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There is an increasing interest in the use of computer algorithms to identify combinations of parameters which
optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and
needs to be approximated numerically using building energy simulation programs. As these programs contain
iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective
function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot
be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization
problems.
To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and
the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization
problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex
objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective
functions. Both identified similar values in the objective functions arising from energy simulations, but with
different combinations of model parameters. This may suggest that the objective function is multi-modal. The
algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified
control sequence of the building energy system that does not represent actual practice, further reinforcing their
utility.

Keywords: optimisation; algorithm; application using EnergyPlus; Covariance Matrix Adaptation Evolution
Strategy Algorithm (CMA-ES) and Hybrid Differential Evolution (HDE); Particle Swarm Optimisation
(PSO) and Hooke-Jeeves (HJ); building energy minimisation

1. Introduction

Detailed simulation programs are increasingly used to asses the energy performance of buildings.
In Switzerland, the law requires every new construction or refurbishment to meet energy con-
sumption standards such as SIA 380.1, Minergie or Minergie P. To meet the charge of the U.S.
Energy Independence and Security Act of 2007, the ”Zero-Net-Energy Commercial Buildings
Initiative” of the U.S. Department of Energy has as its goal that any commercial building newly
constructed in the United States from 2030 will be a Zero-Net-Energy building. Similarly, the
Integrated Energy Policy Report 2007 of the California Energy Commission recommends that
efficiency standards for buildings be increased so that, when combined with on-site generation,
newly constructed buildings can be Zero-Net-Energy by 2020 for residences and by 2030 for
commercial buildings. These performance standards along with the raising energy costs are be-
ginning to stimulate increased demand for the development and usage of building simulations
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programs such as ESP-r (Clarke, 2001), TRNSYS (Bradley & Kummert, 2005) and EnergyPlus
(ENE, 2009). When it comes to the energy performance optimisation of buildings, the end-users
of the programs may experience difficulties in identifying the best performing solution to a given
problem as in general the design parameters are numerous and the final response is generally
non-linear and non-convex. Moreover building simulation programs contain numerical solvers
that may iterate until a convergence criterion is met, resulting in the energy function being
discontinuous with respect to the input parameters (see for example Wetter & Polak (2004)).
To tackle such energy optimisation problems, metaheuristics are of interest, as they do not rely
on the smoothness of the function. Moreover, metaheuristics can handle non-convex functions
and black-box optimisation problems. While convergence to a global optimum can often not be
formally proven for such algorithms, they usually produce a good solution. Many metaheuris-
tics are in use today and some experiments are generally required to discover which algorithm
performs best on a selected family of problems.
Caldas & Norford (2002) have used Genetic Algorithms (GAs) to look for optimized design solu-
tions in terms of thermal and lighting performance in a building. His study addressed the placing
and sizing of windows in a simple office building. The evaluation criteria (or fitness function) was
annual energy spent for heating, cooling and lighting. The author outlined that different runs
of the optimisation tool may lead to different solutions with similar performance, and this to
be an advantage for the designer to make a choice between available alternatives. Wright et al.
(2002) applied multi-objective optimisation using GAs (MOGA) for the identification of the
pay-off characteristic or Pareto front between the energy cost of a building and the occupant
thermal discomfort. Wetter & Wright (2004) compared the performance of deterministic and
probabilistic optimisation algorithms in minimizing the building energy consumption (lighting,
fan, cooling and heating). The authors concluded that depending on the smoothness of the ob-
jective function, one algorithm performs better than another.
The two metaheuristics chosen are recent hybrid algorithms: the Covariance Matrix Adaptation
Evolution Strategy and Hybrid Differential Evolution (CMA-ES/HDE) and the hybrid Parti-
cle Swarm Optimisation and Hooke-Jeeves (PSO/HJ). The hybrid PSO/HJ was ranked best
amongst nine optimisation algorithms tested with EnergyPlus, using two sets of parameters
(Wetter & Wright, 2004). Moreover it is part of a Generic Optimisation Program ”GenOpt”
that is freely available and customisable (Wetter, 2004). The hybrid CMA-ES/HDE has been
used in irradiation maximisation on building envelopes and compared with a multi-objective
optimiser (Kämpf & Robinson, 2009). This paper compares the novel CMA-ES/HDE with the
established performance of the PSO/HJ on problems with benchmark functions and with Ener-
gyPlus.

