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ABSTRACT 
3D scene reconstruction from uncalibrated image sequences is 
a challenging problem. One of its critical subproblems is to 
solve for fundamental matrix in which the algebraic relations 
between consecutive images are stored. 8-point, normalized 8-
point, algebraic minimization and geometric distance 
minimization methods are tested for their performances against 
noise by synthetic and real image simulations. The 
performances of these methods are also tested for determining 
camera intrinsic parameters by solving Kruppa equations. 
Considering their computational complexities and noise 
robustness, the normalized 8-point algorithm gives a 
comparable performance against more complex algorithms in 
terms of errors, especially when the number of corresponding 
points is high. 

 
1. INTRODUCTION 

In order to reconstruct a scene from images taken from 
different locations, camera calibration (intrinsic camera 
parameters and relative motion of the images with respect to 
each other) must be known. 3-D reconstruction of scenes from 
uncalibrated images is one of the most challenging problems in 
computer vision. The process of 3D scene reconstruction from 
uncalibrated images is composed of the following sub-
problems: finding corresponding 2D points between images; 
determination of algebraic relations between the images; 
camera self-calibration; determination of relative motions 
between images and calculation of 3D scene points. 
The performance of camera self-calibration depends on the 
accuracy of corresponding points and calculated fundamental 
matrices (F-matrix) (i.e. algebraic relations between the 
images). In order to determine the fundamental matrix, the 
corresponding points on two images are required. In the 
literature, different methods have been developed for solving 
F-matrix [1-3]. Four of these methods are introduced and 
compared in the next sections.  
On the other hand, among different methods developed for 
camera self-calibration, the most well-known is developed by 
Maybank and Faugeras [6]. In this method, some nonlinear 
quadratic equations, called as Kruppa Equations, are 
constructed via fundamental matrices and unknown relative 
camera matrices and tried to be solved in different ways [6-8].  
By using fundamental matrices and estimated camera intrinsic 
parameters, the relative motion (R, t) between the cameras or 
images can be determined by using well-known method 
developed by Longuet-Higgins [10]. At the end, by using 
estimated camera intrinsic parameters and relative motions 

between images, 3D coordinates of corresponding points up to 
scale can be determined by linear triangulation method [1]. 
 

2. SOLVING FUNDAMENTAL MATRIX 
The fundamental matrix F is the algebraic representation of the 
epipolar constraint for the uncalibrated cameras. The epipolar 
constraint is described as follows: For each point m in the 1st 
image plane, its corresponding point m′ lies on its epipolar line 
l′m and similarly for any point m′ in the 2nd image plane, its 
corresponding point m lies on its epipolar line lm. This relation 
can be given as: 
  l′m = Fm   and  lm = FTm′                (1) 
Since m lies on l′m and m′ lies on lm,  following relations are 
obtained : 
      m′TFm = 0  and  mTFTm′ = 0                         (2) 
where mi = [ui, vi, 1]T and mi′ = [ui′, vi′, 1]T. In the next 
section different methods for solving F-matrix are examined. 
 
2.1. 8-Point Algorithm [10]:  
If n corresponding points (at least 8) are given, a set of linear 
equations is obtained as: 
                 (3) 
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A robuts solution of this equation is the eigenvector 
corresponding to the smallest singular value of A, that is, the 
last column of V in the Singular Value Decomposition (SVD) 
of A = UDVT [2]. In order to obtain a unique solution, the rank 
of A matrix must be equal to 8. Therefore, the closest singular 
F′ matrix to F matrix can be obtained as:  

               F′ = U diag(r, s, 0) VT                                    (4) 
where D = diag(r, s, t) where r ≥ s ≥ t. 
 
2.2. Normalized 8-Point Algorithm [4]:  
Hartley [4] proposed a simple normalization on the 
corresponding points of each image prior to applying 8-point 
algorithm to improve the performance. This normalization 
performed by translating center of corresponding points to 
origin of image reference frame and then scaling the 
corresponding points so that the average distance from the 
origin becomes equal to 2 . Finally, after the calculation of 
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Λ

F matrix by using the 8-point algorithm, it is converted to F 
matrix of corresponding points before normalization as:  

F= T2
T

Λ

F T1                                         (5) 
where T1 and T2 are transformation (normalization) matrices 
for first and second images, respectively. 
 
