-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Compiling Generics Through User-Directed Type
Specialization

lulian Dragos] Martin Odersky
Ecole Polytechnique Fédérale de Lausanne, Ecole Polytechnique Fédérale de Lausanne,
Switzerland Switzerland

iulian.dragos@epfl.ch

ABSTRACT

Compilation of polymorphic code through type erasure gives
compact code but performance on primitive types is signif-
icantly hurt. Full specialization gives good performance,
but at the cost of increased code size and compilation time.
Instead we propose a mixed approach, which allows the pro-
grammer to decide what code to specialize. Our approach
supports separate compilation, allows mixing of specialized
and generic code, and gives very good results in practice.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Polymorphism—im-
plementation; D.3.2 [Programming Languages|: Object-
Oriented Languages; D.3.4 [Programming Languages]:
Compilers, Code generation, Optimization

General Terms

Languages, Performance

Keywords

Boxing, Specialization

1. INTRODUCTION

Parametric polymorphism has become a standard feature
in statically typed, object-oriented programming languages.
Generics, or templates in C++, allow programmers to write
classes and methods that operate on many types, without
depending on the concrete type. This leads to shorter and
more expressive programs, while retaining the advantages of
static typing.

For efficiency reasons, many programming languages choose
different representations for primitive types (such as Int or
Double) and for reference types. This in turn makes compi-
lation of generic code more difficult, as the same code may
need to work with one representation during an invocation,
and another one during the next.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICOOOLPS 09 Genova, Italy

Copyright 2009 ACM 978-1-60558-541-3/09/07 ...$10.00.

42

martin.odersky@epfl.ch

def reverse[T](a: Array[T]) {
for (i <- 0 until a.length)
a(i) = a(a.length - i - 1)

}

In this example written in Scala [9], we have a method
definition that takes one type parameter T and one value
parameter a, an array whose elements have type T. Nothing
is known about type T when this method is defined, but the
array indexing operation needs to know what is the size of
one element (assuming arrays are represented as a contigu-
ous space in memory). For example, when T is Int, element
size is one word, but when T is Double the size of elements is
two words.

There have been two ways to deal with this issue:

e make generic code to use a single representation for
values. This is the route taken by Java and Scala and
leads to compact code, but primitive values have to be
bozed and unboxed as they enter or leave generic code.
This leads to significant performance loss.

e generate specialized versions for each type that is used
by the generic code, or a subset thereof. This is the
route taken by C++ and the .NET Common Language
Runtime [7]. The disadvantage is the increase in code
size (code explosion), but code using generic defini-
tions runs at full speed.

In this paper we present a new way of compiling generic
code that can be both fast and compact.

e We present a solution that is a combination of the two
alternatives described above (Section 2). Most generic
code uses a common representation, but when perfor-
mance is critical the programmer may require certain
classes or methods to be specialized. Our solution sup-
ports separate compilation and allows mixing special-
ized and generic code.

e We have developed an implementation for Scala, and
report on performance improvements and code size im-
pact in Section 3. We show that we can achieve im-
provements of more than 20x, for an increase in size
between 16% and 161%.

2. SPECIALIZATION

As a running example we will consider a generic definition
of unary functions

https://core.ac.uk/display/147960758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

trait Functionl[+R, -T] {
def apply(x: T): R

A trait in Scala is similar to a Java interface, except that
it may contain concrete methods. Here we define a function
of one parameter whose only method is apply, and that rep-
resents functions from values of type T to values of type R.
Concrete subclasses of this trait will provide an implemen-
tation for apply, for specific T and R.

def map[A](xs: Array[A], f: A => A): Unit= {
for (i <- 0 until xs.length)
xs(i) = f.apply(xs(i))
}

Method map applies the given function to each element of
the given array, replacing the elements of the array with the
return value of £f. The type of the second parameter is a
function from type A to A, and A => A is a more convenient
syntax for Functionl[A, A]. The two notations are equiv-
alent. The call to apply is generic, hence the elements of
the array have to be boxed. Suppose we use the method to
square all elements of an array

map[Int](a, x: Int => x * X)

The second argument is a function literal that is desugared
by the Scala compiler to an anonymous class extending the
proper function type. The function body becomes the im-
plementation of the abstract apply method.

class anonfun extends (Int => Int) {
def apply(x: Object): Object =
Int.box(apply(Int.unbox(x)))
def apply(x: Int): Int = X * X

map[Int](a, new anonfun)

The example above shows the compiler output after type
erasure, with type parameters turned to Object, the type of
the common representation. The anonymous class needs to
box and unbox the integer value before and after execut-
ing the function body. The first apply method is called a
bridge method. It serves to implement the abstract method
defined in trait Functionl. In generic code such as map, it
is always the bridge method that is called, because the call
goes through the generic trait.

