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Abstract. A novel approach is presented in order to reject correspon-
dence outliers between frames using the parallax-based rigidity con-
straint for epipolar geometry estimation. In this approach, the invariance
of 3-D relative projective structure of a stationary scene over different
views is exploited to eliminate outliers, mostly due to independently mov-
ing objects of a typical scene. The proposed approach is compared against
a well-known RANSAC-based algorithm by the help of a test-bed. The
results showed that the speed-up, gained by utilization of the proposed
technique as a preprocessing step before RANSAC-based approach, de-
creases the execution time of the overall outlier rejection, significantly.
Key words:Outlier removal, Parallax-based rigidity constraint, RANSAC

1 Introduction

Epipolar geometry computation is a fundamental problem in computer
vision. Most of the state-of-the-art algorithms use a statistical iterative
algorithm, Random Sample Consensus(RANSAC) [3], in order to select
the set of correspondences between frames, required for determining the
epipolar geometry. This simple and powerful approach is practically a
brute force model estimation algorithm. The random samples are se-
lected from the input data and model parameters are estimated from
these subsets, iteratively [3]. The subset size is chosen to allow the esti-
mation of the model with minimum number of elements, while this model
is tested with the whole input data at each iteration and at the end, the
one with the largest consensus set is selected as the output. The iterations
are usually stopped, when determination of a better model has statisti-
cally a very low probability. Although the results of RANSAC are quite
acceptable, it takes considerable amount of time to find this result due to
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the iterative nature of the algorithm, when the input data contamination
level is high. Due to these reasons, several schemes have been proposed
to accelerate RANSAC. In [10], the computation time is reduced by eval-
uating the model only on a sample set of the inliers, as an initial test and
the models passing this test are evaluated over the whole data set. In a
different approach [2], a local optimization is applied in order to find a
better estimate around the current guess of the model, stemming from
the fact that a model estimated from an outlier-free subset is generally
quite close to the optimal solution. The method in [4] uses weak motion
models that approximate the motion of correspondences and by using
these models the probability of correspondences being inliers or outliers
are estimated. These probability values are then used to guide the search
process of the RANSAC. Another type of approach is to reduce the ra-
tio of outliers to inliers by eliminating some of the outliers before using
iterative procedures. In [1], the possibility of rotating one of the images
to achieve some common behavior of the inliers is utilized in order to
speed up the process. However, it requires camera internal parameters
to be known a priori. In this paper, a non-iterative algorithm to reduce
the ratio of outliers to inliers without any knowledge of the camera ge-
ometry or internal parameters is proposed. This algorithm is intended
to be used as a post-processing step after any point matching algorithm
and is tested for scenes containing independently moving objects.

2 Proposed Algorithm

Typical scenes consist of independently moving objects (IMO) as well
as a stationary background. In order to extract 3-D structure of such a
complex scene from multi-views, the first subgoal is to determine that
of the stationary background. Hence, after finding correspondences be-
tween views of the scene, the resulting data should be examined to dis-
criminate between correspondences due to the background and moving
objects, as well as the outliers. It is possible to differentiate between the
stationary background motion vectors and the remaining ones (whether
they are outliers or they belong to IMOs) by using a constrained, called
parallax-based rigidity constraint (PBRC) [9]. PBRC is first proposed for
segmenting IMOs in environments, containing some parallax, via 2-D op-
tical flow [9]. The utilization of PBRC strictly requires the knowledge of
at least one vector that belongs to the background. However, the method
in [9] does not suggest any automatic selection mechanism for such a pur-
pose. In this paper, initially, an automatic background vector selection
algorithm is proposed. Based on this seed vector, a robust outlier rejec-
tion technique is developed via PBRC. The robustness of the method is
guaranteed by using more than one vector from the background to cal-
culate the PBRC scores of the motion vectors. These supporting vectors
are also determined from the seed background vector.

2.1 Parallax-Based Rigidity Constraint (PBRC)

PBRC primarily depends on the decomposition of translational (with
non-planar structure) and rotational (with planar structure) components



of 2-D displacements between frames. This decomposition is achieved by
removal of rotation+planar effects through affine model fitting to the
displacements between two frames; hence, the remaining components
are due to parallax effects. The relative 3D projective structure of two
points, p1 and p2, on the same image is defined as the following ratio [9]:
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where, µ1, µ2 are the parallax displacement vectors of these two points
between two frames. In Equation 1, ∆pw = pw2 − pw1, where pw1 =
p1 + µ1 and pw2 = p2 + µ2 ( v⊥ denotes a vector perpendicular to v). It
has been proven that relative 3D projective structure of a pair of points
does not change with respect to the camera motion [9]. Hence, between
different views, PBRC is formally defined as:
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where µk
1 , µk

2 are the parallax vectors between the reference frame and
kth frame, and (∆pw)j , (∆pw)k are the corresponding distances between
the warped points. By using this constraint, it is possible to discriminate
between the background and foreground vectors in three frames, by the
help of a motion vector, which belongs to the background.

