
submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Quantitative Analysis of Consensus Algorithms
Fatemeh Borran, Martin Hutle, Nuno Santos, André Schiper

Abstract—Consensus is one of the key problems in fault-tolerant distributed computing. Although the solvability of consensus is now
a well-understood problem, comparing different algorithms in terms of efficiency is still an open problem. In this paper, we address this
question for round-based consensus algorithm using communication predicates, on top of a partial synchronous system that alternates
between good and bad periods (synchronous and non synchronous periods). Communication predicates together with the detailed timing
information of the underlying partial-synchronous system provide a convenient and powerful framework for comparing different consensus
algorithms and their implementations. This approach allows us to quantify the required length of a good period to solve a given number
of consensus instances. With our results, we can observe several interesting issues, e.g., that the number of rounds of an algorithm is not
necessarily a good metric for its performance.

Index Terms—Distributed Systems, Fault-tolerance, Distributed Algorithms, Round-based Model, Consensus, System Modeling.

✦

1 INTRODUCTION

CONSENSUS is one of the key problems in fault toler-
ant distributed computing. The problem is related

to replication and appears when implementing atomic
broadcast, group membership, or similar services. Con-
sensus is defined over a set of processes Π, where each
process pi ∈ Π has an initial value vi: all processes must
agree on a common value that is the initial value of one
of the processes.

Consensus cannot be solved deterministically in an
asynchronous system with faults, as established by the
FLP impossibility result [9]. Later it was shown that
consensus can be solved in a partially synchronous system
with a majority of correct processes [8]. Roughly speaking,
a partially synchronous system is initially asynchronous,
but eventually becomes synchronous; links may be ini-
tially lossy, but eventually become reliable. The failure
detector model was introduced a few years later [3].
The model is defined as an asynchronous system “aug-
mented” with a device called failure detector, defined by
some completeness and accuracy properties (see [3] for
details). Over the years the failure detector model has
become very popular.

Now that solving consensus is well understood, it
remains to understand the efficiency of consensus al-
gorithms. In other words, a quantitative comparison of
consensus algorithms is relevant. Existing work is refer-
enced in Section 2; the paper goes beyond this work and
proposes a more detailed timing analysis of some consen-
sus algorithms. In the context of a partially synchronous
system that alternates between periods of synchrony and
periods of asynchrony, the paper compares, for various

Research funded by the Swiss National Science Foundation under grant number
200021-111701 and Hasler Foundation under grant number 2070. Nuno
Santos was partially funded by grant SFRH/BD/17276/2004 of the Portuguese
Foundation for Science and Technology (FCT)

• Corresponding Author: Nuno Santos, EPFL / IC - LSR, Station 14, CH-
1015 Lausanne. nuno.santos@epfl.ch, Phone: +41 21 693 5354

consensus algorithms, the window of synchrony that
allows processes to decide. Such a timing analysis requires
a model with time, which explains our choice of the par-
tially synchronous model. Moreover, in order to decouple
the timing analysis from irrelevant details of consensus
algorithms, we do our analysis for a round-based model
built on top of a partially synchronous system [8]. Such
a modular approach allows us not only to reuse the
same timing analysis for different consensus algorithms,
but also to compare various round implementations for
the same round-based consensus algorithm. Note that
our results do not necessarily apply to non round-based
algorithms, e.g., to consensus protocols driven by message
reception.

Specifically, we express and analyze consensus algo-
rithms in the round-based model described in [5], which
combines the transmission fault model of Santoro and
Widmayer [15] with communication predicates intro-
duced by Gafni [10]. For each consensus algorithm and
different round implementations, we express the minimal
period of synchrony that allows the algorithm to solve x
instances of consensus as initialization+x·per-consensus.
The initialization time is a one time duration that al-
lows processes to synchronize to a specific round of the
consensus algorithm; per-consensus is the recurring du-
ration for solving one instance of consensus. This allows
us to highlight two extreme cases: “short” and “long”
periods of synchrony. If the period of synchrony is long,
the initialization cost is amortized over all instances of
consensus, and can thus be ignored. This is not the case
if the period of synchrony is short.

One important observation from our results is that the
number of rounds of an algorithm is not necessarily a
good metric for its performance. This justifies the fine
performance analysis done in the paper. Our results allow
us also to quantify the influence of the clock precision.
We show that a large clock skew, as it is the case when
using e.g. step counting, has only limited influence for
algorithms that try to resynchronize in every round, but

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147960826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

can become unacceptable for algorithms that resynchro-
nize less often.

The paper is structured as follows. Section 2 discusses
related work. In Section 3 we recall the concept of HO ma-
chines and communication predicates, together with the
corresponding algorithms, which form the basis for our
analysis. Implementation of communication predicates is
the topic of the subsequent sections. After defining our
system model for our implementations in Section 4, we
give an abstract algorithm that may serve as a generic im-
plementation for many predicates, and which is used by
all our implementations. After that, in Sections 6 to 8 we
describe how our predicates can be implemented using
different strategies. Different strategies lead to different
lengths of the good period that is necessary to guarantee
the predicate, and to different number of messages. We
finally analyze our results in Section 9 and conclude the
paper in Section 10.

2 RELATED WORK

The problem of analytical quantitative evaluation of con-
sensus algorithms was initially addressed in [8], in the
context of a partially synchronous system. For the al-
gorithms proposed in the paper, the authors compute
upper bounds for the time needed after GST (Global
Stabilization Time) for all correct processes to decide.
However, the algorithms in [8] and ours are different.1

Moreover, rounds in [8] are implemented on top of a clock
synchronization algorithm, and while the algorithms are
polynomial in the constants n, ∆ and Φ, the authors
made no effort to optimize these constants. This makes
the comparison with our work hard. After this early
work, analytical performance evaluation of consensus
algorithms has not received much attention for a while.
This is probably due to the advent of failure detectors,
which led to consider an asynchronous system as the
underlying model, and to ignore timing analysis. One
of the first papers to reinitiate analytical performance
study of consensus algorithms in non-synchronous sys-
tems is [16]. The paper considers failure detectors, and
uses as metric the minimum number of communication
steps for deciding in a “nice” run (run with no crashes,
no false suspicions).

Later, [6], [11], and [1] study the performance of consen-
sus algorithms expressed in a round-based computational
model. The performance metric is the number of rounds
needed for processes to decide once the system has be-
come synchronous. However, as pointed out in [11], the
efficiency expressed in terms of number of rounds, does
not predict the time it takes to decide after the system
stabilizes. This observation is not followed in [11] by
any analysis, even though the authors note that this is
an interesting subject for further studies. Such a timing
analysis is done in [7] for a modified version of Paxos. The
authors show that, with their modified Paxos algorithm,

1. The algorithms [8] have nowadays been replaced with algorithms
à la Paxos.

consensus can be solved in O(δ) after the system stabilizes
(actually 17δ), where δ is the upper bound on message
delivery time after stability is reached (δ includes the
time needed to process a message after reception). Timing
analysis is also done in [14] for Paxos, but only for
an execution started during a good period, and leader
election outside of the Paxos algorithm (it uses a failure
detector implementation in which every process sends
periodically messages to all).

3 BACKGROUND

3.1 Round-based model and consensus

We consider a round-based computational model in order
to express our consensus algorithms. The round-based
model was introduced in [8], as a convenient computa-
tional model on top of a partially synchronous system
model. The round-based model was later extended by
Gafni [10] with the notion of predicates. In [5] it was
shown how a round-based model extended with predi-
cates can unify all benign faults. We use here the notations
from [5].

In a round-based model, an algorithm consists, for each
round r and process p ∈ Π, of a sending function Sr

p and
a transition function T r

p . Let sp denote the current state
of process p. For each round r and each p, the sending
function Sr

p(sp) determines a vector of messages to be
sent, one message for each process (null if there is no
message for this process). At the end of a round r, p makes
a state transition according to T r

p (~µ, sp), where ~µ is the
partial vector of messages received in round r. Rounds
are communication-closed: a message sent in round r to
q and not received by q in round r is lost.

We denote by HO(p, r) the set of processes (includ-
ing itself) from which p receives a message at round r:
HO(p, r) is the heard of set of p in round r. If q /∈ HO(p, r),
then the message sent by q to p in round r was subject
to a transmission failure. Communication predicates are
expressed over the sets (HO(p, r))p∈Π,r>0. Communica-
tion predicates restrict transmission failures, for example,
the predicate ∀p, ∀r : |HO(p, r)| > n/2 ensures that every
process receives at least n/2 messages in every round.

Let A = 〈Sr
p , T

r
p 〉 be an HO algorithm and P a

communication predicate The tuple 〈A,P〉 specifies an
HO machine. An HO machine can be used to solve a
problem. We consider the consensus problem in the paper.
With consensus, each process p has an initial value vp
and decides irrevocably. The problem is specified by the
following conditions:

• Integrity: Any decision value is the initial value of
some process.

• Agreement: No two processes decide differently.
• Termination: All processes eventually decide.

A coordinated HO machine (CHO) is an extension of an
HO machine that includes the notion of coordinator. This
allows the specification of coordinator-based algorithms,
by giving predicates not only over the HO sets but
also over the current coordinator. In a CHO machine,

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Coord(p, r) denotes the process that p considers to be the
coordinator at round r, henceforth called the coordinator
of p in round r. The functions Sr

p and T r
p take the current

coordinator as an additional parameter, reflecting the fact
that the messages to be sent and the state transitions
depend also on the coordinator.

Consensus algorithms, including coordinator-based al-
gorithms, consist of a sequence of one or more rounds
that are repeatedly executed. This sequence of one or
more rounds is called a phase. Typically, the coordinator
is changed only at the beginning of a phase. This is the
case of all the coordinated algorithms we consider here;
therefore we will use the notation Coord(p, φ) to refer
to the coordinator of process p during all the rounds of
phase φ.

3.2 Consensus algorithms analyzed

In this paper, we analyze three consensus algorithms that
are safe by design, (i.e., they never violate the integrity
or agreement properties of consensus), but require some
predicate to ensure liveness.

