decentralized estimation of the targets’ state distribution. Section V
focuses on communication between the nodes in the network. Section VI proposes modifications
to the initialization algorithm of Section IV to compensate for data delays that may be present
in the system. Section VII gives a brief overview of a decentralized multi-modal joint tracking
algorithm with delay compensation. Section VIII demonstrates the effectiveness of the proposed
algorithms on synthetic data. Conclusions and future work follow in Section IX.

II. SYSTEM DESIGN

A block diagram for a smart sensor node is given in Figure 2. The sensor acquires raw data
from the environment. This data is fed into the organic pre-processor block which produces state
estimates in the organic state space. This block could perform beamforming (for acoustic nodes),
radar pre-processing and batch processing of measurements to generate motion estimates. These
organic state estimates are used to provide input to the DJT block that tracks targets in a global
state space which may be different from the organic state space. The organic state estimates are
also used to maintain target tracks within the sensor node in the organic tracker block. This is
important since it allows the detection of a new target. When a target that does not correspond
to existing target tracks is detected, the organic state estimates are fed into the decentralized
initialization block. The decentralized initialization block takes in organic state estimates for
new targets from multiple nodes and combines them to produce state estimates in the global
state space used by the DJT.

This paper focuses on the decentralized initialization block. Some of the ideas developed for
the initialization algorithm are then extended to the DJT.

III. ORGANIC SENSORS AND PRE-PROCESSORS

The two types of sensor nodes used to demonstrate the proposed algorithms are DOA sensors
and range-doppler sensors. The organic DOA trackers operate in the [θ Q φ]T space, where θ is
the target’s bearing, Q is the natural logarithm of the ratio of the target’s speed to the target’s
range, and φ is the target’s heading direction. The organic range-doppler trackers operate in the

4

Fig. 2. System block diagram of a smart sensor node.

[r vr]
T space where r is the range to the target and vr is the target’s radial velocity. Detailed

descriptions about these trackers can be found in [9]–[17].
The focus of this paper is to generate probability distributions representing multiple targets’

states in the [x y vx vy]
T space where x and y are the Cartesian coordinates of a target’s location,

and vx and vy are the velocity components along the x-y directions. The probability distributions
generated at the output of the initialization algorithm are used as the initial estimates of the state
vector distributions by the DJT. Notice that the true location and velocity of any target is not
observable at any of the individual nodes and that the organic trackers operate in different state
spaces that have lower dimensionality than the DJT state space. This means there is a many
to one mapping from the state space used by the organic trackers to the DJT state space. It is
assumed that organic trackers are running at the different nodes and the outputs of the organic
trackers are used to generate the desired probability distribution. The sensor network is assumed
to be calibrated so that each sensor is aware of its own location. However, sensors need not be
aware of the locations of other sensors in the network.

IV. A MONTE-CARLO APPROACH FOR THE DECENTRALIZED ESTIMATION OF THE

TARGETS’ INITIAL STATE DISTRIBUTION

The initialization algorithm uses a novel Monte-Carlo approach to generate an approximation
to the state vector distributions using a weighted set of particles. To generate an optimal particle
distribution that minimizes the variance of the particle weights, one must sample from the true
posterior distribution [18]. Using Bayes’ rule, the posterior distribution can be expressed as

p(xt|zt) =
p(zt|xt)p(xt)

p(zt)
, (1)

where xt represents the target state vector at time t, and zt is the vector of measurements from all
M sensors at time t. We assume that the measurements at the individual nodes are independent,
conditioned on the current state. Hence, the combined data likelihood for all sensors can be
factored into the product of the data likelihoods at the individual sensor nodes. Assuming no
prior knowledge of the true targets’ state distributions, p(xt) is chosen to be uniform and is
dropped from the equation. The distribution p(zt) is simply a proportionality constant since it

5

does not depend on the state. Therefore, (1) can be simplified as

p(xt|zt) ∝
M∏

m=1

p(zm,t|xt), (2)

where zm,t is the set of measurements from the mth sensor at time t. We choose not to
communicate raw data between nodes to limit communication bandwidth. Thus, determining
the posterior distribution analytically is impossible. Instead we chose, as our proposal function,

π(xt|zt) =
1

M

M∑
m=1

p(xt|zm,t), (3)

which is an equally weighted mixture of the individual posterior distributions from the different
nodes. It is desired that the targets’ should be initialized in the xt = [xt yt vxt vyt]

T space.
Assume the state vector is n-dimensional in general. Also, assume that at sensor m, target
measurements are random realizations of s dimensional feature vectors ẑm,t, where 0 < s ≤ n.
If any of these features are not functions of the state vector, they will not contribute any useful
information for tracking, and can be discarded. Thus, without loss of generality, we can assume
that each feature is a function of the state vector.