2. Methodology

We start by defining the optimisation problem in general, summarising the principles of the two
algorithms selected and then describing the parameters used by the algorithms. We continue
by explaining the method used for handling constraints in the algorithms and then present a
selection of benchmark functions that vary from convex to highly multi-modal. Those functions
have an analytical form and are therefore inexpensive to compute, so that we can use statistical
measures of the performance of the algorithms. Results from this may give some insights into
which algorithm is best suited to a particular response function, and furthermore into the selec-
tion of the algorithms parameters that are most adapted to those functions. Finally, we use the
two algorithms and their selected parameters on a more computationally expensive real-world
problem that involves the minimisation of the annual primary energy consumption of a building.
In order to vary the complexity of the corresponding objective function, we defined two different
buildings (with one thermal zone and several thermal zones) at three locations representing three
different climates. The building performance is simulated with EnergyPlus version 2.2. As our
cost function evaluations are computationally expensive and the available computing resources
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limited, we compare the algorithms performance for a prescribed number of objective function
evaluations.

2.1 Optimisation problems and algorithms

The manual way of identifying the preferred parameter values for a given problem is to decom-
pose the parameter space in discrete values and exhaustively compare the simulated performance
for all possible parameter combinations. Unfortunately when the dimensionality of the parameter
space becomes large, this method is impractical because the number of evaluations grows expo-
nentially with the number of parameters. To overcome the problem that an exhaustive search is
computationally impracticable, more advanced optimisation algorithms have been developed.
Optimisation algorithms search for a minimum1 (or minima) of a function f that depends on n
independent decision variables. Formally, the algorithm searches for:

~xmin ∈ arg min{f(~x) | ~x ∈M ⊆ Rn}, (1)

where n ∈ N⋆ is the dimension of the problem, f : M → R is the objective function, M =
{~x ∈ Rn | gj(~x) ≤ 0, ∀j ∈ {1, ...,m}}, M 6= ∅ is the feasible region and m ∈ N is the number of
constraints. The set of inequality constraints gj : Rn → R, ∀j ∈ {1, ...,m} includes a special
case of constraints due to the domain boundaries li ≤ xi ≤ hi, where li, hi ∈ R and i = 1..n. The
symbol li refers to the lower bound and hi to the upper bound of the domain.
The function f is generally non-linear, multi-modal, discontinuous and hence non-differentiable
in simulation-based building energy optimisation (see Wetter & Polak (2004)). We therefore
selected global search algorithms that do not require smoothness of the objective function, but
instead use probabilistic operators to search for an improvement in the objective function. Recall
that for such problems, one cannot guarantee that the global optimum will be found with a finite
number of simulations.

2.1.1 Hybrid CMA-ES and HDE

The CMA-ES and HDE are population-based Evolutionary Algorithms. Evolutionary Algo-
rithms are inspired by principles of biological evolution theory. Each potential solution (~x ∈ Rn)
of the optimisation problem is considered as an individual (parent or child) with variables and the
corresponding objective function value is considered as its fitness. The algorithm goes through
the phases of recombination, mutation and selection of the individuals.
The (µI , λ)-CMA-ES starts with a population of µ parents randomly drawn within the domain
boundaries. The λ children are created using a global weighted intermediate recombination
method in conjunction with the sorted parent population. In the implementation used, µ and λ
are adapted to the problem size n according to µ = 2+⌊1.5 · log(n)⌋ and λ = 4+⌊3 · log(n)⌋. The
main mechanism of the mutation changes the variables of the children by adding random noise
drawn from a normal distribution. An elitist selection is made to keep the µ best individuals
amongst the children, which will become the new parents. Finally an adaptation of the muta-
tion parameters is made, taking into account the progress made by the selected individuals. A
detailed description about CMA-ES algorithm can be found in Hansen & Ostermeier (2001).
The HDE (NP,F,Cr, ǫ2, ~ǫ3) is a modified form of the original DE by the addition of a migration
phase after the selection phase. The population of NP individuals is randomly chosen within
the domain boundaries. For each member of the population, a trial individual is generated by
the addition of a base vector and a differentiation vector that is scaled by F . The choice of
these two vectors come from a strategy that combines individuals of the parent population. A
crossover is then carried out between the trial and corresponding parent, with a probability of
selecting each parent allele equal to Cr. The selection is finally realised between each parent