3.2.1 Variant of Paxos: LastVoting in four rounds (LV-4)
The first consensus algorithm we consider is a variant
of Paxos [12], called LastVoting [5], see Algorithm 1. It
is a variant of Paxos in the sense that the algorithm is
expressed here in a round model, which is not the way
Paxos has been expressed [12]. LastVoting is coordinator-
based, and each phase of LastVoting consists of four
rounds 4φ − 3 to 4φ, where φ denotes the current phase.
Roughly speaking, round 4φ−3 corresponds to phase 1b of
Paxos, round 4φ−2 to phase 2a, and round 4φ−1 to phase
2b. Phase 1a of Paxos is hidden in the implementation of
round 4φ, for leader election. The termination property
of consensus is guaranteed by the existence of a phase φ
such that following predicate holds:

Plv4(φ) :: ∃Π0 ⊆ Π s.t. |Π0| > n/2, ∃c ∈ Π, ∀p ∈ Π0 :

Coord(p, φ)=c ∧

|HO(c, 4φ− 3)| > n/2 ∧ c ∈ HO(p, 4φ− 2) ∧

Π0 ⊆ HO(c, 4φ− 1) ∧ c ∈ HO(p, 4φ).

which ensures, loosely speaking, agreement on the coordi-
nator c during one phase φ, and communication between
c and a majority of processes during phase φ.

3.2.2 Variant of Paxos: LastVoting in three rounds (LV-3)
LastVoting in three rounds is a well-known variant of
Paxos in which the last two rounds of a phase are aggre-
gated in a single round [12], as shown by Algorithm 2:
in round 3φ all processes send their ack message directly
to all other processes, instead of via the coordinator. LV-3
terminates in a phase φ satisfying the following predicate:

Plv3(φ) :: ∃Π0 ⊆ Π s.t. |Π0| > n/2, ∃c ∈ Π, ∀p ∈ Π0 :

Coord(p, φ)=c ∧ |HO(c, 3φ− 2)| > n/2 ∧

c ∈ HO(p, 3φ− 1) ∧ Π0 ⊆ HO(p, 3φ).

Algorithm 1 LV-4: LastVoting in four rounds [5].
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */
3: votep ∈ V ∪ {?}, initially ?
4: commitp a Boolean, initially false

5: readyp a Boolean, initially false

6: tsp ∈ N, initially 0

7: Round r = 4φ− 3 :
8: Sr

p :
9: send 〈xp, tsp〉 to Coord(p, φ)

10: T r
p :

11: if p = Coord(p, φ) and number of 〈ν, θ〉 received > n/2 then
12: let θ be the largest θ from 〈−, θ〉 received
13: votep := one x such that 〈x, θ〉 is received
14: commitp := true

15: Round r = 4φ− 2 :
16: Sr

p :
17: if p = Coord(p, φ) and commitp then
18: send 〈votep〉 to all processes

19: T r
p :

20: if received 〈v〉 from Coord(p, φ) then
21: xp := v
22: tsp := φ

23: Round r = 4φ− 1 :
24: Sr

p :
25: if tsp = φ then
26: send 〈ack〉 to Coord(p, φ)

27: T r
p :

28: if p = Coord(p, φ) and number of 〈ack〉 received > n/2 then
29: readyp := true

30: Round r = 4φ :
31: Sr

p :
32: if p = Coord(p, φ) and readyp then
33: send 〈votep〉 to all processes

34: T r
p :

35: if received 〈v〉 from Coord(p, φ) then
36: DECIDE(v)
37: commitp := false

38: readyp := false

Algorithm 2 LV-3: LastVoting in three rounds [4].
1: Initialization:
2: xp := vp ∈ V /* vp is the initial value of p */
3: votep ∈ V ∪ {?}, initially ?
4: commitp a Boolean, initially false

5: tsp ∈ N, initially 0

Round 3φ− 2: identical to round 4φ− 3 of Algorithm 1.

Round 3φ− 1: identical to round 4φ− 2 of Algorithm 1.

6: Round r = 3φ :
7: Sr

p :
8: if tsp = φ then
9: send 〈ack, xp〉 to all processes

10: T r
p :

11: if ∃v such that number of 〈ack, v〉 received > n/2 then
12: DECIDE(v)
13: commitp := false

3.2.3 OneThirdRule (OTR)

Contrary to LV-4 and LV-3, which are both coordinator-
based algorithms, Algorithm 3 does not use a coordinator.
This algorithm, called OneThirdRule (or simply OTR),
appears in [5]. It has similarities with a fast round of
the Fast Paxos algorithm [13]. Every round of OTR has
the same sending and transition function. Decision can
be reached in one round if all initial values are identical,

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Algorithm 3 The OneThirdRule algorithm [5].
1: Initialization:
2: xp ← vp /* vp is the initial value of p */

3: Round r :
4: Sr

p :
5: send 〈xp〉 to all processes

6: T r
p :

7: if |HO(p, r)| > 2n/3 then
8: xp := the (smallest) most frequently received value
9: if more than 2n/3 values received are equal to x then
10: DECIDE(x)

HO Algorithm

Comm. predicates

Predicate
Implementation

Fault model + Synch.

assumptions

Fig. 1. The two layers when implementing predicates

otherwise decision can be reached in two rounds. For
liveness, two distinct rounds (not necessarily consecutive)
that satisfy the following predicate are needed:

Pu(r) :: ∃Π0 ⊆ Π s.t. |Π0| > 2n/3, ∀p ∈ Π0 :

HO(p, r) = Π0.

Informally, this predicate ensures that a ”large enough”
set of processes all receive the same set of messages. Such
a round is called uniform with cardinality 2n/3; we use
the term uniform round when the cardinality is clear from
the context. The predicate Potr will denote the existence
of two distinct rounds (not necessarily consecutive) that
satisfy Pu().

Remark: The algorithms and predicates given in this
section ensure a decision of a majority of processes
(two-thirds majority in case of OTR). However, with
a small modification, all processes that are eventually
reachable will decide: since our agreement property is a
uniform property (there are no “faulty” processes that are
exempted from agreement), processes — once they have
decided — can simply communicate their decision to all
other processes. Once this communication is successful,
also these processes will decide.

3.3 Implementation of predicates

In this paper we are interested in the question of how
an HO machine 〈A,P〉, where P is some predicate, can
be implemented in a “classical” message-passing model.
Fig. 1 illustrates how these parts work together in a
system. The top layer, the HO Algorithm A, is defined
solely in terms of the sending function Sr

p and transition
function T r

p , and assumes some communication predicate
P . The communication predicate P is implemented by
the Predicate Implementation layer, which builds on top

Alg. Rounds Resilience Predicate Implementations
OTR 2 3f + 1 2× Pu

LV-3 3 2f + 1 3× Pu, Phase Sync, Piggybacking
LV-4 4 2f + 1 4× Pu, Coord Sync

TABLE 1
Algorithms and predicate implementations studied.

of the system model. These two layers are independent,
apart from the interface defined by the communication
predicate. This enforces a clear separation between the
high-level computational model of the HO Algorithm and
the low-level system model and allows each layer to be
developed independently. In the rest of this paper, we
give implementations for the communication predicates
specified above (summarized in Table 1).

Given an implementation for some predicate P , we are
looking for the length of a good-period, i.e., the duration our
system has to be synchronous at some arbitrary point in
time in order to ensure the predicate.

Note that for coordinator-based algorithms, the predi-
cate implementation layer is also responsible for electing
the coordinator. This is in contrast to failure detector
based solutions, in which the failure detectors (or the
leader election oracle) are provided by some external
service. Such a service typically uses heartbeat messages.
No such external service is used here. The difficulty is,
during a good period, to elect a common coordinator,
resynchronize the processes and exchange the necessary
messages to ensure the predicate, within a time as short
as possible, and using as few messages as possible.

4 SYSTEM MODEL

We describe now the system model for the implementa-
tion of the predicate layer. We consider a similar model as
in [8], with some modification to reflect good periods of
bounded length. Further, we use clocks instead of a bound
on the maximum speed of processes, a more general
approach, as we explain later.

Let Π = {p1, . . . , pn} be the set of processes, with n > 2.
Processes are connected by a communication network,
modeled for each p ∈ Π by a variable bufferp, which
contains all messages that have been sent to p but were
not yet received by p. Processes proceed by making steps,
where a step is either a receive step or a send step:

• In a send step, a single message can be sent to another
process in the system, that is, when process p executes
send(〈m〉, q), the tuple 〈m, p〉 is placed in bufferq .

• In a receive step, some messages are received, that is,
when process p executes receive(S), a set S ⊆ bufferp
is removed from bufferp, and delivered to p. Note that
S may be empty.

In each step, some computation can be done, and
the local clock Cp(t) of process p at real time t can be
read. We assume that local clocks are monotonically non-
decreasing at any time. Real time and the local clock take
values from R.

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Definition 1 (∆-timely message): A message m sent at
time t by some process to a process p is called ∆-timely,
if it is received at the latest by the first receive step of p
at or after time t+∆.

A link between processes p and q is said to be ∆-timely
in an interval I if every message sent by p to q at a time
t ∈ I is a ∆-timely message, provided that t+∆ ∈ I .

Process synchrony is ensured by making steps at a
minimum rate. Note that in contrast to [8], there is no
restriction on the maximum speed of processes, since
we will use clocks instead of step counting in order to
measure time.

Definition 2 (Φ-synchronous process in interval I): The
bound Φ is said to hold for a process p in some time
interval I , if in any sub-interval of length Φ, p takes at
least one step.

Definition 3 (local (α, β) bounded-drift clock in interval I):
A local clock Cp(t) has a bounded-drift in a time
interval I , if there are a priori known constants α and
β with 0 < α ≤ β, so that for any two times t1,
t2 ∈ I s.t. 0 < t1 < t2:

Cp(t2)− Cp(t1)

t2 − t1
∈ [α, β]. (1)

Note that our clock definition is very general, since it
includes other assumptions like the classical bounded-
drift clocks (α = 1 − ρ, β = 1 + ρ), whereas the values
α = 1/Φ, β = 1 are obtained asymptotically if step-
counting is used for measuring time (this would require
an upper bound on the frequency of steps, of course).