ẑm,t = fm(xt) =

⎡
⎢⎢⎣

fm,1(xt)
fm,2(xt)

...
fm,s(xt)

⎤
⎥⎥⎦ . (4)

We now determine the conditions that fm(·) must satisfy to be able to sample from (3). Let fm(·)
be a continuously differentiable vector valued function. If and only if all features in the feature
vector at a particular sensor provide complimentary information without redundancy, then

det(∇fm(xt)) �= 0. (5)

If any of the features provide redundant information, those particular features can be discarded
to give a feature space of reduced dimension and no redundancy. Therefore, we can assume all
features provide complementary information and (5) is satisfied.

First, consider the case, when s < n. Given the features ẑm,t, the system in (4) is underdeter-
mined. Therefore, there exist infinitely many solutions for xt. These solutions form a level set in
the state space. In some cases, the level set can be represented by explicit equations relating the
state variables. However, this may not be possible in most cases even though the level sets do
exist. Let α be any solution of (4). By the implicit function theorem [19], in the neighborhood
of α, the level set Lf (zm,t) is an n − s dimensional manifold. Let Λ represent the set of all
such manifolds. Particles can be generated by sampling uniformly from points in Λ and adding
appropriate noise determined by the measurement model.

Now consider the case, when s = n. By the inverse function theorem [19], given features ẑm,t,
a unique inverse function f−1

m (·) exists in the neighborhood of ẑm,t and therefore there exists a
unique solution to (4) given by

xt = f−1
m (ẑm,t). (6)

Hence, particles can be sampled from an appropriate distribution centered at xt with variance

6

determined by the measurement model.
Since measurements zm,t are available as random realizations of the features, we propose to

use the measurement vectors as estimates of the true feature vectors in the implementation of
the preceding procedure. In this manner, particles can be sampled from the individual posterior
distributions without sharing raw data.

If sensor m is a binary detection sensor (i.e., the sensor’s output is binary depending on
whether a target is detected or not) then the mapping from the target state space to the feature
space is not differentiable. However, this is a special case since the output is a binary function
on some fm(·). In this situation, all points in the domain of fm(·) that would result in a detection
are possible target states and can be denoted by a set Sd. The same rules for sampling explained
above can be applied to points in Sd and the procedure remains unchanged.

In the case of DOA nodes and range-doppler nodes, particles can be sampled from the
individual posterior distributions as follows:
For DOA nodes:

r(i) ∼ U [0, rmax) (7)

θ(i) ∼ N(θm,t, σθm,t) (8)

Q(i) ∼ N(Qm,t, σQm,t) (9)

φ(i) ∼ N(φm,t, σφm,t) (10)

x
(i)
t = r(i) cos(θ(i)) + sm,x (11)

y
(i)
t = r(i) sin(θ(i)) + sm,y (12)

v(i)
xt

= eQ(i)

r(i) cos(φ(i)) (13)

v(i)
yt

= eQ(i)

r(i) sin(φ(i)) (14)

For Range-Doppler nodes:
r(i) ∼ N(rm,t, σrm,t) (15)

θ(i) ∼ U [0, 2π) (16)

v(i)
r ∼ N(vrm,t , σvrm,t

) (17)

v
(i)
t ∼ U(−(v2

max − (v(i)
r)2)0.5, (v2

max − (v(i)
r)2)0.5) (18)

x
(i)
t = r(i) cos(θ(i)) (19)

y
(i)
t = r(i) sin(θ(i)) (20)

v(i)
xt

= v(i)
r cos(θ(i)) + v

(i)
t sin(θ(i)) (21)

v(i)
yt

= v(i)
r sin(θ(i)) − v

(i)
t cos(θ(i)) (22)

The mth sensor position in Cartesian coordinates is given by (sm,x, sm,y). Estimates of (θm,t, σθm,t),
(Qm,t, σQm,t), and (φm,t, σφm,t) are available from the organic tracker at the mth DOA node.
Similarly, estimates of (rm,t, σrm,t) and (vrm,t , σvrm,t

) are available from the organic tracker at
the mth range-doppler node. Every DOA node has a range ambiguity, while every range-doppler

7

node has a DOA ambiguity and a tangential velocity ambiguity. Therefore, these values are
drawn from appropriate uniform distributions. Here, rmax is the assumed maximum range at
which a target is visible to the DOA node for a given false alarm rate, and vmax is the assumed
maximum velocity of a target. Radial velocity is considered positive if the target is moving away
from the node. Tangential velocity is considered positive if the tangential component points in
the counterclockwise direction.

