
Extensible Transactional Memory Testbed✩

Derin Harmancia,1, Vincent Gramolia,b, Pascal Felbera, Christof Fetzerc

aUniversity of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
bEPFL, Station 14, CH-1015 Lausanne, Switzerland

cDresden University of Technology, D-01062 Dresden, Germany

Abstract

Transactional Memory (TM) is a promising abstraction as it hides all synchronization complexities from the program-
mers of concurrent applications. More particularly the TM paradigm operated a complexity shift from the application
programming to the TM programming. Therefore, expert programmers have now started to look for the ideal TM that
will bring, once-for-all, performance to all concurrent applications. Researchers have recently identified numerous issues
TMs may suffer from. Surprisingly, no TMs have ever been tested in these scenarios. In this paper, we present the
first to date TM testbed. We propose a framework, TMunit, that provides a domain specific language to write rapidly
TM workloads so that our test-suite is easily extensible. Our reproducible semantic tests indicate through reproducible
counter-examples that existing TMs do not satisfy recent consistency criteria. Our performance tests identify workloads
where well-known TMs perform differently. Finally, additional tests indicate some workloads preventing contention
managers from progressing.

Key words: Transactional memory, semantics, performance.

1. Introduction

Transactional Memory (TM) is a programming language
abstraction that simplifies concurrent programming by
hiding complex synchronization primitives. Programmers
can make a program thread-safe by simply labeling regions
of sequential code as transactions: either all the transac-
tion changes take effect, the transaction commits, or none
of them take effect, the transaction aborts.

The drawback of the TM paradigm is the induced com-
plexity inherent to the development of such an abstrac-
tion. Democratizing concurrent programming initiated a
complexity shift from the application level to the TM level
itself, and the new challenge is to develop a TM that would
be reasonably efficient under a various set of workloads.

In this paper, we address this issue by testing a series of
TMs. More precisely, we test their semantics to make sure
they fulfill the expectations of application programmers
and we test their performance to make sure their efficiency
remains acceptable whatever the contention can be.

For the past few years, researchers from industry and
academia have devoted much effort to study transac-
tional memory semantics and to highlight important
open questions. One question asked in [2] is crucial

✩Part of this work has already been presented at the non-archiving
ACM SIGPLAN Workshop on Transactional Computing [25].

1Corresponding author. Address: Rue Emile-Argand 11, B-119,
CH-2009 Neuchâtel, Switzerland, Phone: +41 32 718 2734, Fax: +41
32 718 2701, E-mail address: derin.harmanci@unine.ch.

for the compliance of new transactional code with non-
transactional legacy code: How should a transaction be-
have in presence of concurrent non-transactional accesses
(in a weak-atomicity model)? Another question is to con-
sider whether it is a waste of time to check that a trans-
action must abort [17]: Should a transaction abort even
though its commit would not violate consistency? A final
question concerns the TM guarantees when the memory
model is not defined [41]: What result could we expect
from a TM implementation when the memory model of
the application language relaxes the program order of the
code running on each thread?

These questions indicate the essential role of specific in-
terleavings of conflicting operations in transactions. Vari-
ous examples have been described as code fragments that
may expose anomalies when transactional operations are
executed in a certain order [2, 17, 23, 36, 41, 49, 52] but
no tests of real TMs have been reported.

Testing concurrent programs in a reproducible manner
is not an easy problem [13, 42, 55]. One might think of
recording the events of the execution at run-time to replay
them later on. Unfortunately such recording may directly
affect the way events are interleaved. Exhaustive testing
of concurrent executions is also tedious, when practical, as
the number of executions to test grows exponentially with
the number of events each thread executes. Conversely,
the amount of possible transactional operation executions
is much more reasonable, which makes them testable. We
believe that developing a TM is the task of skilled pro-
grammers that are used to avoiding lower-level concurrent

Preprint submitted to Journal of Parallel and Distributed Computing September 30, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147961028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

programming issues. Our goal is thus to evaluate TMs on
reproducible transaction operation executions to address
existing open issues.

Initially: x=0, y=0
Thread 1 Thread 2
atomic {
x=1;

y=x;
x=2;

}

Definitions: x = 0; y = 0;
Transactions: T := W(x,1), @L, W(x,2);
Schedules: S := T@L, { y=x }, T;
Invariants: [y != 1];

Figure 1: Dirty read test: a simple pathological scenario that may
lead to a dirty read (y = 1) on the left-hand side, and the corre-
sponding specification to test if the TM avoids the dirty read on the
right-hand side. Note that y = x is executed outside transactions
and we define a label @L in transaction T to specify the interleaving
of operations in the schedule S.

Consider, for instance, the well-known problem of dirty
reads. On the left-hand side of Figure 1, the first thread
executes a transaction (represented as an atomic block)
that updates the same location x twice while the second
thread concurrently reads location x. Since the transac-
tion should appear as if it were executed atomically, it
should not be possible to have y = 1. This would corre-
spond to a dirty read of location x by the second thread.
Observe that, when both threads execute in parallel, some
interleavings of operations may never produce dirty reads.
To test appropriately that a given TM avoids this prob-
lem, we propose, on the right-hand side of Figure 1, the
specification of a dirty read unit test. The interleaving of
the transactions is defined in a schedule that enforces the
read operation of x by the second thread to occur between
the two atomic write operations of the first thread. The
invariant checks whether a dirty read occurs in this specific
schedule. Such a test language specification is of crucial
importance for testing TM behaviors in particular situa-
tions, notably in scenarios with concurrent transactional
and non-transactional accesses.
In this paper, we present the first to date TM extensible

testbed. We proceed by first describing our testing frame-
work TMunit dedicated to ease the specification of TM
workloads. The results indicate unexpected caveats in re-
cent TM implementations. For instance, we are the first to
show that WSTM violates opacity and virtual-world syn-
chrony and we provide a counter-example as a unit-test
for TM. Finally, our test-suite is easily extensible for fu-
ture use by the TM community as it builds upon a novel
language for specifying TM workloads.

1.1. Contributions.

We propose the first to date TM testbed. Some of our
tests have recently been proposed in the literature as po-
tential problematic workloads on which TM would behave
unexpectedly. Unfortunately none of these problems have
been experimented on real TM systems as far as we know.
Our testbed relies on the use of a novel framework,

TMunit, which we have especially designed to provide
a domain-specific language dedicated to TM workloads.
TMunit allows users to rapidly specify benchmarks to

evaluate and compare TMs, as well as unit tests to val-
idate the behavior of a specific implementation. TMu-

nit runs a given TM on some, possibly randomized, work-
load and records the performance statistics. The specified
benchmarks can be executed by dynamically interpreting
the workload specification and mapping transactional ac-
cesses to an underlying TM, or for best performance, by
generating a corresponding program to be compiled into a
standalone application.

We applied our testbed to six state-of-the-art TM li-
braries that are E-STM, RSTM, SwissTM, TinySTM, TL2
andWSTM (while we use the term “TM” for generality, we
only consider software transactional memories, STMs, in
the remainder of the paper). Our main results (i) demon-
strate which TMs fail on pathological scenarios because of
consistency violation, presence of non-transactional code
or over-conservative semantics, (ii) indicate that efficient
TMs may have very poor performance in very specific cir-
cumstances while alternative TMs may perform better,
(iii) show schedules in which WSTM violates opacity and
virtual-world synchrony [30] in case no additional valida-
tion is performed by the programmer, and (iv) illustrate
a livelock execution due to the use of Passive contention
manager [53].

Besides these results, we believe that TMunit will be
helpful not only for TM developers to validate and improve
performance of their TM, but also for TM users to choose
the most efficient TM support for their specific application
workload.

1.2. Availability

Our testbed including TMunit and the necessary files
to test new TM programs are available at http://www.

tmware.org/tmunit.

1.3. Roadmap

In Section 2, we present TMunit, the new testing
framework our results are based on. In Section 3, we
briefly introduce the state-of-the-art TM libraries we test
in the paper. Sections 4 and 5 test, respectively, the se-
mantics and the performance of the TMs while Section 6
illustrates the performance of contention managers. Sec-
tion 7 lists the work related to the testing of concurrent
programs and Section 8 concludes the paper.

2. TMunit

Evaluating TMs requires to test their behavior not only
in response to minimal workloads (by unit testing) but also
in response to more complex workloads (by performance
testing). In this section, we describe TMunit, the testing
framework we have developed to rapidly write performance
and semantics tests for TMs.

2

2.1. Overview

Here, we describe the main components of TMunit

their interactions being depicted in Figure 2. TMunit

executes a synthetic workload written in a domain-specific
language, on a dedicated TM, and records performance
statistics and test results. To this end, TMunit uses a
parser to transform the workload into an executable. This
parser is written using the lex and bison tools. Depend-
ing on the choice of the user, it can either output an inter-
preted automaton, to execute the workload dynamically, or
a generated automaton, to reduce the runtime overheads.

TMUNITSynthetic

description

Transactional

trace

Input language parser

Dynamic

automaton

Generated

automaton

C code

Execution

Statistics

& logs

Abstract TM interface

TinySTM TL2
Other

STM
...

Figure 2: Architectural overview of TMunit.

2.1.1. Automata

The interpreted automaton is a data structure repre-
senting the workload. Typically, this data structure com-
prises a set of linked lists, each representing a transac-
tion whose nodes are the operations to execute. This data
structure allows loops and conditional executions.
The generated automaton is the translation of the con-

figuration file into source files in a specific programming
language.2 These source files can then be compiled and
executed as a stand-alone application.
While the interpreted automaton can be used to in-

terpret and execute the configuration file in a one-step
process, the generated automaton executes with negligible
overheads, as shown later in Section 5. In contrast, the
interpreted automaton is more convenient for execution of
simple unit tests, e.g., when testing TM semantics.

2.1.2. Execution

The automata can be executed in two different modes:
the schedule mode and the parallel mode. In the sched-
ule mode, the execution corresponds to the sequence of
transactional operations described in the schedule defini-
tion of the given workload. Each transaction is executed
in a separate thread and only one thread is active at a
time. This mode is mostly convenient for unit tests (see

2Currently, the C language is supported for generated automata.