In the map call A is instantiated to Int, and a more ef-
ficient representation could be used, since both the array
elements and the function arguments are Int. However, be-
cause the map code is generic, elements of the array need to
be boxed. Similarly, the apply implementation needs to un-
box its argument before squaring it, and box it back before
returning. The two boxing operations correspond to the two
type parameters being instantiated at Int.

2.1 User-Driven Type Specialization

‘We propose a solution that combines the generic and spe-
cialized approach. Generic code is compiled using a com-
mon representation, but the programmer may require cer-
tain classes or methods to be specialized. We define an
annotation on type parameters that instructs the compiler
to specialize code on that type parameter. A generic class
definition may generate a set of specialized classes, deriving
each one from the original class using a specific combina-
tion of specialized type parameters. When generic code is
used in a context where more type information is available,

43

trait Functionl[@specialized +R, @specialized -T] {
def apply(x: Object): Object
def applyIntInt(x: Int): Int =
Int.unbox(apply(Int.box(x)))
}

class anonfun extends (Int => Int) {
def apply(x: Object): Object =
Int.box(applyIntInt(Int.unbox(x)))
override def applyIntInt(x: Int): Int = x * X
}

def map(xs: Array[Object], f: Object => Object) {
for (i <- 0 to xs.length - 1)
xs(i) = f.apply(xs(i))
}
def mapInt(xs: Array[Int], f: Int => Int) {
for (i <- O until xs.length)
xs(i) = f.applyIntInt(xs(i))
}

mapInt(a, new anonfun)

Figure 1: Specialized version of the map example.
Definitions added by the compiler are suffixed with
a type tag

and there exists a specialized version, the compiler rewrites
method calls and class instantiations to the specialized ver-
sion.

For specialized and unspecialized code to work together,
specialized classes have to be subtypes of the generic ones.
This fact allows the compiler to safely replace an instanti-
ation of a generic class with a specialized class when the
types are known, and the code around it to work with a
specialized instance even if not specialized itself. This is a
key difference from the existing approaches, and we discuss
it in Section 4.

Figure 1 shows how the original example would look had
it been written in Scala with the specialization extension,
together with the additional definitions generated by the
compiler. Code is shown after erasure, when type parame-
ters have been replaced by Object (except for arrays, which
are polymorphic at the VM level). The annotations on the
type parameters of Functionl tell the compiler to specialize
on those type parameters. For simplicity, we assume specia-
lization is done only at Int.

The original trait has a new member, a specialized ver-
sion of the apply method. This specialized method calls the
generic apply method taking care of boxing and unboxing
as necessary. This ensures that even when the concrete in-
stance is not specialized, code continues to work correctly
through the generic code. The concrete implementation,
class anonfun, overrides the generic method to call the spe-
cialized version, similarly taking care of boxing. This en-
sures that unspecialized code working on a specialized in-
stance still works correctly. Specialized method applyIntInt
carries the actual implementation, and works on unboxed
integers.

The map method is transformed similarly, and the key bit
is the call to apply in the specialized version. Instead of the
generic apply method, the call is rewritten to applyIntInt.
Such a rewrite is possible because the type of f is known stat-
ically to be Int => Int, and the type parameters of Functionl
are specializable, therefore such a method exists.

When the argument to f is a specialized instance of Int => Int,

there won’t be any boxing involved. Notice that all other,
less fortunate, combinations still work, but rely on boxing:
mapInt applied to an unspecialized function will call the de-
fault implementation of applyIntInt which in turn calls the
generic apply, and map applied to either specialized or generic
versions of anonfun will go through the generic apply.