Using (7)-(22), one can sample particles from the individual posteriors. If the total number of
nodes is M , then to sample D particles from the mixture given by (3), one can sample D/M
particles from each individual posterior and combine these particles to generate the final set of
D particles. However, this method has an inherent disadvantage. If one of the nodes does not
detect a new target, D/M particles are spread uniformly over the entire state space for that node
and these particles do not add any information to the system. Instead of sampling these particles
uniformly, it is more informative to sample only from the posteriors for the nodes that have
detections. Hence, more particles cover the state space of interest. These disadvantages can be
eliminated by following Step 1 of the algorithm in Appendix I, where a weighted resampling
operation ensures that the individual posteriors for nodes with detections are equally weighted
irrespective of the total number of nodes. Resampling does not require synchronization of the
nodes.

Once the particles are sampled, they need to be weighted. Since the data from various nodes
is not being shared, the components forming the weights must be computed at each node. To
minimize communication, the weights should be transmitted in a cumulative manner. This means
that only a fixed number of weights should be transmitted between any pair of sensor nodes and
these weights should represent the combined weighting assigned by all preceding nodes in the
communication chain.

Using the results of [18], the particle weights for our problem are given by

w
(i)
t =

p(x
(i)
t |zt)

π(x
(i)
t |zt)

. (23)

From (2) and (3), (23) can be simplified as follows:

w
(i)
t ∝

∏M
m=1 p(zm,t|x(i)

t)∑M
m=1 p(x

(i)
t |zm,t)

. (24)

Using the Bayes’ rule, we obtain the following expression for the posterior

p(x
(i)
t |zm,t) =

p(zm,t|x(i)
t)p(x

(i)
t)

p(zm,t)
. (25)

Since no prior information about the state vector is available, p(xt) is assumed uniform over its
natural space and is dropped from the equation. Thus, (24) simplifies to

w
(i)
t ∝

∏M
m=1 p(zm,t|x(i)

t)∑M
m=1

p(zm,t|x(i)
t)

p(zm,t)

. (26)

Thus, the weights for the particles can be calculated, up to a proportionality, by evaluating a
quotient in which the numerator is the product of the data likelihoods from the different nodes
and the denominator is the weighted sum of the same likelihoods. Hence, cumulative update of

8

the weights can be accomplished, if the numerators and denominators are both communicated
between nodes.

When the final particles are proposed, there is an ambiguity as to which sensor proposed a
particular particle. If a particular sensor has multiple detections, then this brings in additional
complexity, since the particles can not be associated with their detectors. If a simple Gaussian
likelihood function is used and the likelihood for a particle is zero at one of the sensors, then
based on (26), its overall weight will also be zero. This situation occurs if even one sensor does
not detect a target. In such situations, one would not want the overall weight of the particle to
be zero since a target is present with high probability. To avoid this degeneracy, it is important
that a robust likelihood function that accounts for missed detections is used.

The approach used here is similar to the approach used in [20], [21]. Assume that sensor m
has K measurements. Then, given a particle x

(i)
t , the measurements zm,k,t , k = 1, ..., K, could

have been generated either by a target or by clutter. The clutter distribution is assumed to be
Poisson with spatial density λ. The probability of miss is set equal to a constant q. It is assumed
that there is an equal probability for each of the K measurements to be a true measurement and
the true target measurement is Gaussian distributed about the true target state. Thus, as shown
in [20] the likelihood function can be simplified as:

p(zm,t|x(i)
t) ∝ 1 +

1 − q√
(2π)n|Σ|qλ ·

K∑
k=1

exp{−0.5(zm,k,t − fm(x
(i)
t))TΣ−1

m,t(zm,k,t − fm(x
(i)
t))},

(27)

where n is the dimensionality of the measurement at sensor m and Σm,t is the covariance of
the Gaussian distribution.

Steps 2 and 3 of the algorithm in Appendix I explain the weighting step. The set of particles
along with their associated weights give a discrete representation of the probability distribution
of the targets in the desired state space.

V. COMMUNICATION

For the purpose of this paper, we assume a fixed sequential communication path from the first
node to the last node. Using this communication protocol, the algorithm given in Appendix I
requires three passes through the communication chain.

In the first pass, a varying set of a fixed number of N particles representing the combined
information from all preceding nodes is transmitted through the communication chain. Along
with the particles, a single number w̃ representing the number of sensors that detected a target
is transmitted. At the end of the first pass, node M has the final set of N particles that represent
particles proposed using (3). These need to be propagated back to all the other nodes so that
weights can be computed.

In the second pass, the communication path is reversed. The final set of N particles are prop-
agated back sequentially to node 1. It was shown that the individual components of the particle
weights in (26) can be evaluated independently at each node and the numerator and denominator
of the overall weights can be transmitted cumulatively. Thus the data communicated between
pairs of nodes consists of the final set of N particles, the N numerator and N denominator
components representing the cumulative weights from the preceding nodes. At the end of the

9

second pass, all nodes in the network have the final set of particles and node 1 is the only node
with the final set of weights.