Section 2.3). TMunit can also automatically generate
schedules and execute them. In such a case, TMunit will
generate schedules that correspond to all possible inter-
leavings of the transactional operations (where each trans-
action runs on a separate thread). In the parallel mode,
the execution is performed according to a thread specifi-
cation described in the given workload. In this execution
mode threads execute concurrently.

2.1.3. Abstract TM interface

Each automaton communicates with the underlying TM
using a standard TM interface to initialize the transac-
tional memory and thread data structures and to delimit
transactions, e.g., start and commit, but also to execute
transactional operations, e.g., read and write. TMunit

has generic calls for these operations and the collection
of these generic calls form its abstract TM interface. To
plug a new TM to TMunit a user simply needs to map
a transactional operation of this TM to its correspond-
ing generic TMunit call (using the header file), and to
recompile TMunit.
Although this paper focuses on the results obtained with

software transactional memory, the interface is generic
enough to support hardware transactional memory (HTM)
as well. TMunit has been successfully adapted to be used
with AMD’s Advanced Synchronization Facility (ASF) [1]
instruction set, which provides HTM support. The adap-
tation relied essentially on replacing software barriers with
hardware barriers. TMunit has been used to test and
identify bugs in ASF.

2.2. Simplicity and expressiveness

The language has been designed to be simple enough to
specify transactions and schedules in an abstract way as
usually found in academic papers [2, 17, 23, 36, 41, 49, 52]
and expressive enough to reproduce classical transactional
benchmarks using multiple data structure accesses.

1 T1 := R(x), R(y), W(x), W(y); // R = read, W= write
2 T2 := R(x, a), R(y, b), W(x, a−10), W(y, b+10); // a, b = thread locals

Listing 1: Two sample transactions.

Listing 1 illustrates how simple it is to specify basic
workloads. The first transaction, T1, reads two memory
locations before updating them (note that transaction be-
ginning and commit are implicit). Memory locations are
designated by symbolic addresses that will be mapped to
shared memory by TMunit. Here, we are not interested
in the value read or written, i.e., we are only interested in
possible conflicts. In contrast, T2 stores the values read in
local variables and writes updated values to shared mem-
ory, similar to a transfer between bank accounts. One can
specify far more sophisticated behavior in transactions, as
will be discussed next.
A workload (unit test or performance test) is written as

a configuration file divided into six sections:

3

1. The properties section presents the execution settings
and parameters.

2. The definitions section specifies the variables and con-
stants.

3. The transactions section defines the operations that
compose each transaction, using a simple but suffi-
ciently powerful language.

4. The threads section specifies each thread as a trans-
action pattern.

5. The schedules section describes specific executions
with a pre-determined interleaving of operations.

6. The invariants section specifies assertions that must
be valid at each step of a schedule.

2.3. Unit test specification

Here, we consider a specific kind of tests especially
suited for TMs: they represent a deterministic scenario
of a parallel execution. As motivated in the introduc-
tion, there is a crucial need for unit testing TMs to outline
problems due to certain interleavings of conflicting oper-
ations. Note that unit tests in TMunit can include in-
terleavings with non-transactional accesses, which allows
testing strong atomicity support of TMs (as in Figure 1).
Listing 2 illustrates our domain-specific language on the
zombie transactions example of [2] (we have actually re-
produced the equivalent variant of the zombie transactions
example as sent by Dan Grossman on the tm-languages
mailing list on July 1, 2008). The write to z by T2 on Line 6
is dead code under single-lock semantics and should not
happen. However, some TM implementations with eager
update might perform the write and undo it later, causing
the assertion to fail. Such a unit test can help determining
whether the TM provides single global lock atomicity.

1 Definitions: // variables and constants
2 y = 0; x = 0; z = 0; // shared variables, initially all 0
3
4 Transactions: // specification of transactions
5 T1 := W(x,1), @L1, W(y,1); // W = write, @L1 = label
6 T2 := {? [R(x) != R(y)] : W(z,1) }; // R = read, {?:} = if statement
7
8 Schedules: // specification of schedules
9 S := T1@L1, T2, T1; // execute T1 until L1, then T2, finish T1

10
11 Invariants: // invariants to fulfill
12 [z != 1]; // unprotected read of z

Listing 2: Unit test for zombie transactions [2].

2.3.1. Operations and transactions.

We assume a single address space of bounded size.
Threads can only communicate by writing to, and read-
ing from, the shared address space. We denote reads by
R and writes by W. These two operations can only be ap-
plied to shared memory variables. Variables are defined
in the definitions section and are either integers (of the
size of a memory word) or arrays of integers. One can
also use thread-local variables. Their name must start by
an underscore symbol ‘ ’ and is scoped at the level of the
transaction (they can be referred to as <tx-name>:<var>

to avoid ambiguity). Variable names with only capital let-
ters are considered as constants and their value cannot be
modified. A read operation accesses a shared variable, or
an entry in a shared array. The read operation returns
the content of the shared variable as provided by the un-
derlying TM. The result can optionally be recorded in a
thread-local variable. We denote this by R(<sh-var>) or
R(<sh-var>, <loc-var>). Similarly, a write operation
accesses a shared variable W(<sh-var>) to write a value
that can be optionally specified W(<sh-var>, <val>). We
refer to shared variable accesses via read and write oper-
ations as protected accesses, and to direct shared variable
accesses (e.g., x = 0) as unprotected accesses. TMunit

supports arithmetic expressions involving numbers, vari-
ables, random values, arithmetic operators, and parenthe-
ses that yield an integer value.
Each transaction is given a unique name and represents

a finite sequence of operations, delimited by commas, im-
plicitly started by a “begin” statement and ended by a
“commit”. It is possible to explicitly abort a transaction
by using notation A to implement sophisticated test sce-
narios. Inside a transaction and between operations, labels
can be specified by @<label> and local variables can be
assigned values. In Listing 2, T1 contains two operations
(Line 5) while T2 contains one operation and an if state-
ment with two operations (Line 6). Label @L1 is used in
T1’s definition as a marker for specifying the schedule as
explained below.

2.3.2. Schedules and assertions.

Schedules specify a pre-defined interleaving of the trans-
actional operations for testing or debugging a TM. If no
schedules are predefined, all different schedules of trans-
actional operations will be automatically generated and
tested, which may take time. If schedules are specified
they are defined in the schedules section and they specify
the execution order of the transactions operations using
<tx-name>@<label> to indicate that <tx-name> executes
alone until label @<label>. If no label is specified, the
transaction executes until the end. Note that, during the
execution of a schedule, each transaction executes in its
own thread, but only one thread is active at each step of
the schedule. This is a design choice in order to provide re-
peatable schedules and unit tests. Multiple schedules can
be specified but only one will be executed at a time; this
schedule can be specified using command-line parameters.
The scheduler acts as a sequential process executing

transactional operations in turn. In schedule execution
mode, TMunit creates a thread per each defined trans-
action and an additional scheduler thread. The scheduler
thread performs the switching between threads thanks to
the barriers that correspond to the labels in the transac-
tion definitions. There are also two additional barriers; one
is used only for the scheduler and the other is an initial
common barrier for all the threads except the scheduler.
The barriers are used to pass a token between the threads
and at a given time there is only one thread that owns the

4

token. Initially, the scheduler thread owns the token and
it passes the token to the first scheduled transaction. The
thread owning the token executes until it encounters the
next barrier, which corresponds to a label in the configu-
ration file, and then passes the token back to the scheduler
thread. If the thread encounters no barriers/labels it ex-
ecutes until the end of the corresponding transaction be-
fore passing the token to the scheduler. Upon receipt, the
scheduler thread passes the token to the next scheduled
transaction’s thread. This continues until the end of the
defined schedule.
Invariants and assertions define tests that the execution

must pass. Assertions are boolean expressions and can be
specified in transactions or schedules as [<bool-expr>].
Invariants are assertions that are automatically evaluated
at each step of a schedule. If an assertion evaluates to false
or if an invariant is violated during the execution, then
the test fails. The program prints an error message. The
evaluation context of variables within boolean expressions
used in assertions and invariants are as follows.

• Local variables are evaluated in the context of the
transaction they are used in.

• Unprotected accesses, like [z != 1] (Line 12 of List-
ing 2), are evaluated by directly reading the memory
location, i.e., without using the underlying TM.

• Protected accesses, like [R(x) != 1], evaluate in a
dedicated transaction that performs only the pro-
tected access.

An example schedule for the “zombie transactions” sce-
nario [2] is presented at Line 9 of Listing 2. In this sched-
ule, transaction T1 executes up to label L1, and then trans-
action T2 runs before T1 resumes. As a result, this sched-
ule forces T2 to read x between the two writes of T1. If
T2 reads a dirty value 1, it will update z (Line 6) and the
invariant (Line 12) will be violated, leading to the failure
of the test.

2.4. Performance test specification

Performance tests are generally longer than unit tests
since they execute more complex specifications to mea-
sure the performance of a TM. More precisely, they use
randomization and loops to test a large set of schedules.
Note that these specifications do not define schedules, thus
the threads run concurrently for performance tests. Here,
we present additional language features on a slightly more
complex example that corresponds to the complete speci-
fication of a widely used micro-benchmark: a sorted linked
list.
The resulting TMunit benchmark is 28 lines of code

written in our language (see Listing 3) while it was orig-
inally more than 1000 lines of code written in C (as it is
available in the TinySTM distribution). This is mainly due
to the unnecessary specification of threads and statistics
management that are automatically handled by TMunit.

This simple TMunit version will be experimentally com-
pared to the original benchmark in Section 5.2.

1 Properties: // global properties
2 RandomSeed = 1; // use random seed for RNG
3 ReadOnlyHint = 1; // tag read−only transactions
4 Timeout = 10∗1000∗1000; // maximum test duration (us)
5
6 Definitions: // variables and constants
7 SIZE = 4096; // size of the list (constant)
8 m[0 .. 2∗SIZE+1] = 0; // memory range for list nodes
9 NB = <1 .. SIZE>; // random value (constant) in range 1. . .SIZE

10 T2: f = 0; // flag to alternate between adds and removes
11 T2: v = 0; // position of last added value
12
13 Transactions: // specification of transactions
14 T1 := {# k = [0 .. NB−1] : R(m[2∗k]), R(m[2∗k+1]) }, // search element
15 R(m[2∗NB]) ;
16 T2 := {? [f == 0] : // add/remove element
17 {# k = [0 .. NB−1] : R(m[2∗k]), R(m[2∗k+1]) }, // add element
18 R(m[2∗NB]), W(m[2∗NB−1]),
19 { f = 1, v = NB }
20 |
21 {# k = [0 .. v−1] : R(m[2∗k]), R(m[2∗k+1]) }, // remove element
22 R(m[2∗ v]), R(m[2∗ v+1]),
23 W(m[2∗ v−1]), W(m[2∗ v]), W(m[2∗ v+1]),
24 { f = 0 }
25 } ;
26
27 Threads: // specification of threads
28 P1, P2 := < T1 : 80% | T2 : 20% >∗;

Listing 3: Complete specification of the sorted linked list
micro-benchmark.