2.2 Class specialization

We first look at how a class is specialized, and assume
none of its methods has specialized type parameters (see
Section 2.3 for a discussion of method specialization). We
assume type parameters are automatically specialized on all
primitive types, but the examples will show only the case of
Int. A way to let the user choose what types to specialize
to is discussed in Section 5.

Figure 2 shows a general example of class specialization.
The left part shows the code that the programmer writes,
the right part shows the output of the specialization phase.
Class C has a specialized type parameter T, two methods and
a field. After specialization, it gets a number of additional
methods. The examples show the program after erasure, in
order to make boxing explicit. Both the abstract and the
concrete method have a specialized variant that calls the
generic version, taking care of boxing and unboxing.

A specialized subclass CInt is also generated, and the con-
crete method nInt is re-implemented in a context where type
T is bound to Int. This may allow more precise types and
more rewrites when generic methods are used inside its body.
The generic method is overridden as well, and routed to the
specialized implementation. A new field is defined, and the
accessors are rewritten to make use of the specialized repre-
sentation.

Class fields have to be treated with care, as we should not
duplicate state. Specialized instances operate on the spe-
cialized fields, but unspecialized code might access generic
fields. The solution is to use accessors and treat them as
normal methods subject to specialization®. The transforma-
tion described above adds the necessary specialized variants
and overrides to guarantee consistent state. In other words,
accessors of generic fields are overridden in specialized sub-
classes to select the specialized field. This guarantees that
callers use the right representation regardless of its speciali-
zation.

We now describe specialization in a general setting. After
specialization, a class may have additional members, differ-
ent superclasses, and a set of specialized subclasses. We
classify additional members in

e specialized variants A specialized variant of method
m is added whenever m’s parameters contain a spe-
cialized type parameter of class C'. Each combination
of concrete types generates a new variant, which calls
the original method. If m is concrete, an implemen-
tation with a specialized body is added to specialized
subclasses (see below). In Figure 2 mInt and nInt are
specialized variants.

e specialized overrides A concrete method m that over-
rides method m’, and m’ has specialized variants in
its defining class, will generate a method that over-
rides the inherited variant. In a sense, a method and

1Scala already uses accessors for all fields in order to allow
overriding.

44

its variants need to be in sync, so overriding the orig-
inal implies overriding the variant. The specialized
override has the same body as the original method m.
The overriding method m, by contrast, is rewritten to
call the specialized override. In Figure 2, mInt in class
D is a special override.

For explaining special overrides, we turn to class D in
the same example. Even though class D has no special-
ized type parameters, specialization may still need to trans-
form its definition. First, its superclass is changed from the
generic version of C[Int] to the specialized class CInt. Sec-
ond, method m overrides a generic definition in C that has
been specialized, therefore a special override is added in D,
containing the original body. The generic version of m has
already been routed to the specialized one in the definition
of CInt.

Besides methods and fields, a Scala class may define type
members and classes. For type members, specialization is
straightforward substitution, while for classes it is the same
transformation as above.

2.3 Method Specialization

Type parameters on method definitions can be special-
ized by expanding the method definition. After expansion,
a method definition does not take any specialized type pa-
rameters, but it may have plain type parameters, and may
use specialized type parameters of the enclosing class. Class
specialization as defined in Section 2.2 works on expanded
members.

Consider the following:

def m[@specialized B >: Lo <: Hi, C](x: B, y: CO): B

This definition two type parameters, B and C. Parameter
B has type bounds Lo and Hi, which means that all instan-
tiations of B have to be a supertype of Lo and a subtype of
Hi. We can derive the expanded method definitions of some
method by iterating over all combinations of its specialized
parameters (only B in this example), keeping only those that
fall between the bounds. If we assume that Int falls between
the bounds, this gives

def m[B >: Lo <: Hi, C](x: B, y: O): B
def mInt[C](x: Int, y: Int): Int

The question is what to do otherwise, and here we distin-
guish two cases:

e satisfiable: The bounds of a type parameter mention a
specialized type parameter of the enclosing class. We
cannot conclude that any concrete type satisfies its
bounds until the enclosing class is instantiated.

e conflicting: The bounds of a type parameter clearly
forbid a concrete type combination.