In the third pass, the final set of weights are propagated throughout the network using the
forward communication path. At the end of the third pass, all nodes have the same particles and
weights.

In a real world implementation, the simplified communication protocol given in this paper can
be replaced by more efficient protocols. The performance of the algorithm will not be affected
as long as every node provides its input to the network at the proposal and weighting stages at
most one time.

VI. COMPENSATING FOR DELAYS DUE TO SIGNAL PROPAGATION, PROCESSING AND

COMMUNICATION

Since the sensor network is multi-modal, various delays could be introduced into the system.
There may be unequal processing latencies at each node, unequal communication delays for
different pairs of nodes, and unequal signal propagation velocities for different modalities. For
example, consider a network consisting of acoustic arrays (DOA nodes) and range-doppler nodes
(radar). Assume for now that processing and communication is instantaneous. Hence the only
delays introduced in the system are due to unequal signal propagation velocities. Electromagnetic
waves travel at the speed of light. Hence, range and radial velocity estimates provided by the
radar pre-processors can be assumed to represent the targets’ current states. However, the acoustic
signal propagates through the air at a much lower velocity. Thus, the signal received at the
acoustic sensors at the current time may have been generated by the targets at a previous time
and hence the state estimates available at the output of the acoustic pre-processors may represent
previous targets’ states. Using these estimates in the initialization or tracking algorithms will
lead to erroneous state estimates. The effect increases if the targets are maneuvering, are at large
ranges from the sensor node or are moving at high velocities. Hence, it is essential that the
known delays in the system are compensated.

Assume that the modality at sensor m has signal propagation velocity vm. If sensor m is an
acoustic node, temporary particles x̃

(i)
t = [x̃

(i)
t ỹ

(i)
t ṽ

(i)
xt ṽ

(i)
yt]T are sampled as given in (7)-(14)

using the current acoustic state estimates zm,t = [θm,t Qm,t φm,t]
T . If sensor m is a radar node, the

particles are sampled as given in (15)-(22) using the current state estimates zm,t = [rm,t vrm,t]
T .

These particles represent the targets’ state distributions at a previous time. Particles representing
the current state vector are proposed using particles x̃

(i)
t and the state transition model. In this

case, the state transition model is assumed to be a locally constant velocity model. To propose
particles representing the targets’ current state distribution, the total delay must be known. In
the case of acoustic sensors, to determine the signal propagation delay, the targets’ ranges must
be known. Using the targets’ ranges, the signal propagation delay can be estimated and the
particles x̃

(i)
t can be propagated forward through the state transition model to produce particles

x
(i)
t representing the state vector.
A target’s range is not observable at the acoustic nodes. However, the proposed particles

x̃
(i)
t represent hypothesized target states and each particle has a unique range from the sensor.

Hence the time window for prediction is determined independently for each particle based on
the particle’s range. The final particles are proposed as follows

T (i) =
r(i)

vm
+ dproc + dcomm, (28)

10

x
(i)
t ∼ N(AT (i) x̃

(i)
t , T (i)2Σx), (29)

where

AT =

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (30)

and Σx is the state transition noise covariance matrix in the Cartesian coordinate space, dproc is
the processing delay and dcomm is the communication hop delay. The noise added to these final
particles accounts for possible maneuvers.

Once the particles are proposed, they need to be weighted. Weights are assigned using (26).
However, the likelihood function p(zm,t|x(i)

t) needs to be modified to implement the delay
compensation step introduced in this section. It can be shown that the appropriate likelihood
function is given by

p(zm,t|x(i)
t) ∝ 1 +

1 − q√
(2π)n|Σ̃m,T (i)|qλ

×

K∑
k=1

exp

(
−1

2
(hT (i)(zm,k,t) − g(x

(i)
t))HΣ̃−1

m,T (i)(hT (i)(zm,k,t) − g(x
(i)
t))

)
,

(31)

Σ̃m,T (i) = J(hT (i)(zm,k,t))Σm,tJ
H(hT (i)(zm,k,t)) + T (i)2Σm,s, (32)

where Σm,s is the state transition noise covariance matrix for the organic tracker at sensor m and
hT (i)(zm,k,t) is the state transition vector for the organic tracker. For acoustic nodes, hT (i)(zm,k,t)
is given by

hT (zm,k,t) =

⎡
⎣ hθ,T (zm,k,t)

hQ,T (zm,k,t)
hφ,T (zm,k,t)

⎤
⎦ , (33)

hθ,T (zm,k,t) = tan−1

(
sin(θm,k,t) + exp(Qm,k,t)T sin(φm,k,t)

cos(θm,k,t) + exp(Qm,k,t)T cos(φm,k,t)

