-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

ARMADILLO: a Multi-Purpose Cryptographic
Primitive Dedicated to Hardware

Stéphane Badé) Nilay Dajtekint, Jorge Nakahara*Jr, Khaled Ouafi*t, Nicolas
Reffé?, Pouyan SepehrdadPetr S§ill, Serge Vaudenay

1 EPFL, Lausanne, Switzerland
2 Oridao, Montpellier, France
{stephane. badel , nilay.dagtekin, jorge.nakahara, pouyan.sepehrdad,
petr.susil, khaled.ouafi, serge.vaudenay}@pfl.ch, nicolas.reffe@ridao.com

Abstract. This paper describes and analyzes the security of a general-purpose
cryptographic function design, with application in RFID tags and sensbr ne
works. Based on these analyzes, we suggest minimum parametes f@ldlee
main components of this cryptographic function, called ARMADILLO. With
fully serial architecture we obtain that 2923 GE could perform one cespr
sion function computation within 176 clock cycles, consumingiat 1 MHz
clock frequency. This could either authenticate a peer or hash 48 baacoypt
128 bits on RFID tags. A better tradeoff would use 4030 GEpWT7 of power
and 44 cycles for the same, to hash (resp. encrypt) at a ratd dfidps (resp.
2.9 Mbps). As other tradeoffs are proposed, we show that ARMADILdffers
competitive performances for hashing relative to a fair Figure Of MEMM).

1 Introduction

Cryptographic hash functions form a fundamental and pemasyptographic primi-
tive, for instance, providing data integrity in digital smfure schemes, and for message
authentication in MACs. In particular, there are very fewowm hardware-dedicated
hash function designs, for instance, Cellhash [6] and Sstbf&. On the other hand,
Bogdanowet al. [2] suggest block-cipher based hash functions for RFID temysg the
PRESENT block cipher. Concerning block and stream ciphleesmnost prominent de-
velopments include PRESENT [1], TEA [22], HIGHT [13], Grdit2], Trivium [4] and
KATAN, KTANTAN family [3].

We propose a cryptographic function dedicated to hardwdrielwcan be used for
several cryptographic purposéSuch functions rely on data-dependent bit transposi-
tions [16]. Given a bitstringt = xa«|| - - - || X1, fixed permutationsy ando; over the set
{1,2,...,2k}, a bit strings, a bitb € {0,1} and a permutatiow, definexs, = x when
s has length zero, antztosHb = Xgeo0p,» Wherexs is the bit stringx transposed by, that

* This work was supported by the National Competence Center in Reseadlobile Infor-
mation and Communication Systems (NCCR-MICS), a center of the SNé&r gmadnt number
5005-67322.

** Supported by a grant of the Swiss National Science Foundation, 2000884 7/1.
3 The content of this paper is subject to a pending patent by ORIDAO http://fondao.com/.

https://core.ac.uk/display/147961117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IS, Xg = Xg(2) || -+ [IXo(1)- The function(s, x) — X is a data-dependent transposition of

X. The functions+— o5 can be seen as a particular case of the general semi-group ho-
momorphism from{0,1}* to a groupG. It was already used in the Zemor-Tillich con-
struction [21] forG = SL, and in braid group cryptography [10]. We observe that when
0p ando induce an expander graph on the vertexvset{1,..., 2k}, then(s,X) — Xg,

has good cryptographic properties.

This paper is organized as follows: Sect. 2 describes a gkeperpose crypto-
graphic function called ARMADILLO. In Sect. 3 we analyze ARMILLO. Sect. 4
contains design criteria for the bit permutation compos@itARMADILLO. Sect. 5
suggests parameter vectors. Sect. 6 presents an updaigu, daied ARMADILLO2.
Sect. 7 provides implementation results. Sect. 8 compaabMare implementations
of ARMADILLO with other well-known hash functions.

Notations. Throughout this document, denotes the concatenation of bitstrings,
denotes the bitwise XOR operationgenotes the bitwise complement of a bitstring
we assume the little-endian numbering of bits, suckascy|| - - - ||X1.

1
| Xinter

Fig. 1. The ARMADILLO function.

2 The ARMADILLO Function

ARMADILLO maps an initial valueC and a message blotk to two values
(Ve, Vi) = ARMADILLO(C,U;)

By definition, C andV; are of ¢ bits, \ as well as each blocl; are of m bits, a
registerXinter is of kK = c+ m bits. ARMADILLO is defined by integer parameters
¢, m;J=c+m, and two fixed permutationsy and a; over the set{1,2,...,2k}.
ARMADILLO(C,U) works as follows (see Fig. 1)

1: setXinter = C||U;

2: set a &-bit registerx = Xinter|| Xinter;

3: x undergoes a sequence of bit permutatiansand o, which we denote by. P
maps a bitstring ok bits and a vectok of 2k bits into another vector ofki2bits.
AssumingJ = k, the output of this sequence dtit permutations is truncated to
the rightmosk bits, denoted, by

S= P(Xinter, X) = tailk((Xinter|| Xinter)g,, ...)