To understand why we need this distinction, we look at
the way linked lists are defined in the standard library

class List[@specialized A] {
def ::[@specialized B >: A](x: B): List[A] =
new ::(x, this)
}
We notice that Int is not a valid specialization for the
cons operation (::), because Int is not a supertype of A,

abstract class C {
def m(x: Object): Object
def mInt(x: Int): Int =
Int.unbox(m(Int.box(x)))

abstract class C[@specialized T] {
def m(x: T): T
def n(x: T): T =x

val f: T
}

class D extends C[Int] {

class CInt extends C {
def m(x: Object): Object =
Int.box(mInt(Int.unbox(x)))
override def n(x: Object): Object =
Int.box(nInt(Int.unbox(x)))
override def nInt(x: Int): Int = x

def n(x: Object): Object = x
def nInt(x: Int): Int =
Int.unbox(n(Int.box(x)))

private val fInt: Int
def f(): Object = Int.box(fInt())
def fInt(): Int = fInt

. . oo private val f: Object }
) def m(x: Int): Int = x * X def £(): Object = f
def fInt(): Int = Int.unbox(f) class D extends CInt {

}

override def mInt(x: Int): Int = x * X

Figure 2: Class specialization

for all types A. However, a cons operation specialized for
Int makes sense when working on a List[Int]. By noticing
that A is also specialized, and that the constraint may be
fulfilled when specializing List, we let expansion generate a
specialized variant for Int.

Expansion generates only satisfiable variants. Conflict-
ing combinations give a compile-time warning, since most
probably this is not intended.

What should go into the body of expansions? We distin-
guish again between two cases: a valid expansion is imple-
mented by rewriting the original body with the valid type
bindings. By contrast, a satisfiable expansion cannot be im-
plemented the same way, as that would yield type-incorrect
code (remember that satisfiable methods are instantiated at
types that do not fall between the bounds). Therefore it
needs to delegate to the original method.

3. EVALUATION

We implemented user-driven type specialization in the
Scala compiler and used it to rewrite parts of the stan-
dard library. Scala runs on the Java Virtual Machine [8],
and has the same set of primitive types. The JVM pro-
vides arrays for performance reasons, but the operations on
them are very restricted. Furthermore, they are not poly-
morphic, instead each primitive type has a corresponding
array typeZ. However, at the language level Scala presents
arrays as polymorphic collections Array[T] that implement
high-level operations like foreach. The cost of this is boxing
and unboxing operations.

One of the motivating examples for this work has been
the ability to provide efficient array-backed collections in the
standard library. It was essential that such collections can
be fast on primitive types, otherwise they would be avoided.
The second use case is higher order functions and function
literals. In order to allow users to write concise and efficient
numeric algorithms on arrays and other data structures, it
is required that functions do not require boxing of primitive
values.

We evaluate our approach by looking at the cost in in-
creased size of the standard library, and at the speedups ob-
tained on several benchmarks. We acknowledge that these
are preliminary measurements, and more realistic applica-
tions need to be added to the benchmarks. For all tests we
used specialization on two primitive types (Int and Double).

2For simplicity, we consider all reference types to be Object.
Casts are very fast in today’s JVMs [5]

45

}
Generic Specialized Increase
stdlib 10.7M 12.5M 17%
specific 142K 426K 300%
pack200-spec 32.1K 51.8K 161%

Figure 3: Code size

3.1 Code Size

We first discuss the cost in code size. We measure the size
of the standard library with and without specialization en-
abled, and the increase in size of the modified classes alone.

Figure 3 shows the results of these measurements. The
first line shows the increase in size of the standard library
when specializing array-backed collections, functions up to
two parameters and lists. The cost is relatively small, 17%.
However, when we look at the modified classes alone the
picture is rather bleak: the specialized code is around three
times larger. This is the exact size on disk, and we believe
the effect of specialization is seriously aggravated by the
class file format of the JVM. Most specialized classes are
relatively small, and pay the price of a full constant pool
and structure information. In the last line we show the
results after using the pack200 jar file compressor, which is
known to share constant pool information between classfiles;
the relative cost went down to almost half of what it was
before.