2.4.1. Randomness and loops.

To implement realistic performance tests, our language
provides powerful constructs such as random executions
and loops. Randomness is provided by special constructs
<min..max> that evaluate to an integer value chosen uni-
formly at random between min and max (inclusive). This
random expression notation can appear everywhere a num-
ber is expected. For instance in Listing 3, constant NB at
Line 9 represents an arbitrary element of a linked list of
size 4096. Note that “random constants” are evaluated
once at the beginning of each transaction, i.e., they get a
different, immutable value for every transaction execution.
Transactions may include loops that repeat a predeter-

mined number of times and loops that execute until a con-
ditions becomes true. The former type of loop is illustrated
in Listing 3 Line 14, where transaction T1 repeatedly reads
addresses representing nodes in the linked list (each node
has two data items: a value (read using R(m[2*k])) and a
pointer to the next node (read using R(m[2*k+1])). This
transaction mimics the search for a random element in a
linked list, with a number of iterations determined by the
random constant NB. The last operation correspond to the
read of the searched value (or the first larger value in case
it is not found).
Conditional execution is another important mechanism

to specify realistic workloads. Our language supports a
generalized form of if-then-else statement. Conditional ex-
pressions may depend on the state of variables and con-
stants. For instance, in Listing 3, transaction T2 uses a flag
f to alternatively add or remove an element. If the flag
is 0 then a new element is added (Lines 17–19); otherwise
the last inserted element is removed (Lines 21–24). This
approach is used by linked list micro-benchmarks to main-
tain the size of the list almost constant during the whole
experiment. Note that the reason there is a single write

5

(W(m[2*NB-1]) at Line 18) upon node insertion is that
the new node is not shared until commit time; in contrast
there are three writes upon removal (the writes at Line
23) because one needs to detect concurrent accesses to the
removed node, which can be achieved by overwriting it.
This specification closely mimics the behavior of a custom
linked list micro-benchmark with the notable exception of
the placement of the node data in memory (determinis-
tic vs. unpredictable placement); yet, as we shall see in
Section 5, this difference does not affect the results of per-
formance tests.

2.4.2. Threads and transaction patterns.

The threads section specifies the combination of trans-
actions that will execute in the context of each thread.
Unlike transactions, threads may have infinite length and
are defined as patterns using a syntax close to regular ex-
pressions. Each thread that executes at runtime must be
defined. By default, the benchmark will execute one in-
stance of each thread but command-line parameters can
be used to indicate which threads to start and their num-
ber of instances (threads are referred to by their name).
Multiple thread names can share the same specification. A
thread definition may include repetitions (fixed, random,
or unbounded), execution of one out of several transac-
tions chosen at random with predetermined probabilities,
sequences and grouping of transactions. As an example,
Listing 3 presents two threads P1 and P2 that both execute
transactions T1 with probability 80% and transaction T2

with probability 20% in an endless loop. Such experiments
are interrupted after a specified timeout or with a signal.

3. TM Libraries

In this section, we introduce the six state-of-the-art TM
libraries that we evaluate.
WSTM [26] is an early TM implementation written in

C that associates version numbers to memory locations.
WSTM uses an ownership table that maps memory loca-
tions to ownership records in order to track the rights of
transactions to update locations. A hashing function is
used to ensure that the size of the ownership records does
not depend on the number of memory locations, hence the
size remains fixed and two different addresses may map to
the same ownership record. WSTM has been especially
designed to ensure that a transaction can commit only if
none of its ownerships protect a location modified by a
non-committed transaction. In contrast, WSTM allows a
transaction to access a location that has been modified by
a transaction that did not commit yet. This implementa-
tion choice is mainly due to performance concern, however,
WSTM provides the programmer with an explicit valida-
tion in case the programmer wants to make sure that a
transaction accesses only committed values. This valida-
tion is not required and alternative sandboxing technique
can be combined with WSTM to avoid infinite loops or
division-by-zero errors.

TL2 [11] is a time-based TM implementation written
in C where transactions log their write operations to redo
them at commit-time using a two-phase-locking strategy.
A transaction reading an address either returns the value
logged in memory (if it already wrote it), or returns the
value present in the shared memory (if it has never writ-
ten it). All transactions read and/or increment a global
counter to efficiently detect at commit time whether a read
value has been modified. If the value has been modified
the transaction has to abort, otherwise it can commit. Dif-
ferent global counter managements have been proposed to
enhance scalability by minimizing the contention on this
global counter, e.g., gv5 and gv6 [34]. Read operations are
invisible so that a transaction that reads an address does
not prevent other concurrent transactions from modify-
ing this address. As a drawback, TL2 algorithm requires
a transaction to execute completely before detecting that
one of its first read operations has been invalidated by
another transaction.
TinySTM [14] is another time-based TM implementa-

tion written in C. This algorithm builds upon LSA [48]
but uses a single version per address for the sake of ef-
ficiency. More precisely, TinySTM chooses a timestamp
interval for the serialization point of each transaction and
may try to extend it during the transaction execution, as
opposed to TL2 that never extends it. For instance, if
a transaction accesses an address with a version number
above its timestamp interval, it tries to extend its inter-
val by making sure that none of its read addresses have
been updated by a concurrent transaction. It aborts only
if the extension is impossible whereas TL2 aborts in any
case. TinySTM can be parameterized to either defer the
write to commit-time as in TL2, we refer to this version
of TinySTM as write-back and denoted by WB, or to ex-
ecute immediately the writes in-memory, we refer to this
version of TinySTM as write-through and denoted by WT.
TinySTM can be parameterized to use one among two dif-
ferent locking strategies. The first locking strategy, is simi-
lar to TL2 in the sense that transactions lock all addresses
to write at commit-time, this locking strategy is called
commit-time locking and is denoted by CTL. The second
locking strategy is different as transactions lock the ad-
dresses as soon as the transaction executes a write, this
strategy is called encounter-time locking and is denoted
by ETL.
RSTM [10] is a transactional memory library that can be

configured in various ways and that was originally object-
based. A word-based version of RSTM that resembles the
TL2 algorithm has been proposed. We use both object-
based and word-based versions of RSTM. On the one hand,
the object-based version adopts a lazy acquirement strat-
egy hence the write operations and their corresponding
lock acquirement are logged during the transaction execu-
tion and deferred to commit time. In addition, the reads
are invisible in the sense that no transactions can detect
that another transaction has read a value. Finally, the
object-based version runs by default a priority-based con-

6

tention manager named Polka [53]. On the other hand, the
default word-based version of RSTM is timestamp-based
and also adopts a lazy versioning and lazy acquirement
strategy so that write operations are deferred to commit
time similarly to TL2 and the write-back commit-time
locking version of TinySTM. Again, there are multiple
ways to configure RSTM and we execute it in its default
configuration mode except in Section 6 where we use its ea-
ger acquirement strategy to test the contention managers.

SwissTM [12] is a C++ implementation similar to
TinySTM in that it uses a global counter and an interval
extension. SwissTM combines the encounter-time with the
commit-time locking strategies because it detects write-
write conflicts eagerly and read-write conflicts lazily. Ea-
ger write-write detection is interesting as it avoids wasting
efforts in executing the whole transaction before detecting
that a roll-back is necessary. Lazy read-write conflict de-
tection is interesting as it avoids the most common type
of unnecessary aborts where a read address is overwrit-
ten by a concurrent transaction before commit-time [17].
In contrast with other STMs, SwissTM also comprises an
adaptive contention manager strategy that uses the pas-
sive contention manager [53] ideal for small transactions
and the greedy contention manager better suited for long
transactions.

E-STM [15] provides elastic transactions, a recently pro-
posed transactional model that ensures atomicity only at
the application level to enhance concurrency. Besides pro-
viding also regular transactions, in elastic ones it ensures
that only write operations and couples of consecutive op-
erations executed by the same transaction are atomic.
Its novelty lies in the combination of these elastic trans-
actions whose size is determined during execution, with
regular transactions whose implementation is built upon
TinySTM-ETL. More precisely, an elastic transaction en-
sures that all its write operations plus the read that pre-
cede them (in case there is one) looks like a regular trans-
action and it ensures that all couples of consecutive oper-
ations look like regular transactions as well. For instance,
if an elastic transaction comprises three consecutive read
operations on locations x, y, z, then the reads of x and y

form a regular transaction and the reads of y and z form
another regular transaction, but the three reads do not
form a regular transaction.

4. Testing TM Semantics

As already mentioned, many issues related to the seman-
tics of TMs have been identified in the literature. Those
range from “unnecessary abort” [17] to “publication” [41]
and are usually expressed as an interleaving of operations
executed by few threads. They may lead to unexpected
results when executed on a given TM. In this section, we
present several semantic tests. Their results are summa-
rized in Table 1.

4.1. Semantics

We first enumerate a series of consistency criteria that
specify the behavior a transactional system should adopt.
The goal here is not to give formal definitions of consis-
tency criteria but rather to recall the reader with the gen-
eral meaning of these criteria; for further details please
refer to the associated cited papers.

• Serializability is a consistency criteria originally de-
fined in [45] that has been extensively used to charac-
terize transactional database systems. For the sake of
simplicity, we consider in the remainder only read-
/write objects and we assume that all executions
respect the sequential specification of these objects
meaning that a read must return the last written value
or the default one in case no such write exists. Seri-
alizability requires that any execution of the system
must appear equivalent to an execution where all its
transactions would have executed sequentially.

• Linearizability was defined for non-transactional oper-
ations [29]. The application of linearizability to trans-
actional systems requires that all executions must be
equivalent to an execution where transactions would
be executed sequentially and where non-concurrent
transactions3 must be in the same order. Lineariz-
ability is a strictly stronger consistency criterion than
serializabilty.