Definition 4 (good period): Let Π0 ⊆ Π be a set of pro-
cesses. An interval I is a good period for Π0, if there are a
priori known bounds Φ,∆ ∈ N, and α, β ∈ R, with Φ > 0,
0 < α ≤ β, such that (i) in I all processes in Π0 are Φ-
synchronous and have a local (α, β)-bounded-drift clock
in I , (ii) no process that is not in Π0 makes a step, (iii)
all links between processes in Π0 are ∆-timely, and (iv)
no messages from processes not in Π0 are received by a
process in Π0.

A k-good period is a good period for some arbitrary Π0

with |Π0| ≥ k. In the sequel, when k is clear from the
context we will use only the term good period.

Note that we do not specify why processes outside
Π0 do not make steps; they might have crashed, be just
temporarily unavailable, or be mute for any other reason.
Therefore the notion of correct or faulty process is not
suitable in our context; however, with respect to some Π0-
good period, we say a process is up in this good period
iff it is in Π0, else it is down.

Due to clock drift, a timeout measured by a process
does not necessarily match the elapsed real time. Never-
theless, during good periods the clock drift is bounded,
which allows us to bound the time measured by a process
within a real time envelop. The following Lemma shows
the relation between real time and process time, which
will be used in the rest of the paper to set process
timeouts:

Lemma 1: In a good period, a time interval of length
τC = βτL, measured by some process p, corresponds to a
real time interval of length in [τL, τU], with τU = β

ατL.
Proof: Let [t1, t2] be a real time interval. Then, Cp(t2)−

Cp(t1) = τC is the duration of the interval as measured
by p, and t2−t1 the real time duration. From equation (1),
we have t2 − t1 ≥ [Cp(t2)− Cp(t1)] /β = τL, and t2 − t1 ≤
[Cp(t2)− Cp(t1)] /α = β

ατL, which proves the result.
We will keep the notation of τL, τC , and τU consistent

within the paper to denote these different kind of dura-
tions.

5 THE GENERIC PROTOCOL

We give in this section a generic algorithm for the pred-
icate layer, an algorithm that is parametrized by four
abstract functions. The instantiation of these functions
will allow us to devise three different algorithms for
the predicate layer that differ mainly by the message
pattern and the way the coordinator is elected. The first
method is called Full Synchronization (Section 6); it ensures
uniform rounds, therefore allowing the implementation
of all predicates considered in this paper. Phase Syn-
chronization (Section 7) is an optimized implementation
for Plv3, where round synchronization takes place only
once per phase. Finally, Synchronization by a Coordinator
(Section 8), where synchronization uses only messages
from coordinator process(es), is specialized for Plv4.

The generic Algorithm 4 follows the following pattern.
One iteration of the while loop (line 6) corresponds to
one round: the sending function is called at line 9 and
the transition function is called at line 20. Messages are
sent at line 14: the abstract function Dest (line 10) specifies
the set of processes a message is sent to in the current
round. Message reception occurs at line 17. The receive
statement is executed repeatedly until NextRound returns
true (line 16). This typically happens when a timer has
expired or when a message from some higher round
is received. Note also that some rounds may be totally
skipped (no message sent, no message received): this
happens whenever the function SkipRound (line 8) returns
true, which typically occurs if process p in round rp
receives a message from some round r′ > rp. In this
case, p skips all rounds from rp to r′− 1. Finally, function
ElectCoord specifies how a coordinator for each round is
determined.

6 FULL SYNCHRONIZATION

Our first implementation is given as Parametrization 1
for the generic algorithm. The implementation ensures
uniform rounds in a good period, which “almost” ensures
Plv4 (for LV-4) and Plv3 (for LV-3): only the election of
the coordinator is missing. However, a uniform round
r allows the election of a unique coordinator for round
r + 1 (the coordinator can be determined through a
deterministic function on the HO sets of round r). Thus
uniformity of round 4φ0 and of the four rounds of phase
φ0 + 1 allows us to ensure Plv4, and uniformity of round

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Algorithm 4 Generic algorithm of the predicate layer

1: Rcvp ← ∅ /* set of messages received */
2: rp ← 1 /* round number */
3: sp ← initp /* state of the process p */
4: coordp ← ⊥ /* coordinator of process p */
5: tp ← Cp() /* timer */
6: while true do
7: coordp ← ElectCoord(p, rp, Cp()− tp, coordp,Rcvp)
8: if ¬SkipRound(p, rp, Cp()− tp, coordp,Rcvp) then
9: msgs← S

rp
p (sp, coordp)

10: for all q ∈ Dest(p, rp, Cp()− tp, coordp,Rcvp) do
11: if p = q then
12: Rcvp ← Rcvp ∪ {〈msgs[p], p, rp〉} /* local delivery */
13: else
14: send(〈msgs[q], rp〉, q)
15: tp ← Cp()
16: while ¬NextRound(p, rp, Cp()− tp, coordp,Rcvp) do
17: receive(S)
18: for all messages 〈〈x, r〉, q〉 ∈ S do
19: Rcvp ← Rcvp ∪ {〈x, q, r〉}
20: sp ← T

rp
p ({〈x, q〉 | 〈x, q, rp〉 ∈ Rcvp}, sp, coordp)

21: rp ← rp + 1

3φ0 and of the three rounds of phase φ0 + 1 allows us
to ensure Plv3. More generally, 2y consecutive uniform
rounds ensure y instances of Potr, in the worst case 4y+4
consecutive uniform rounds ensure y instances of Plv4,
and 3y+3 consecutive uniform rounds ensure y instances
of Plv3.

With Parametrization 1, every process sends a message
to every other process in all rounds (see function Dest).
While sending to all in all rounds seems natural for
Potr, where every process has to hear from every alive
process, this induces some overhead for Plv3 and Plv4,
since these predicates only require one-to-all or all-to-
one patterns on some of their rounds. This is shown in
the following picture for predicate Plv3, where the full
lines represent messages required by the predicate and
dotted lines represent the additional messages sent by
Parametrization 1:

p1

p2

p3

3φ− 2 3φ− 1 3φ

Fig. 2. Message pattern of Full Synchronization

In the next sections, we provide implementations for
Plv3 and Plv4 with lower message complexity.

6.1 Outline of Full Synchronization

As shown by function NextRound in Parametrization 1,
there are two ways for a process p to leave round r: (i)
by receiving a message from a higher round r′ > r, or (ii)
by expiration of a timeout. In case (i), the process goes
directly to round r′. Note that the function SkipRound

and the first condition of NextRound play together to
achieve this. In case (ii) the timeout τC is chosen to ensure

Parametrization 1 A generic parametrization using full
synchronization; where ho(r) := {q | 〈−, q, r〉 ∈ Rcv}.

NextRound(p, r, τ, coord ,Rcv) :=

∨

{

∃〈−,−, r′〉 ∈ Rcv : r′ > r
τ ≥ τC

SkipRound(p, r, τ, coord ,Rcv) := ∃〈−,−, r′〉 ∈ Rcv : r′ > r

Dest(p, r, τ, coord ,Rcv) := Π

ElectCoord(p, r, τ, coord ,Rcv) :=






min(Π) : r = 1
min(ho(r − 1)) : ho(r − 1) 6= ∅
coord : else

uniformity, i.e., Pu(), in a good period (see Lemma 2
below). As shown by the function ElectCoord , the coor-
dinator for some round r is the smallest process (min)
in the HO set of round r − 1 (whenever this HO set is
non empty). Note the definition of the macro ho(r) given
in the caption of Parametrization 1; we will also use this
notation in the following sections. This ensures a unique
coordinator in good periods where rounds are uniform.
For non-coordinated predicates, like Pu(), no coordinator
is needed and the function ElectCoord can be ignored.

6.2 Timeout τC
We first assume that a good period, which starts at some
time tg , holds forever, and show that the timeout τC =
[2∆+ (2n− 1)Φ]β ensures Pu() for processes that are up
in this good period. In the next subsection we compute
the length of a good period that is sufficient to ensure
Pu().

Lemma 2 (Timeout τC): Consider Parametrization 1
with the timeout τC = [2∆ + (2n − 1)Φ]β. Assume that
a k-good period starts at time tg and holds forever, and
that round r0 is the highest round started by any process
in Π0 by time tg . Then every new round r > r0 started
after time tg is uniform (Pu(r)) with cardinality k.

Proof: We show that in round r, for every process p ∈
Π0, we have: (i) p receives a message from all processes
in Π0, but (ii) not from any process not in Π0.

We start with (ii). Assume that p received a round
r message from a process q that is not in Π0. By the
definition of a good period, p could not have received
this message after tg . If p had received this message before
tg , then p would have advanced to round r immediately,
which contradicts our assumption that no process in Π0

has entered round r by tg.
To prove (i), assume some process p1 is the first to finish

sending its round r messages at time ts > tg (see Fig. 3).
These messages are ready for reception at each process in
Π0 (p2 in Fig. 3), the latest at ts + ∆, since messages are
∆-timely. These messages are received in the next receive
step, which occurs the latest after n− 1 send steps (in the
case the process was just starting executing send steps).
Since a step takes up to Φ time, p1’s message is received
by all processes in Π0 the latest at ts+∆+nΦ. Each process
that receives this message jumps to round r, if not already

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

p1

p2

p3

r

∆

(n−1)ΦΦ

r

(n−1)Φ

∆

∆

ts τL te

Fig. 3. Full synchronization: Lemma 2.

there, and thus, by time ts+∆+(2n−1)Φ has performed
n− 1 send steps and has sent its round r message to all.
This message is ready for reception by the latest at time
te = ts + 2∆+ (2n− 1)Φ.