4: setV||M to the value o5& Xinter.
The security is characterized by two parame®&fg.. andS,.ine. Concretely, the best
offline attack has complexity®ine, while the best online one, with practical complex-
ity, has success probability Snine . Typically, we aim aSuine > 80 andSyyjine > 40.
However, we can only upper bougksine andSonjine-

Application I: FIL-MAC. For challenge-response protocols (e.g. for RFID tags [17])
the objective is to have a fixed input-length MAC. Supposéhia a secret andl is a
challenge. The valu¥ is the response or the authentication tag. We write

Vi = AMACc(U)

Additionally, theV; output could be used to renew the secret in a synchronized way
or to derive an encryption key for a secure messaging seasispecified in [17]. The
security of challenge-response protocols requires thatl@arsary cannot extract from
the RFID tag enough information that allows it to impersertae tag with high proba-
bility. In this FIL-MAC context, theC parameter can be recovered by exhaustive search
with complexity Z, wherec = |C|; s0,Smine < C. In addition to this, the adversary can
try to guesd/ online with probability 2™, s0S, e < M.

Application II: Hashing and digital signaturesFor variable-length input messages
hashing, we assume a strengthened Merkle-Carchfy,15] construction (with padding
using length suffix) for ARMADILLO, withV, as chaining variabld) as message
block andV, as hash digest. The initial valu¢/j can use the fractional part of the
square root of 3 truncated tobits, similar to the values adopted in SHA-2 hash func-
tion family [20]. We write

Ve = AHASH,y (message||padding).

Generic birthday attacks are expected to find collisionsRMARDILLO with complex-

ity 25, S0, Stfline < g when collisions are a concern. Preimages and second preimag
are expected with probability 2, so, Simine < €. Sometimes, free-start collisions or
free-start second preimage attacks matter. In this casesfeeto Application II'.

Application 1ll: PRNG and PRFFor pseudorandom generation, we take the ffibsts
of V¢|[\: after at least iterations. We define

APRFeed (X) = headi (AHASHgeed (X||cste))

with an inputx with length multiple ofm and cste a (r — 1)m-bit constant. A rele-
vant property for this application is indistinguishalyilidssuming a secret seed, AR-
MADILLO could be used as a stream cipher. The keystream igpo@ed of-bit frames
where theth frame iSAPRF.4(i). The indexi can be synchronized, or sentin clear in
which case we have a self-synchronous stream cipher. Is¢tiisig, the output should
be indistinguishable from a truly random string when the isesandom.

3 Dedicated Attacks

Key recovery.Supposé/; ||\t andU are known, and we look fa€. SinceU is known,
thetailm(Xinter) are known. Guessing theil;_n(C) gives access to theil;(S), since

U is known. This fact motivates a meet-in-the-middle attacketovertail;_m(C). Let

us split thesd — mbits of Xinter into two pieces of size@] andLJ*TmJ . The heading
[5™] bits are used to compute backwardsRrgermutation frong, with m+ [357 =
[£5™] bits known. The tailing 257 | bits of C, together with then bits of U form m+
LJ‘T’“j = LJ%’J bits of Xinter. The meet-in-the-middle consists in checking consistency
of known bits irLthe middle of th® permutation. We expect to find a solution with

complexityO(2/"2"1) and a singl&J . Thus,Ssine < [25™] in Application 1, Il and 111

Free-start collision. We look for a triplet(C,U,U’) that causes a collision, that is,
AHASHc(U) = AHASHc(U'). For this, we look foC,U,U’) such that

P(U.C||U][C|lU) ~ P(U",C|lU"[|IC|lU")

with ~ meaning that the Hamming weight of the difference is somevalwew. Then,
we hope that the ne permutation will move aliv different bits outside the window
of the c+ m bits which are kept irs. Since the probability for a vector to have weight
wis (2°12M) 2-26-2m the number of solutions we get(€°*™) 2-¢ on average. The
probability that a solution leads to a collision is the proiiy that w difference bits
are moved outside a window afbits. Finally, the expected number of collisions we

can get is(°!™) 27¢. We can now fixw = Wep: such that(@tp’?) > 2¢ so that we can
find one solution with complexity“2et. To implement the attack, for dll andU’ we
enumerate alC's such that(U,C||U||C||U) ~ P(U’,C||U’||C||U’). The complexity is

22m 4 (Witt) 2-¢ which is dominated by2". So,S,ine < 2min Application II'.

A distinguisher. Assuming that thd iterations in theP permutation output a random
2k-bit vector of Hamming weighk, we have(Zk") possible vectors. By extracting a
window oft bits we do not have a uniformly distributed string. Indeeay possible
string of weightw has a probability ofp(w) = (ﬁ‘j‘v\t,) / (Zkk) There exists a distin-
guisher to tell whether &bit window comes from a random output frofhor a truly
random string, with advantage
2kt
(k7w> 1

Wi(&v) (2kk) 2

4

1

N

Fort = k=160, this is 01658. Here, the distinguisher recogniBashen the Hamming
weightw is in the interval75, .. .,85], and a random string otherwise.