• Opacity aims at preventing transactions from access-
ing inconsistent states that would result in division-
by-zero errors or infinite loops [23]. Opacity requires
that all committed or aborted transactions appear as
if they were executed atomically in an order satisfying
the real-time order and that all transactions including
aborted ones access only consistent system states at
any time.

• Elastic-opacity applies to high level operations that
require much weaker guarantees than the previous cri-
teria propose [15]. Typically, elastic-opacity assumes
a model with two types of transactions, elastic and
normal, and requires that if we cut elastic transac-
tions into smaller sub-transactions, then we obtain an
execution composed of normal transactions and sub-
transactions that is opaque. Elastic-opacity guaran-
tees operation atomicity at the application level, its
goal is to enhance concurrency by relaxing the unnec-
essary atomicity provided at read/write level. Elastic-
opacity is a strictly weaker consistency criterion than
opacity.

• Single global-lock atomicity (SGLA) is a criterion sim-
ple to reason with as it describes the semantics of

3Two transactions are non-concurrent if there is no common point
in time where the two transactions have started and none of them
have terminated yet.

7

1 Definitions:
2 x=0; y=0; t=0;
3 Transactions:
4 T1 := W(x,1);
5 T2 := R(x), @L, R(y, t);
6 T3 := W(x,2), W(y,2);
7 Schedules:
8 S := T1, T2@L, T3, T2;
9 Invariants:

10 [t!=2];

1 Definitions:
2 x=0; y=0;
3 Transactions:
4 T1 := R(x), @L, R(y);
5 T2 := W(x);
6 T3 := W(y);
7 Schedules:
8 S := T1@L, T2, T3, T1;
9 Invariants:

10 [No−abort];

1 Definitions:
2 x=0; y=0; z=0; t=0;
3 Transactions:
4 T1 := W(x), W(y);
5 T2 := W(z), W(t);
6 T3 := R(z), @L2, W(y);
7 TL := R(x), R(y), @L1, R(z), W(t);
8 Schedules:
9 S := TL@L1, T3@L2, T1, T2, T3, TL;

10 Invariants:
11 [No−abort] ;

...
[Th3:T3] W(y)
[Th3:T3] W(y,2)
[Th3:T3] Try C
[Th3:T3] C

[Th2:T2] R(y)
[Th2:T2] R(y,2)
Invariant ’[_t!=2]’ failed.

...
[Th3:T3] S
[Th3:T3] W(y)
[Th3:T3] W(y,23264)
[Th3:T3] Try C
[Th3:T3] C

[Th1:T1] R(y)
[Th1:T1] A
Invariant NO_ABORT fails.

...
[Th2:T2] W(t)
[Th2:T2] W(t,27225)
[Th2:T2] Try C
[Th2:T2] C

[Th3:T3] W(y)
[Th3:T3] W(y,23264)
[Th3:T3] Try C
[Th3:T3] A

Invariant NO_ABORT fails.

Figure 3: (Left) The opacity test for which WSTM fails while other TMs succeed. WSTM trace appears below. (Middle) The
linearizability violation test for which all TMs pass. The tests terminates with an abort failure which indicates linearizability is not violated.
The the trace for TL2 appears below. (Right) The serializability violation test that all TMs pass. The tests terminates with an abort
failure indicating that serializability is not violated. The trace for TL2 appears below.

transactions to be as if all transactions access a single
global lock during its whole execution [33].

• Virtual world consistency requires that all commit-
ted transactions appear as if they were executed
atomically in an order satisfying the order of non-
concurrent transactions and that all transactions in-
cluding aborted ones access only consistent system
states at any time. Hence, this criterion is weaker
than opacity as it allows the set of all transactions
(aborting and committing) to not appear as executed
atomically, as long as the subset of committed trans-
actions does so [30].

In the upcoming parts, we could not run all tests from
the articles cited above because some tests (e.g., gran-
ular inconsistent reads of [41]) depend on the memory
model used. As TMunit is independent from any mem-
ory model, those tests would require the user to indicate
directly in the configuration file, which optimizations/con-
straints its targeted memory model allows/ensures. Al-
though it could be a very interesting future work, com-
paring memory models remains out of the scope of this
paper.

4.2. Safety tests

The safety tests are interesting to better understand the
consistency criterion ensured by TMs. Some TMs ensure
opacity [23], some other ensure serializability. As pointed
out in [17], however, some serializable TMs may also be
opaque.
Here, we chose four safety tests from the literature. The

opacity test (1) presented in Figure 3 (left) comes from [23]
(Fig. 1) and was used to illustrate the difference between
strong atomicity and opacity requirements. The lineariz-
ability test (2) in Figure 3 (middle) and taken from [17]
(Fig. 2), aims at showing that a serializable TM may not
be linearizable. The serializability test (3) depicted in Fig-
ure 3 (right) and coming from [49] (Fig. 2) exhibits that

a TM is not serializable. Finally, the SGLA test (4) illus-
trated in Figure 4 and given in [41] (Fig. 11) indicates how
single-global-lock-atomicity (SGLA) [41] can be violated
to allow more concurrency as the disjoint-lock atomicity
would allow.

1 Definitions:
2 x =0; y =0; z=0;
3 t1=0; t2=0;
4 u =0;
5 Transactions:
6 T1 := W(z,1);
7 T2 := R(x, u), W(t1, u), @L,

W(y,1);
8 Schedules:
9 S:= T2@L, {x = 1}, T1,{t2 = y},

10 T2, [!((t1==0) && (t2==0))]
11 Invariants:
12 [No−abort];

...
------- x = 1 -------
[Th1:T1] S
[Th1:T1] W(z)
[Th1:T1] W(z,1)
[Th1:T1] Try C
[Th1:T1] C
------- t2 = 0 -------

[Th2:T2] W(y)
[Th2:T2] W(y,1)
[Th2:T2] Try C
[Th2:T2] C

Assertion [!((t1==0)&&(t2==0))]
not satisfied.

Figure 4: The SGLA violation test for which all TMs fail. The
tests terminates with the violation of the assertion in the schedule
which indicates that SGLA is violated. Right-hand side shows the
trace obtained from running TL2.

TL2, TinySTM, RSTM, and SwissTM pass all the crit-
ical tests we proposed except the SGLA test. Although
this does not prove that they ensure the corresponding
criterion, it simply shows that those TMs do not violate
consistency in these specific scenarios. For the tests, E-
STM has been restricted to its elastic transaction imple-
mentation, and E-STM fails to pass the linearizability and
serializability tests. Since opacity is known to be strictly
stronger than these two criteria we deduce that E-STM
violates also opacity. This was expected as the elastic
transactions of E-STM weaken intentionally the normal
transactions for high level operations. Thus, testing the
linearizability of an integer set rather than the read/write
would reveal that E-STM ensures linearizability, but at a
higher level of semantics.
Unexpectedly, however, WSTM successfully passes the

linearizability and serializability tests but not the opac-
ity test which indicates that WSTM is not opaque. The

8

detailed TMunit trace gave us some information about
the reason of opacity violation: opacity as opposed to lin-
earizability requires that no transaction (even though it
aborts) can see the result of the modification of another
concurrent transaction. As shown in the interference test
of Figure 9 (top), WSTM allows this to happen. The de-
sign of WSTM intentionally separates the isolation from
the transactional memory abstraction, however, the pro-
grammer can explicitly validate to avoid isolation issue
or can assume sandboxing that will prevent isolation er-
rors like division-by-zero. This observation raises the ques-
tion whether isolation should be part of the transactional
memory semantics, as recently suggested by opacity and
virtual-world synchrony.

4.3. Unnecessary abort tests

It is often the case that TMs unnecessarily abort a trans-
action even though there is no conflict, e.g., because dis-
tinguishing between a likely conflict and a real one would
be too expensive. When the cost of aborts is high, how-
ever, it is important that a transaction commits whenever
there is no risk of violating safety. We refer to an unneces-
sary abort [17] as an abort that occurs at some transaction
that could have committed safely. As unnecessary aborts
may have a non-negligible impact on TM performance, it
is important to identify them.

1 Definitions:
2 x=0; y=0;
3 Transactions:
4 T1 := R(x), @L, R(y);
5 T2 := W(y,1);
6 Schedules:
7 S := T1@L, T2, T1;
8 Invariants:
9 [No−abort];

1 Definitions:
2 x=0; y=0;
3 Transactions:
4 T1 := W(x), @L;
5 T2 := R(x);
6 Schedules:
7 S := T1@L, T2, T1;
8 Invariants:
9 [No−abort];

...
[Th2:T2] S
[Th2:T2] W(y)
[Th2:T2] W(y,1)
[Th2:T2] Try C
[Th2:T2] C

[Th1:T1] R(y)
[Th1:T1] A
Invariant NO_ABORT fails.

[Th1:T1] S
[Th1:T1] W(x)
[Th1:T1] W(x,14666)
[Th1:T1]:L

[Th2:T2] S
[Th2:T2] R(x)
[Th2:T2] A

Invariant NO_ABORT fails.

Figure 5: (Top) Write-during-readonly test for which TL2 and
word-based RSTM abort while other TMs commit (TMunit gives
the same trace for TL2 and RSTM, represented on the right-hand
side). (Bottom) Invisible-write test where TinySTM’s ETL and
WT variants fail to commit both transactions without aborting.
Right-hand side shows the trace for TinySTM-ETL.

We test the six TM implementations on three unnec-
essary abort tests. The write-during-readonly test (5) is
presented in Figure 5 (top). Word-based RSTM and TL2
fail this test while other TMs succeed. The reason for the
success of TinySTM and SwissTM is because they both
use the LSA validation extension mechanism while word-
based RSTM and TL2 do not. E-STM would have aborted
only if T2 would also write x in addition to y otherwise it
considers that T1 is serialized after T2 and passes the test.

The invisible-write test (6) given in Figure 5 (bottom)
comes from the [17] (Fig. 1) and checks whether unneces-
sary aborts may occur when the write operation is made
visible. TinySTM-ETL and E-STM fail the invisible-write
test because they lock the to-be-written address eagerly as
soon as a write occurs leading to a conflict later on.