The timeout τC = [2∆ + (2n − 1)Φ]β, together with
Lemma 1, ensure that no timeout of length τC started at
time ts expires before te. So when the timeout expires, all
messages for round r are either received or ready to be
received. Before calling the transition function for round r,
a receive step is performed; thus in round r every process
in Π0 receives a message from every process in Π0.

6.3 Length of a good period

The next theorem computes the required duration of a
good period in order to ensure x consecutive uniform
rounds. The special case x = 0 gives the initialization
time, which for Potr is the time from the start of the good
period until the beginning of the first uniform round,

which is β
α

(

2∆+(2n−1)Φ
)

+2nΦ+∆. Also from the for-

mula, we can compute the time required for each uniform

round after stabilization, which is β
α

(

2∆+(2n−1)Φ
)

+nΦ.

Theorem 1: In any good period of length

(x+ 1)

[

β

α

(

2∆ + (2n− 1)Φ
)

+ nΦ

]

+∆+ nΦ

the generic algorithm with Parametrization 1 ensures x
consecutive rounds that fulfill Pu().

Proof: Assume a good period starts at time tg and
at this time process p1 has the highest round number r
among the processes in Π0. We distinguish two cases: (i)
tg is during these n−1 send steps (not shown in Fig. 4) of
round r = 3φ. (ii) tg after these send steps (see Fig. 4). It
can be shown that case (ii) is worse than case (i) in terms
of length of the good period, thus we consider case (ii).
Round r+1 is the first round that all processes in Π0 start
after tg . According to Lemma 2, round r+1, r+2, etc. are
uniform if the good period is long enough. We compute
the maximum time it takes for any process p2 to complete
round r + x. As shown by Fig. 4, p2 starts round r + 1 at
latest at time tg + τU + 2nΦ + ∆ (end of “initialization”
in Fig. 4). This expression is obtained as follows: by the
definition of p1, no message of a round larger than r is
received before p1’s timer expires, and τU = β

ατL is the
time elapsed for a timeout τC = τLβ; when the timeout
expires, p1 executes a receive step (φ), moves to round

p1

p2

r

(n−1)Φ τU Φ

r + 1

(n−1)Φ τU Φ
∆

(n−1)ΦΦ

r + 1

(n−1)Φ τU Φ

tg initialization regular round

Fig. 4. Full synchronization: Theorem 1.

r+1, executes n−1 send steps ((n−1)Φ); in the worst case
the message to p2 is sent in the last of these send steps;
∆ later the message is ready for reception on p2; at this
time p2 may be executing n send steps ((n − 1)Φ) before
the reception step (Φ) in which p1’s message is finally
received; at this point p2 moves to round r + 1.

We now show that case (i) leads to a shorter good
period. Here, by time tg + (n− 2)Φ, at least one message
of round r was sent by p1. By time tg+(n−2)Φ+∆+nΦ,
this message is received by some process, and at the
latest (n − 1)Φ time later, this process has sent its round
r messages to all. Thus, after time tg + 2∆ + (4n − 4)Φ,
every process has performed its send steps for round r.
Consequently, doing now the same analysis as in case (ii),
it cannot be the case anymore that a process is performing
send steps when the message for round r+1 is ready for
reception. This leads to the fact that also in this case p2
starts round r + 1 not after time tg + τU +∆+ 2nΦ.

Process p2 needs at most nΦ+τU to complete round r+1
(see “regular round” in Fig. 4): n− 1 send steps ((n− 1)Φ),
timeout τU (in the worst case no message of a larger round
is received), one receive step (Φ).

Summing up the duration of “initialization” and of x
“regular rounds” leads to (x + 1)[τU + nΦ] + ∆ + nΦ.
Replacing τU with β

ατL, and τL with 2∆ + (2n− 1)Φ (see
Lemma 2) establishes the result.

As mentioned at the beginning of Section 6, in the worst
case for y instances of predicate Potr we need 2y uniform
rounds, for y instances of Plv3 we need 3y + 3 uniform
rounds, and for y instances of Plv4 we need 4y+4 uniform
rounds. It follows that the initialization time of LV-3 Full
Sync corresponds to the initialization time to get uniform
rounds, plus the duration of three uniform rounds. After
initialization, each instance of LV-3 Full Sync requires
three uniform rounds. Applying a similar reasoning to
LV-4, we have:

Corollary 1: Let ϑ = β
α

(

2∆ + (2n − 1)Φ
)

+ nΦ. The the

initialization time of LV-3 Full Sync, resp. LV-4 Full Sync,
is 4ϑ+∆+nΦ, resp. 5ϑ+∆+nΦ. After initialization, the
duration of one instance of LV-3 Full Sync, resp. LV-4 Full
Sync, is 3ϑ, resp. 4ϑ.

7 PHASE SYNCHRONIZATION

Full synchronization sends extra messages with respect to
the “natural message pattern” induced by the predicates
Plv3 and Plv4. In this section, we give an implementation
for Plv3, that uses only the “natural” messages, which are
the following:

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

p1

p2

p3

3φ− 2 3φ− 1 3φ

Fig. 5. Message pattern of Phase Synchronization

Parametrization 2 LV-3 using phase synchronization;
where ho(r) := {q | 〈−, q, r〉 ∈ Rcv}

NextRound(p, r, τ, coord ,Rcv) :=

∨











∃〈−,−, r′〉 ∈ Rcv : r′ > r
r mod 3 = 1 ∧ (τ ≥ τC1 ∨ |ho(r)| > n/2)
r mod 3 = 2 ∧ τ ≥ τC2

r mod 3 = 0 ∧ τ ≥ τC3

SkipRound(p, r, τ, coord ,Rcv) := ∃〈−,−, r′〉 ∈ Rcv : r′ > r

Dest(p, r, τ, coord ,Rcv) :=






coord : r mod 3 = 1
Π : r mod 3 = 0 ∨ (r mod 3 = 2 ∧ p = coord)
∅ : else

ElectCoord(p, r, τ, coord ,Rcv) :=






min(Π) : r = 1
min(ho(r − 1)) : r mod 3 = 1 ∧ ho(r − 1) 6= ∅
coord : else

Here, processes are synchronized only at round 3φ of
every phase φ. As in the case of full synchronization,
round 3φ allows the election of the coordinator for phase
φ+ 1.

7.1 Outline of Phase Synchronization

The “natural” message pattern just depicted is generated
by the function Dest in Parametrization 2.

Round 3φ of phase φ is identical to a round in the full
synchronization case: all processes wait for the timeout
before electing a new coordinator and moving to the
first round of the next phase. According to function
NextRound , only round 3φ− 2 (line 2 in NextRound) may
be terminated by the reception of messages. Rounds 3φ−1
and 3φ terminate by expiration of the timeout as before.

Round 3φ− 1 requires some clarification. In this round
processes only need to receive a message from the coor-
dinator, thus it seems natural for a process to advance
to round 3φ as soon as it receives such message. But
this solution is not correct as shown by the following
scenario. Consider processes p1, p2, and pc, with pc being
the coordinator. Process p1 receives pc’s message for round
3φ − 1, advances to round 3φ, and sends its round 3φ
message to all. This message is delivered quickly to p2,
which receives it before the round 3φ − 1 message from
pc. If p2 advances immediately to round 3φ, it will miss
the round 3φ − 1 message from pc that arrives later.
Algorithm 2 avoids this problem by delaying the start
of round 3φ until all processes had time to receive the
round 3φ − 1 message from the coordinator. Another

p1

p2

p3

3(φ− 1)
∆
(n−1)ΦΦ

3(φ− 1)

(n−1)Φ
∆

ts3 τL3

3φ− 2

3φ− 2

τU3 Φ

3φ− 2

Φ

∆

ts1 τL1

3φ− 1

Φ(n−1)Φ

∆

ts2 τL2 te

Fig. 6. Phase synchronization: Lemmas 3–5.

solution, based on piggybacking, is described at the end
of Section 7.

7.2 Timeouts τC1, τC2, τC3

Lemma 3 (Timeout τC1): Consider Parametrization 2

with τC1 = [2∆ + (2n+ 1)Φ]β + τC3

(

β
α − 1

)

. Assume

every process starts round 3(φ−1) in a
(

n+1
2

)

-good period
and phase φ has a unique coordinator. Then the
coordinator hears from a majority of processes in round
3φ− 2.

Proof: Let p3 be the first process that starts the timeout
for round r = 3(φ−1) at time ts3 (see Fig. 6). By time ts3+
∆+nΦ all other processes, e.g., p2, are in round 3(φ− 1).
After sending their round 3(φ− 1) messages, which takes
at most (n−1)Φ time, their timeout τC3 = τL3β will expire
by time ts3 +∆+ (2n− 1)Φ+ τL3

β
α . A receive and a send

step later, each process has sent its round 3φ− 2 message
to the coordinator (p1 in Fig. 6), which is by time ts3 +
∆+(2n+1)Φ+ τL3

β
α . This message is ready for reception

at the coordinator ∆ time later. Thus if the coordinator
executes the receive step and the transition function for
round 3φ− 2 not before time ts2 = ts3 +2∆+ (2n+1)Φ+
τL3

β
α , the set of messages passed to the transition function

includes the messages of round 3φ− 2 from a majority.
Because p3 is the first process to start the timeout for

round 3(φ − 1), no timeout τC3 for this round expires at
any process (including the coordinator) before ts3 + τL3.
Therefore, no process (including the coordinator) starts
round 3φ − 2 before ts1 = ts3 + τL3, and executes the
transition function for round 3φ− 2 before ts1 + τL1. The
timeout τC1 as given by the lemma ensures that ts1+τL1 is
not before ts2. Thus the coordinator p1 receives the round
3φ− 2 messages from all processes in Π0.

Lemma 4 (Timeout τC2): Consider Parametrization 2

with the timeout τC2 = [3∆ + (3n+ 1)Φ]β+τC3

(

β
α − 1

)

−

τC1. Assume a phase φ with a unique coordinator, where
round 3(φ − 1) starts in a

(

n+1
2

)

-good period. Then
in round 3φ − 1, every process in Π0 hears from the
coordinator.

