
ARMADILLO: a Multi-Purpose Cryptographic
Primitive Dedicated to Hardware

St́ephane Badel1, Nilay Dağtekin1, Jorge Nakahara Jr⋆1, Khaled Ouafi⋆⋆1, Nicolas
Reffé2, Pouyan Sepehrdad1, Petr Sǔsil1, Serge Vaudenay1

1 EPFL, Lausanne, Switzerland
2 Oridao, Montpellier, France

{stephane.badel, nilay.dagtekin, jorge.nakahara, pouyan.sepehrdad,
petr.susil, khaled.ouafi, serge.vaudenay}@epfl.ch, nicolas.reffe@oridao.com

Abstract. This paper describes and analyzes the security of a general-purpose
cryptographic function design, with application in RFID tags and sensor net-
works. Based on these analyzes, we suggest minimum parameter values for the
main components of this cryptographic function, called ARMADILLO. With
fully serial architecture we obtain that 2923 GE could perform one compres-
sion function computation within 176 clock cycles, consuming 44µW at 1 MHz
clock frequency. This could either authenticate a peer or hash 48 bits, orencrypt
128 bits on RFID tags. A better tradeoff would use 4030 GE, 77µW of power
and 44 cycles for the same, to hash (resp. encrypt) at a rate of 1.1 Mbps (resp.
2.9 Mbps). As other tradeoffs are proposed, we show that ARMADILLOoffers
competitive performances for hashing relative to a fair Figure Of Merit(FOM).

1 Introduction

Cryptographic hash functions form a fundamental and pervasive cryptographic primi-
tive, for instance, providing data integrity in digital signature schemes, and for message
authentication in MACs. In particular, there are very few known hardware-dedicated
hash function designs, for instance, Cellhash [6] and Subhash [5]. On the other hand,
Bogdanovet al. [2] suggest block-cipher based hash functions for RFID tagsusing the
PRESENT block cipher. Concerning block and stream ciphers,the most prominent de-
velopments include PRESENT [1], TEA [22], HIGHT [13], Grain[12], Trivium [4] and
KATAN, KTANTAN family [3].

We propose a cryptographic function dedicated to hardware which can be used for
several cryptographic purposes.3 Such functions rely on data-dependent bit transposi-
tions [16]. Given a bitstringx= x2k‖· · ·‖x1, fixed permutationsσ0 andσ1 over the set
{1,2, . . . ,2k}, a bit strings, a bit b∈ {0,1} and a permutationσ, definexσs = x when
s has length zero, and,xσs‖b

= xσs◦σb, wherexσ is the bit stringx transposed byσ, that

⋆ This work was supported by the National Competence Center in Researchon Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center of the SNF under grant number
5005-67322.

⋆⋆ Supported by a grant of the Swiss National Science Foundation, 200021-119847/1.
3 The content of this paper is subject to a pending patent by ORIDAO http://www.oridao.com/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is, xσ = xσ(2k)‖· · ·‖xσ(1). The function(s,x) 7→ xσs is a data-dependent transposition of
x. The functions 7→ σs can be seen as a particular case of the general semi-group ho-
momorphism from{0,1}∗ to a groupG. It was already used in the Zemor-Tillich con-
struction [21] forG= SL2 and in braid group cryptography [10]. We observe that when
σ0 andσ1 induce an expander graph on the vertex setv= {1, . . . ,2k}, then(s,x) 7→ xσs

has good cryptographic properties.
This paper is organized as follows: Sect. 2 describes a general-purpose crypto-

graphic function called ARMADILLO. In Sect. 3 we analyze ARMADILLO. Sect. 4
contains design criteria for the bit permutation components of ARMADILLO. Sect. 5
suggests parameter vectors. Sect. 6 presents an updated design, called ARMADILLO2.
Sect. 7 provides implementation results. Sect. 8 compares hardware implementations
of ARMADILLO with other well-known hash functions.

Notations. Throughout this document,‖ denotes the concatenation of bitstrings,⊕
denotes the bitwise XOR operation,x denotes the bitwise complement of a bitstringx;
we assume the little-endian numbering of bits, such asx= x2k‖· · ·‖x1.

Xinter Xinter
· · · 321

C Ui

c m

(Xinter‖Xinter)σXinter ...

.

.

.
3
2
1

J

S

⊕

m

VtVc

Fig. 1.The ARMADILLO function.

2 The ARMADILLO Function

ARMADILLO maps an initial valueC and a message blockUi to two values

(Vc,Vt) = ARMADILLO(C,Ui)

By definition, C andVc are of c bits, Vt as well as each blockUi are of m bits, a
registerXinter is of k = c+m bits. ARMADILLO is defined by integer parameters
c, m, J = c+ m, and two fixed permutationsσ0 and σ1 over the set{1,2, . . . ,2k}.
ARMADILLO(C,U) works as follows (see Fig. 1)

2

1: setXinter =C‖U ;
2: set a 2k-bit registerx= Xinter‖Xinter;
3: x undergoes a sequence of bit permutations,σ0 andσ1, which we denote byP. P

maps a bitstring ofk bits and a vectorx of 2k bits into another vector of 2k bits.
AssumingJ = k, the output of this sequence ofJ bit permutations is truncated to
the rightmostk bits, denotedS, by

S= P(Xinter,x) = tailk((Xinter‖Xinter)σXinter
)

4: setVc‖Vt to the value ofS⊕Xinter.