1 Definitions:
2 arr[0..1]=0;
3 Transactions:
4 T1 := W(arr[0],1), @L;
5 T2 := W(arr[1],2);
6 Schedules:
7 S := T1@L, T2, T1;
8 Invariants:
9 [No−abort];

[Th1:T1] S
[Th1:T1] W(arr[0])
[Th1:T1] W(arr[0],1)
[Th1:T1]:L

[Th2:T2] S
[Th2:T2] W(arr[1])
[Th2:T2] A

Invariant NO_ABORT fails.

Figure 6: The false-sharing test for which SwissTM, E-STM and
word-based RSTM abort while the other TMs commit (the trace of
SwissTM is given on the right-hand side).

The false-sharing test (7) described in Figure 6 accesses
consecutive memory locations. Having a lock protect mul-
tiple consecutive addresses can have the undesirable conse-
quence of producing false sharing, i.e., two threads access-
ing distinct memory locations can conflict because they
share the same lock. As shown by this test, SwissTM,
E-STM and word-based RSTM abort, meaning they use
a common lock on (at least) two consecutive addresses.
Unlike other STMs, they are subject to false sharing.

1 Definitions:
2 SIZE = 3;
3 m[0 .. SIZE] = 0;
4 Transactions:
5 T1 := R(m[0]),@L1,W(m[1]);
6 T2 := W(m[0]);
7 T3 := W(m[0]), W(m[2]);
8 T4 := R(m[0]), R(m[1]),@L2,R(m[2]);
9 Schedules:

10 S := T1@L1, T2, T4@L2, T3,T4,T1;
11 Invariants:
12 [T1:No−abort];

Figure 7: The virtual-world test indicating whether an unnecessary
abort happens in transaction T1. All TMs fail this test because they
all abort T1 as if committing it would violate safety even though
T4 has to abort).

The last unnecessary abort test is the virtual-world
test (8). Virtual-world consistency is weaker than opacity
as mentioned before because it allows aborting transac-
tions to have a view of the system that is different from
the view of other transactions (committed or aborted).
The virtual-world test indicates an execution in which a
transaction T1 has to abort to ensure opacity while T1

could commit without violating virtual-world consistency.
Hence, when considering virtual-world consistency defini-
tion the abort of T1 is unnecessary. We can see that all
considered TMs fail this test as they unnecessarily abort
T1. We are not aware of any TM library that could en-
sure virtual-world consistency without ensuring opacity,
and the efficiency of such an implementation remains an
open question.

9

1 Definitions:
2 data=42; ready=0;
3 val=0 ; tmp=0;
4 Transactions:
5 T1 := W(ready, 1);
6 T2 := R(data, tmp), @L,
7 {? [R(ready)==1] :

W(val, tmp)};
8 Schedules:
9 S := T2@L, {data=1}, T1, T2;

10 Invariants:
11 [val!=42];
12 [No−abort];

...
------- data = 1 -------
[Th1:T1] S
[Th1:T1] W(ready)
[Th1:T1] W(ready,1)
[Th1:T1] Try C
[Th1:T1] C

[Th2:T2] W(val)
[Th2:T2] W(val,42)
[Th2:T2] Try C
[Th2:T2] C

Invariant ’[val!=42]’ failed.

1 Definitions:
2 x=0; y=0;
3 Transactions:
4 T := W(x,1), @L, W(x,2);
5 Schedules:
6 S := T@L, {y=x}, T;
7 Invariants:
8 [y!=1];

[Th1:T] S
[Th1:T] W(x)
[Th1:T] W(x,1)
[Th1:T]:L
------- y = 1 -------
Invariant ’[y!=1]’ failed.

Figure 8: (Top) The publication test where all TMs fail. Right–
hand side shows the trace for SwissTM. (Bottom) The dirty-read
test where only TinySTM’s WT variant fails because both transac-
tional and non-transactional writes immediately modify the mem-
ory. Right-hand side shows the trace for TinySTM-WT.

4.4. Isolation tests

We tested five critical scenarios among which three in-
clude non-transactional accesses. All considered TM im-
plementations used here ensure weak atomicity : transac-
tions appear as if they were atomic with respect to each
other but not with respect to non-transactional accesses
(we did not use the fences of RSTM that would counter-
act our schedules).
Specifically, we performed the following isolation tests.

The publication test (9), as described in Figure 8 (top),
outlines a possible difference between the TM semantics
and the lock semantics of the Java memory model [41].
The dirty-read test (10) discussed in the introduction is
specified in Figure 8 (bottom) and the zombie transaction
(11) test has been specified in Listing 2. The interference
test (12), described in Figure 9 (top), outlines a possible
interference between two transactions. Finally, in Figure 9
(bottom), the granularity test (13) raises issues relying on
the granularity of TM accesses when a coarse-granularity
may have side-effect on locations that were not intention-
ally accessed.
As expected [41], all TMs fail the publication test (9).

The reason is simply that none of the considered TMs
can ensure atomicity when non-transactional code accesses
shared data.
Only TinySTM-WT fails the dirty-read test (10), other

TMs succeed. This is due to the write-through strategy
with which updates are directly written to memory when
encountering a write operation and can potentially be re-
verted upon abort. Note that the other TMs might also
exhibit this problem if an unprotected read occurs while a
transaction is committing, but this scenario is not specified
by our schedule.
All TMs pass successfully the test of zombie-transaction

(11). First, all the TMs that use the write-back strategy
defer modification to commit time so that transaction T2

1 Definitions:
2 x=0; y=0; v=0; w=0;
3 Transactions:
4 T1 := R(x, v), @L, R(y, w);
5 T2 := W(x,1), W(y,1);
6 Schedules:
7 S := T1@L, T2, T1, [v== w];

...
[Th1:T1] R(y)
[Th1:T1] R(y,1)
[Th1:T1] Try C
[Th1:T1] A
[Th1:T1] Terminates
Assertion [_v==_w] fails.

1 Definitions:
2 arr[0..1]=0;
3 Transactions:
4 T1 := W(arr[0],1), @L;

5 Schedules:
6 S := T1@L,{arr[1]=1},
7 T1, [arr[1] == 1];

Figure 9: (Top) The interference test for which only WSTM, the
trace of which is on the right side, fails. (Bottom) The granularity
test.

reads value 0 for x. Second, TinySTM-WT aborts imme-
diately T2 when trying to read x; hence the read does not
return and the invariant is not violated.
The role of interference test (12) given in Figure 9 (top)

is to check whether a writing transaction can interfere with
a concurrently reading transaction. For TL2, TinySTM,
RSTM, SwissTM, and E-STM interference was prohibited,
meaning that the write could not interfere with an ongoing
reading transaction, even if this ongoing transaction even-
tually aborts. Conversely, WSTM allows interference and
makes a transaction read a concurrently written value be-
fore aborting. This interference is the reason why WSTM
violates opacity and virtual-world consistency (this viola-
tion has been detected in Subsection 4.2), since opacity
and virtual-world consistency both require that lineariz-
ability be satisfied and that transactions do not interfere
with aborting transactions. As a result, if the user of
WSTM is not aware of this subtle characteristics, then
his/her application may behave unexpectedly: T1 observ-
ing that x is different from y may provoke an infinite loop,
a division-by-zero or an irrevocable external event, like
missile firing [18].
A last isolation test we have specified is a granularity

test (13) depicted in Figure 9 (bottom) similar to some
of [52]. We obtained the following results: (i) no prob-
lem occurs for WSTM, TinySTM, TL2, SwissTM, word-
based RSTM, and E-STM; (ii) the problem occurs only for
object-based RSTM. As expected, word-based STMs do
not suffer from this issue as they do not buffer the whole
array to roll it back. In contrast, the object based version
of RSTM, which accesses the memory with the granular-
ity of objects, fails the test. This is due to the fact that
we consider the whole array as a single object instead of
considering that all of its elements are individual objects.

5. Testing TM Performance

In this section, we present the performance results ob-
tained with TMunit on a 4-Quad-Core AMD Opteron
Processor 8354 running at 2.2Ghz (16 cores). We tested
TinySTM, TL2, word-based RSTM, and SwissTM. We did
not include WSTM in the performance graphs because of a
problem encountered with porting the inline assembly code
to the target architecture. This issue did not prevent us

10

Test name TL2 TinySTM RSTM SwissTM WSTM E-STM
ETL CTL WT word object

Safety tests
1 opacity X X X X X X X × X

2 linearizability X X X X X X X X ×

3 serializability X X X X X X X X ×

4 SGLA × × × × × × × × ×

Unnecessary abort tests
5 write-during-read-only × X X X × X X X X

6 invisible-write X × X × X X X X ×

7 false-sharing X X X X × X × X ×

8 virtual-world × × × × × × × × ×

Isolation tests
9 publication issue × × × × × × × × ×

10 dirty-read X X X × X X X X X

11 zombie-transaction X X X X X X X X X

12 interference X X X X X X X × X

13 granularity X X X X X × X X X

Table 1: Results of our semantic test-suite obtained with the six TMs. Failures are denoted by the cross ‘×’ while successes are denoted
by the check-mark ‘X’.

from executing the performance-insensitive semantic tests
of Section 4 on another architecture. First, we investigate
TM performance in extreme scenarios. Then, we compare
the performance obtained for an existing benchmark im-
plementation with the performance of TMunit running
the corresponding specification of the benchmark.

5.1. Extreme scenarios

A powerful feature of TMunit is that it allows to
quickly design workload to test specific scenarios or sel-
dom exercised functionalities of the TMs. Here, we inves-
tigate the response of TMs in the face of extreme workloads
that highlight the differences in TM designs. E-STM is not
tested here as there is no need for using elastic transactions
in these tests and its normal transactions would have the
same performance as TinySTM-ETL. These tests demon-
strate that TM performance relies tightly on the workload
used.

 0

 400

 800

 1200

 1600

 2000

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s)

1 Definitions:
2 SIZE=1024;
3 arr[1..SIZE+100]=0;
4 AD=<1..SIZE>;
5 Transactions:
6 T := W(arr[AD]),
7 {# k=[1..100]; R(arr[AD+k])};
8 Threads:
9 P1, ..., P16 := T∗

 0

 200

 400

 600

 800

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s)

Number of threads

TinySTM-ETL
TinySTM-CTL

TL2
RSTM

SwissTM

1 Definitions:
2 N=1000;
3 arr[1..16∗N]=0;
4 Transactions:
5 T1:={#k=[1..N]; W(arr[k])};
6 T2:={#k=[N+1..N∗2];W(arr[k])};
7 Threads:
8 P1:=T1∗;
9 P2:=T2∗; ...