2.2 Automatic Background Seed Selection Algorithm

Background seed selection is a critical step for eliminating IMO and
outlier contributions from the correspondence set. PBRC can be utilized
for this purpose, since it puts an explicit constraint on the 3-D structure
of all stationary background points. PBRC, although, forces the change
in the relative 3-D structure to remain zero, this constraint does not
always hold due to noise. Therefore, as a simple method, only choosing
a random vector and counting the number of vectors that obey this
exact constraint, should not solve the problem of the background vector
selection. Moreover, the errors in the parallax-based rigidity constraint
differ, when one changes the support vector(background vector) of the
constraint (µ1 in Equation 2). Therefore, simple thresholding will also
not be the solution to this problem, since such a threshold should also
be adapted for different scenes.

The proposed novel solution to this problem can be explained as follows:
N different random vectors are chosen as candidate support vectors and
the number of vectors, which are outside a certain neighborhood around
one of these N candidate vectors, that obey the rigidity constraint within
a small threshold, are counted. After testing all candidate vectors in this
manner, the vector yielding the maximum number of supports, is chosen
as the background seed.

For robustness, the candidate vectors are selected according to the mag-
nitude of the residuals ( distance of the points found by plane registration
to their correct locations ). The magnitude range of the residual vectors



is divided into N equal intervals and a support vector is selected for ev-
ery interval. This selection method is adopted due to the fact that the
plane registration step usually leaves behind vectors with small residuals
from the dominant plane. Therefore, the vectors on this dominant plane
should not be selected, since their small norm is due to noise. On the
other hand, the vectors with large residuals are not reliable, since they
might be outliers. Hence, in order to cover the whole range of vectors,
the above procedure is proposed.

Another important aspect of the proposed selection criteria is the elimi-
nation of the vectors within the neighborhood of the candidate support
vector, while calculating the number of vectors that obey the rigidity
constraint. In this manner, it is possible to eliminate some points, be-
longing to an IMO, which should mostly has its support vectors within
its neighborhood. If this constraint is not used, one might find the change
in the rigidity constraint still a small number and erroneously declare an
IMO point as a background seed, while unfortunately, most of the vec-
tors in the supporting set are belonging to the IMO itself. On the other
hand, this constraint reduces the number of the consistent vectors to an
IMO-belonging candidate vector. This situation is not a problem for the
background vectors, since they are not confined (i.e. localized) to a single
region.

2.3 Application of PBRC by Selected Background Seed

At this stage, all the correspondence vectors are tested by using PBRC
with the previously selected background seed pixel. In order to increase
the robustness of the algorithm, more than one representative back-
ground pixel can be used to discriminate between background and other
vectors. In this scenario, a vector is decided to belong to a background
point, if, out of M different background supports, it is within the first
p-percent of the sorted cost, which is calculated according to Equation 2
at least K times. (K < M and K is larger than some threshold). Hence,
the following algorithm is obtained for rejecting IMO contributions, as
well as any kind of outliers, in the correspondence set.

Algorithm

1. Apply plane registration to the motion vectors between the first
two frames as well as the second and third frames and determine
residual motion vectors. Dominant plane estimation and registration
is accomplished by the use of a RANSAC based method to have
robustness (Since this problem has a small number of freedom, it is
quite fast.)

2. Find the background seed as explained in Section 2.2

(a) Sort the residual motion vectors according to their norms.
(b) Choose N candidate support vectors with equal distance from

each other in terms of their norm values.
(c) Calculate the number of vectors that obey PBRC within thresh-

old T for each of the candidate vectors. Do not consider vectors
within d distance to the candidate vector.



(d) Choose the maximally supported vector as the background seed.
3. Select M vectors yielding the smallest error with the background

seed and calculate the PBRC errors of the rest of the vectors with
respect to each of these support vectors.

4. Sort the elements of these sets according to their errors and select
the vectors that are within the first p-percent of the sets.

5. Choose the vectors that are selected more than K times (K < M)
as background pixels and discard the rest.

Fig. 1. Test Bed Flow Chart

3 System Overview

A test-bed is prepared in order to compare the operation speeds of three
different algorithms. In fact, this test-bed is a standard structure from
motion algorithm, in which 3-D structure points and motion parameters
are estimated (see Figure 1). It is assumed that the camera intrinsic
parameters are known a priori. This assumption is necessary only for the
triangulation stage, but not in the outlier rejection step.
The process starts first by finding point matches between two images.
In order to match points for different images, it is necessary to extract
salient features from these images. For this purpose a modified Harris
corner detector [5] is used. The modification is such that the extracted
features are determined in sub-pixel resolution. This is achieved by bi-
quadric polynomial fitting [12]. After the extraction of salient features,
a moderately simple algorithm (in terms of computational complexity)
is used in order to match the features. The matching is performed by
examining two main criterions: normalized cross correlation (NCC) and
neighboring constraint (NC) [13]. NCC is used to measure the similarity
of image patches around the feature positions and NC is used to introduce
smoothness to motion vectors by neighborhood information.