Proof: Let p3 be the first process that starts the timeout
for round r = 3(φ− 1) at time ts3. By a similar reasoning
as for Lemma 3, each process has sent its round 3φ −
2 message to the coordinator by time ts3 + ∆ + (2n +
1)Φ + τL3

β
α . Then, at most ∆ + Φ later, the coordinator

has received this message from every process in Π0, thus

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

achieved the majority condition in line 2 of NextRound ,
and therefore sends its round 3φ − 1 message to all. The
latter takes at most (n− 1)Φ time, and this message will
be ready for reception ∆ time later. At this time, te =
ts3 + 3∆ + (3n + 1)Φ + τL3

β
α , the timeout τC2 may safely

expire at any process. Because p3 is the first process that
starts round 3(φ−1), no process starts round 3φ−1 before
ts2 = ts3 + τL3 + τL1. Thus choosing τC2 as in the lemma
ensures that τC2 does not expire before time te at any
process.

Lemma 5 (Timeout τC3): Consider Parametrization 2
with the timeout τC3 = [2∆+ (2n− 1)Φ]β. Assume that a
k-good period starts at time tg and that round r0 is the
highest round started by any process in Π0 by time tg.
Then every new round 3φ > r0 started after time tg is
uniform with cardinality k.

Proof: Similar to Lemma 2.

Corollary 2: Parametrization 2 with the timeout τC1 =

2Φβ + β2

α [2∆ + (2n − 1)Φ], τC2 = [∆ + nΦ]β, and τC3 =
[2∆+(2n−1)Φ]β ensures a Plv3(φ), if round 3(φ−1) starts
in a

(

n+1
2

)

-good period.
Proof: By Lemma 5, round 3(φ− 1) is uniform. Thus

by the definition of ElectCoord , every process in Π0 has
the same coordinator. Applying the Lemmas 3 to 5 and
replacing the equations for τC1, τC2, and τC3 yields the
result.

7.3 Length of a good period

We are now ready to compute the required duration of
a good period in order to ensure y consecutive phases of
Plv3(). For the predicate Plv3(), the initialization time is
the time from the start of a good period until all processes
start the first round of phase φ satisfying Plv3(φ). This can
be computed from the formula below, by setting y = 0.
After initialization, the time required for each consensus
instance is given by the multiplication factor of y.

Theorem 2: In any good period of length

y

[

(

2∆ + (2n− 1)Φ
)β2

α2
+

(

3∆ + (3n+ 1)Φ
)β

α
+ (2n+ 2)Φ

]

+

+
(

2∆ + (2n− 1)Φ
)β2

α2
+

(

5∆ + 5nΦ
)β

α
+∆+ 5nΦ

the generic algorithm with Parametrization 2 and time-
outs according to Corollary 2 ensures y consecutive
phases that fulfill Plv3(φ).

Proof: It can be shown that the “initialization” period
(see Fig. 7) is the longest in case tg starts just after the first
send step of some round 3(φ − 2), and round 3(φ− 2) is
not uniform (only round 3(φ− 1) is uniform). The end of
round 3(φ − 1) corresponds to the end of the “initializa-
tion” period. By time tg+(2n+1)Φ+τU3+τU1+τU2 round
3(φ−1) is started at some process p1. This round 3(φ−1)
ends for all processes in Π0 at the latest (3n−1)Φ+τU3+∆
time later (end of “initialization” period) using the same
argument as in Theorem 1. By Corollary 2, we have
Plv3(φ). Every “regular” phase then takes at most time
τU1+τU2+τU3+(2n+2)Φ. The result follows by replacing
the timeouts with the expressions from Corollary 2.

7.4 Piggybacking

We have explained in Section 7.1 why we choose round
3φ − 1 to terminate by the expiration of a timeout. The
other solution requires some changes to our generic im-
plementation. Thus we present only the overall idea and
the results.

In this approach, a process p piggybacks all the mes-
sages it received for a round r on its message for round
r+ 1. If some process q receives the round r+ 1 message
from p before entering round r + 1, q can include these
round r messages to its received set before ending round
r. In some cases, this shortens the length of a good period.

In general, this mechanism can be used if all processes
wait for the same quorum in some round, e.g., in the
second round of LV-3, where all processes wait for a single
message from the same process, i.e., the coordinator. By
this optimization the length of a good period for LV-3 us-
ing phase synchronization can be reduced approximately
by one ∆. The expression can be calculated by applying
a similar analysis as before:

y

[

(

2∆ + (2n− 1)Φ
)β

α
+ 2∆+ (2n+ 2)Φ

]

+

+
(

2∆ + (2n− 1)Φ
)β2

α2
+

(

5∆ + 5nΦ
)β

α
+∆+ 5nΦ

The other benefit of piggybacking is to speed up best
case scenarios, where Π0 = Π in a good period. In this
case, the implementation of the predicate does not rely
on any timeout, and the length of a good period depends
only on the actual transmission delay of messages, and
no more on ∆. However, applying piggybacking in every
round induces an important overhead and can consider-
ably increase the effective message transmission delay.

8 SYNCHRONIZATION BY A COORDINATOR

If we use full synchronization or phase synchronization
to implement Plv4, LV-4 will never perform better than
LV-3 in terms of message complexity or length of the
good period, because LV-4 requires one more round per
phase. In this section we give another implementation that
achieves a message complexity of O(n) instead of O(n2)
per regular phase during a good period, at the cost of a
slightly larger length of the good period.

The predicate Plv4, contrary to Plv3, does not require
any round where all processes hear from each other. With-
out such a round, we need to send additional messages in
some round in order to synchronize processes and choose
a coordinator, like we do for Plv3. As for Plv3 we do this
only once per phase, in the last round of a phase. This
leads to the following message pattern:

The messages represented by a full line are required by
Plv4, while the messages represented by a dotted line in
round 4φ are only for synchronization and election of a
coordinator.

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

p1

p2

3(φ− 2)

(n−1)Φ τU3 ΦΦ τU1 Φ(n−1)Φ τU2 Φ

3(φ− 1)

(n−1)Φ τU3 Φ
∆

(n−1)ΦΦ

3(φ− 1)

(n−1)Φ τU3 ΦΦ τU1 Φ(n−1)Φ τU2 Φ

3φ

(n−1)Φ τU3 Φ

tg initialization regular phase

Fig. 7. LV-3 using phase synchronization: Theorem 2.

p1

p2

p3

4φ− 3 4φ− 2 4φ− 1 4φ

Fig. 8. Message pattern of synchronization by coordinator

8.1 Outline of Synchronization by a Coordinator

Our algorithm requires only n messages in round 4φ
during a good period. This optimization is based on the
following two observations: (i) to choose a coordinator, it
is enough for the HO sets to be non-empty, as long as
the round is uniform, and (ii) to synchronize to the same
round in a good period it is enough if all processes receive
a message from the process with the highest round.

Based on these observations, it is easy to see that
in addition to the coordinator, only the processes that
entered round 4φ by timeout need to send a message to
all (line 3 of Dest in Parametrization 3). Otherwise, if a
process p receives a round 4φ message while in a lower
round, p can advance to round 4φ silently, since there is at
least another process that sent a message to all in round 4φ
and, therefore, can be chosen as coordinator. This strategy
results in a message complexity of cn for the election
in round 4φ, where c is the number of processes that
compete to become coordinator. After the first election
in a regular phase during a good period we have c = 1,
since all processes will receive a round 4φ message from
the coordinator while in round 4φ− 1.

To reduce the time needed to start a phase in which Plv4

might hold, our algorithm skips some rounds of phase φ
if it detects that Plv4(φ) cannot hold. This can happen in
two cases: (i) in round 4φ−2 by the coordinator if it does
not receive a majority of messages during round 4φ − 1
(SkipRound , line 2), and (ii) in round 4φ−1 by any process
if it does not receive a message from the coordinator in
round 4φ− 2 (SkipRound , line 3).

8.2 Timeouts τC1, τC3, τC4

Lemmas 6, 7 and 8 below establish results about timeouts
τC1, τC3 and τC4. The proofs are similar to those in
Section 7, and can be found in [2].2

Lemma 6 (Timeout τC1): Consider Parametrization 3

with τC1 = [3∆ + 3nΦ]β + τC4

(

β
α − 1

)

. Assume every

2. For convenience the proofs currently appear in the appendix.

Parametrization 3 LV-4 using synchronization by coordi-
nator; where ho(r) := {q | 〈−, q, r〉 ∈ Rcv}

NextRound(p, r, τ, coord,Rcv) :=

∨



















∃〈−,−, r′〉 ∈ Rcv : r′ > r
r mod 4 = 0 ∧ τ ≥ τC4

r mod 4 = 1 ∧ (τ ≥ τC1 ∨ |ho(r)| > n/2)
r mod 4 = 2
r mod 4 = 3 ∧ (τ ≥ τC3 ∨ |ho(r)| > n/2)

SkipRound(p, r, τ, coord,Rcv) :=

∨







∃〈−,−, r′〉 ∈ Rcv : r′ > r
r mod 4 = 2 ∧ (p = coord ∧ |ho(r − 1)| ≤ n/2)
r mod 4 = 3 ∧ coord /∈ ho(r − 1)

Dest(p, r, τ, coord,Rcv) :=










coord for r mod 4 ∈ {1, 3}
Π for r mod 4 = 2 ∧ p = coord

Π for r mod 4 = 0 ∧ ho(r) = ∅
∅ else

ElectCoord(p, r, τ, coord,Rcv) :=






min(Π) for r = 1
min(ho(r − 1)) for r mod 4 = 1 ∧ ho(r − 1) 6= ∅
coord else

process starts round 4(φ − 1) in a
(

n+1
2

)

-good period
and phase φ has a unique coordinator c. Then (i) c hears
from a majority of processes in round 4φ− 3, and (ii) all
processes in Π0 hear from c in round 4φ− 2.