The final XOR hides this bias a bit but we can wonder by how mueletty. Assume
that we hash a messageroblocks. The final output is the XOR of the initial value
together withr outputs fromP. Assuming that the initial value is known and that the
outputs are random and independent, we can compute thivdlistn of the final hash
by convolution. Indeed, the probability that it is a giverire x is py (x) such that

)= > pwt(xa))-- p(wt(x))

X - DX =X

Let us define the spectrupa(f) by pr () = 3 (—1)**pr (x). We havepr () = (pr(W)".
We can now compute

Pr1) = V:ﬁ)tg) (") () e+

It only depends orwt(p) so we writepa(wt(l)). Sincey, pr(w? = 2y, pr(x)2 we
deduce that the Squared Euclidean Imbalance (SEI) of tfiereliice of the hash of

blocks with the initial value is
t
t

2 . . v
SElr =27 (p(9-27) :ugo(pr(u))zz S () (Prw)?

w=1

We haveSsine < —109,SEl;, wherer is the minimal number of blocks which are

processed in Application Ill. ThBEI expresses as

-3 0 (305)

As an example, we computé&dl, for four selections of = k.

2r

t =k=128t = k=160t = k=200t = k=275

r SEl,

1 2—2.70 2—2.70 2—2.70 2—2.70

2 2—18.99 2—19.63 2—20.28 2—21‘20

3 2—34.98 2—36.27 2—37.56 2—39.40

4 2—50.96 2—52.90 2—54.81 2—57.60

5 2—66.95 2—69.54 2—72.12 2—75.81

6 2—8294 2—86.17 2—89.40 2—94.01

7 2—98.93 2—10281 2—10668 2—11221

Givenk andc, we look forr andt such thaSEl, < 27¢ andr /t is minimal.

4 Permutation-Dependent Attacks

In this section we present security criteria for thigando; permutations.

Another distinguisherConsider a sdtof indices fromV = {1,...,2k}. Letswap, (0) =
#{i e I;0(i) €1} andwt; (X) = Tic| %. We assume tha, = swap, (0p) is low forb =0
andb = 1 to see how much the low diffusion between inside and outsigleuld lead
to a distinguisher oR(s, -) with a randons of J bits. In the worst case we can assume
that all indices inl are in the same half of so that the distinguisher can choose the
input onP with a very biaseavt, (x).

A permutationoy, keeps #— s, of the bits insidd and introduces, bits from out-
sidel. Assuming that all bits inside and outsitlare randomly permuted, we have the
approximation

E(wti (X)) = (#1 —) E(W;: D ss, k_zi(iv ;(X))

Thus,

Bt)~ ~ (1= - 52) (B 0) -).

On average over the control bits, we have

Ewti (P(sX) — 5 _ (1 ots %)J
E(wy(x) -4 2 T #H(2k—H#)

The best strategy for the distinguisher consists of havitigewt, (X) = 0 orwt; (x) =
#l. In both cases we have

G (Plsx) - 5 | = 5 (1= 2% x))J

2|~ 2 CH(k—#

The number of samples to significantly observe this bias is

So+S1 2k -2
T:<1_ 2 X#I(Zk—#l)) ' @

S0, Srine < l0g, T. This expression relates to the theory of expander grapbgprd/
vide below a sufficient condition which can be easily checked
To compute the minimal value G4 over alll we observe that i, is the matrix

of permutatioroy, and ifx; is the 0-1 vector whose coordinate of index iare the ones

setto 1, then
Poo+P
Sots_ X"(2 Glx')
2 X - X '

Letu be the vector with all coordinates set to 1. Clearly, the hgta@eu’ orthogonal to
uis stable by the matrikg = %(Poo +P;,). LetM = %(Mo+ M})), where the superscript
indicates the transpose matrix. We can easily seeMlat u. Furthermore, we notice
thatMx = Ax with x # 0 implies|A| < 1. LetA be the second largest eigenvaluevbf
or equivalently the largest eigenvalue of operatbrestricted tou. Note thatA can
beA = 1 if the eigenvalue 1 has multiplicity higher than one. We easily prove that
|A| = 1 andMx = Ax with x # 0 implies thatx; is constant for ali € I, for all connected

)

componentd for the relationi ~ j < 3s Osy 0+ 00s, 00g (i) = j. Hence, the
only setsl which are stable byg anda; at the same time are the empty one and the
complete set if and only if eigenvalue 1 has multiplicity o8e, having\ < 1 is already

a reasonable criterion but we can have a more precise onend\Vetkat for any vector

x orthogonal tou we haveX\ o (Mox) < A\ with equality whenx is an eigenvector fok.
Thus,

X (Mox) _ (1= A EL LA (x-x)

X- X X- X
for anyx # 0. Forx = x; we obtain

X - (Mox)
X - X

S(l—)\)%—i—)\. (3)

From (2), %5 = 1 XMox) > 1 (1) # 1A= (1-N)(1—£). Going back to the

XX
complexity (1) of our distinguisher we ha¥e> A~2. Hence, by having < 2~ —2™ ifjpe

for an offline complexity %fine, we make sure that the distinguisher has complexity
T > 2%ine, To conclude, ifA is the second largest eigenvalueNdf= A—ll(Pc,(J + P}jo +

Po, + Pél) then we have an attack of complexiy 2. So,Sine < —2J log, A.