)
, (34)

hQ,T (zm,k,t) = Qm,k,t−1

2
log

(
1 + 2T exp(Qm,k,t) cos(θm,k,t − φm,k,t) + T 2 exp(2Qm,k,t)

)
, (35)

hφ,T (zm,k,t) = φm,k,t. (36)

Analytical derivations of (33) through (36) can be found in [9], [13]. For radar nodes, hT (i)(zm,k,t)
is given by

hT (zm,k,t) =

[
hr,T (zm,k,t)
hvr ,T (zm,k,t)

]
, (37)

hr,T (zm,k,t) = rm,k,t + Tvrm,k,t, (38)

hvr ,T (zm,k,t) = vrm,k,t. (39)

Note that the covariance for the data likelihood is given by Σ̃m,T (i) and consists of two
components. The first component depends on the measurement noise. Since future states are

11

predicted using non-linear combinations of elements of zm,k,t given by hT (zm,k,t), independent
noise from the components of zm,k,t is accumulated based on the Jacobian of hT (zm,k,t). The
second component comes from the state transition noise and is introduced to account for the
possibility that the targets are maneuvering.

VII. DECENTRALIZED MULTI-TARGET TRACKING

A decentralized joint tracker is implemented using an approach similar to the one given in
[22]. The tracker is implemented using synchronized particle filters that run at each node in
the smart sensor network. Synchronized particle filters maintain the same set of particles at
each node using synchronized noise sources or noise tables. These trackers run at each node in
addition to the organic tracking algorithms.

A bootstrap approach is used in which the particle proposal function is simply the state transi-
tion distribution and the weighting function is simply the measurement likelihood. By exploiting
the conditional independence of the measurements given the targets’ states, the decentralized
tracker can be implemented by sharing only the particle weights in a cumulative manner. In the
case of varying signal propagation velocities among the various sensor modalities, the likelihood
function given in (31) is used to compensate for signal propagation delays.

VIII. SIMULATIONS

For the simulations, we assume that the signal processing and the inter-node communication
are instantaneous. Hence, the only delays introduced in the system are signal propagation delays
and compensation is only required at the acoustic nodes.

Assume that a target appears at an x-y location (50 m, 50 m) with velocity of 4 m/s in the
x-direction and 4 m/s in the y-direction. There are a total of four sensors in the field. Two
acoustic sensor nodes are located at (100 m, 40 m) and (350 m, 60 m), whereas two radar nodes
are located at (200 m, 150 m) and (275 m, -50 m). Organic trackers at the four nodes detect this
target and produce estimates in their own state spaces.

For this simulation, D = 2000 particles were used to sample the state space. Since the
network is relatively small, and the target is moving slowly, the acoustic signal propagation
delay compensation is not used in this simulation. To simulate the estimates available from
the organic trackers (i.e., [θ Q φ]T from the DOA trackers and [r vr]

T from the range-doppler
trackers), the measurements at each tracker are Gaussian distributed about the true values with
standard deviations given by

σθ = 2o, σQ = 0.02 s−1, σφ = 8o, (40)

σr = 6 m, σvr = 0.4 m/s. (41)

The clutter is modelled as a Poisson distributed random variable with parameter λ = 1/7.
Figures 3(a) to 3(d) represent the sequential particle proposal stage of the algorithm. Although

the state vector is four dimensional, the first four subfigures in Fig. 3 show only the x-y locations
of the particles. In Fig. 3(a), sensor 1, which is a DOA sensor, detects the target at a particular
angle and distributes 2000 particles along that angle up to an assumed maximum range. These
particles are propagated to sensor 2, a range-doppler sensor. Sensor 2 receives the particles
from sensor 1 and gives these particles a weight of 1 since they represent information from
a single sensor. Sensor 2 detects the target at a particular range. Since bearing information is

12

−600 −400 −200 0 200
−400

−200

0

200

400

x

y

(a) Sensor 1

−400 −200 0 200 400
−400

−200

0

200

400

x

y

(b) Sensors 1,2

−400 −200 0 200 400
−400

−200

0

200

400

x

y

(c) Sensors 1,2,3

−400 −200 0 200 400 600
−400

−200

0

200

400

x

y

(d) Sensors 1,2,3,4

−200
0

200
400

−300

−100

100

300
0

0.05

0.1

0.15

0.2

xy

no
rm

al
iz

ed
 w

ei
gh

ts

(e) Weighted Particles

−100 0 100 200 300 400
−150

−50

50

150

250

x

y

(f) Final Particles

Fig. 3. Simulation example for initializing a single target.