2.3. Algebraic Minimization Algorithm [1]:  
In the 8-Point algorithm, the singular matrix F′ is computed by 
using SVD which minimizes the difference ||F′-F|| [1]. Since, 
all the entries of F do not have equal importance, some entries 
are more affected by the corresponding points. Hence, F can 
be represented as a product F = M[e]× where M is a non-
singular matrix and [e]× is the skew-symmetric matrix of the 
epipole e on the first image. This equation can also be written 
as:  

    f =Eη                                   (6) 

where E =  and η contains the entries of M. 

Hence, the minimization problem becomes minimizing ε = 
||AEη|| subject to the condition ||Eη|| = 1. By using Levenberg-
Marquardt (LM) algorithm, the epipole e can be varied to 
minimize ||ε||. The initial estimate of epipole e can be found 
from the 8-Point or the Normalized 8-Point Algorithm. 
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2.4. Geometric Distance Minimization Algorithm [5]:  
In this method, the distances between epipolar lines and the 
corresponding points are minimized [1-3,5]. Therefore, the 
cost function representing the total square of distances between 
corresponding points and epipolar lines is given as:  

CostGD = ( )∑
=
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In order to minimize this non-linear cost function, the F matrix 
is parametrized by using epipoles on both images (e and e’). 
The details of parametrization can be found in [5]. Since the 
parametrization set of the F-matrix can be totally divided into 
36 maps, a best map selection algorithm is also proposed [5]. 
After selecting one of the maps, F-matrix is parametrized and 
cost function is minimized by using LM algorithm. 
  

3. SOLVING KRUPPA EQUATIONS 
CCD camera model utilized during calibrations is given as:  

                                                (7) 
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where [u0, v0, 1]T is the principal point in terms of pixel 
coordinates, α is the skew angle, αu = f / px and αv = f / py are 
focal length of the camera in terms of pixel dimensions on the 
x and y directions, respectively. The Kruppa Equations 
between two images can be found by using the relation [6-9] :  
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where vi and ui are the columns of U and V matrices, 
respectively (SVD(F) = UDVT) and A=KKT. In order to 
estimate 5 unknown parameters, one can use at least 6 Kruppa 
equations obtained from F matrices of 3 image sequences. This 

nonlinear least squares problem can be solved using LM 
minimization algorithm for finding the parameters of A. 
Finally, camera calibration matrix K can be calculated from A 
by Cholesky factorization.  
 

4. SIMULATIONS 
4.1. Fundamental Matrix Solutions 
The simulations are conducted in two phases using synthetic 
and real data. During synthetic tests, performance of the 
algorithms is first tested against correspondence errors by the 
help of additive Gaussian noise. On the second part, the 
performance for different number of correspondences is tested. 
The synthetic scene is composed of two orthogonal planes 
which are divided into 10×10 grids. The image plane is the 
size of 35×35mm, the focal length is equal to 50mm. and the 
image plane is divided into 500×500 pixels. The origin of the 
pixel frame is placed on the centre of the image plane. The 
camera calibration matrix is arbitrarily chosen as: 
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Finally, by applying different rotations and translations as the 
camera motion, approximately 11000 different views of the 
scene are generated. 
As a first step, 100 image pairs are randomly selected. Then, 
Gaussian noise with zero mean and between 0 to 2 pixels 
standard deviation is added on both u and v coordinates of the 
corresponding points. In order to measure the performance, the 
mean distance between the corresponding points and the 
epipolar lines is used as an error criterion : 

Error = (∑
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The mean and standard deviation of errors for 8-Point 
algorithm are given in Fig. 1. The mean and standard deviation 
of percentage improvements for other algorithms with respect 
to 8-Point algorithm are also plotted in Figure 2.  

 
Figure 1 : Mean and standard deviation of errors for 8-Point 

algorithm for different noise levels 

In the second part of synthetic image simulations, the 
performance of the fundamental matrix methods are compared 
while increasing the number of corresponding points from 8-
200. 100 image pairs, which have corresponding points with 0 
mean and 0.5 pixel standard deviation Gaussian noise, are 
used. The results of simulations are plotted in Figs. 3 and 4. 



 
Figure 2 : Mean & standard deviation of Percentage 

Improvements wrt 8-Point Algorithm for different noise levels 

 
Figure 3 : Means and standard deviations of errors by 8-Point 

algorithm for different number of corresponding points 

 
Figure 4 : Means and standard deviations of percentage 

Improvements for different number of corresponding points 

In order to compare the performance of the fundamental matrix 
methods for real image pairs, the BatInria and ColorIm image 
pairs are used with 433 and 266 correspondence points, 
respectively. In Table 1, the mean distance between the 
corresponding points and the epipolar lines for image are 
given.  