Yet another distinguisheMe define the vectax of dimensionk such that theth co-
ordinate ofx is the probability thak; is set to 1. Ifx is fixed, we can consider that
is equal tox by abuse of notation. § = X5, we have thay is obtained by multiplying
a permutation matri¥, by x. We have(Py); ; = 1 if and only if j = o(i). Clearly, for
Y = Xg, We can write

y - ((l— b)Po'O +bP0'1) X X

(;(PUO + Pol) + (;;)b(POo - P01)> XX

We letMg = 3Py, + 3Ps, andMy = 3P, — $Ps,. We have

J 1 1
|‘|(Mo+ 1)5M;) = Z =Y (FDHETTASM, = Ms
= 1=0 a=0

whereMa = Mg, x - - x Ma,. S0, the vector of = P(s,X) isy = Msx. The averagéMs)

of Ms overallsy,...,scis Mk We define a square matrixin which all terms are equal
to & i- Clearly, ifsis a umformly distributedl-bit random string, the probability vector
of P(s,x) is MJ x X. SinceMp is a bi-stochastic matrix, we haly x F =F x Mg=F.
Similarly, we havd\/l1 x F =F x My = 0. We easily deduce théio — F)? = M3 — F.
Let 8 be the second largest eigenvalueM§Mo, or equivalently, the Iargest eigen-
value of MBMO — F. For any vectorx such thaty x, =w and 0< x; < 1, we have
[MIx—wul|3 = [|(Mo— F)’x||2 < w8’, whereu = (1,...,1). So, the cumulated squared
Euclidean imbalance of each componenl\,tgx is bounded by J. Thus, the com-
plexity is 2k19 , andSy¢ine < —Jlog, 8 — log, 2k. The averagél\?lS (3)) of the image of

Xinter = sis

pee(cr ()

Fora = 0 the average i(s% S %). Fora of weight at least 2, the average is zero. Ror

of weight 1, e.ga = (1,0,...,0) the average i$—%7 ,...,0, 2,O ,0). We lete be

the vector with coordinate 1 in ii¢h position and 0 elsewhere We have

S
=)

»
7N
a
~_—

I
Nl

1k »
+§_ZM5 "MiME T (—e -+ e
i=

Nl - - -

Let

Zle MIME ™ (—& + @cii). (4)

The complexity iss=—, S0, We hav&ine < —2l0g, ||b|l2 — 1

2||bH2'

The parity of P. Let & be the parity ofo;. Thex — P(s,X) is a permutation whose

parity is s's‘ v)s i €0 # €1, an adversary with black-box accessxte: P(s,x)
and kn0W|ng|s| can thus easily dedueet(s). We thus, recommend theg = €;.

5 Parameter Vectors

Here we suggest sets of parameters for four different aqupdics, based on our ana-
lyzes. In all cases, we requide= c+ mand also thaty ando; have the same parity.

I: in a challenge-response applicati®jn. < min(c, J%q) andSnine <M

II: in a collision-resistance conteX&iine < %
II': in a free-start collision contextSine < min($,2m)

I Soeine < —l0g, SEI;. If A is the second largest eigenvalueMf= 4(P(,o + P}, +
Po, + P) thenSymine < —2Jl0g, A. For og andaoy, the second largest elgenvalue
of MtMo, called®, Syine < —Jlog,0 — Iogzk 1 The biash in (4) shall satisfy

Sottiine < —210g, ||b||2 — 1. MoreoverSiine < dim

To match the ideal security, we need these bounds to $igld. < candS,,jine <M

for Application |, Syfiine < g for Application Il and II', andSyine < € for Applica-
tion Ill. So, we takel = c+m, m> $; r andt such thaSEl, < 2-¢; gg andoy such that

—l0gyA > 5. — 109,60 > °+C'i’?n2k, log, [|b]|2 > 5%, andeg = €1. Our recommen-

dations for the parameter values of ARMADILLO are given irblEal. Note that is
the key length for Applications | and Il and also the digestdth for Application Il

Table 1.Parameter vectors.