not available, sensor 2 distributes another 2000 particles about a circle with radius equal to the
detected range and center at the sensor position. Out of the 4000 particles at sensor 2, 2000
particles are sampled uniformly with replacement. These particles are shown in Fig. 3(b), and
are propagated to sensor 3, another DOA sensor. Sensor 3 receives the particles from sensor 2
and gives these particles a weight of 2 since these particles represent the combined information
from two sensors. Sensor 3 detects the target at a particular angle and distributes another 2000
particles along that angle. These new particles have a weight of 1. From the 4000 particles
at sensor 3, a weighted sampling with replacement is used to generate 2000 equally weighted

13

particles. These particles are shown in Fig. 3(c) and are propagated to sensor 4, another range-
doppler sensor. Sensor 4 receives the particles from sensor 3 and gives them a weight of 3 since
they represent the combined information from 3 sensors. Then, sensor 4 detects the target at a
particular range and distributes another 2000 particles along a circle with radius equal to the
detection range and center at the sensor location. These new particles are given a weight of 1.
From the 4000 particles at sensor 4, 2000 particles are obtained by using a weighted sampling
with replacement. These final particles are plotted in Fig. 3(d) and are propagated back to all
the sensors.

Weights are calculated for the final particles shown in Fig. 3(d). Particles along with their
weights are shown in Fig. 3(e) and this represents the probability distribution of the target in the
x-y space. As expected, the distribution is highly peaked about the true target state. Estimates
of the true target state can be made based on this weighted set of particles. These estimates can
be used to initialize any DJT.

It is observed that the majority of particles have extremely low weights and do not contribute
any useful information. To eliminate these particles and replicate those with high weights, the
particles are sampled with replacement according to their weights to give the set of particles
in Fig. 3(f). Here, the circles represent the particle positions and the lines, extending from
the circles, represent the magnitude and the direction of the velocities. The stars represent the
acoustic node locations and the triangles represent the radar locations. It can be seen that the
final set of particles is concentrated around the true target state at [50, 50, 4, 4]T which is
represented by the bold marker.

Even though the previous simulation worked in a small network with a slow moving target,
signal propagation delay compensation is essential in large networks when targets have high
velocities. This is illustrated in the following simulation.

A target is born at x1 = [50, 0, 50, 50]T and moves at an almost constant velocity. Three
acoustic nodes are located at (400 m, -400 m), (200 m, 500 m) and (1400 m, 200 m) and a radar
node is located at (1400 m, -600 m). The algorithm is simulated for two cases: (a) Compensating
for the acoustic propagation delay and (b) Not compensating for acoustic propagation delay.
Figures 4 and 5 compare the proposed particles and the final particles for the two cases.

−1000 0 1000 2000 3000
−2000

−1000

0

1000

2000

x

y

(a) With delay compensation.

−1000 0 1000 2000 3000
−2000

−1000

0

1000

2000

x

y

(b) Without delay compensation.

Fig. 4. Proposed particles with and without delay compensation.

It is seen in Figure 4 that when there is no compensation for acoustic propagation delay, the
particles proposed by the acoustic nodes represent the target’s state at a previous time. Hence,

14

0 500 1000 1500
−800

−600

−400

−200

0

200

400

600

800

x

y

(a) With delay compensation.

0 500 1000 1500
−800

−600

−400

−200

0

200

400

600

800

x

y

(b) Without delay compensation.

Fig. 5. Final set of particles using our initialization algorithm.

the four sensor estimates do not agree in the correct x-y location. This problem is eliminated
when the particles proposed by the acoustic nodes are propagated through the forward model to
compensate for the propagation delay. In this case, the sensor estimates overlap in the region of
the target’s true state.

Figure 5 shows the particles that survive the final resampling step. These particles can be
used to initialize a joint tracking algorithm. For case (a), the resulting particles have mean
xC = [57.1, −4.5, 47.3, 56.8]T . For case (b), the resulting particles have mean xNC =
[−27.6, −53.5, 40.9, 57.2]T . When compared to the true target state x1, it is clear that
compensating for the acoustic propagation delay is essential for accurate initialization.

0 500 1000 1500
−800

−600

−400

−200

0

200

400

600

800

x

y

(a) With delay compensation.

0 500 1000 1500
−800

−600

−400

−200

0

200

400

600

800

x

y

(b) Without delay compensation.

Fig. 6. Final set of particles for a multi-target example, using our initialization strategy.

The algorithm was simulated for the multi-target case when a second target is born at x2 =
[−200, 400, 50, −50]T . The same two cases discussed earlier were simulated. Figure 6 compares
the particles that survive the final resampling step. It can be seen in Fig. 6(b) that the final set of
particles lag behind the true targets’ states. However, in Fig. 6(a), the particles are distributed in
the vicinity of the true targets’ states. Once again it is clear that compensating for the acoustic
propagation delay is essential for accurate initialization.

15

0 250 500 750 1000 1250 1500

−500

−250

0

250

500

x

y

(a) With delay compensation.