3.2 Speedup

We measure the speed improvement on two mini bench-
marks, designed to exercise the array implementation and
higher order functions. All measurements are done on an
Intel Core 2 Duo machine with 4 GB of RAM, running
a Linux 2.6.24 kernel. The Java Virtual Machine is the
HotSpot server VM, version 1.6.0_07.

The funs benchmark iterates over an array of 1000 el-
ements and performs an operation on each of them. The
operation is taken as parameter by a payload function, and
the type of this parameter is Int => Int. We use a plain
Java array, so that the results of this benchmark show the
improvement we can expect for higher-order functions alone.

The second benchmark, arrays, uses a similar algorithm,
but this time the array is a generic Scala collection backed
by a Java array. The operation to be performed is inlined,
so there is no improvement due to higher-order function spe-
cialization. This benchmark shows what improvements we

Test Specialized (ms) Generic (ms) Speedup (Nx)
funs 71 1645 22.88
arrays 404 16,305 40.3

Figure 4: Steady-state performance

can expect from array specialization alone.

3.2.1 Steady-state Performance

We start by showing the improvements we get when the
JVM is in a warm state. The benchmarks are run for 10
times in the same JVM, forcing a garbage collection before
each iteration. We drop the first two measurements, which
are likely to contain the startup time (class loading and JIT
compilation). We average the remaining 8 iterations. Each
such setup is run 5 times, and we average again on the results
of each VM invocation.

Figure shows that the improvements are very large, 22
times for functions and 40 times for arrays. Standard devia-
tion for the funs benchmark were around 1% of the average,
except one invocation when it was much higher, 10%. The
arrays benchmark had standard deviations between 1% and
8% of the average, per invocation. Due to the very large
difference between the two alternatives, we didn’t feel nec-
essary to conduct more sophisticated statistical analysis.

3.2.2 Start-up Time

For measuring the start-up time we consider how much
longer did the first iteration of each benchmark take, com-
pared to the average over the last 8 iterations. We expected
to see an increase in startup time because of the higher num-
ber of classes we generate, however we discovered that it is
not necessarily the case.

Test Specialized (stdev) Generic (stdev)
funs 1.12 (0.02) 1.21 (0.06)
arrays 1.08 (0.03) 1.01 (0.02)

For the funs example, specialization may actually improve
startup time, taking 1.12 times the average running time of
the other iterations in the same VM invocation, compared to
1.21 in the generic case. We believe the improvement is due
to not loading the boxed classes for integers. The second
benchmark is more in line with our expectations, and the
specialized version is slower, taking 1.08 times the average
running times, compared to 1.01 for the generic case.

The results so far are very encouraging, and the startup
time seems to be only slightly affected by the specialized
transformation.

4. RELATED WORK

A number of languages use pervasive specialization for
the implementation of generics. The best known example
is template instantiation in C++ [2]. The drawbacks are
risk of code explosion, lack of true separate compilation and
a rigid notion of subtyping: instantiations of a template
that are represented differently must have different types.
Thus it would be impossible to have a subtyping relationship
between List[Int] and List[Any]. Our approach lets the user
decide what specializations to perform. Users can thus make
a choice between performance and code size. We support
separate compilation, and specialized instances are subtypes

46

of the generic class, allowing for covariant subtyping.

At the virtual machine level, the most notable approach
is taken by .NET generics [7]. Parameterized types are
added to the VM intermediate language, which generates
specialized implementations for classes on a by-need basis.
The VM may choose to share code between implementations
when data representation allows it. This alleviates the code
size problem to some extent, and programs that instanti-
ate generic types at primitive types run at full speed. In
addition to performance, this approach makes full type in-
formation available at runtime. Our approach is different
in that it needs no modifications to the virtual machine, it
gives more control over what is specialized, and it allows for
covariant subtyping.

In [6] the authors present a way to compile ML polymor-
phism that allows inspection of types at runtime. Programs
can test the actual type and choose a more suitable repre-
sentation. This is a very interesting approach and allows for
more expressive programs, similar to C++ partial template
specialization. However, it is not always possible to remove
all type-level computation at compile time. Our approach
does not need runtime representation of types.