Vecton Kk J ¢ m r t

128 128 80 48 6 128
192192 128 64 9 192
240 240 160 80 10 240
288 288 192 96 12 288
384 384 256 128 15 384

mooOw>»

6 ARMADILLO2

Ever since the first version of ARMADILLO, we have developedupdated design,
called ARMADILLO2, that is even more robust than the vergioesented in Fig. 1. In
fact, ARMADILLOZ2 brings in a new compression function, ealQ, which is not only
more compact in hardware théh but also addresses security concerns brought about
during the continuous analyzes of ARMADILLO. For these mees ARMADILLOZ2 is

our preferred design choice. Due to space limitationshéurtletails about the security
analysis of ARMADILLO2 are omitted. ARMADILLO2 is defined by

(Ve, i) = ARMADILLO2(C,U) = Q(X,C||U) & X, whereX = Q(U,C|U).

We call the new permutatio®, instead ofP as in Fig. 1, to avoid confusion. The main
novelties are:

— there isno complementation of th&-bit input Xinter = C||U anymore; as a con-
sequence, the; permutations (and therefof@) now operate ork-bit dataC||U,
instead ofC||U||C||U, leading to a more compact design;

— a new permutationQ which interleaveso;’s, i € {0,1}, with an xor using the
k-bit constant bitstringy = 1010 --10; Q is defined recursively aQ(s||b,X) =
Q(s, X5, @Y) andQ(0, X) = X, for b € {0,1} and bitstringss andXX;

— the outermosQ is controlled by a data-dependent vales= Q(U,C||U), in con-
trast to simplyC||U in Fig. 1;

In the new structure dD, the output bias disappears and we can takel andt = k.

7 Hardware Implementation and Performance

There exist different demands on the implementation andphienization meanings for

various application scenarios. In this context, the sdhthalof ARMADILLO allows

to deploy the implementation in a very wide realm of area gquesd parameters, which
constitutes the most essential trade-off in electronicaids. The implementation of the
P function, using the building block, is depicted in Fig. 2(lh)accepts an input vector
of 2k bits and a key o bits. It consists of a variable numhérof permutation stages, all

identical, and each stage essentially requitesgltiplexers (Fig. 2(a)). One register of

2k bits is needed to hold the input and/or intermediate datagiisas onel-bit register

to hold the permutation key. At each cycle, these registereiher loaded with new
data/key or fed back the output data/key for a new permutationd, depending on the
state of the load signal. The numhkérof permutations executed in each cycle can be
adjusted, the only restriction being thibe an integer multiple dfl. The output data is
the & bits vector resulting from the permutation round, and thipoikey is the] — N

bits remaining to be processed. This building block can babfle assembled into a

o o

Py

. Z [z
d;,[0]0] 0 do, (0] ﬁ{} KeYour
keyin Ij> T

dol1joth 0 dy 1] load i

~ 2

[[
><inter”ximer Ij>

d,[2k-1]o }o Qoul2k-1] %'ﬁ:DjL N stages

(@) (b)

Fig. 2. Hardware implementation of the ARMADILLO function. (a) one permutastege. (b)
P function building block.

T-stage pipeline, where each stage performs a nuiRberd/(N - T) of permutation
rounds (building blocks) before passing the results to the stage and accepting new
input from the previous stage. In that case, the throughpUtR items per cycle and
the latency isJ/N cycles, the parameters being linked by the equdlit\N - T = J.
The latency / throughput / cost trade-off can be adjustezlfilo extreme cases being
R =1 (fully pipelined, resulting in a throughput of 1 item percts) andT = 1 (fully
serial, resulting in a throughput &/J items per cycle). Obviously, the more pipeline
stages, the more hardware replication and therefore theehitpe cost in area and
power. To construct the complete hash function of Fig. 1, ssentially need to add
a state machine (which is little more than a counter) arowedpermutation function
block, and the final XOR operation.

Metrics for evaluating performancén order to compare different cryptographic func-
tions, several metrics can be taken into account. The sgésiof course the primary
concern. The silicon area, the throughput, the latency hadpbwer dissipation are
other metrics of interest, and can be traded-off for onelsroFor example, the power
dissipation is nearly proportional to the clock frequeneyany CMOS circuit, there-
fore, power can be reduced by decreasing the clock frequemdyhus at the expense
of throughput. Conversely, throughput can be increasedubping at a faster clock

10

frequency, up to a maximum clock frequency which is procasst implementation-

dependent. Another example is serialization, where anatiparis broken into several

steps executed in series, allowing to reuse the same hadgragain at the cost of a
longer execution time. Through serialization, throughgmd latency can be traded-off
for area, down to a point where operations can not be brokensimaller operations

anymore and we have reached a minimum area. Given this lagjgrdspace, compar-
ing the relative merit of different cryptographic funct®is a challenging task.