Algorithm BatInria (pix.) ColorIm(pix.) 

8-Point 1.020089 551.9505 
Normalized 8-Point 0.234465 9.1086 

Algebraic Minimization 0.226639 8.973397 
Geometric Distance Min. 

with Map Selecting 
0.227583 8.630695 

Table 1 : The mean distances between the corresponding 
points and epipolar lines for real image pairs    

 
In order to compare the complexity of algorithms, the 
execution times of algorithms in MATLAB with 200 
corresponding points are given in Table 2 (AMD Athlon 1800 
MHz. processor and 512 MBytes RAM). 

 
Algorithm Exec. time (secs) 

8-Point < 0.1 

Normalized 8-Point < 0.1 

Algebraic Minimization ~ 21.3 

Geo. Distance Min. with Map Selecting  ~ 936 

Table 2 : Execution times for different algorithms 
 
4.2. Results for Camera Self-Calibration : 
In order to show the effects of fundamental matrix algorithms 
to the solution of Kruppa equations, synthetic and real image 
simulations are performed. In synthetic image simulations, 100 
different 3-image sequences are randomly selected from 
synthetic image collection and then Gausian noise (0 to 0.5 
pixel standard deviation) added on 200 corresponding points. 
Since the LM algorithm needs an initial points near to solution 
for optimization parameters, the initial camera parameters are 
taken as: αu = 785.7146, αv = 785.7146, s = 10, u0 = 10 and v0 
= 10. The mean and standard deviation of estimated αu, s and 
u0 parameters with respect to different noise levels are plotted 
in Fig.5.(a),(b) and (c), respectively.    
For the real image simulation, the camera calibration 
paramaters of Church 3-image sequence are estimated by 
solving Kruppa equations, which are constructed using 
fundamental matrices obtained with different methods (see 
Table 3). 128 corresponding points found and the initial values 
for camera intrinsic parameters are given close to the values in 
[8]: αu = 700, αv = 700, s = 0, u0 = 300 and v0 = 400. Finally, 
the 3D coordinates of corresponding points are estimated by 
using the camera parameters calculated ny Geometric distance 
minimization method (Fig. 6). 
 

5. CONCLUSIONS 
According to the simulation results, it should be easily stated 
that 8-Point algorithm should not be preferred in any 
application, since this algorithm is highly susceptible to noise 
over the corresponding point coordinates. 
It is observed that if the number of corresponding points is 
limited, the geometric distance minimization algorithm gives 
the best improvement over 8-point algorithm. However, the 
normalized 8-point algorithm and algebraic minimization 
algorithm give similar results for larger number of 
correspondence points. Since the complexity of the geometric 
distance minimization algorithm is higher, the normalized 8-
point and algebraic minimization algorithm might be preferred 
for larger number of corresponding points. 
Observing different level of errors for the estimated 
fundamental matrices, one can conclude that the quality of this 
matrix depends on the relative motion between images. In 
other words, the noise on some of the correspondences is more 
effective while estimating the fundamental matrix. 
It should also be noted that the best map selection algorithm, 
which is utilized in geometric distance minimization method is 
suboptimal. If one performs minimization for all 36 maps, and 
selects the one with the minimum error value, then the 



performance of this algorithm is improved while sacrificing 
from computational complexity. 

 

 
 Figure 5 : Mean and standard deviations of estimated (a) αu 
(b) s and (c) u0 values after solving Kruppa Equations, formed 
by the fundamental matrices estimated by different methods  

Algorithm αu αv s u0 v0
Norm.8-Pt 647.78 488.65 -155.89 164.48 441.02 
AlgebMin 652.24 453.31 -143.07 122.05 495.76 
GeoDisMin 638.87 477.49 -173.10 161.03 486.72 

Table 3 : Estimated Camera Intrinsic Parameters for Church  

The error over the estimated camera calibration parameters 
increases rapidly after a noise level on the corresponding 
points. Since the normalized 8-point and algebraic 
minimization algorithm results with similar errors (even 
similar for the geometric distance minimization algorithm for 
high number of corresponding points), all these methods give 
similar errors on the estimated camera calibration parameters. 
Finally, 3D depths of the correspondences of the Church 
image sequence are quite acceptable for geometric distance 
minimization method, showing the applicability of the 
algorithms in practice. 
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Figure 6: Estimated 3D positions of corresponding points between images1-2 of Church sequence (Geo. Dist. Min.)
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