0 250 500 750 1000 1250 1500

−500

−250

0

250

500

x

y

(b) Without delay compensation.

Fig. 7. Final set of particles for a large network.

Figure 7 shows simulation results in a larger network with 10 sensors. Two targets are born
with initial states x1 = [50, 0, 40, 40]T and x2 = [1200, −100, 40, −40]T . There are 5
radar nodes and 5 acoustic arrays at the locations shown in Figure 7. The acoustic arrays at
(200 m, 500 m) and (400 m, -400 m) and the radar node at (400 m, 0 m) only see target 1. The
radar nodes at (1400 m, -600 m) and (1300 m, 100 m) and the acoustic array at (1400 m, 200 m)
only see target 2. The remaining sensors see both targets. Fig. 7(a) shows simulation results with
delay compensation and Fig. 7(b) shows results without delay compensation. As expected, the
results with delay compensation show correct initialization for both targets. The results in the
uncompensated case not only lag behind the true targets’ states, but also completely miss one
of the targets. This behavior is persistent after repeating the simulation multiple times.

The final set of particles from Figure 6 were used to initialize the multi-target DJT described
in Section VII. The targets’ initial states and the sensor positions are the same as those described
in the multi-target initialization example given earlier in this section. The ideas developed in
Section VI are extended to the multi-target tracking case to compensate for the acoustic signal
propagation delays. Fig. 8(a) shows a tracking example when (31) is used as the likelihood
function. For comparison, Fig. 8(b) shows the same tracking example when acoustic signal
propagation delay is not compensated for. In this case, (27) is used as the likelihood function.
In both plots, the solid curves represent the true target tracks while the dotted curves represent
the estimated tracks.

Fig. 8(b) shows one of the best results acquired without compensating for signal propagation
delay. In most simulations, if the delay was not compensated for, the tracker would lose either
one or both targets completely. Fig. 8(a) shows a typical tracking result when likelihood function
(31) is used to compensate for the propagation delay. It can be seen clearly that in large networks
with fast moving targets, signal propagation delay compensation is essential for accurate tracking.

IX. CONCLUSIONS AND FUTURE WORK

A method for generating the initial probability distribution is proposed for multiple targets in
a decentralized multi-modal smart sensor network. Our method takes into account missing data,
clutter, processing delays, communication delays and signal propagation delays. Compensation
is achieved by using the forward model of the targets’ state evolution. A Monte-Carlo method

16

0 500 1000 1500 2000
−1000

−500

0

500

1000

x

y

(a) With delay compensation.

0 500 1000 1500 2000
−1000

−500

0

500

1000

x

y

(b) Without delay compensation.

Fig. 8. Tracking example.

is used to sequentially sample the state space to generate particles and a robust weighting
function is used to represent the degree of belief in each particle. This weighting function can
accommodate multiple targets, clutter, missing data and delays. The final targets’ state distribution
is represented by a weighted set of particles. This set of weighted particles can be used to make
various inferences about the targets’ states and also to initialize various decentralized tracking
algorithms.

The ideas developed in this paper are extended to a decentralized multi-modal multi-target
tracking scenario. Using the likelihood function developed in the initialization algorithm, a
standard decentralized tracker has the ability to compensate for delayed estimates from a subset
of its sensors.

For this paper, the prior targets’ state distribution was assumed to be uninformative and
chosen to be uniform. Future work will also consider the case of informative priors to generate
distributions reflecting prior knowledge of the true targets’ states.

APPENDIX I
INITIALIZATION ALGORITHM

• Variables:
D = Number of particles used for initialization.
S(i) = Sensor i, where i = 1, ..., M
K(i) = Target i, where i = 1, ..., K
wnum = Numerator of weights.
wden = Denominator of weights.
w = particle weights.
x

(i)
t = particle i at time t.

• STEP 1: Sequentially Sampling the Proposal Function
w̃ = 0
If S(1) has a detection,

– Sample D particles in the X-Y space based on the posterior distribution at S(1)
– Each particle will have equal weight
– w̃ = w̃ + 1

17

Else
– set all particles equal to 0

Send particles and w̃ to S(2)
For i = 2, ..., M

– Current sensor is S(i)
– Accept D particles and w̃ from S(i − 1)
– Give each received particle a weight of w̃
– If S(i) has a detection

∗ Sample D new particles based on the posterior distribution at S(i)
∗ Each new particle will have equal weight

· Give each new particle a weight of 1
∗ From the 2D particles, obtain D particles by using a weighted sampling with

replacement.
∗ Each particle will now have equal weight
∗ w̃ = w̃ + 1

– Send particles and w̃ to S(i + 1)

• STEP 2: Weighting the Particles and Back Propagating Final Particles
For i = 0, ..., M − 1