The security is characterized by two parametersSoffline andSonline. Concretely, the best
offline attack has complexity 2Soffline , while the best online one, with practical complex-
ity, has success probability 2−Sonline . Typically, we aim atSoffline ≥ 80 andSonline ≥ 40.
However, we can only upper boundSoffline andSonline.

Application I: FIL-MAC. For challenge-response protocols (e.g. for RFID tags [17]),
the objective is to have a fixed input-length MAC. Suppose that C is a secret andU is a
challenge. The valueVt is the response or the authentication tag. We write

Vt = AMACC(U)

Additionally, theVc output could be used to renew the secret in a synchronized way
or to derive an encryption key for a secure messaging sessionas specified in [17]. The
security of challenge-response protocols requires that anadversary cannot extract from
the RFID tag enough information that allows it to impersonate the tag with high proba-
bility. In this FIL-MAC context, theC parameter can be recovered by exhaustive search
with complexity 2c, wherec= |C|; so,Soffline ≤ c. In addition to this, the adversary can
try to guessVt online with probability 2−m, soSonline ≤ m.

Application II: Hashing and digital signatures.For variable-length input messages
hashing, we assume a strengthened Merkle-Damgård [7,15] construction (with padding
using length suffix) for ARMADILLO, withVc as chaining variable,U as message
block andVc as hash digest. The initial value (IV) can use the fractional part of the
square root of 3 truncated toc bits, similar to the values adopted in SHA-2 hash func-
tion family [20]. We write

Vc = AHASHIV(message‖padding).

Generic birthday attacks are expected to find collisions in ARMADILLO with complex-
ity 2

c
2 . So,Soffline ≤

c
2 when collisions are a concern. Preimages and second preimages

are expected with probability 2−c, so,Soffline ≤ c. Sometimes, free-start collisions or
free-start second preimage attacks matter. In this case, werefer to Application II’.

Application III: PRNG and PRF.For pseudorandom generation, we take the firstt bits
of Vc‖Vt after at leastr iterations. We define

APRFseed(x) = headt(AHASHseed(x‖cste))

3

with an inputx with length multiple ofm and cste a (r − 1)m-bit constant. A rele-
vant property for this application is indistinguishability. Assuming a secret seed, AR-
MADILLO could be used as a stream cipher. The keystream is composed oft-bit frames
where theith frame isAPRFseed(i). The indexi can be synchronized, or sent in clear in
which case we have a self-synchronous stream cipher. In thissetting, the output should
be indistinguishable from a truly random string when the keyis random.

3 Dedicated Attacks

Key recovery.SupposeVc‖Vt andU are known, and we look forC. SinceU is known,
thetailm(Xinter) are known. Guessing thetailJ−m(C) gives access to thetailJ(S), since
U is known. This fact motivates a meet-in-the-middle attack to recovertailJ−m(C). Let
us split theseJ−mbits ofXinter into two pieces of sizes⌈ J−m

2 ⌉ and⌊ J−m
2 ⌋. The heading

⌈ J−m
2 ⌉ bits are used to compute backwards theP permutation fromS, with m+⌈ J−m

2 ⌉=

⌈ J+m
2 ⌉ bits known. The tailing⌊ J−m

2 ⌋ bits ofC, together with thembits ofU form m+

⌊ J−m
2 ⌋= ⌊ J+m

2 ⌋ bits ofXinter. The meet-in-the-middle consists in checking consistency
of known bits in the middle of theP permutation. We expect to find a solution with
complexityO(2⌈

J+m
2 ⌉) and a singleU . Thus,Soffline ≤ ⌈ J+m

2 ⌉ in Application I, II and III.

Free-start collision. We look for a triplet(C,U,U ′) that causes a collision, that is,
AHASHC(U) = AHASHC(U ′). For this, we look for(C,U,U ′) such that

P(U,C‖U‖C‖U)≈ P(U ′,C‖U ′‖C‖U ′)

with ≈ meaning that the Hamming weight of the difference is some lowvaluew. Then,
we hope that the nextP permutation will move allw different bits outside the window
of thec+m bits which are kept inS. Since the probability for a vector to have weight

w is
(

2c+2m
w

)

2−2c−2m, the number of solutions we get is
(

2c+2m
w

)

2−c on average. The

probability that a solution leads to a collision is the probability that w difference bits
are moved outside a window ofc bits. Finally, the expected number of collisions we

can get is
(c+m

w

)

2−c. We can now fixw = wopt such that
(

c+m
wopt

)

≥ 2c so that we can

find one solution with complexity 2wopt . To implement the attack, for allU andU ′ we
enumerate allC’s such thatP(U,C‖U‖C‖U) ≈ P(U ′,C‖U ′‖C‖U ′). The complexity is

22m+
(

2k
wopt

)

2−c which is dominated by 22m. So,Soffline ≤ 2m in Application II’.

A distinguisher.Assuming that theJ iterations in theP permutation output a random

2k-bit vector of Hamming weightk, we have
(

2k
k

)

possible vectors. By extracting a

window of t bits we do not have a uniformly distributed string. Indeed, any possible

string of weightw has a probability ofp(w) =
(

2k−t
k−w

)

/
(

2k
k

)

. There exists a distin-

guisher to tell whether at-bit window comes from a random output fromP or a truly
random string, with advantage

1
2

t

∑
w=0

(t
w

)

∣

∣

∣

∣

∣

∣

(

2k−t
k−w

)

(

2k
k

) −
1
2t

∣

∣

∣

∣

∣

∣

4

Fort = k= 160, this is 0.1658. Here, the distinguisher recognizesP when the Hamming
weightw is in the interval[75, . . . ,85], and a random string otherwise.