Lemma 7 (Timeout τC3): Consider Parametrization 3
with the timeout τC3 = [3∆ + 2nΦ]β. Assume every
process starts round 4(φ − 1) in a

(

n+1
2

)

-good period,
and φ has a unique coordinator c. Then (i) c hears from
a majority of processes in round 4φ − 1, and (ii) all
processes in Π0 hear from c in round 4φ.

Lemma 8 (Timeout τC4): Consider Parametrization 3
with the timeout τC4 = [2∆+(2n− 3)Φ]β. 3 Assume that
a k-good period, k ≥ 1, starts at time tg and that round
r0 is the highest round started by any process in Π0 by
time tg . Then every round 4φ > r0 started after time tg
is uniform with non-zero cardinality.

Corollary 3: Parametrization 3 with the timeout τC1 =

[∆+ (n+ 3)Φ]β + [2∆+ (2n− 3)Φ]β
2

α , τC3 = [3∆+ 2nΦ]β,
and τC4 = [2∆ + (2n − 3)Φ]β ensures Plv4(φ), if round
4(φ− 1) starts in a

(

n+1
2

)

-good period.

Proof: By Lemma 8, round 4(φ − 1) is uniform with
non-zero cardinality. Thus by the definition of ElectCoord ,
every process in Π0 has the same coordinator. Applying
Lemma 6 to 8 and solving the equations for τC1, τC2, and
τC4 yields the result.

3. Note that the timeout is different from the one in Lemma 2, since
in some cases, processes do not send messages in this round.

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

8.3 Length of a good period

The next theorem computes the required duration of a
good period in order to ensure y consecutive phases of
Plv4(φ). Just like with the predicate Plv3(φ), the initializa-
tion time is given by setting y = 0, and the time per phase
by the multiplication factor of y.

Theorem 3: In any good period of length

y

[

(

2∆ + (2n− 3)Φ
)β

α
+ 4∆+ (2n+ 5)Φ

]

+

+
(

2∆+(2n−3)Φ
)β2

α2
+
(

5∆+(5n−3)Φ
)β

α
+∆+(3n+1)Φ

the generic algorithm with Parametrization 3 ensures y
consecutive phases φ that fulfill Plv4(φ).

We first present an informal correctness argument for
the length 6y∆ + 8∆ (we ignore the Φ terms). Then, we
present the complete proof.

Initialization period. It can be shown that the “initializa-
tion” period is the longest in the following case: (i) tg
starts just after the first send step of the highest round
4(φ−2) reached by some process p, and (ii) round 4(φ−2)
is not uniform (only round 4(φ−1) is uniform). In this case
p will go through the full timeouts of round 4(φ− 2) and
4(φ−1)−3, which takes 5∆. By this time, say t0, if no other
process has started round 4(φ − 1), process p will do so,
skipping rounds 4(φ−1)−2 and 4(φ−1)−1 (see lines 2 and
3 of SkipRound in Parametrization 3). At latest at t0+∆ the
coordinator will start round 4(φ − 1); its round 4(φ − 1)
message is ready for reception ∆ later. Round 4(φ − 1)
terminates by the expiration of a timeout (2∆), see lines 2
of NextRound in Parametrization 3, which means that the
coordinator message will be received only at t0 + 3∆. So
latest at t0 + 3∆ all processes in Π0 have finished round
4(φ− 1), which ends the initialization period and starts a
regular phase. Thus, the initialization period lasts for 8∆
and a regular phase starts at tg + 8∆.

Regular phase. We show that the duration of a regular
phase is 6∆. Rename the regular phase to φ. Let the last
process enter the regular phase φ at time tr. Then by
tr + ∆ the coordinator has a majority of round 4φ − 3
messages, and 2∆ later the coordinator receives the round
4φ− 1 messages from all processes in Π0. By tr + 4∆ the
coordinator message of round 4φ is ready for reception at
all processes in Π0. Round 4φ terminates by the expiration
of a timeout (2∆). So by tr+6∆ all processes have decided.

Proof: We first compute the time by which all pro-
cesses have entered the first round of a good phase, which
we will call the initialization period. The duration a phase
φ is measured as the time since the last process enters
round 4φ− 3 until the last process ends the round 4φ.

Assume a good period starts at time tg (see Fig. 9). We
start by computing the latest time a process p will enter
a new round 4(φ− 1) after tg .

After tg, there will be a process p1 that will either start
(i) a new round 4(φ− 2), or (ii) a new round 4(φ− 1)− 2
before any other process which depends on p1’s round at
tg . If p1 is in round two or three of a phase, then the case

(i) happens first, the latest by ts4a = tg+nΦ+τL3
β
α , which

is the time required to complete rounds two and three of
a phase. If p1 is in round four or one of a phase, then case
(ii) happens first. The time by which it happens depends
on whether p1 advances to round 4(φ− 1)− 2 by timeout
or by receiving messages.

• Process p1 advances by timeout (line 3 of NextRound).
Then p1 will skip rounds 4(φ−1)−2 and 4(φ−1)−1.
If p1 is a coordinator, then by line 2 of SkipRound

it will skip the round without executing send steps.
Otherwise, the Dest function ensures that p1 will not
send to anyone and line 4 of NextRound makes it
advances immediately to round 4(φ−1)−1. In either
case, p1 will skip round 4(φ − 1) − 1 by line 3 of
SkipRound , since no round 4(φ − 1) − 2 was sent at
this time. Thus, p1 starts round 4(φ−1) immediately,
proposing itself as coordinator because of line 3 of
Dest . This happens the latest by ts4b = tg+(n+1)Φ+
(τL4+τL1)

β
α , which is the maximum time required to

complete rounds 4(φ− 2) and 4(φ− 1)− 3.
• Process p1 advances by receiving messages. This may

happen either by receiving a message from round
4(φ − 1) − 2 (line 1 of NextRound) or by receiving
a majority of messages in round 4(φ−1)−3 (line 3 of
NextRound). The former could not have happened in
this situation, because p1 is the first process to enter
round 4(φ− 1)− 2, so no round 4(φ− 1)− 2 message
was sent by this time. In the latter case, p1 may be
the coordinator. If it is not, then it will skip round
4(φ− 1)− 2 and 4(φ− 1)− 3 for the same reasons as
if p1 had advanced by timeout.
Otherwise, if p1 is the coordinator, let M0 be the set
of processes from which p1 received round 4(φ−1)−3
messages. Processes in M0 must have started round
4(φ − 2) before tg , since by assumption no process
started a new round 4(φ − 1) between tg and p1.
Thus, the latest by tg + nΦ+ τL4

β
α they are in round

4(φ − 1) − 3, and ∆ + Φ time later the message
was received by the coordinator. Therefore, the latest
by tg + ∆ + (n + 2)Φ + τL4

β
α the coordinator has

received a majority of messages and nΦ + ∆ later,
the round 4(φ − 1) − 2 messages of p1 are ready for
reception at all processes. If all alive processes are still
in round 4(φ − 1) − 2 or lower when the messages
arrive, and if they have as coordinator p1 (recall
that the phase is not necessarily well coordinated),
then they will receive the message, advance to round
4(φ − 1) − 1, and reply to p1. Since we are in a
good period, the remaining rounds of the phase will
complete successfully and the phase will satisfy the
predicate. Since this case does not correspond to the
longest it takes to satisfy the predicate, we will not
consider it. If there is a process q that doesn’t have
p1 as coordinator, or that ended round 4(φ − 1) − 3
before receiving p1’s message, then by lines 2 and 3
of SkipRound , q will advance to round 4(φ − 1) and
send a message to all, by line 2 of ElectCoord . This

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

p1

p2

p3

4(φ− 2)

(n−1)Φ τU4 ΦΦ τU1 Φ

4(φ− 1)

(n−1)Φ

4(φ− 1)

∆
4(φ− 1)

(n−1)ΦΦ
∆
4φ− 3

4φ− 3

τU4 Φ

4φ− 3

Φ

∆
Φ(n−1)Φ

∆

4φ− 2/4φ− 1

(n−1)Φ

∆

Φ

4φ− 1

Φ

∆

Φ

4φ

(n−1)Φ
∆

Φ

4φ

τU4 Φ

tg initialization regular phase

Fig. 9. Synchronization by a coordinator: Theorem 3.

happens the latest at ts4c = tg+2∆+(2n+2)Φ+τL4
β
α ,

which is the time by which p1’s messages are received
by all processes.

Considering all the cases above, and taking the maxi-
mum of ts4a, ts4b and ts4c we can conclude that by time
tg+(n+2)Φ+(τL4+τL1)

β
α there is a process p that started

a new round 4(φ−1). (n−1)Φ+∆ time later, every process
has a round 4(φ− 1) message ready to be received and n
steps later, all processes will have received it and started
round 4(φ−1). τU4+Φ later all processes will have entered
round 4φ − 3, which marks the end of the initialization.
This happens by te = tg +∆+ (3n+ 1)Φ+ (2τL4 + τL1)

β
α .

We can use Corollary 3 to show that Plv4(φ) will be
true since round 4(φ − 1) starts in a good period. Using
the timeouts specified in Corollary 3, the algorithm is able
to complete y phases before the end of the good period
specified in this Theorem, then by Corollary 3 all those
phases will satisfy Plv4(φ), which proves this Theorem.

The duration of the good phase can be computed as
follows starting from te. Rounds 4φ−3 to 4φ−1 are mes-
sage driven, consisting of two participants-coordinator-
participants message exchange, each taking 2∆+(n+2)Φ.
Therefore, at time te + 4∆ + (2n + 4)Φ all processes
have advanced to round 4φ, and τL4

β
α + Φ later have

completed round 4φ. Therefore, the first phase ends at
te+4∆+(2n+5)Φ+τL4

β
α . By applying the same reasoning,

we can show that the following phases will take the
same time. Therefore, y good phases will complete by
te+y[4∆+(2n+5)Φ+τL4

β
α]. By expanding and simplifying

this expression, we show that the duration of the good
period specified in this theorem is enough to complete y
phases of Plv4.

