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General Research Question: Range Proofs

New Efficient Protocol for Range Proofs

Range (Interval) Proof

Public parameters: range Φ = [L ,H) of integer elements,
C = Com(x)

Prover Verifier
x ∈ Φ

PK {x : C=Com(x) ∧ x∈Φ} //

x must not be revealed (zero-knowledge)

Honest Verifier Model (Malicious Verifier possible)

Better Efficiency

Practically Competitive
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Motivation

Community Interest

Cryptography Primitives

Credential Revocation (Freshness of a Token)

Anonymous Credentials (Identity and Authentication Proofs)

Concrete Examples

Strict age anonymity (e.g. under 26, but older than 18).

e-voting protocols, e-auctions, etc.
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Background

Zero-Knowledge Proofs

Full security of cryptographic protocols is often achieved by
having a zero-knowledge proof (of knowledge).

Zero-knowledge: does not leak any extra information

Proof: the actions of any party are consistent with his
committed input Com(x)

We actually are interested in Σ-protocols (see the paper).
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Background

Homomorphic Commitments

To construct efficient ZK proofs, one needs to assume that
Com satisfies nice algebraic properties.

Homomorphic commitment: Com(x) ·Com(x′) = Com(x +x′).

Then

Com(x)a =
∏

a

Com(x) = Com(ax).

From this trivially,∏
i

Com(xi)ai = Com

∑
i

aixi

 for any integers ai .
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Background

Additive Combinatorics
Define A +B := {a+b : a ∈ A ∧b ∈ B} and b ∗A := {ba : a ∈ A }.

A +B is a sumset, b ∗A is b-dilate of A .

Additive combinatorics is the subject that studies the
properties of sumsets.
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Background

Zero-Knowledge Proofs and Additive Combinatorics

To prove that C = Com(x)∧x ∈ Φ:
Set Ci = Com(xi) for some xi .
ZK-prove that Ci = Com(xi)∧xi ∈ Φi for all i,
where Φ =

∑
bi ∗Φi .

Compute C = Com(x) =
∏

Com(xi)bi .

Requires:
Efficient sumset-presentation Φ =

∑`−1
i=0 bi ∗Φi .

⇒ `� n with n small.
Efficient ZK-proofs that Ci = Com(xi)∧xi ∈ Φi .
⇒ small structured sets Φi .
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Folklore Bit Commitment

Folklore Bit Commitment

Public parameters: Φ =
[
0,2k
)
, C and Ci

Prover Verifier

x ∈ Φ, x =
∏k−1

i=0 xi2i

C = Com(x), Ci = Com(xi)

PK {(xi , ∀i) : Ci=Com(xi ) ∧ xi∈{0,1}}

OR−Proof ∼2 Schnorr proofs
//
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Folklore Bit Commitment

Schnorr proof (the typical Σ-protocol)

Prover Verifier
x = logg h h

d = gu, u ∈R Zp
d //

c ∈R Zp
coo

r = u+cx r // gr ?
= dhc
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Folklore Bit Commitment

Folklore Bit Commitment

Public parameters: Φ =
[
0,2k
)
, C = Com(x) and Ci = Com(xi)

Prover Verifier

x ∈ Φ, x =
∏k−1

i=0 xi2i

PK {(xi , ∀i) : Ci=Com(xi ) ∧ xi∈{0,1}}

OR−Proof ∼2 Schnorr proofs
//

Properties
Large Complexity: O (k )

2x loss of efficiency for arbitrary upperbound: Φ = [0,H].
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LAN’02

Lipmaa, Asokan, Niemi, 2002

Decompose [0,H] as following:

[0,H] =
∑log2 H−1

i=0 Gi ∗ [0,1] with Gi := b(H+2i)/2i+1c.

Twice more efficient than folklore proof for arbitrary H.

Easy to prove that xi ∈ [0,1].

Communication complexity: Θ(logH).

Did not use the language of additive combinatorics.
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CCS’08

Camenisch, Chaabouni, Shelat 2008

Write [0,u` −1] =
∑

ui ∗ [0,u−1].

Efficient ZK proof that Ci = Com(xi)∧xi ∈ [0,u−1] done by
letting the verifier sign the values 0, ...,u−1, and the prover to
prove that he knows signatures on all values xi .

Uses specific signature scheme based on bilinear pairings.

By selecting optimal u, the communication complexity is
Θ(logH/ log logH).

Missing restriction for the OR-composition.

If H , u` −1, twice less efficient.
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Contribution

Problem that we solved
Generalize LAN’02 to the case u > 2.

LAN’02: [0,H] =
∑log2 H−1

i=0 Gi ∗ [0,1] with Gi := b(H+2i)/2i+1c.
CCS’08: [0,u` −1] =

∑
ui ∗ [0,u−1].

Write [0,H] =
∑`−1

i=0 Gi ∗ [0,u−1]+ [0,H′].
` 6 logu(H+1) and H′ < u−1.
if (u−1) | H then H′ = 0.

We provide a semi-closed form to compute Gi .
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Intuition

Basic Idea
First write: [0,H] = [0,H0] = G0 ∗ [0,u−1]+ [0,H1].

Optimal G0 is: G0 = b(H0+1)/uc.

Hence H1 = H0− (u−1)G0.

If H1 > u−1, then recursively set

Gi = b(Hi +1)/uc,

Hi+1 = Hi − (u−1)Gi .

This process stops within ` 6 logu(H+1) steps.

Hence H′ = H` = H− (u−1) ·
∑`−1

i=0 Gi = H− (u−1) · bH/(u−1)c.
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Theorems

New Range Proof

We can write [0,H]=
∑`−1

i=0 Gi ∗[0,u−1]+[0,H′], with ` 6 logu(H+1),
Gi given by recursive formulas, and H′ = H−bH/(u−1)c · (u−1).

Optimal case reached when u ≈ log2 H/ log2 log2 H.
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Theorems

Semi-Closed Form for Gi

Let H =
∑

hiui . Then Gi =

⌊
H

ui+1

⌋
+

hi +1+
(∑i−1

j=0 hj mod (u−1)
)

u

.
See the paper for a proof by induction (requires some case
analysis).
LAN’02 result follows with u = 2.
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Additional Optimization

More Details
Recall that if (u−1) | H then H′ = 0.

Instead of x ∈ [0,H], we prove that (u−1)x ∈ [0, (u−1)H].

Range proof twice more efficient than CCS’08 for general H.
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Conclusion
New range proof, twice more efficient than state of the art.

Errors in CCS’08 corrected.

Still room for further work (journal paper in progress).
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Questions?

LAN’02: Helger Lipmaa, N. Asokan and Valtteri Niemi. Secure
Vickrey Auctions without Threshold Trust. In Matt Blaze, editor,
Financial Cryptography 2002, volume 2357 of Lecture Notes in
Computer Science, pages 85-101, Southampton Beach, Bermuda,
March 11-14, 2002. Springer-Verlag.

CCS’08: Jan Camenisch, Rafik Chaabouni, and abhi shelat.
Efficient protocols for set membership and range proofs. In Josef
Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in
Computer Science, pages 234-252. Springer, 2008.
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