Figure 10: (Top) Performance tests with write-once-read-many
transactions and (bottom) with disjoint-writes transactions.

In Figure 10 (top), all threads execute a transaction

composed of one write followed by a series of reads. This
performance test is made such that the reads executed by
one thread may access the same address as the one already
written by another thread. This read-after-write pattern is
expected to emphasize the circumstances in which commit-
time locking is better suited than encounter-time lock-
ing. As expected, TinySTM-CTL and TL2 presents better
throughput than TinySTM-ETL. SwissTM takes advan-
tage of the extra version that can be accessed while a mem-
ory location is locked. An interesting observation is that
word-based RSTM throughput is significantly lower than
other STMs, despite using a commit-time locking strategy.
The authors of RSTM have hinted as a possible reason the
non-scalable libstdc++ exception mechanism used to trig-
ger a roll-back upon abort.

Figure 10 (bottom) shows a scenario that highlights the
cost of writes without contention. Threads perform series
of writes to disjoint memory regions, which implies that
there are no conflicts. One can observe that TinySTM-
ETL scales best. TL2 suffers from using commit-time lock-
ing: it needs to check for every write whether the memory
location has already been written by the same transac-
tion, which requires a traversal of the write set. To limit
the cost of this check, TL2 uses bloom filters but the over-
head is still not negligible. SwissTM performs a double
locking of the entries in the write set and, hence, is pe-
nalized when transactions write many memory locations.
RSTM again shows scalability problems due to libstdc++.
Finally, TinySTM-CTL suffers from the same problem as
TL2 but was executed without the bloom filter optimiza-
tion.

In Figure 11 (top), all threads execute a transaction
composed of multiple write operations followed by multi-
ple reads. In this performance test, operations executed by
each transaction access consecutive addresses and generate
much contention—a scenario where TM is typically less ef-
ficient than locking and contention management has great
importance. Interestingly, SwissTM scales significantly

11

 0

 100

 200

 300

 400

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s)

1 Definitions:
2 SIZE=1024;
3 arr[1..SIZE+100]=0;
4 AD1=<1..SIZE>;
5 AD2=<1..SIZE>;
6 Transactions:
7 T :=
8 {# k=[1..100]; W(arr[AD1+k])},
9 {# k=[1..100]; R(arr[AD2+k])};

10 Threads:
11 P1, ..., P16 := T∗

 0

 400

 800

 1200

 1600

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s)

Number of threads

TinySTM-ETL
TinySTM-CTL

TL2
RSTM

SwissTM

1 Definitions:
2 SIZE=256;
3 arr[1..SIZE]=0;
4 Transactions:
5 T1 := {#k=[0..15] {#j=[1..15];
6 R(arr[k∗16+j])}}; W(arr[0]);
7 T2 := {#k=[0..15] {#j=[1..15];
8 R(arr[k∗16+j])}}; W(arr[16]);
9 Threads:

10 P1 := T1∗;
11 P2 := T2∗; ...

Figure 11: (Top) Performance tests with write-many-read-many
transactions and (bottom) with false-sharing transactions.

better than the other TMs. To better understand the
reason for this behavior, we have also experimented with
TinySTM-ETL when (1) allowing transactions to read the
previous version of locked memory locations by peeking
into the write set of the lock owner, as in multi-version
LSA (TinySTM-1v), and (2) activating TinySTM’s built-
in “priority” contention manager (TinySTM-CM). Each of
these mechanisms provide noticeable improvement on this
extreme workload. The remaining optimizations consist
in choosing the right tuning parameters, as was studied
in [14]. In particular, having each lock protect a set of
consecutive memory locations (typically the size of a cache
line) improves the performance because it causes fewer
cache invalidations and reduces the number of compare-
and-swap operations, as the lock needs to be acquired only
once for several consecutive memory addresses.
To observe the influence of having a lock to protect

multiple consecutive addresses (i.e., false-sharing as men-
tioned in Section 4.3), we have created a workload in which
threads can only conflict if there is false sharing. In Fig-
ure 11 (bottom) each thread reads a series of consecutive
addresses and writes a single, distinct address. To avoid
undesirable memory effects, each write accesses an address
on a distinct cache line next to addresses read by the other
threads. This example may trigger false sharing: upon
writing, threads acquire more addresses than necessary,
including addresses that have been read by concurrent
transactions, and produce unnecessary aborts. Indeed, we
observe that both SwissTM and word-based RSTM are
subject to false sharing, while other implementations are
not.

5.2. TMunit vs. hand-crafted benchmark

Here, we compare an existing micro-benchmark, a linked
list implementation of an integer set, to its corresponding
TMunit specification (see Listing 3). The benchmark ini-
tially inserts a given number of elements in the linked list.
Then, each thread starts executing and performs a series

of search and update transactions (alternating inserts and
removals to maintain the size of the list roughly unchanged
during the whole execution) according to a given probabil-
ity. A common problem in performance tests is the over-
head introduced by the evaluation framework. As men-
tioned in Section 2 and to avoid this overhead, TMunit

can translate the specification into C code to be compiled
before execution. Here, we motivate this choice by com-
paring the results obtained using the generated technique
against the results of the existing benchmark written in C
code “by hand”, denoted by native.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

12 4 8 16 32

Number of threads

A
bo

rt
 r

at
e

(×
 1

03 tx
s/

s) TinySTM-ETL
TinySTM-CTL

TL2

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

12 4 8 16 32

Number of threads

RSTM
SwissTM

E-STM

150
275
400

 0

 25

 50

 75

 100

12 4 8 16 32

Native

T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s)

187
374 375

150
275
400

 0

 25

 50

 75

 100

12 4 8 16 32

Generated

151
290 297

Figure 12: Performance comparison of the native intset benchmark
(left) and the intset TMunit specification (right). The commit
rate is shown above and the abort rate below. Note that in order to
distinguish curves other than E-STM curve, the graphs for commit
rates have different scales above and below 100 thousand tx/s.

Figure 12 presents the throughput (top) and the abort
rate (bottom) of the linked list with an update transaction
probability of 20%. A first observation is that the gen-
erated version presents results (commit and abort rates)
very similar to the results of the hand-crafted benchmark.
We have also executed the workload on the interpreted
automaton and observed a 65% decrease in throughput
with respect to the throughput of hand-crafted bench-
mark. This clearly motivates the need for the generated
automaton.

E-STM has also been tested here because the inte-
ger set operations can benefit from the elastic transac-
tions. Actually, Figure 12 confirms that E-STM performs
best. E-STM performance is followed by TinySTM-ETL,
TinySTM-CTL and SwissTM, respectively. Word-based
RSTM executes slower than other STMs again due to the
scalability problems of libstdc++ that was pointed out
in Section 5.1. The reason why TL2’s performance is
lower than TinySTM can be explained by the differences in
timestamp management: TL2 does not perform dynamic
snapshot extension as explained in Section 4.3. We can
clearly see that E-STM is not subject to contention as op-

12

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s) Polite
Polka

Aggressive
Karma

1 Definitions:
2 SIZE = 256;
3 m[0..SIZE−1] = 0;
4 Transactions:
5 T :=
6 {# k=[0..SIZE−1]:
7 R(m[k]), W(m[k]) };
8 Threads:
9 Th := T∗;

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8T
hr

ou
gh

pu
t (

×
10

3 tx
s/

s)

Number of threads

1 Definitions:
2 SIZE=1024;
3 arr[1..SIZE+100]= 0;
4 AD1=<1..SIZE>;
5 AD2=<1..SIZE>;
6 Transactions:
7 T :=
8 {# k=[1..100]:

W(arr[AD1+k])},
9 {# k=[1..100]:

R(arr[AD2+k])};
10 Threads:
11 P1, ..., P16 := T∗;

Figure 13: Performance variation of contention managers depend-
ing on the workload. (Top) long read-write workload. (Bottom)
write-many-read-many workload.

posed to other STMs (even for more threads than proces-
sors there is no performance drop) as it uses elastic trans-
actions that ensure the minimum guarantees to satisfy the
correctness of integer set operation.

6. Testing CM Policy

In this section, we present the performance impact of
contention management policy. A Contention Manager
(CM) is a module that indicates how to solve conflicts de-
pending on which transactions should take resolution ac-
tions and which should continue. Recently, the TM com-
munity has proposed multiple CMs [22, 51, 53]: some abort
one of the conflicting transactions depending on which
transaction detects the conflict first (Aggressive, Passive),
some use exponential backoff time before resuming (Polite,
Polka), and some rely on priorities based on the amount
of past accesses (Karma, Polka, Eruption), priorities based
on the amount of past aborts (Retry), or priorities based
on time spent (Timestamp, Greedy).

6.1. Performance variations

Here we test several CMs we could find in the litera-
ture. To this end, we generated a code compatible with
the object-based version of RSTM [10] where each access
to a memory word was treated as an access to an object.
RSTM is implemented so that it can be easily parameter-
ized to run with one of these CMs. The results we obtained
on an 8-core Intel Xeon CPU X5365 running at 3.00GHz
are depicted in Figure 13.
In the long read-write workload of Figure 13 (top) every

memory location accessed is a source of conflict and all
transactions access the locations in the same order. So a

backing off policy, as in Polite and Polka, provides a first-
come-first-commit kind of ordering between transactions
and allow progress. Clearly, the Aggressive policy results
in continuous aborts and cannot provide any progress.

In the write-many-read-many workload depicted in Fig-
ure 13 (bottom), transactions forcing other transactions
to backoff may conflict later on and backoff in turn, hence
blocking for a while. Since the workload is designed to be
highly contended, such situations are most likely, thus a
simple backoff policy like Polite slows performance down.
In contrast, Polka, which incorporates an effort-based pri-
ority scheme as in Karma, copes with this problem and
performs well. Finally, Aggressive also avoids blocking.

6.2. Livelocks

As claimed in [53], the Passive CM may suffer livelocks.
We experiment the existence of this issue by providing a
dedicated workload that can be reproduced easily on other
TM/CM using TMunit.