1The optimisation may also be a maximisation by reversing the sign of the objective function
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and the corresponding trial, keeping the best ones that are fitted to the problem. The migration
technique moves the variables of the individuals towards the domain boundaries if the diversity
of the population is too low. The diversity is a measure of how close the individuals are clustered
around the best individual. For the diversity calculation, we use ǫ2 and ~ǫ3 ∈ R

n
+ (one for each

variable) as relative and absolute precisions for the problem solved. This prevents stagnation
around a local minimum when all individuals are close together. A detailed description about
the Differential Evolution (DE) can be found in Feoktistov (2006) and about its modified HDE
form in Chang et al. (2007).
The idea of the hybridisation came from the conclusion of Hansen & Kern (2004), in which the
authors state that only if the function is additively separable then the CMA-ES is outperformed
by the DE. As in practice we generally don’t know a priori if the function is additively sep-
arable or not, using a hybrid of the two methods might be more robust than methods taken
separately. In Kämpf & Robinson (2009) this hypothesis was tested with success on the Ackley
(non-additively separable) and Rastrigin (additively separable) benchmark functions. Finally,
the hybrid compared well with MOO (a multi-objective optimiser) on the problem of placement
of buildings for solar irradiation maximisation. The proposed hybridisation is a serialisation of
the two algorithms: We run the CMA-ES for 10 generations, save the covariance matrix and
the global step size for the next run and then follow by 10 generations of HDE. This sequence
is repeated until a user-defined maximum number of function evaluations is reached. The best
individuals of the two algorithms are exchanged when switching algorithms.
For the hybrid algorithm found in Kämpf & Robinson (2009) a compromise was reached between
exploration and exploitation, which is further investigated in this paper on different benchmark
functions and a building optimisation problem. Therefore, we use the same parameters as those
used in previous runs of the hybrid (see Table 1). For the HDE the rand3 strategy (Feoktistov,

Table 1. Parameters used for the hybrid CMA-ES/HDE algorithm

Algorithm Parameters

Population size
CMA-ES µ = 2 + ⌊1.5 · log(n)⌋ λ = 4 + ⌊3 · log(n)⌋ σ = 0.2
HDE NP = 30 F = 0.3 Cr = 0.1 ǫ2 = 10%

2006, pp.48-49) was used and the absolute precisions (Kämpf & Robinson, 2009) ~ǫ3 ∈ R
n
+ (one

for each variable) are problem dependent and selected as 1
32 of the problem step sizes, which

corresponds to half the finest grid size of the PSO/HJ algorithm described in the next paragraph.