The final XOR hides this bias a bit but we can wonder by how much exactly. Assume
that we hash a message ofr blocks. The final output is the XOR of the initial value
together withr outputs fromP. Assuming that the initial value is known and that theP
outputs are random and independent, we can compute the distribution of the final hash
by convolution. Indeed, the probability that it is a given string x is pr(x) such that

pr(x) = ∑
x1⊕···⊕xr=x

p(wt(x1)) · · · p(wt(xr))

Let us define the spectrum ˆpr(µ) by p̂r(µ)=∑x(−1)µ·xpr(x). We have ˆpr(µ)= (p̂1(µ))
r .

We can now compute

p̂1(µ) =
wt(µ)

∑
i=0

t−wt(µ)

∑
j=0

(

wt(µ)
i

)(

t −wt(µ)
j

)

(−1)i p(i + j)

It only depends onwt(µ) so we write ˆp1(wt(µ)). Since∑µ p̂r(µ)2 = 2t ∑x pr(x)2 we
deduce that the Squared Euclidean Imbalance (SEI) of the difference of the hash ofr
blocks with the initial value is

SEIr = 2t ∑
x

(

pr(x)−2−t)2
= ∑

µ6=0

(p̂r(µ))
2 =

t

∑
w=1

(t
w

)

(p̂1(w))
2r

We haveSoffline ≤ − log2SEIr , wherer is the minimal number of blocks which are
processed in Application III. TheSEI expresses as

SEIr =
t

∑
w=1

(t
w

)





w

∑
i=0

(w
i

) t−w

∑
j=0

(

t −w
j

)

(−1)i

(

2k−t
k−i− j

)

(

2k
k

)





2r

As an example, we computedSEIr for four selections oft = k.

t = k= 128 t = k= 160 t = k= 200 t = k= 275
r SEIr
1 2−2.70 2−2.70 2−2.70 2−2.70

2 2−18.99 2−19.63 2−20.28 2−21.20

3 2−34.98 2−36.27 2−37.56 2−39.40

4 2−50.96 2−52.90 2−54.81 2−57.60

5 2−66.95 2−69.54 2−72.12 2−75.81

6 2−82.94 2−86.17 2−89.40 2−94.01

7 2−98.93 2−102.81 2−106.68 2−112.21

Givenk andc, we look forr andt such thatSEIr < 2−c andr/t is minimal.

4 Permutation-Dependent Attacks

In this section we present security criteria for theσ0 andσ1 permutations.

5

Another distinguisher.Consider a setI of indices fromV = {1, . . . ,2k}. Let swapI (σ) =
#{i ∈ I ;σ(i) 6∈ I} andwtI (x) = ∑i∈I xi . We assume thatsb = swapI (σb) is low for b= 0
andb= 1 to see how much the low diffusion between inside and outsideI would lead
to a distinguisher onP(s, ·) with a randoms of J bits. In the worst case we can assume
that all indices inI are in the same half ofx so that the distinguisher can choose the
input onP with a very biasedwtI (x).

A permutationσb keeps #I − sb of the bits insideI and introducesb bits from out-
sideI . Assuming that all bits inside and outsideI are randomly permuted, we have the
approximation

E(wtI (xσb))≈ (#I −sb)
E(wtI (x))

#I
+sb

k−E(wtI (x))
2k−#I

.

Thus,

E(wtI (xσb))−
#I
2

≈

(

1−
sb

#I
−

sb

2k−#I

)(

E(wtI (x))−
#I
2

)

.

On average over the control bits, we have

E(wtI (P(s,x)))− #I
2

E(wtI (x))− #I
2

≈

(

1−
s0+s1

2
×

2k
#I(2k−#I)

)J

.

The best strategy for the distinguisher consists of having eitherwtI (x) = 0 orwtI (x) =
#I . In both cases we have

∣

∣

∣

∣

E(wtI (P(s,x)))−
#I
2

∣

∣

∣

∣

≈
#I
2

(

1−
s0+s1

2
×

2k
#I(2k−#I)

)J

.

The number of samples to significantly observe this bias is

T =

(

1−
s0+s1

2
×

2k
#I(2k−#I)

)−2J

. (1)

So,Soffline ≤ log2T. This expression relates to the theory of expander graphs. We pro-
vide below a sufficient condition which can be easily checked.

To compute the minimal value ofs0+s1
2#I over allI we observe that ifPσb is the matrix

of permutationσb and ifxI is the 0-1 vector whose coordinate of index inI are the ones
set to 1, then

s0+s1

2#I
= 1−

xI ·
(

Pσ0+Pσ1
2 xI

)

xI ·xI
. (2)

Let u be the vector with all coordinates set to 1. Clearly, the hyperplaneu⊥ orthogonal to
u is stable by the matrixM0 =

1
2(Pσ0+Pσ1). LetM = 1

2(M0+Mt
0), where the superscript

indicates the transpose matrix. We can easily see thatMu= u. Furthermore, we notice
thatMx= λx with x 6= 0 implies|λ| ≤ 1. Let λ be the second largest eigenvalue ofM,
or equivalently the largest eigenvalue of operatorM restricted tou⊥. Note thatλ can
beλ = 1 if the eigenvalue 1 has multiplicity higher than one. We caneasily prove that
|λ|= 1 andMx= λx with x 6= 0 implies thatxi is constant for alli ∈ I , for all connected