Parametric types in Java are usually compiled through
type erasure [3]. In [4] Cartwright and Steele present an
approach based on specialization for full runtime type in-
formation. They generate a wrapper class and interface per
type instantiation, the wrapper using an erasure-based im-
plementation of the generic class. The wrapper encapsulates
information about the specific instantiation and performs
type tests and class instantiations. Our approach is simi-
lar in using specialized instances, but instead of generating
them at the use-site, we do it at the definition. In addition,
we focus on performance and rewrite code opportunistically
to use specialized representations whenever possible.

5. FUTURE WORK

The compilation scheme we have presented so far has a
limitation when a superclass of a generic class is instantiated
at a specialized type. Consider the following example:

class List[@specialized A] {

zlass Speciallist[@specialized A] extends List[A] {
}

Each class generates a specialized subclass, SpecialListInt
and ListInt. The problem becomes apparent when we ask
what should be the superclass of SpeciallistInt: it has to
be the generic Speciallist (to allow mixing specialized and
unspecialized code). But the superclass of Speciallist is
List, not ListInt, therefore SpecialListInt, uses the generic
representation of List. That means all inherited members
are generic. While this does not break anything, it is not
what a programmer would expect.

This limitation stems from our use of overriding for rerout-
ing existing methods and field accesses. Whenever a special-
ized instance is created, the original methods are overridden
to use the specialized representation. However, there is one
thing that cannot be overridden on the Java Virtual Ma-
chine: the inheritance relationship. We believe a solution
using multiple inheritance (mix-in composition in Scala) will
work: whenever a specialized type parameter is used in a su-

pertype of a specialized class, we mix-in again that type in a
specialized subclass. In the above example, SpeciallistInt
becomes:

class SpeciallistInt
extends Speciallist[Int] with ListInt {

}1.

The current implementation can be improved by allowing
the programmer to specify at what types a type parameter
should be specialized. It may be the case that specializing
at all primitive types is wasteful, so we propose to param-
eterize the annotation at the specific types that need spe-
cialization. This can be as simple as a string argument, like
@specialized("Int").

Having specialized instances for primitive types could be
used for giving more precise types at runtime. One could
envision extending the transformation for more precise types
at instanceof tests.

Another direction of improvement is user-defined special-
izations. Suppose we have a generic implementation of sets.
While specialization on primitive types may already improve
performance, the programmer may decide that a bit set rep-
resentation is desirable. We could allow the @specialized
annotation on classes and use the class given by the user
instead of the one automatically generated by the compiler.

6. REFERENCES

[1] BaNK, J. A., MYERS, A. C., AND Liskov, B.
Parameterized types for Java. In POPL "97:
Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages
(New York, NY, USA, 1997), ACM, pp. 132-145.
BJARNE, S. The C++ Programming Language.
Addison-Wesley, 1987.

BracHA, G., ODERSKY, M., STOUTAMIRE, D., AND

WADLER, P. Making the future safe for the past:

adding genericity to the Java programming language.

In OOPSLA ’98: Proceedings of the 13th ACM

SIGPLAN conference on Object-oriented programming,

systems, languages, and applications (New York, NY,

USA, 1998), ACM, pp. 183-200.

CARTWRIGHT, R., AND STEELE, JR., G. L. Compatible

genericity with run-time types for the Java

programming language. SIGPLAN Not. 33, 10 (1998),

201-215.

[5] Crick, C., AND ROSE, J. Fast subtype checking in the
HotSpot JVM. In JGI ’02: Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande (New
York, NY, USA, 2002), ACM, pp. 96-107.

[6] HARPER, R., AND MORRISETT, G. Compiling
polymorphism using intensional type analysis. In
Conference Record of POPL ’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Francisco, California,
1995), pp. 130-141.

[7] KENNEDY, A., AND SYME, D. Design and
implementation of generics for the .NET Common
language runtime. In PLDI ’01: Proceedings of the
ACM SIGPLAN 2001 conference on Programming
language design and implementation (New York, NY,
USA, 2001), ACM, pp. 1-12.

[2

©

=

47

[8] LinpHOLM, T., AND YELLIN, F. The Java(TM) Virtual
Machine Specification (2nd Edition). Prentice Hall
PTR, April 1999.

[9] ODERKSY, M., SPOON, L., AND VENNERS, B.
Programming in Scala. artima, 2008.