– Current sensor is S(M − i)
– If i > 0

∗ Accept particles, wnum and wden from S(M − i + 1)

– Else
∗ wnum = 1
∗ wden = 0

– For i = 1, ..., D

∗ w
(i)
num = w

(i)
num · p(zt,M−i|x(i)

t)

∗ w
(i)
den = w

(i)
den +

p(zt,M−i|x(i)
t)

p(zt,M−i)

– Send particles, wnum and wden to S(M − i − 1)

• STEP 3: Propagating Final Weights
Current sensor is S(1)
For i = 1, ..., D

– w(i) = w
(i)
num

w
(i)
den

Send w to S(2)
For i = 2, ..., M

– Accept w from S(i − 1)
– Send w to S(i + 1)

REFERENCES

[1] J. Manyika and H. Durrant-Whyte, Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach,
Prentice Hall, 1994.

[2] G.J. Pottie and W.J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, pp. 51–58, May
2000.

18

[3] Y. Wong, J. Wu, L. Ngoh, and W. Wong, “Collaborative data fusion tracking in sensor networks using monte carlo
methods,” in Proceedings. 29th Annual IEEE International Conference on Local Computer Networks, 2004.

[4] M. Liggins II, C. Chong, I. Kadar, M. Alford, V. Vannicola, and S. Thomopoulos, “Distributed fusion architectures and
algorithms for target tracking,” in Proceedings of the IEEE, 1997.

[5] P. Storms, J van Veelen, and E. Boasson, “A process distribution approach for multisensor data fusion systems based on
geographical dataspace partitioning,” IEEE Transactions on Parallel and Distributed Systems, vol. 16, pp. 14–23, Jan.
2005.

[6] S. Balasubramanian, I. Elangovan, S. Jayaweera, and K. Namuduri, “Distributed and collaborative tracking for energy-
constrained ad-hoc wireless sensor networks,” IEEE Wireless Communications and Networking Conference, vol. 3, pp.
1732–7, 2004.

[7] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao, “Distributed state representation for tracking problems in sensor networks,”
Third International Symposium on Information Processing in Sensor Networks, pp. 234–42, 2004.

[8] I. Leichter, M. Lindenbaum, and E. Rivlin, “A probabilistic framework for combining tracking algorithms,” in CVPR
2004, WDC, June 27–July 2 2004.

[9] V. Cevher and J. H. McClellan, “General direction-of-arrival tracking with acoustic nodes,” IEEE Trans. on Signal
Processing, vol. 53, pp. 1–12, Jan. 2005.

[10] M. Orton and W. Fitzgerald, “A Bayesian approach to tracking multiple targets using sensor arrays and particle filters,”
IEEE Trans. on Signal Processing, vol. 50, no. 2, pp. 216–223, February 2002.

[11] R.R. Allen and S.S. Blackman, “Implementation of an angle-only tracking filter,” in SPIE Proc., 1991, vol. 1481, pp.
292–303.

[12] A. Farina, “Target tracking with bearings-only measurements,” Elsevier Signal Processing, vol. 78, pp. 61–78, 1999.
[13] Y. Zhou, P.C. Yip, and H. Leung, “Tracking the direction-of-arrival of multiple moving targets by passive arrays: Algorithm,”

IEEE Trans. on Signal Processing, vol. 47, no. 10, pp. 2655–2666, October 1999.
[14] J. Sanchez-Araujo and S. Marcos, “An efficient PASTd-algorithm implementation for multiple direction of arrival tracking,”

IEEE Trans. on Signal Processing, vol. 47, pp. 2321–2324, August 1999.
[15] V.J. Aidala, “Kalman filter behavior in bearings-only tracking applications,” IEEE Trans. on Aerospace and Electronic

Systems, vol. AES-15, pp. 29–39, January 1979.
[16] S. Hong, R. Evans, and H. Shin, “Optimization of waveform and detection threshold for range and range-rate tracking in

clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, pp. 17–33, 2005.
[17] E. Hughes and M. Lewis, “Intelligent agents for radar systems,” Electronics Systems and Software, vol. 3, pp. 39–43,

Feb.-March 2005.
[18] A. Doucet, “On sequential simulation-based methods for Bayesian filtering,” Tech. Rep. CUED/F-INFENG/TR.310,

Department of Engineering, University of Cambridge, 2001.
[19] J.R. Munkres, Analysis on Manifolds, Perseus Books, 1990.
[20] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, Academic-Press, 1988.
[21] M. Isard and A. Blake, “Condensation – conditional density propagation for visual tracking,” International Journal of

Computer Vision, vol. 29, pp. 5–28, 1998.
[22] M.J. Coates, “Distributed particle filtering for sensor networks,” International Symposium on Information Processing in

Sensor Networks, 2004.