6

componentsI for the relationi ∼ j ⇐⇒ ∃s σs|s| ◦ · · · ◦ σs2 ◦ σs1(i) = j. Hence, the
only setsI which are stable byσ0 andσ1 at the same time are the empty one and the
complete set if and only if eigenvalue 1 has multiplicity one. So, havingλ < 1 is already
a reasonable criterion but we can have a more precise one. We know that for any vector
x orthogonal tou we havex·(M0x)

x·x ≤ λ with equality whenx is an eigenvector forλ.
Thus,

x · (M0x)
x ·x

≤
(1−λ) (x·u)

2

u·u +λ(x ·x)
x ·x

for anyx 6= 0. Forx= xI we obtain

xI · (M0xI)

xI ·xI
≤ (1−λ)

#I
2k

+λ. (3)

From (2),s0+s1
2#I = 1− xI ·(M0·xI)

xI ·xI
≥ 1−(1−λ) #I

2k +λ= (1−λ)(1− #I
2k). Going back to the

complexity (1) of our distinguisher we haveT ≥ λ−2J. Hence, by havingλ ≤ 2−
Soffline

2J

for an offline complexity 2Soffline , we make sure that the distinguisher has complexity
T ≥ 2Soffline . To conclude, ifλ is the second largest eigenvalue ofM = 1

4(Pσ0 +Pt
σ0

+

Pσ1 +Pt
σ1
) then we have an attack of complexityλ−2J. So,Soffline ≤−2J log2 λ.

Yet another distinguisher.We define the vectorx of dimensionk such that theith co-
ordinate ofx is the probability thatxi is set to 1. Ifx is fixed, we can consider thatx
is equal tox by abuse of notation. Ify= xσ, we have thaty is obtained by multiplying
a permutation matrixPσ by x. We have(Pσ) j,i = 1 if and only if j = σ(i). Clearly, for
y= xσb we can write

y = ((1−b)Pσ0 +bPσ1)×x

=

(

1
2
(Pσ0 +Pσ1)+

(−1)b

2
(Pσ0 −Pσ1)

)

×x

We letM0 =
1
2Pσ0 +

1
2Pσ1 andM1 =

1
2Pσ0 −

1
2Pσ1. We have

J

∏
i=1

(M0+(−1)si M1) =
1

∑
a1=0

· · ·
1

∑
ak=0

(−1)a1s1+···+akskMa = M̂s

whereMa = Ma1 ×·· ·×Mak. So, the vector ofy= P(s,x) is y= M̂sx. The average〈M̂s〉
of M̂s over alls1, . . . ,sk is Mk

0. We define a square matrixF in which all terms are equal
to 1

k . Clearly, if s is a uniformly distributedJ-bit random string, the probability vector
of P(s,x) is MJ

0×x. SinceM0 is a bi-stochastic matrix, we haveM0×F = F ×M0 = F .
Similarly, we haveM1×F = F ×M1 = 0. We easily deduce that(M0−F)J = MJ

0 −F.
Let θ be the second largest eigenvalue ofMt

0M0, or equivalently, the largest eigen-
value of Mt

0M0 − F . For any vectorx such that∑xi = w and 0≤ xi ≤ 1, we have
‖MJ

0x−wu‖2
2 = ‖(M0−F)Jx‖2

2 ≤ wθJ, whereu= (1, . . . ,1). So, the cumulated squared
Euclidean imbalance of each component ofMJ

0x is bounded by 2kθJ. Thus, the com-
plexity is 1

2kθJ , andSoffline ≤−J log2 θ− log22k. The average
〈

M̂s
(s̄

s

)〉

of the image of

7

Xinter = s is

∑
a

Ma

〈

(−1)a·s
(

s̄
s

)〉

.

For a= 0 the average is(1
2 · · ·

1
2). For a of weight at least 2, the average is zero. Fora

of weight 1, e.g.a= (1,0, . . . ,0) the average is(−1
2,0, . . . ,0,

1
2,0, . . . ,0). We letei be

the vector with coordinate 1 in itsith position and 0 elsewhere. We have

〈

M̂s

(

s̄
s

)〉

=







1
2
...
1
2






+

1
2

k

∑
i=1

Mi−1
0 M1Mk−i

0 (−ei +ek+i).

Let

b=
1
2

k

∑
i=1

Mi−1
0 M1Mk−i

0 (−ei +ek+i). (4)

The complexity is 1
2‖b‖2

2
, so, we haveSoffline ≤−2log2‖b‖2−1.

The parity of P. Let εi be the parity ofσi . The x 7→ P(s,x) is a permutation whose

parity is ε|s|−wt(s)
0 εwt(s)1 . If ε0 6= ε1, an adversary with black-box access tox 7→ P(s,x)

and knowing|s| can thus easily deducewt(s). We thus, recommend thatε0 = ε1.

5 Parameter Vectors

Here we suggest sets of parameters for four different applications, based on our ana-
lyzes. In all cases, we requireJ = c+mand also thatσ0 andσ1 have the same parity.