The bank-benchmark test, specified in Listing 4, uses a
classical scenario where one thread computes the sum of
the balances of 1024 to 8192 accounts of a bank (long read-
only transaction) while the other threads concurrently per-
form transfers (short update transactions). In TM designs
with invisible reads and no fair contention management,
updates conflicting with long read-only transactions may
lead to failed validation. The problem is illustrated in
Figure 14 (left), where short transfer transactions pre-
vent the long balance transactions from committing. Fig-
ure 14 (center) shows the result when using Passive CM
in TinySTM while Figure 14 (right) presents the result
with the built-in priority-based contention manager. With
Passive CM, throughput drops to 0 when the number of
threads performing transfers reaches 3. We inspected the
corresponding TMunit trace to make sure that the cause
was the problem described in Figure 14 (left). As expected,
when using the Retry CM, the throughput is almost inde-
pendent of the number of threads performing transfers.
Unlike Passive CM, Retry CM ensures progress.

To conclude, we have experimentally demonstrated the
initial thoughts under which some CM are more progress-
friendly than others. Thanks to TMunit these scenarios
are easily reproducible for further testings and may outline
similar liveness issues in future implementations.

1 Definitions: // variables and constants
2 NB = 8192; // number of accounts (constant)
3 a[1 .. NB] = 0; // memory range for accounts
4 SRC = <1 .. NB>; // random value (constant) in range 1. . .NB
5 DST = <1 .. NB>; // random value (constant) in range 1. . .NB
6
7 Transactions: // specification of transactions
8 T1 := R(a[SRC]), R(a[DST]), W(a[SRC]), W(a[DST]) ; // transfer
9 T2 := {# k = [1 .. NB] : R(a[k]) } ; // compute balance

10
11 Threads: // specification of threads
12 P1 := T2∗;
13 P2, P3, P4, P5, P6, P7, P8 := T1∗;

Listing 4: Specification of the bank benchmark that exhibits lack
of progress (for NB=8192 accounts and 8 threads).

13

Thread 1
St
ar
t

R
(n
)

...R
(3
)

R
(2
)

R
(1
)

A
b
o
rt

St
ar
t

C
om
m
it

R
/W
(j)

R
/W
(i)

Thread 2

Thread 3
St
ar
t

C
om
m
it

R
/W
(j)

R
/W
(i)

R
es
ta
rt

R
(n
)

...R
(3
)

R
(2
)

R
(1
)

A
b
o
rt

St
ar
t

C
om
m
it

R
/W
(j)

R
/W
(i)

St
ar
t

C
om
m
it

R
/W
(j)

R
/W
(i)

St
ar
t

C
om
m
it

R
/W
(j)

R
/W
(i)

R
es
ta
rt

St
ar
t

R
/W
(j)

R
/W
(i)

Conflict Conflict

L
o
n
g
 r
e
a
d
-o
n
ly

tr
a
n
s
a
c
ti
o
n
s

S
h
o
rt
 c
o
n
fl
ic
ti
n
g

u
p
d
a
te
 t
ra
n
s
a
c
ti
o
n
s

...

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7

th
ro

ug
hp

ut
 (

tx
/s

ec
)

number of transfer threads

Passive CM

1024
2048
4096
8192

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5 6 7

th
ro

ug
hp

ut
 (

tx
/s

ec
)

number of transfer threads

Retry CM

Figure 14: Bank account benchmark suffering from the lack of progress when Passive CM is used. Scenario is given on the left, while the
throughput from Passive and Retry CMs (for 1024 to 8192 bank accounts) appear on the center and right-hand side.

7. Related Work

Here, we overview work related to the testing of trans-
actional memory. Those frameworks test concurrent ap-
plications in different ways ranging from exhaustive tests
to verify a given program, randomized tests necessary to
evaluate average performance and deterministic tests that
can be replayed to identify the causes of potential issues.

7.1. Testing the semantics of concurrent programs

The tightest related body of work relies on the dynamic
testing technique that collects information about concur-
rency defects by executing the software itself as opposed
to the static technique that analyzes source code to ex-
tract information about possible defects such as data races,
atomicity violations or deadlocks.

7.1.1. Randomized tests

Some non-deterministic testing approaches target the
detection of data races, e.g., [50], some other target the
detection of atomicity violations, e.g., [37, 38]. Since
the tested schedules cannot be exhaustive, existing frame-
works [5, 54] try to increase the schedule coverage by in-
serting sleep of yield function to produce scheduling vari-
ations. Finally, in [40], the authors use pseudo-random
tests to verify whether the execution matches the consis-
tency specified by the TM.
Unfortunately, non-deterministic tests are inherently ir-

reproducible thus they better apply to test a program as
a whole rather than to identify precise problematic sce-
narios. In contrast here, our goal is to identify the patho-
logical schedules that make TM to fail or to violate its
semantics. Hence, the reproducibility of the testing is cru-
cial for our needs.

7.1.2. Deterministic tests

A pioneering work on deterministic testing of concur-
rent programs is by Carver et al. [55], which is based
on generating deterministic schedules and replaying them
for testing. In their approach, the interleaving points of
the schedules are the synchronization operations (e.g., mu-
tex or semaphore accesses) and thus they can generate a
schedule using a sequence of synchronization operations of

the tested program. The advances in capturing possible
thread schedules of a concurrent program result in various
concurrent application schedules that can be replayed de-
terministically for concurrency defects. ConTest [13] aims
at reducing the schedule search space using some coverage
metric whereas CHESS [42] models all synchronization op-
erations as interleaving points, and restricts the schedule
search space (i) by using fair schedules and (ii) by limiting
the number of preemptions.

Verisoft [16] proposes to use systematic state-space ex-
ploration with a model-checker applied directly to the pro-
gram. In this approach the state-space corresponds to the
combined behavior of all concurrent components of the
program. This approach eliminates the redundant state
transitions based on independence of transitions.

We should mention MultithreadedTC [47] and ConAn
[35] as unit testing frameworks that use an external clock,
similar to the scheduler thread of TMunit, to synchro-
nize threads and enforce deterministic schedules for Java
programs.

Unlike aforementioned proposals that generate and test
the schedule search space of concurrent programs, we only
focus on schedule search space of TM programs. More
precisely, our goal is not to detect races on a TM meta-
data but rather detecting data races between data items
accessed by TMs. Hence, our approach inherently limits
the number of schedules to explore which makes determin-
istic testing feasible. It is noteworthy that verification of
TM correctness [19–21, 44] are based on a formal specifi-
cation of TM algorithms and not on the actual TM code
which makes the testing process more difficult. Other test-
ing tools [27] help on the step-by-step debugging of TMs
but are out of the scope of this paper.

7.2. Testing the performance of concurrent programs

Shared-memory management in concurrent programs
have been extensively evaluated as demonstrated by the
numerous multithreaded benchmarks such as SPLASH-2
[56], PARSEC [6], SPEComp [4]. Among these bench-
marks SPEComp is specialized on high performance com-
puting applications, while SPLASH-2 and PARSEC in-
clude applications from different domains. In addition,

14

there exist other multithreaded benchmark suites special-
ized to a given application domain like BioParallel [31]
dedicated to bioinformatics, ALPBench [39] dedicated to
multimedia and MineBench [43] dedicated to data mining.
The sole work we know of that attempted to port such ap-
plications to transactional memory, is by Chung et al. [9],
however, it uses lock elision which is reported to be unsafe
[7, 9].

In contrast with the aforementioned benchmarks, TM
benchmarks are very appealing as they can test any TM
as long as it fulfills the given interface requirements.
TM micro-benchmarks that are based on common data-
structure have been used to evaluate TMs at the early
stages. TL2 has been implemented on red-black trees [11]
while TinySTM has been implemented on linked-lists [14].
DSTM has been implemented on both linked-list and red-
black trees [28]. Microbench is a micro-benchmark suite
that compares recent lock-free and lock-based implemen-
tation of common data structures (including skip list, hash
table) to some pluggable TM [15]. Those benchmarks tests
few different type of transactions that modifies or searches
the data-structure.

As further attempts to mimic realistic settings, more
complex TM benchmarks have been proposed. STM-
Bench7 [24] extends the OO7 benchmark that was used
to evaluate databases. This benchmark executes several
types of workloads that access a large graph of updat-
able elements. Generally, the transactions it generates are
more complex than in micro-benchmarks as the transac-
tions can be very long without necessarily accessing com-
mon elements of the data structure. As a side-effect, it
consumes more memory than micro-benchmarks. Haskell
STM benchmark suite [46] provides both small realis-
tic applications and several micro-benchmarks written in
Haskell. Wormbench [57] intends to provide a synthetic
workload generating applications that can stress specific
designs and implementation aspects of TM systems in-
cluding TM library, code instrumentation and compiler
optimizations.

Finally TM macro-benchmarks are higher level bench-
marks that often integrates real-world applications. The
most widely used macro-benchmark suite STAMP [8] com-
prises eight different parallel applications as, for example,
an online multi-threaded reservation service or a Delaunay
triangulation algorithm. Lee-TM [3] is a benchmark suite
based on the Lee’s routing algorithm and provides imple-
mentations of the algorithm in different granularities for
both lock-based and transactional versions. RMS-TM [32]
provides 4 benchmarks with nested transactions, memory
management operations and I/O calls inside transactions
from recognition, mining and synthesis domains.

Although those macro-benchmarks are invaluable for
TM developers, they are limited by the number and type
of applications available: extending the benchmark space
requires to fully implement new applications.

8. Conclusion

This paper presents the first to date extensible testbed
for transactional memory. This work relies on the novel
TMunit framework that provides a domain specific lan-
guage to simplify the writing of Transactional Memory
(TM) tests. TMunit is efficient, thanks to its automated
code generation tool, and provides a workload specification
language that is simple and powerful. TMunit is already
available online and comes with its test-suite, hence we
hope that other researchers will contribute in extending
this test-suite. For instance, TMunit is currently being
used by AMD in the development of their advanced syn-
chronization facility [1].
We have performed extensive experiments on six TMs

and various CMs to compare their behaviors with theo-
retical expectations. We identified TMs violating SGLA,
opacity and virtual-world consistency and CMs violating
progressiveness.
Apart from the fact that TM developers can use TMu-

nit for verifying the behavior and performance of their
TM, we envisage other uses. For example, the application
developer can verify if her/his assumptions are satisfied by
the underlying TM. This could be used to select the most
efficient TM variant that still satisfies the application re-
quirements.