The approach taken in [2] (and numerous other publicationdides comparing
the area of synthesized circuits as reported in the litezatu estimated by the authors
in gate-equivalent (GE). It is notable though that the GE ohimeasure, while be-
ing convenient because it is process-independent, is wamge. For example, does the
reported area after synthesis include the space neededrfogWTypically, the uti-
lization of a routed circuit can be in the range of 50%-80% &nespecially critical
when using a limited number of metal layers for routing. Ategsis tool may report
an estimated routing area, but in all cases it may vary togelaxtent after physical
implementation. Consider also that one design may havedtns inserted while an-
other may not, which may increase the register area by as asi28—30% and require
extra interconnections. Furthermore, different standasits may be of varying area
efficiency; as an illustration of this fact, a comparison afggequivalent figures from
different standard-cell libraries can produce differezguits with a ratio up té. For
instance, a simple 2-input multiplexer can lead #©72GE or 167 GE from one library
to the other. Taking into account all these factors, it imctbat such a comparison can
have a large margin of error, unless the circuits being coetpaave been implemented
in the exact same conditions.

Besides comparing areas, the authors of [2] also use a matiéd efficiency, which
is defined as the ratio of the throughput (measured at a fixek ¢fequency) over the
area. It may seem at first sight that such a metric providesra general measure of
quality, since it may be fair to give up some area for a highesughput, however it is
flawed in that it does not consider the possibility of tradaffjthroughput for power.
Indeed, according to this metric, two designs A and B would&emed of equal value
if, for example, A's throughput and area were twice B’s thgbput and area, respec-
tively. However, if B’s power dissipation is half that of A #ite same clock frequency,
then by doubling B’s operating frequency, its throughput ba made equal to that of
A while consuming the same power and still occupying a smallea. Clearly then, B
should be recognized as superior to A, which can be captweliviting the metric
by the power dissipation, thus making it independent of thegy/throughput trade-off.
However, this does not come without its own problems, siheepower dissipation is
an extremely volatile quantity. Being subject to the samerdactors as the area as de-
scribed above, it also depends heavily on the process tegyathe supply voltage, and
the parasitic capacitances due to the interconnectiomthérmore, it can vary largely
depending on the method used to measure it (i.e. gate-leatedtcal or vector-based
simulation, or SPICE simulation). As if this were not enoudliferent standard-cell
libraries also exhibit various power/area/speed trade-tidr example, a circuit imple-
mented with a high-density library is likely to result in aMer power figure than the
same circuit implemented with a general-purpose libramyafsimilar gate count.

11

Nevertheless, a fairer figure of merit would need to includdeibfluence of power
dissipation. In order to keep process-independent metvigsan assume that the power
is proportional to the gate coufiThis is reasonable since the dynamic power in CMOS
circuits is proportional to the total switched capacitanehich correlates to the area.
We propose therefore to use a figure of merit defined as FOtroughputGE?. In
practice, this is a coarse approximation, since it doesala@ into account switching
activity or the influence of wire load; it is neverthelesgdaithan not including power
dissipation at all, since it tends to favor designs with $enarea (at equal throughput)
which are very likely to dissipate less power.

Synthesis ResultJable 2 presents the results of synthesis for the hash amdig-
scribed above in a.08um CMOS process using a commercial standard-cell library,
with the parameters given in Sect. 5. Synthesis was perfbmmith Synopsys Design
Compiler in topographical mode, in order to obtain accumite loads. The power
consumption was evaluated with Synopsys Primetime-PXgugite-level vector-based
analysis.

In RFID applications, the latency is constrained by the camication protocols
(though the constraint is relatively easily satisfiablef) dotigh throughput is not nec-
essary, designating a fully serial implementation as tealidandidate. Thereforeis
settoT = 1. The numbeN of permutations per clock cycle in the permutation function
is set toN = 1, which is favorable to smaller area and power consumptiothie tight
power budget associated with RFID applications. The cloe§uiency is set to 1MHz,
which is a representative value for the target application.

In hash mode we hash bits per compression. In encryption mode we enctypt
bits per compression. The throughput values given in Tabler2Zspond to hash mode.

Our goal for selectind = 1 andN = 1 was to minimize the hardware. The area in
the proposed implementation is roughly proportional to

(Kreg * (2k+J) + Kiog * (2K(N+1) +J))T

for some constantg., andkiog.
To maximize the FOM witlT given, we can show that we should in theory pick

(Keg J
N = (Kog+1> (1+5%)

Fork.eg = 2kiog andJ =Kk, this isN = 4.5. In practice, the best choice is to take- 1 and
N = 4 for ARMADILLO?Z in context A, for which we would get an area 4030 GE,
77 YW, and a latency of 44 cycles (1.09 Mbps for hashing or 2.9 Mbpencryption).

8 Comparison

Table 3 shows a comparison of hardware implementations ®ABILLO in the hash
function setting, relative to other hash functions such &4MMD5, SHA-1, SHA-

4 In the same spirit as the GE unit of measure, a more interesting metric weutd divide
the power byCynit -VSD, whereCynit is the input capacitance of an inverter. However, this is
not applicable to compare other published implementations since thesttigaaare usually
unknown

12

Table 2. Synthesis results at 1MHz.