I: in a challenge-response application:Soffline ≤ min(c, J+m
2) andSonline ≤ m

II: in a collision-resistance context:Soffline ≤
c
2

II’: in a free-start collision context:Soffline ≤ min
(

c
2,2m

)

III: Soffline ≤ − log2SEIr . If λ is the second largest eigenvalue ofM = 1
4(Pσ0 +Pt

σ0
+

Pσ1 +Pt
σ1
) thenSoffline ≤ −2J log2 λ. For σ0 andσ1, the second largest eigenvalue

of Mt
0M0, calledθ, Soffline ≤ −J log2 θ− log2k−1. The biasb in (4) shall satisfy

Soffline ≤−2log2‖b‖2−1. Moreover,Soffline ≤
J+m

2 .

To match the ideal security, we need these bounds to yieldSoffline ≤ c andSonline ≤m
for Application I, Soffline ≤

c
2 for Application II and II’, andSoffline ≤ c for Applica-

tion III. So, we takeJ= c+m, m≥ c
2; r andt such thatSEIr ≤ 2−c; σ0 andσ1 such that

− log2 λ ≥ c
2(c+m) , − log2 θ ≥ c+log2k

c+m , − log2‖b‖2 ≥
c+1

2 , andε0 = ε1. Our recommen-
dations for the parameter values of ARMADILLO are given in Table 1. Note thatc is
the key length for Applications I and III and also the digest length for Application II.

8

Table 1.Parameter vectors.

Vector k J c m r t
A 128 128 80 48 6 128
B 192 192 128 64 9 192
C 240 240 160 80 10 240
D 288 288 192 96 12 288
E 384 384 256 128 15 384

6 ARMADILLO2

Ever since the first version of ARMADILLO, we have developed an updated design,
called ARMADILLO2, that is even more robust than the versionpresented in Fig. 1. In
fact, ARMADILLO2 brings in a new compression function, calledQ, which is not only
more compact in hardware thanP, but also addresses security concerns brought about
during the continuous analyzes of ARMADILLO. For these reasons, ARMADILLO2 is
our preferred design choice. Due to space limitations, further details about the security
analysis of ARMADILLO2 are omitted. ARMADILLO2 is defined by

(Vc,Vt) = ARMADILLO2(C,U) = Q(X,C‖U)⊕X, whereX = Q(U,C‖U).

We call the new permutationQ, instead ofP as in Fig. 1, to avoid confusion. The main
novelties are:

– there isno complementation of thek-bit input Xinter = C‖U anymore; as a con-
sequence, theσi permutations (and thereforeQ) now operate onk-bit dataC‖U ,
instead ofC‖U‖C‖U , leading to a more compact design;

– a new permutationQ which interleavesσi ’s, i ∈ {0,1}, with an xor using the
k-bit constant bitstringγ = 1010· · ·10; Q is defined recursively asQ(s‖b,X) =
Q(s,Xσb ⊕ γ) andQ(/0,X) = X, for b∈ {0,1} and bitstringssandX;

– the outermostQ is controlled by a data-dependent value,X = Q(U,C‖U), in con-
trast to simplyC‖U in Fig. 1;

In the new structure ofQ, the output bias disappears and we can taker = 1 andt = k.

7 Hardware Implementation and Performance

There exist different demands on the implementation and theoptimization meanings for
various application scenarios. In this context, the scalability of ARMADILLO allows
to deploy the implementation in a very wide realm of area and speed parameters, which
constitutes the most essential trade-off in electronics circuits. The implementation of the
P function, using the building block, is depicted in Fig. 2(b). It accepts an input vector
of 2k bits and a key ofJ bits. It consists of a variable numberN of permutation stages, all
identical, and each stage essentially requires 2k multiplexers (Fig. 2(a)). One register of

9

2k bits is needed to hold the input and/or intermediate data, aswell as oneJ-bit register
to hold the permutation key. At each cycle, these registers are either loaded with new
data/key or fed back the output data/key for a new permutation round, depending on the
state of the load signal. The numberN of permutations executed in each cycle can be
adjusted, the only restriction being thatJ be an integer multiple ofN. The output data is
the 2k bits vector resulting from the permutation round, and the output key is theJ−N
bits remaining to be processed. This building block can be flexibly assembled into a

b

din[0]

din[1]

din[2k-1]

dout[0]

dout[1]

dout[2k-1]
2k

J
J-

N
N stages

keyin

Xinter||Xinter

load

J-
N

2k

0

S-1

J

clk
en

keyout

out

0

2k

(a) (b)

Fig. 2. Hardware implementation of the ARMADILLO function. (a) one permutationstage. (b)
P function building block.

T-stage pipeline, where each stage performs a numberR= J/(N ·T) of permutation
rounds (building blocks) before passing the results to the next stage and accepting new
input from the previous stage. In that case, the throughput is 1/R items per cycle and
the latency isJ/N cycles, the parameters being linked by the equalityR·N ·T = J.
The latency / throughput / cost trade-off can be adjusted, the two extreme cases being
R= 1 (fully pipelined, resulting in a throughput of 1 item per cycle) andT = 1 (fully
serial, resulting in a throughput ofS/J items per cycle). Obviously, the more pipeline
stages, the more hardware replication and therefore the higher the cost in area and
power. To construct the complete hash function of Fig. 1, we essentially need to add
a state machine (which is little more than a counter) around the permutation function
block, and the final XOR operation.