9 COMPARISON

In this section we compare quantitatively the different
algorithms analyzed previously.

9.1 Impact of clock precision

First, we analyze the impact of the clock on τgood , the
duration of a good period that is sufficient to solve con-
sensus. In order to simplify the comparison, we make the
reasonable assumption Φ ≪ ∆: this allows us to ignore
the terms in Φ. The results are shown in Figure 10. The x-
axis corresponds to β/α (see Sect. 4). Larger values of β/α
correspond to larger variations in clock skew (worse clock

precision); identical clock skew (including perfect clocks
for which α=β=1) correspond to β/α = 1.

The y-axis corresponds to τgood/∆, which is the dura-
tion of a good period expressed using ∆ as the time unit.

1 2 3 4

0

25

50

75

β

α
(clock imprecision)

τgood
∆

OTR

LV-3, full

LV-3, phase
LV-4, coord

Φ ≪ ∆

Fig. 10. Duration of good period as a function of clock drift

Figure 10 shows that OTR is less sensitive to clock
imprecision than the other algorithms. It shows another
interesting result, namely that with perfect clocks, the
different implementations of the LastVoting algorithm lead
to almost the same result. This is no more the case with
large clock imprecision (which occurs for instance when
clocks are built from step counting and Φ large). We note
also that the performance of algorithms that synchronize
more often (like LV-3 with full synchronization) degrades
less quickly with less precise clocks.

9.2 Analysis of the results for precise clocks

We do now a finer analysis of the different algorithms
for the case β/α = 1. We compare algorithms not only in
terms of the duration of a good period, but also in terms
of the duration of initialization after a good period starts.

9.2.1 Overview
Table 2 is an overview of the results obtained in the
paper for all three algorithms (OTR, LV-3 and LV-4).
For OTR (predicate Potr), we have one single option
to consider, namely two uniform rounds (Pu). For LV-
3 (predicate Plv3), we have three options: three uniform
rounds (line 2), Phase Sync (line 3) and Piggybacking
(line 4). Finally for LV-4 (predicate Plv4), we have two
options: four uniform rounds (line 5) and Coord Sync

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

Alg. # rounds Resilience Pred Impl length of good period # messages
initialization per consensus initialization per consensus

1 OTR 2 3f + 1 2× Pu 3∆ + (4n− 1)Φ 4∆ + (6n− 2)Φ n2 2n2

2 LV-3 3 2f + 1 3× Pu 9∆ + (13n− 4)Φ 6∆ + (9n− 3)Φ 4n2 3n2

3 ” ” ” Phase Sync 8∆ + (12n− 1)Φ 5∆ + (7n+ 2)Φ 2n2 + 2n n2 + 2n
4 ” ” ” Piggybacking 8∆ + (12n− 1)Φ 4∆ + (4n+ 1)Φ 2n2 + 2n n2 + 2n
5 LV-4 4 2f + 1 4× Pu 11∆ + (12n− 5)Φ 8∆ + (9n− 4)Φ 5n2 4n2

6 ” ” ” Coord Sync 8∆ + (10n− 5)Φ 6∆ + (4n+ 2)Φ 2n2 + 3n 4n

TABLE 2
Summary of results for β/α = 1.

(line 6), which is designed specifically for Plv4. For each
option, Table 2 shows the initialization time, the time
for each consensus after initialization, and the number of
messages required for initialization and for each consen-
sus. The time until the first decision after the beginning
of a good period can be determined by summing the
columns initialization and per consensus.

Line 1 (OTR) follows from the beginning of Section 6
(e.g., Theorem 1 with x = 0 for the initialization time, time
for two rounds for consensus). Line 2 (LV-3, 3×Pu) follows
from Corollary 1. Line 3 (LV-3, Phase Synch) follows from
the beginning of Section 7. Line 4 (LV-3, Piggybacking)
follows from the expression in Section 7.4 (y = 0 for
the initialization time, the multiplying factor of y for
the duration of one instance of consensus). Line 5 (LV-4,
2×Pu) follows from Corollary 1 and, finally, line 6 (LV-4
Coord Synch) follows from the beginning of Section 8.3.

9.2.2 Impact of the round implementation

We see from Table 2 that the performance of our algo-
rithms varies significantly depending on the round im-
plementation. For example, the generic implementations
of Plv3 and Plv4, based on uniform rounds (lines 2 and 5),
perform clearly worse than the implementations designed
specifically for the corresponding predicates (lines 3, 4
and 6). More precisely, for Φ ≪ ∆, the initialization
time of Plv3 over uniform rounds is 9∆ and the decision
time is 6∆ (line 2), while the best implementation of this
predicate (Phase Sync) achieves 8∆ and 4∆ respectively
(line 4), while sending a smaller number of messages.

This shows that the round layer implementation plays a
crucial role in the performance of round-based algorithms.
Specifically, the simplest option (generic uniform rounds)
does not lead to the most efficient solution. This is because
algorithms like LV-3 and LV-4 do not require uniformity
in all rounds. For these two algorithms, the first two
rounds of a phase only require sending messages between
a coordinator and all processes, which as shown can
be implemented more efficiently than generic uniform
rounds. Moreover, looking at the rounds of a phase
together instead of separately, provides additional cross-
round optimization opportunities.

A consequence of using round implementations tai-
lored to the communication predicate is that the number

of communication rounds of an algorithm is no longer
a good metric of its performance. When using a generic
round implementation (like Pu), where every round is
of the same duration, the performance can be easily
estimated as (round duration) × (#rounds of algorithm).
But this is no longer the case with optimized round
implementations like Phase Sync, Piggybacking or Coord
Sync, where the duration of a round differs between pred-
icate implementations and between rounds of the same
algorithm. This is confirmed by Table 3, which shows
the average round duration (“∆/rounds”) for each of our
algorithms, considering the best round implementation
for LV-3 and LV-4. The table shows the results both for
short good periods and long good periods. As we have
mentioned in the introduction, a period of synchrony is
”short” if it allows only a few decisions, in which case the
initialization time is important. A period of synchrony is
”long” if the number of decisions taken is large enough
so that the initialization time is amortized over many
consensus instances, and can be ignored. The results show
some variation on the average duration for short good
periods, ranging from 3.5∆ (OTR and LV-4) to 4∆ (LV-3),
and a large variation for long good periods, from 1.3∆
(LV-3) to 2∆ (OTR).

9.2.3 Quantitative comparison of OTR, LV-3 and LV-4

Let us go back to Table 2 in order to compare the best
implementations of our three consensus algorithms: OTR
(only one implementation), LV-3 (Piggybacking) and of
LV-4 (Coord Sync). We consider again the (reasonable)
assumption Φ ≪ ∆. OTR with 2×Pu is the algorithm with
the shortest initialization time, namely 3∆, compared to
8∆ for LV-3 and LV-4. OTR has also the shortest time until
the first decision (7∆) and the shortest time per consensus
after initialization (4∆). However, this comes at the cost
of requiring a greater number of replicas (3f +1 for OTR,
compared to 2f + 1 for LV-3 and LV-4), and of a slightly
higher message complexity (2n2 for OTR, n2 +2n for LV-
3 and 4n for LV-4). Among the algorithms that have a
resilience of 2f + 1, LV-3 has the same initialization time
as LV-4 (Coord Sync), but a lower per consensus time
(4∆ instead of 6∆). This is to be expected, as LV-3 and
LV-4 differ on the last rounds: one all-to-all round for
LV-3 vs. two rounds for LV-4 (all-to-coordinator and an

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

Short good periods Long good periods
Alg. # rounds 1st decision ∆/rounds per-consensus ∆/rounds
OTR 2 7∆ 3.5 4∆ 2
LV-3 (Piggybacking) 3 12∆ 4 4∆ 1.3
LV-4 (Coord Sync) 4 14∆ 3.5 6∆ 1.5

TABLE 3
Average round duration (β/α = 1, Φ ≪ ∆).

coordinator-to-all). On the other hand, LV-4 (Coord Sync)
is the algorithm with the lowest message complexity,
with only 4n messages per consensus, while all other
algorithms have at least one round with n2 messages.

The analysis clearly shows that none of the algorithms
is the best choice in every situation. In unstable networks,
where the good periods are of short duration, OTR is the
best algorithm, as it requires the shortest good period for
the first decision. On stable networks, with long good
periods, OTR and LV-3 are similar in terms of time per
consensus. Since LV-3 is more resilient and has a slightly
lower message complexity, it is a better choice. If the
number of messages is important and the network is
stable, then it is worth to consider LV-4, as it requires
only 4n messages.

10 CONCLUSION

The paper has derived analytical performance results for
several round-based consensus algorithms (OTR, LV-3,
LV-4) in a system that alternates between good and bad
periods. We have considered different implementation of
rounds, and have computed for each algorithms (i) the
time from the beginning of a good period until the first
decision, and (ii) the time for each additional decision.
The results show that the performance of round-based
algorithms largely depends on the implementation of
rounds. The results also show the number of rounds of an
algorithm is not always a good metric for the performance
of an algorithm. Finally we can observe tradeoffs in
resilience, minimum duration of a good period, decision
time in the case of long good periods, and message
complexity.

As the next step, we plan to extend the analysis
to non round-based consensus algorithms, in order to
understand the performance trade-offs between round-
based and non round-based consensus algorithms, and
to understand whether the overall conclusions would be
similar or very different.

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

p1

p2

p3

4(φ− 1)

(n−1)Φ

4(φ− 1)

∆
4(φ− 1)

(n−1)ΦΦ
∆

ts4 τL4

4φ− 3

4φ− 3

τU4 Φ

4φ− 3

Φ

∆
Φ(n−1)Φ

∆

ts1 te1τL1

4φ− 2/4φ− 1

(n−1)Φ

∆

Φ

4φ− 1

Φ

∆

Φ

4φ

(n−1)Φ
∆

ts3 te3τL3

Fig. 11. Synchronization by a coordinator: Lemmas 6–8.