Once a set of correspondences are obtained, the next step is the estima-
tion of the fundamental matrix, robustly. In this step, in order to intro-
duce robustness, 3 different algorithms are tested in terms of their perfor-
mances: fast outlier rejection algorithm proposed in this paper (denoted
as IMOR), a RANSAC based iterative solution [12] and the concatena-
tion of these two algorithms. The estimation of the fundamental matrix
is performed by using the Normalized 8-Point algorithm proposed in [6]
for all of these methods. The estimated F-matrix is then refined by using
non-linear minimization, namely Levenberg-Marquardt, with Sampson
Error [8] as its quality metric. For visual inspection of the results, 3-D
structure points are also estimated by using the computed fundamental
matrix. In order to achieve this aim, the essential matrix is computed by
using the camera calibration information and the computed fundamental
matrix. Then, this essential matrix is decomposed into its rotation and
translation components [11]. This way, projection matrices for the views
are acquired and using the triangulation algorithm proposed in [7], 3-D
point locations are determined.

4 Results

In this section, comparison of the proposed algorithm, IMOR, and a
robust method, based on RANSAC [12], is presented. In the implemen-
tation of the IMOR algorithm N (the number of candidate support vec-
tors) is chosen as 10, d (the distance of the vectors to the candidate ) is
chosen as 30 pixels, PBRC threshold T is chosen as 1e−4, M is 5, K is
3 and p is 70%. The value for d depends highly on the input data. For
large images and large IMOs d must be set higher. M and K are purely
for robustness purposes and they may be set to 1 if the input vector set
is known to have low outlier to inlier ratio.

The results, which are summarized in Table 1, are performed over differ-
ent data sets. The data set ( 7 different image triplets ) contains real and
synthetic outdoor scenes. The presented results are obtained by simple
averaging. ”Wrong Rejections” column in the table refers to the num-
ber of true inliers that are labeled as outliers by the algorithm whereas
”Inlier Number” column refers to the number of correspondences, al-
gorithms declare as inliers. As it can be observed from these results,
IMOR algorithm gives comparable results with the algorithm based on
RANSAC, although it cannot always eliminate all of the outliers. How-
ever, IMOR is clearly advantageous compared to RANSAC, due to its
shorter execution time. It should be noted that RANSAC is iterative
and its number of iterations is not fixed, whereas IMOR is a single step
approach. Hence, it is possible to utilize IMOR before RANSAC to elim-
inate most of the outliers and then use this powerful iterative algorithm
to refine the results. In this manner, with a small number of iterations,
a comparable reconstruction quality may be achieved in less time. The
results for this approach are presented in the third row of Table 1. Some
typical results for an image triplet is also shown in Figure 2 with motion
vector elimination, as well as 3-D reconstruction results.
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Fig. 2. Test results: (a-c) input images, (d) computed motion vectors. Results of (e)
proposed IMOR algorithm & (f) RANSAC-based algorithm. (g) Reconstruction results
of the cascaded system for various camera locations.

Table 1. Matching performance and execution time comparisons: RANSAC-based
approach vs. the proposed algorithm (IMOR) and cascaded application of these two
algorithms

Iter
No.

Time
(ms)

Wrong
Reject

Missed
Outlier

Inlier Total
Vector#

RANSAC 1626 4968 11 3 971 1651
IMOR - 31 156 33 856 1651

IMOR+RANSAC 21 112 158 1 824 1651



5 Conclusions

It can also be inferred from Table 1 that the IMOR algorithm cannot
detect significant amount of outliers, and therefore, the fundamental ma-
trix estimate, computed by using this contaminated set, will give inferior
results. As expected, the reconstruction by only using IMOR algorithm
has been unacceptable during the performed tests. Although, the results
of RANSAC alone yields very accurate reconstruction results, utiliza-
tion of IMOR as a preprocessing step before RANSAC decreases the
execution time of the overall outlier rejection algorithm considerably,
approximately 40 times (averaged over all image triplets). Therefore, it
is proposed to jointly utilize the outlier rejection algorithms in a cas-
caded manner (IMOR+RANSAC). This combination yields significant
improvement for the execution time without losing from 3-D reconstruc-
tion quality.
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