Metrics for evaluating performanceIn order to compare different cryptographic func-
tions, several metrics can be taken into account. The security is of course the primary
concern. The silicon area, the throughput, the latency and the power dissipation are
other metrics of interest, and can be traded-off for one another. For example, the power
dissipation is nearly proportional to the clock frequency in any CMOS circuit, there-
fore, power can be reduced by decreasing the clock frequencyand thus at the expense
of throughput. Conversely, throughput can be increased by running at a faster clock

10

frequency, up to a maximum clock frequency which is process-and implementation-
dependent. Another example is serialization, where an operation is broken into several
steps executed in series, allowing to reuse the same hardware, but again at the cost of a
longer execution time. Through serialization, throughputand latency can be traded-off
for area, down to a point where operations can not be broken into smaller operations
anymore and we have reached a minimum area. Given this large design space, compar-
ing the relative merit of different cryptographic functions is a challenging task.

The approach taken in [2] (and numerous other publications)includes comparing
the area of synthesized circuits as reported in the literature or estimated by the authors
in gate-equivalent (GE). It is notable though that the GE unit of measure, while be-
ing convenient because it is process-independent, is very coarse. For example, does the
reported area after synthesis include the space needed for wiring? Typically, the uti-
lization of a routed circuit can be in the range of 50%–80%, and is especially critical
when using a limited number of metal layers for routing. A synthesis tool may report
an estimated routing area, but in all cases it may vary to a large extent after physical
implementation. Consider also that one design may have scanchains inserted while an-
other may not, which may increase the register area by as muchas 20–30% and require
extra interconnections. Furthermore, different standardcells may be of varying area
efficiency; as an illustration of this fact, a comparison of gate-equivalent figures from
different standard-cell libraries can produce different results with a ratio up to23. For
instance, a simple 2-input multiplexer can lead to 2.67 GE or 1.67 GE from one library
to the other. Taking into account all these factors, it is clear that such a comparison can
have a large margin of error, unless the circuits being compared have been implemented
in the exact same conditions.

Besides comparing areas, the authors of [2] also use a metriccalled efficiency, which
is defined as the ratio of the throughput (measured at a fixed clock frequency) over the
area. It may seem at first sight that such a metric provides a more general measure of
quality, since it may be fair to give up some area for a higher throughput, however it is
flawed in that it does not consider the possibility of tradingoff throughput for power.
Indeed, according to this metric, two designs A and B would bedeemed of equal value
if, for example, A’s throughput and area were twice B’s throughput and area, respec-
tively. However, if B’s power dissipation is half that of A atthe same clock frequency,
then by doubling B’s operating frequency, its throughput can be made equal to that of
A while consuming the same power and still occupying a smaller area. Clearly then, B
should be recognized as superior to A, which can be captured by dividing the metric
by the power dissipation, thus making it independent of the power/throughput trade-off.
However, this does not come without its own problems, since the power dissipation is
an extremely volatile quantity. Being subject to the same error factors as the area as de-
scribed above, it also depends heavily on the process technology, the supply voltage, and
the parasitic capacitances due to the interconnections. Furthermore, it can vary largely
depending on the method used to measure it (i.e. gate-level statistical or vector-based
simulation, or SPICE simulation). As if this were not enough, different standard-cell
libraries also exhibit various power/area/speed trade-offs, for example, a circuit imple-
mented with a high-density library is likely to result in a lower power figure than the
same circuit implemented with a general-purpose library, for a similar gate count.

11

Nevertheless, a fairer figure of merit would need to include the influence of power
dissipation. In order to keep process-independent metrics, we can assume that the power
is proportional to the gate count.4 This is reasonable since the dynamic power in CMOS
circuits is proportional to the total switched capacitance, which correlates to the area.
We propose therefore to use a figure of merit defined as FOM= throughput/GE2. In
practice, this is a coarse approximation, since it does not take into account switching
activity or the influence of wire load; it is nevertheless fairer than not including power
dissipation at all, since it tends to favor designs with smaller area (at equal throughput)
which are very likely to dissipate less power.

Synthesis ResultsTable 2 presents the results of synthesis for the hash function de-
scribed above in a 0.18µm CMOS process using a commercial standard-cell library,
with the parameters given in Sect. 5. Synthesis was performed with Synopsys Design
Compiler in topographical mode, in order to obtain accuratewire loads. The power
consumption was evaluated with Synopsys Primetime-PX using gate-level vector-based
analysis.

In RFID applications, the latency is constrained by the communication protocols
(though the constraint is relatively easily satisfiable) but a high throughput is not nec-
essary, designating a fully serial implementation as the ideal candidate. ThereforeT is
set toT = 1. The numberN of permutations per clock cycle in the permutation function
is set toN = 1, which is favorable to smaller area and power consumption for the tight
power budget associated with RFID applications. The clock frequency is set to 1MHz,
which is a representative value for the target application.

In hash mode we hashm bits per compression. In encryption mode we encryptt/r
bits per compression. The throughput values given in Table 2correspond to hash mode.

Our goal for selectingT = 1 andN = 1 was to minimize the hardware. The area in
the proposed implementation is roughly proportional to

(kreg ∗ (2k+J)+klog ∗ (2k(N+1)+J))T

for some constantskreg andklog.
To maximize the FOM withT given, we can show that we should in theory pick

N =

(

kreg
klog

+1

)(

1+
J
2k

)

Forkreg ≈ 2klog andJ= k, this isN= 4.5. In practice, the best choice is to takeT = 1 and
N = 4 for ARMADILLO2 in context A, for which we would get an area of4030 GE,
77µW, and a latency of 44 cycles (1.09 Mbps for hashing or 2.9 Mbpsfor encryption).