Acknowledgments

We are grateful to Michael Spear who pointed out some
causes for the obtained RSTM results, Patrick Marlier for
his help on adapting WSTM for TMunit, and Aleksandar
Dragojević for providing us with early SwissTM releases.
This research is conducted within the FP7 Integrated Ap-
proach to Transactional Memory on Multi- and Many-core
Computers (VELOX) project (ICT-216852) supported by
the European Commission and within the Swiss National
Foundation under grant 200021-118043.

References

[1] Evaluation of the advanced synchronization facility (ASF),
http://forums.amd.com/devblog/blogpost.cfm?threadid=

118419&catid=317 (2009).
[2] M. Abadi, A. Birrell, T. Harris, M. Isard, Semantics of trans-

actional memory and automatic mutual exclusion, SIGPLAN
Not. 43 (1) (2008) 63–74.

[3] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham,
I. Watson, Lee-TM: A non-trivial benchmark for transactional
memory, in: ICA3PP, 2008, pp. 196–207.

[4] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B.
Jones, B. Parady, SPEComp: a new benchmark suite for mea-
suring parallel computer performance, in: WOMPAT, 2001, pp.
1–10.

[5] Y. Ben-Asher, E. Farchi, Y. Eytani, Heuristics for finding con-
current bugs, in: IPDPS, 2003, p. 288.1.

[6] C. Bienia, S. Kumar, J. P. Singh, K. Li, The PARSEC bench-
mark suite: Characterization and architectural implications, in:
PACT, 2008, pp. 72–81.

[7] C. Blundell, E. Lewis, M. Martin, Deconstructing transactional
semantics: The subtleties of atomicity, in: In The 4th Workshop
on Duplicating, Deconstructing, and Debunking, 2005.

15

[8] C. Cao Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP:
Stanford transactional applications for multi-processing, in:
IISWC, 2008, pp. 35–46.

[9] J. Chung, H. Chafi, C. Minh, A. McDonald, B. Carlstrom,
K. Kozyrakis, C. Olukotun, The common case transactional
behavior of multithreaded programs, in: HPCA, 2006, pp. 266–
277.

[10] L. Dalessandro, V. J. Marathe, M. F. Spear, M. L. Scott, Capa-
bilities and limitations of library-based software transactional
memory in C++, in: TRANSACT, 2007.

[11] D. Dice, O. Shalev, N. Shavit, Transactional locking II, in:
DISC, 2006, pp. 194–208.

[12] A. Dragojevic, R. Guerraoui, M. Kapalka, Stretching transac-
tional memory, in: PLDI, 2009, pp. 155–165.

[13] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, S. Ur,
Framework for testing multi-threaded java programs, Concur-
rency and Computation: Practice and Experience 15 (3-5)
(2003) 485–499.

[14] P. Felber, C. Fetzer, T. Riegel, Dynamic performance tuning of
word-based software transactional memory, in: PPoPP, 2008,
pp. 237–246.

[15] P. Felber, V. Gramoli, R. Guerraoui, Elastic transactions, in:
DISC, vol. 5805 of LNCS, 2009, pp. 93–107.

[16] P. Godefroid, Model checking for programming languages using
verisoft, in: POPL, 1997, pp. 174–186.

[17] V. Gramoli, D. Harmanci, P. Felber, Toward a theory of input
acceptance for transactional memories, in: OPODIS, vol. 5401
of LNCS, 2008, pp. 527–533.

[18] J. Gray, A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann Publishers Inc., 1992.

[19] R. Guerraoui, T. A. Henzinger, B. Jobstmann, V. Singh, Model
checking transactional memories, in: PLDI, 2008, pp. 372–382.

[20] R. Guerraoui, T. A. Henzinger, V. Singh, Nondeterminism and
completeness in transactional memories, in: CONCUR, 2008,
pp. 21–35.

[21] R. Guerraoui, T. A. Henzinger, V. Singh, Software transactional
memory on relaxed memory models, in: CAV, 2009, pp. 321–
336.

[22] R. Guerraoui, M. Herlihy, B. Pochon, Polymorphic contention
management, in: DISC, 2005, pp. 303–323.

[23] R. Guerraoui, M. Kapa lka, On the correctness of transactional
memory, in: PPoPP, 2008, pp. 175–184.

[24] R. Guerraoui, M. Kapa lka, J. Vitek, STMBench7: A benchmark
for software transactional memory, SIGOPS Oper. Syst. Rev.
41 (3) (2007) 315–324.

[25] D. Harmanci, P. Felber, V. Gramoli, C. Fetzer, TMunit: Testing
software transactional memories, in: TRANSACT, 2009.

[26] T. Harris, K. Fraser, Language support for lightweight transac-
tions, in: OOPSLA, 2003, pp. 388–402.

[27] M. Herlihy, Y. Lev, tm db: A generic debugging library for
transactional programs, in: PACT, 2009, pp. 136–145.

[28] M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, Soft-
ware transactional memory for dynamic-sized data structures,
in: PODC, 2003, pp. 92–101.

[29] M. Herlihy, J. M. Wing, Linearizability: A correctness condition
for concurrent objects, ACM Trans. on Programming Languages
and Systems 12 (3) (1990) 463–492.

[30] D. Imbs, J. R. González de Mendvil, M. Raynal, Virtual world
consistency: A new condition for STM systems, in: PODC,
2009, pp. 280–281.

[31] A. Jaleel, M. Mattina, B. Jacob, Last level cache (LLC) perfor-
mance of data mining workloads on a CMP – a case study of
parallel bioinformatics workloads, in: HPCA, 2006, pp. 88–98.

[32] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, M. Valero, RMS-
TM: A transactional memory benchmark for recognition, min-
ing and synthesis applications, in: TRANSACT, 2009.

[33] J. Larus, R. Rajwar, Transactional Memory, Morgan & Clay-
pool Publishers, 2006.

[34] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum,
M. Olszewski, Anatomy of a scalable software transactional
memory, in: TRANSACT, 2009.

[35] B. Long, D. Hoffman, P. Strooper, Tool support for testing
concurrent Java components, IEEE Trans. Softw. Eng. 29 (6)
(2003) 555–566.

[36] J. Lourenço, G. Cunha, Testing patterns for software transac-
tional memory engines, in: ACM Workshop on Parallel and
Distributed Systems: Testing and Debugging, 2007, pp. 36–42.

[37] S. Lu, J. Tucek, F. Qin, Y. Zhou, AVIO: Detecting atomicity
violations via access interleaving invariants, in: ASPLOS, 2006,
pp. 37–48.

[38] B. Lucia, J. Devietti, K. Strauss, L. Ceze, Atom-aid: Detect-
ing and surviving atomicity violations, in: Int’l Symposium on
Computer Architecture, 2008, pp. 277–288.

[39] R. Man-Lap Li Sasanka, S. Adve, Y.-K. Chen, E. Debes, The
ALPBench benchmark suite for complex multimedia applica-
tions, in: IISWC, 2005, pp. 34–45.

[40] C. Manovit, S. Hangal, H. Chafi, A. McDonald, C. Kozyrakis,
K. Olukotun, Testing implementations of transactional memory,
in: PACT, 2006, pp. 134–143.

[41] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai,
R. L. Hudson, B. Saha, A. Welc, Practical weak-atomicity se-
mantics for Java STM, in: SPAA, 2008, pp. 314–325.

[42] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
I. Neamtiu, Finding and reproducing heisenbugs in concurrent
programs, in: OSDI, 2008, pp. 267–280.

[43] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
A. Choudhary, Minebench: A benchmark suite for data min-
ing workloads, in: Int’l Symp. on Workload Characterization,
2006, pp. 182–188.

[44] J. O’Leary, B. Saha, M. R. Tuttle, Model checking transactional
memory with Spin, in: ICDCS, 2009, pp. 335–342.

[45] C. H. Papadimitriou, The serializability of concurrent database
updates, J. ACM 26 (4) (1979) 631–653.

[46] C. Perfumo, N. Sönmez, S. Stipic, O. Unsal, A. Cristal, T. Har-
ris, M. Valero, The limits of software transactional memory
(STM): Dissecting haskell STM applications on a many-core
environment, in: Conference on Computing Frontiers, 2008, pp.
67–78.

[47] W. Pugh, N. Ayewah, Unit testing concurrent software, in:
ASE, 2007, pp. 513–516.

[48] T. Riegel, P. Felber, C. Fetzer, A lazy snapshot algorithm with
eager validation, in: DISC, 2006, pp. 284–298.

[49] T. Riegel, C. Fetzer, H. Sturzrehm, P. Felber, From causal to
z-linearizable transactional memory, Tech. Rep. RR-I-07-02.1,
Université de Neuchâtel, Switzerland (2007).

[50] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Ander-
son, Eraser: A dynamic data race detector for multithreaded
programs, ACM Trans. Comput. Syst. 15 (4) (1997) 391–411.

[51] W. N. Scherer III, M. L. Scott, Contention management in dy-
namic software transactional memory, in: Workshop on Con-
currency and Synchronization in Java Programs, 2004.

[52] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, B. Saha, Enforcing
isolation and ordering in STM, SIGPLAN Not. 42 (6) (2007)
78–88.

[53] M. Spear, L. Dalessandro, V. Marathe, M. Scott, A compre-
hensive strategy for contention management in software trans-
actional memory, in: PPoPP, 2009, pp. 141–150.

[54] S. D. Stoller, Testing concurrent Java programs using random-
ized scheduling, in: Workshop on Runtime Verification, vol.
70(4), 2002, pp. 142–157.

[55] K.-C. Tai, R. H. Carver, E. E. Obaid, Debugging concurrent
Ada programs by deterministic execution, IEEE Trans. Softw.
Eng. 17 (1) (1991) 45–63.

[56] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, The
splash-2 programs: characterization and methodological consid-
erations, in: Int’l Symposium on Computer architecture, 1995,
pp. 24–36.

[57] F. Zyulkyarov, S. Cvijic, O. Unsal, A. Cristal, E. Ayguade,
T. Harris, M. Valero, WormBench - A configurable workload
for evaluating transactional memory systems, in: MEDEA Wok-
shop, 2008, pp. 61–68.

16