APPENDIX

PROOFS FOR SECTION 8.2
Lemma 6 (Timeout τC1): Consider Parametrization 3

with τC1 = [3∆ + 3nΦ]β + τC4

(

β
α − 1

)

. Assume every
process starts round 4(φ − 1) in a

(

n+1
2

)

-good period
and phase φ has a unique coordinator c. Then (i) c hears
from a majority of processes in round 4φ− 3, and (ii) all
processes in Π0 hear from c in round 4φ− 2.

The proof is illustrated in Fig. 11, between ts4 and te1.
Proof: We start with (i), and compute first the latest

time at which all round 4φ− 3 messages are ready to be
received.

Assume p1 is the first process to execute a send step
for round 4(φ − 1) at ts4. In the following, we use p2
to represent the process that takes the longest to send
a round 4φ − 3 message. By ts4 + (n − 2)Φ, p1 finishes
sending its round 4(φ−1) messages. ∆+nΦ time later, p2
receives the message from p1 and starts the timeout τC4.
This timeout expires at most τU4 + Φ later, which means
that p2 starts round 4φ− 3 by ts4 +∆+ (2n− 1)Φ + τU4.
Then, at most Φ time later, p2 has sent its message to the
coordinator (p1 in Fig. 11), and ∆ time later this message is
ready for reception. Thus, by time t0 = ts4+2∆+2nΦ+τU4

the messages from all processes in Π0 are ready to be
received by the coordinator. The coordinator (p1 in Fig. 11)
enters round 4φ−3 not before ts4+τL4, thus its timeout for
round 4φ−3 will not expire before ts4+τL4+τL1, which is
after t0. In addition, since we are in a

(

n+1
2

)

-good period,
there is at least a majority of processes in Π0 that has
sent a round 4φ− 3 message; so the coordinator receives
a majority of messages. This proves (i).

To show (ii), recall that by t0 all round 4φ−3 messages
are ready to be received by the coordinator p1. One receive
step later the coordinator advances to round 4φ− 2, and
n−1 send steps later it sends all its round 4φ−2 messages.
The message is ready for reception at all processes (p3 in
Fig. 11) by te1 = t0 + nΦ + ∆ = ts4 + 3∆ + 3nΦ + τU4.
We now show that no timeout for round 4φ − 3 expires
before te1. Since timeouts are started after sending, by
definition, ts4 is also the earliest time a process p3 in Π0

starts the timeout for round 4(φ − 1).4 By Lemma 1, p3
then waits at least until ts1 = ts4 + τL4 before sending

4. Note that our reasoning is different here to the one in the proof
of Lemma 2, where we start our considerations with the start of the
timeout, while here we start with the first message that is sent.

its round 4φ− 3 message to the coordinator and start the
timeout τC1. The timeout for round 4φ − 3 expires at p3
the earliest at ts4 + τL4 + τL1, which is equal to te1. So all
processes in Π0 hear from the coordinator in round 4φ−2,
which completes the proof of (ii).

Lemma 7 (Timeout τC3): Consider Parametrization 3
with the timeout τC3 = [3∆ + 2nΦ]β. Assume every
process starts round 4(φ − 1) in a

(

n+1
2

)

-good period,
and φ has a unique coordinator c. Then (i) c hears from
a majority of processes in round 4φ − 1, and (ii) all
processes in Π0 hear from c in round 4φ.

Proof: Since round 4(φ−1) started in a
(

n+1
2

)

-good pe-
riod, by Lemma 6, the coordinator receives all the round
4φ− 3 messages, and sends its round 4φ− 2 messages.

We start with (i), and compute first the earliest time by
which all round 4φ− 1 messages are ready to be received
by the coordinator. Let’s assume that the coordinator
sends its first round 4φ − 2 message at time ts3 to a
process p2. The coordinator finishes sending its round
4φ−2 messages at latest by ts3+(n−2)Φ; ∆+2Φ later all
processes have received this message, advanced to round
4φ − 1 and sent a round 4φ − 1 message back to the
coordinator. By time t0 = ts3+nΦ+2∆ these message are
ready for reception by the coordinator. The coordinator
starts its timeout for round 4φ− 1 not before ts3, i.e., the
timeout expires not before ts3 + τL3, which is after t0.
Thus the coordinator receives a majority of round 4φ− 1
messages, which proves (i).

We prove now (ii), and start our considerations at time
t0 (see above) when the coordinator is ready to receive
a majority of round 4φ − 1 messages. One receive step
later the coordinator advances to round 4φ, and n − 1
steps later it finishes sending its round 4φ messages. This
message is ready for reception at any process by time
te3 = ts3 + 3∆ + 2nΦ. We show now that no timeout for
round 4φ expires before te3. The earliest p2 can receive the
round 4φ− 2 message from the coordinator p1 is at time
ts3. Upon receiving the coordinator’s message, p2 enters
round 4φ − 2 (line 1 of NextRound), advances to round
4φ− 1 (line 4 of NextRound), and sends a message to the
coordinator. So the earliest time at which p2 may start
round 4φ− 1 is ts3, and the earliest time that any process
in Π0 expires the timeout for round 4φ− 1 is ts3 + τL3 =
ts3 + 3∆+ 2nΦ. This time is not before te3, which proves
(ii).

Lemma 8 (Timeout τC4): Consider Parametrization 3
with the timeout τC4 = [2∆+(2n− 3)Φ]β. 5 Assume that
a k-good period, k ≥ 1, starts at time tg and that round
r0 is the highest round started by any process in Π0 by
time tg . Then every round 4φ > r0 started after time tg
is uniform with non-zero cardinality.

Proof: We show that every process in Π0 receives a
message from all processes in a non-empty subset of Π0

and not from any other process.
By the same argument as in the proof of Lemma 2, item

5. Note that the timeout is different from the one in Lemma 2, since
in some cases, processes do not send messages in this round.

submitted to: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

(ii), we can conclude that in round 4φ > r0 no process in
Π0 receives a message from processes in Π \Π0.

We consider now messages received from processes in
Π0. Consider Fig. 11 while renaming 4(φ − 1) to 4φ. Let
ts4 be the earliest time some process p1 ∈ Π0 sends a
round 4φ > r0 message. Since timeouts are started after
sending, by definition, ts4 is also the earliest that a process
can start the timeout for this round. The timeout τC4 =
[2∆ + (2n − 3)Φ]β, together with Lemma 1, ensures that
no timeout of length τC4 started at time ts4 expires before
ts1 = ts4 + 2∆+ (2n− 3)Φ.

We will now show that all round 4φ messages are
received before ts1. Process p1 finishes his send steps by
time ts4+(n−2)Φ. By time ts4+(n−2)Φ+∆ the messages
sent by p1 are ready to be received by all other processes.
This is the latest time some process, say p2, may start the
send steps for round 4φ, since if p2 receives the round
4φ message while on a lower round, it will skip the send
steps of this round (line 3 of Dest). Assume p2 started
its send steps at ts4 +∆+ (n− 2)Φ. Its messages will be
ready for reception at all processes (n − 1)Φ + ∆ later,
i.e., by ts4 + 2∆+ (2n− 3)Φ which, as seen previously, is
before any timeout expires. So when the timeout expires,
all messages sent in round 4φ are either received or ready
to be received; thus in round 4φ every process in Π0

receives all messages sent in round 4φ, hence the round
is uniform.

Trivially, at least one message is sent in round 4φ, which
shows the non-empty cardinality.

REFERENCES

[1] D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. How to solve
consensus in the smallest window of synchrony. In Proceedings of
the 22nd International Conference on Distributed Computing (DISC’08),
pages 32–46, 2008.

[2] F. Borran, M. Hutle, N. Santos, and A. Schiper. Quantitative Anal-
ysis of Consensus Algorithms. Technical Report EPFL-REPORT-
150216, EPFL, 2010.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, Mar. 1996.

[4] B. Charron-Bost and A. Schiper. Improving fast paxos: being
optimistic with no overhead. In Pacific Rim Dependable Computing,
Proceedings, 2006.

[5] B. Charron-Bost and A. Schiper. The Heard-Of model: computing
in distributed systems with benign faults. Distributed Computing,
pages 49–71, 2009.

[6] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of consensus
failure recovery. Distributed Computing, 19(5-6):373–386, April 2007.

[7] P. Dutta, R. Guerraoui, and L. Lamport. How fast can eventual
synchrony lead to consensus? In Proceedings of the 2005 International
Conference on Dependable Systems and Networks (DSN’05), pages 22–
27, Los Alamitos, CA, USA, 2005.

[8] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, Apr. 1988.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, Apr. 1985.

[10] E. Gafni. Round-by-round fault detectors (extended abstract):
unifying synchrony and asynchrony. In Proceeding of the 16th Annual
ACM Symposium on Principles of Distributed Computing (PODC’98),
pages 143–152, Puerto Vallarta, Mexico, 1998. ACM Press.

[11] I. Keidar and A. Shraer. Timeliness, failure-detectors, and consen-
sus performance. In Proceedings of the 25th Annual ACM Symposium
on Principles of Distributed Computing (PODC’06), pages 169–178,
New York, NY, USA, 2006. ACM Press.

[12] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[13] L. Lamport. Fast paxos. Technical Report MSR-TR-2005-12, Mi-
crosoft Research, 2005.

[14] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting the paxos
algorithm. In Proceedings of the 11th International Workshop on
Distributed Algorithms (WDAG’97), volume LNCS 1320/1997, pages
111–125. Springer-Verlag, 1997.

[15] N. Santoro and P. Widmayer. Time is not a healer. In Proc. 6th
Annual Symposium on Theor. Aspects of Computer Science (STACS’89),
volume 349 of LNCS, pages 304–313, Paderborn, Germany, Feb.
1989. Springer-Verlag.

[16] A. Schiper. Early consensus in an asynchronous system with a
weak failure detector. Distributed Computing, 10(3):149–157, April
1997.