8 Comparison

Table 3 shows a comparison of hardware implementations of ARMADILLO in the hash
function setting, relative to other hash functions such as MD4, MD5, SHA-1, SHA-

4 In the same spirit as the GE unit of measure, a more interesting metric wouldbe to divide
the power byCunit ·V2

DD, whereCunit is the input capacitance of an inverter. However, this is
not applicable to compare other published implementations since these quantities are usually
unknown

12

Table 2.Synthesis results at 1MHz.

N=1 N=4
Algorithm Area Power Throughput LatencyArea Power Throughput Latency

(GE) (µW) (kbps) (cycles) (GE) (µW) (kbps) (cycles)
ARMADILLO-A 3972 69 375 128 5770 133 1500 32
ARMADILLO-B 6598 117 333 192 9709 237 1333 48
ARMADILLO-C 8231 146 333 240 12217 300 1333 60
ARMADILLO-D 8650 177 333 288 14641 368 1333 72
ARMADILLO-E 13344 228 333 384 19669 513 1333 96

ARMADILLO2-A 2923 44 272 176 4030 77 1090 44
ARMADILLO2-B 4353 65 250 256 6025 118 1000 64
ARMADILLO2-C 5406 83 250 320 7492 158 1000 80
ARMADILLO2-D 6554 102 250 384 8999 183 1000 96
ARMADILLO2-E 8653 137 250 512 11914 251 1000 128

256, and MAME according to [2]. We computed the throughput inkbps at a clock rate
of 100 kHz. We added the best FOM results for KATAN and KTANTANwith 64-bit
blocks from [3]. Algorithms are categorized in terms of security by taking into account
the digest size. In each category, we listed the algorithms by decreasing order of merit.
To estimate the FOM we assumed that the power was proportional to the area. So, it is
the speed divided by the square of the area. These figures showthat different versions
of ARMADILLO2 provide clear advantage for hashing, either in terms of area, or of
throughput, or of overall merit.

Table 3. Implementation comparison for hash functions with throughput at 100 kHz.

Algorithm Digest Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (µm) (nanobit/cycle.GE2)

ARMADILLO2-A 80 48 4030 44 109 0.18 67.17
ARMADILLO2-A 80 48 2923 176 27 0.18 31.92

H-PRESENT-128 [2] 128 128 4256 32 200 0.18 110.41
ARMADILLO2-B 128 64 6025 64 1000 0.18 27.55

MD4 [9] 128 512 7350 456 112.28 0.13 20.78
ARMADILLO2-B 128 64 4353 256 250 0.18 13.19

MD5 [9] 128 512 8400 612 83.66 0.13 11.86
ARMADILLO2-C 160 80 7492 80 100 0.18 17.81
ARMADILLO2-C 160 80 5406 320 250 0.18 8.55

SHA-1 [9] 160 512 8120 1274 40.18 0.35 6.10
ARMADILLO2-D 192 96 8999 96 100 0.18 12.35

C-PRESENT-192 [2] 192 192 8048 108 59.26 0.18 9.15
ARMADILLO2-D 192 96 6554 384 25 0.18 5.82

MAME [24] 256 256 8100 96 266.67 0.18 40.64
ARMADILLO2-E 256 128 11914 128 100 0.18 7.05

SHA-256 [9] 256 512 10868 1128 45.39 0.35 3.84
ARMADILLO2-E 256 128 8653 512 25 0.18 3.34

13

Table 4. Implementation comparison for encryption with throughput at 100 kHz.

Algorithm Key Block Area Time Throughput Logic FOM
(bits) (bits) (GE) (cycles/block) (kb/s) (µm) (nanobit/cycle.GE2)

DES [18] 56 64 2309 144 44 0.18 83.36
PRESENT-80 [1] 80 64 1570 32 200 0.18 811.39

Grain [11] 80 1 1294 1 100 0.13 597.22
KTANTAN64 [3] 80 64 927 128 50 0.13 581.85

KATAN64 [3] 80 64 1269 85 75 0.13 467.56
ARMADILLO2-A 80 128 4030 44 291 0.18 179.12

Trivium [11] 80 1 2599 1 100 0.13 148.04
PRESENT-80 [19] 80 64 1075 563 11 0.18 98.37
ARMADILLO2-A 80 128 2923 176 73 0.18 85.12

mCrypton [14] 96 64 2681 13 500 0.13 684.96
PRESENT-128 [1] 128 64 1886 32 200 0.18 562.27

HIGHT [13] 128 64 3048 34 189 0.25 202.61
TEA [23] 128 64 2355 64 100 0.18 180.31

ARMADILLO2-B 128 192 6025 64 300 0.18 82.64
ARMADILLO2-B 128 192 4353 256 75 0.18 39.58

AES-128 [8] 128 128 3400 1032 12 0.35 10.73
ARMADILLO2-C 160 240 7492 80 300 0.18 53.45
ARMADILLO2-C 160 240 5406 320 75 0.18 25.66

DESXL [18] 184 64 2168 144 44 0.18 94.56
ARMADILLO2-D 192 288 8999 96 300 0.18 37.04
ARMADILLO2-D 192 288 6554 384 75 0.18 17.46
ARMADILLO2-E 256 384 11914 128 300 0.18 21.13
ARMADILLO2-E 256 384 8653 512 75 0.18 10.02

9 Conclusions

This paper suggested a new hardware dedicated cryptographic function design called
ARMADILLO. Applications for ARMADILLO include MACs, hashing for challenge-
response protocols, PRNG and as a stream cipher.