N=1 N=4
Algorithm Area Power Throughput Latengyrea Power Throughput Latency
(GE) @MW) (kbps) (cycles) (GE) @W) (kbps) (cycles)
ARMADILLO-A [3972 69 375 1285770 133 1500 32
ARMADILLO-B | 6598 117 333 1929709 237 1333 48
ARMADILLO-C | 8231 146 333 240(12217 300 1333 60
ARMADILLO-D | 8650 177 333 288(14641 368 1333 72
ARMADILLO-E [13344 228 333 384(19669 513 1333 96
ARMADILLO2-A | 2923 44 272 1764030 77 1090 44
ARMADILLO2-B | 4353 65 250 256 (6025 118 1000 64
ARMADILLO2-C | 5406 83 250 3201|7492 158 1000 80
ARMADILLO2-D | 6554 102 250 384|8999 183 1000 96
ARMADILLO2-E | 8653 137 250 512(11914 251 1000 128

256, and MAME according to [2]. We computed the throughpulips at a clock rate
of 100 kHz. We added the best FOM results for KATAN and KTANTAWth 64-bit

blocks from [3]. Algorithms are categorized in terms of s#gby taking into account
the digest size. In each category, we listed the algorithyraelsreasing order of merit.
To estimate the FOM we assumed that the power was proportmtize area. So, it is
the speed divided by the square of the area. These figurestbhodifferent versions
of ARMADILLO2 provide clear advantage for hashing, eithertérms of area, or of
throughput, or of overall merit.

Table 3.Implementation comparison for hash functions with throughput at 100 kH

Algorithm Digest Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) i) (nanobit/cycle.GB
ARMADILLO2-A 80 48 4030 44 109 as 6717
ARMADILLO2-A 80 48 2923 176 27 as 3192
H-PRESENT-128 [2] 128 128 4256 32 200 .18 11041
ARMADILLO2-B 128 64 6025 64 1000 a8 2755
MD4 [9] 128 512 7350 456 1128 013 2078
ARMADILLO2-B 128 64 4353 256 250 a8 1319
MD5 [9] 128 512 8400 612 886 013 1186
ARMADILLO2-C 160 80 7492 80 100 Qa8 1781
ARMADILLO2-C 160 80 5406 320 250 a8 855
SHA-1[9] 160 512 8120 1274 408 035 610
ARMADILLO2-D 192 96 8999 96 100 as 1235
C-PRESENT-192 [2] 192 192 8048 108 .88 018 915
ARMADILLO2-D 192 96 6554 384 25 as 582
MAME [24] 256 256 8100 96 2667 018 4064
ARMADILLO2-E 256 128 11914 128 100 .08 7.05
SHA-256 [9] 256 512 10868 1128 89 035 384
ARMADILLO2-E 256 128 8653 512 25 .08 334

13

Table 4. Implementation comparison for encryption with throughput at 100 kHz.

Algorithm Key Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s)) (nanobit/cycle.GB

DES [18] 56 64 2309 144 44 .08 8336
PRESENT-80 [1] 80 64 1570 32 200 13 81139
Grain [11] 80 1 1294 1 100 .03 59722
KTANTANG64 [3] 80 64 927 128 50 a3 58185
KATANG64 [3] 80 64 1269 85 75 a3 46756
ARMADILLO2-A 80 128 4030 44 291 as 17912
Trivium [11] 80 1 2599 1 100 a3 14804
PRESENT-80 [19] 80 64 1075 563 11 .18 9837
ARMADILLO2-A 80 128 2923 176 73 as 8512
mCrypton [14] 96 64 2681 13 500 1B 68496
PRESENT-128 [1] 128 64 1886 32 200 .18 56227
HIGHT [13] 128 64 3048 34 189 .25 20261
TEA [23] 128 64 2355 64 100 .08 18031
ARMADILLO2-B 128 192 6025 64 300 as 8264
ARMADILLO2-B 128 192 4353 256 75 a8 3958
AES-128 [8] 128 128 3400 1032 12 Re) 1073
ARMADILLO2-C 160 240 7492 80 300 .8 5345
ARMADILLO2-C 160 240 5406 320 75 Q8 2566
DESXL [18] 184 64 2168 144 44 .08 9456
ARMADILLO2-D 192 288 8999 96 300 a8 3704
ARMADILLO2-D 192 288 6554 384 75 Qa8 1746
ARMADILLO2-E 256 384 11914 128 300 .08 2113
ARMADILLO2-E 256 384 8653 512 75 .08 1002

9 Conclusions

This paper suggested a new hardware dedicated cryptograpidtion design called
ARMADILLO. Applications for ARMADILLO include MACs, hashg for challenge-
response protocols, PRNG and as a stream cipher.