References

1. Bogdanov,A., Knudsen,L.R., Leander,G., Paar,C., Poschmann,A., Robshaw,M.J.B.,
Seurin,Y., Vikkelsoe,C.: Present: a Ultra-Lightweight Block Cipher. CHES’07, LNCS,
vol. 4727, pp. 450–466. Springer (2007)

2. Bogdanov,A., Leander,G., Paar,C., Poschmann,A., Robshaw,M.J.B., Seurin,Y.: Hash Func-
tions and RFID Tags: Mind the Gap. CHES’08, LNCS, vol. 5154, pp. 283–299. Springer
(2008)

3. De Cannìere,C., Dunkelman,O., Kneževíc,M.: KATAN & KTANTAN: a Family of Small
and Efficient Hardware-Oriented Block Ciphers. CHES’09, LNCS, vol. 5747, pp. 272–288,
Springer (2009)

4. De Cannìere,C., Preneel,B.: Trivium Specifications. eSTREAM technical report (2006)
http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf

5. Daemen,J., Govaerts,R., Vandewalle,J.: A Hardware Design Model for Cryptographic Algo-
rithms. ESORICS’92, LNCS, vol. 648, pp. 419–434. Springer (1992)

6. Daemen,J., Govaerts,R., Vandewalle,J.: A Framework for the Design of One-Way Hash
Functions Including Cryptanalysis of Damgård One-way Function based on a Cellular Au-
tomaton. ASIACRYPT’91, LNCS, vol. 739, pp. 82–96. Springer (1991)

7. Damg̊ard, I.B.: A Design Principle for Hash Functions. CRYPTO’89, LNCS,vol. 435,
pp. 416–427. Springer (1989)

14

8. Feldhofer,M., Dominikus,S., Wolkerstorfer,J.: Strong Authentication for RFID Systems Us-
ing the AES Algorithm. CHES’04, LNCS, vol. 3156, pp. 357–370, (2004)

9. Feldhofer,M., Rechberger,C.: A Case Against Currently Used Hash Functions in RFID Pro-
tocols. On the Move to Meaningful Internet Systems OTM’06, LNCS, vol.4277, pp. 372–
381. Springer (2006)

10. Garber,D.: Braid Group Cryptography. CoRR, vol. abs/0711.3941, pp. 1–75 (2007)
11. Good,T., Chelton,W., Benaissa,M.: Hardware Results for Selected Stream Cipher Candi-

dates. Presented at theState of the Art of Stream Ciphers SASC’07, Bochum, Germany (2007)
12. Hell,M., Johansson,T., Meier,W.: Grain: a Stream Cipher for Constrained Environments. In-

ternational Journal of Wireless and Mobile Computing. vol. 2, pp. 86–93(2007)
13. Hong,D., Sung,J., Hong,S., Lim,J., Lee,S., Koo,B.S., Lee,C., Chang,D., Lee,J., Jeong,K.,

Kim,H., Kim,J., Chee,S.: HIGHT: a New Block Cipher suitable for Low-Resource Device.
CHES’06, LNCS, vol. 4249, pp. 46–59. Springer (2006)

14. Lim,C., Korkishko,T.: mCrypton: A Lightweight Block Cipher for Security of Lowcost RFID
Tags and Sensors. Information Security Applications WISA’05, LNCS,vol. 3786, pp. 243–
258. Springer (2005)

15. Merkle,R.C.: One way Hash Functions and DES. CRYPTO’89, LNCS, vol. 435, pp. 416–
427. Springer (1989)

16. Moldovyan,A.A., Moldovyan,N.A.: A cipher based on data-dependent permutations. Journal
of Cryptology, (15):1, pp. 61–72 (2002)

17. Ouafi,K., Vaudenay,S.: Pathchecker: An RFID Application for Tracing Products in Supply-
Chains. Presented at theInternational Conference on RFID Security 2009, Leuven, Belgium
(2009)

18. Poschmann,A., Leander,G., Schramm,K., Paar,C.: New Lightweight DES Variants Suited for
RFID Applications. FSE’07, LNCS, vol. 4593, pp. 196–210. Springer(2007)

19. Rolfes,C., Poschmann,A., Leander,G., Paar,C.: Ultra-Lightweight Implementations for
Smart Devices - Security for 1000 Gate Equivalents. CARDIS 2008, LNCS, vol. 5189,
pp. 89–103. Springer (2008)

20. Secure Hash Standard.Federal Information Processing Standardpublication #180-2. U.S.
Department of Commerce, National Institute of Standards and Technology (2002)

21. Tillich,J.P., Źemor,G.: Hashing withSL2. CRYPTO’94, LNCS, vol. 839, pp. 40–49. Springer
(1994)

22. Wheeler,D.J., Needham,R.M.: TEA: a Tiny Encryption Algorithm.FSE’94, LNCS, vol. 809,
pp. 363–366. Springer (1994)

23. Yu,Y., Yang,Y., Fan,Y., Min,H.: Security Scheme for RFID Tag. Technical report WP-
HARDWARE-022, Auto-ID Labs white paper (2006) http://www.autoidlabs.org/single-
view/dir/article/6/230/page.html

24. Yoshida,H., Watanabe,D., Okeya,K., Kitahara,J., Wu,J., Küçük,Ö., Preneel,B.: MAME: A
Compression Function With Reduced Hardware Requirements. CHES’07, LNCS, vol. 4727,
pp. 148–165. Springer (2007)

15