References

1. Bogdanov,A., Knudsen,L.R., Leander,G., Paar,C., Rpadh,A., Robshaw,M.J.B.,
Seurin,Y., Vikkelsoe,C.: Present: a Ultra-Lightweight Block CipheHES'07, LNCS,
vol. 4727, pp. 450-466. Springer (2007)

2. Bogdanov,A., Leander,G., Paar,C., Poschmann,A., RolbhJ.B., Seurin,Y.: Hash Func-
tions and RFID Tags: Mind the Gap. CHES'08, LNCS, vol. 5154, pp—283. Springer
(2008)

3. De Canrgre,C., Dunkelman,O., Kievic,M.: KATAN & KTANTAN: a Family of Small
and Efficient Hardware-Oriented Block Ciphers. CHES'09, LNCS, 5647, pp. 272-288,
Springer (2009)

4. De Cannrgre,C., Preneel,B.: Trivium Specifications. eSTREAM technicabnte(2006)
http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf

5. Daemen,J., Govaerts,R., Vandewalle,J.: A Hardware DesigteMor Cryptographic Algo-
rithms. ESORICS’92, LNCS, vol. 648, pp. 419-434. Springer (3992

6. Daemen,J., Govaerts,R., Vandewalle,J.: A Framework for teeigd of One-Way Hash
Functions Including Cryptanalysis of Dadigl One-way Function based on a Cellular Au-
tomaton. ASIACRYPT'91, LNCS, vol. 739, pp. 82-96. Springer (109

7. Damgrd, 1.B.: A Design Principle for Hash Functions. CRYPTO’'89, LNGS|. 435,
pp. 416-427. Springer (1989)

14

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Feldhofer,M., Dominikus,S., Wolkerstorfer,J.: Strong Authetiion for RFID Systems Us-
ing the AES Algorithm. CHES’04, LNCS, vol. 3156, pp. 357-370, (2004

Feldhofer,M., Rechberger,C.: A Case Against Currently UsashHFunctions in RFID Pro-
tocols. On the Move to Meaningful Internet Systems OTM'06, LNCS, 4@lf7, pp. 372—
381. Springer (2006)

Garber,D.: Braid Group Cryptography. CoRR, vol. abs/0@4i13pp. 1-75 (2007)
Good,T., Chelton,W., Benaissa,M.: Hardware Results for faelegtream Cipher Candi-
dates. Presented at tBeate of the Art of Stream Ciphers SASCB@chum, Germany (2007)
Hell,M., Johansson,T., Meier,W.: Grain: a Stream Cipher forsBained Environments. In-
ternational Journal of Wireless and Mobile Computing. vol. 2, pp. 8§2087)

Hong,D., Sung,J., Hong,S., Lim,J., Lee,S., Koo,B.Se,Ce Chang,D., Lee,J., Jeong,K.,
Kim,H., Kim,J., Chee,S.: HIGHT: a New Block Cipher suitable for L&esource Device.
CHES'06, LNCS, vol. 4249, pp. 46-59. Springer (2006)

Lim,C., Korkishko,T.: mCrypton: A Lightweight Block Cipher foe&urity of Lowcost RFID
Tags and Sensors. Information Security Applications WISA05, LN@, 3786, pp. 243—
258. Springer (2005)

Merkle,R.C.: One way Hash Functions and DES. CRYPTO’89, 8NI. 435, pp. 416—
427. Springer (1989)

Moldovyan,A.A., Moldovyan,N.A.: A cipher based on data-elegent permutations. Journal
of Cryptology, (15):1, pp. 61-72 (2002)

Ouafi,K., Vaudenay,S.: Pathchecker: An RFID Application fiacing Products in Supply-
Chains. Presented at theernational Conference on RFID Security 20Q@uven, Belgium
(2009)

Poschmann,A., Leander,G., Schramm,K., Paar,C.: Neltwigght DES Variants Suited for
RFID Applications. FSE'07, LNCS, vol. 4593, pp. 196-210. Sprin@e07)

Rolfes,C., Poschmann,A., Leander,G., Paar,C.: Ultratligight Implementations for
Smart Devices - Security for 1000 Gate Equivalents. CARDIS 2008C8&Nvol. 5189,
pp. 89-103. Springer (2008)

Secure Hash Standafeederal Information Processing Standgpdblication #180-2. U.S.
Department of Commerce, National Institute of Standards and Teahn(2602)
Tillich,J.P., Z2mor,G.: Hashing witSL,. CRYPTO'94, LNCS, vol. 839, pp. 40-49. Springer
(1994)

Wheeler,D.J., Needham,R.M.: TEA: a Tiny Encryption Algoritf8E’'94, LNCS, vol. 809,
pp. 363—366. Springer (1994)

Yu,Y., Yang,Y., Fan,Y., Min,H.: Security Scheme for RFIDgTalechnical report WP-
HARDWARE-022, Auto-ID Labs white paper (2006) http://www.autoidlabg/single-
view/dir/article/6/230/page.htmi

Yoshida,H., Watanabe,D., Okeya,K., Kitahara,J., Wu,i]g'.]K,O., Preneel,B.: MAME: A
Compression Function With Reduced Hardware Requirements. CHANUTS, vol. 4727,
pp. 148-165. Springer (2007)

15