2.1.2 Hybrid PSO and HJ

The Particle Swarm Optimisation algorithm was initially proposed by Eberhart & Kennedy
(1995). It is a population-based algorithm, in which each individual is called a particle. Those
particles evolve within generations mimicking the social behaviour of flocks of birds or schools of
fish. They change their location going towards a point of lower objective function value known
from previous iterations, modelling the cognitive behaviour, but also towards regions of space
where other particles had a lower objective function value, modelling the social behaviour. For
the cognitive behaviour, a corresponding acceleration is given as a parameter algorithm, modify-
ing the speed of the particle proportionally to the difference vector between the particle and the
local best point. For the social behaviour, another acceleration is given as parameter, modifying
the speed according to the difference vector between the particle and the global best point. The
global best point is being taken in the neighbourhood of the particle.
This heuristic is a global optimisation algorithm that generally finds a good solution at the
expense of many function evaluations. The implemented version of the algorithm uses a con-
striction coefficient, which reduces the velocity of the particles. Moreover, it is put on a mesh,
meaning that even though the variables are considered as continuous in the algorithm, when
the evaluation of the objective function takes place, the coordinates of the nearest mesh point
are used to compute the objective function. The distance between the mesh points is given by a
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step size for each variable. Since the particles are put on a rectangular grid, the von Neumann
neighbourhood is used.
The HJ algorithm (Hooke & Jeeves, 1961) is a member of the family of Generalised Pattern
Search algorithms (Audet & Dennis, 2002). It searches along each coordinate direction for a
decrease in the objective function. The initial mesh size for the search is given by a step size
for each variable and when no improvement in the objective function is achieved, the step size
is divided by a mesh size divider. When the local search around the current point finds a better
point, the algorithm tries to make a global search move continuing in the same direction. As
far as the global search finds a better point, it continues moving in the same direction until
it fails, in which case the local search is restarted around the last best point. The local search
and the algorithm ends once the maximal number of step reductions is attained. For this algo-
rithm, convergence to a stationary point (a point at which the gradient is zero) is guaranteed
for unconstrained, differentiable problems (Torczon, 1997; Audet & Dennis, 2002) and also for
bound constrained problems (Lewis & V., 1999). However, on a multi-modal objective function
the algorithm may get stuck at a local minimum.
The idea of the hybridisation is to use the PSO as a global optimisation algorithm, which gets
close to the global minimum and then refine the position of the attained minimum by the HJ
algorithm. Practically, the PSO algorithm is executed for a user-specified number of generations,
and then the HJ uses as its initial search point the best individual obtained by the PSO algo-
rithm. For the coupled PSO/HJ, because the PSO algorithm evaluates the cost function only a
finite number of times, the proofs of (Torczon, 1997; Lewis & V., 1999; Audet & Dennis, 2002)
that establish convergence to a local minimum on differentiable functions still apply. However, as
for other metaheuristic algorithms, for multimodal functions convergence can only be established
to a local but not a global minimum. For a detailed description of the hybrid or each algorithm
separately please refer to Wetter (2004).
To optimise the benchmark functions, five algorithm parameter sets were used for the PSO al-
gorithm. Four are taken from Wetter & Wright (2004) and the last one from Bui et al. (2007),
as summarized in Table 2. The set for which the PSO algorithm performs best, in terms of

Table 2. Parameters used for the PSO algorithm within the hybrid PSO/HJ algorithm for

the benchmark functions

particles c1 c2 λ κ
cognitive social maximum constriction

acceleration acceleration velocity gain coefficient

Variant 1 16 2.8 1.3 0.5 0.5
Variant 2 16 2.8 1.3 0.5 1
Variant 3 36 2.8 1.3 0.5 0.5
Variant 4 36 2.8 1.3 0.5 1
Variant 5 100 2.05 2.05 0.2 1

identifying benchmark functions’ optima, will then be used for the real-case applications with
EnergyPlus. For the HJ algorithm we use as parameters r = 2, s = 0, t = 1 and m = 4, where
r is the mesh size divider, s is the initial mesh exponent, t is the mesh size exponent increment
and m is the number of step reductions.

2.1.3 Constraint handling

In our examples, we have analytical constraints and time consuming evaluations. We want
to avoid evaluating potential solutions that do not satisfy the constraints. Therefore, we imple-
mented the ”Modification of the Selection Operation” proposed by Feoktistov (2006, pp.34-35).
It redefines the ”is better than” operator, by taking into account a pure Pareto dominance de-
fined in a constraint function space. This latter operator goes as follow: ~x1 is better than ~x2 if
and only if Φ ∨ Ψ, where Φ = (∀k ∈ {1, ...,m} : gk( ~x1) ≤ 0 ∧ gk( ~x2) ≤ 0) ∧ (f( ~x1) < f( ~x2)) and
Ψ = (∃k ∈ {1, ...,m} : gk( ~x1) > 0) ∧ (∀k ∈ {1, ...,m} : max(gk( ~x1), 0) ≤ max(gk( ~x2), 0)). Please
note that if Φ∨Ψ is false, nothing is said about ~x2 (i.e. it doesn’t always imply that ~x2 is better



6

than ~x1). The application of this comparison operator within the different sub-algorithms is ex-
plained below. This method of handling constraints allows individuals violating the constraints
to survive in the first generations of the algorithms, and therefore bringing diversity, until the
constrained domain is touched.

2.1.3.1 CMA-ES. When the mutation phase proposes a variable that is outside of the domain
boundaries for that variable, it is put back at the nearest domain boundary. The mutation phase
is repeated on an individual as long as it remains outside of the constrained space, but for
a maximum of 10 times. The comparison operator described above is applied to the children
population for sorting, before the elitist selection of the new generation’s parents.

2.1.3.2 HDE. When the trial individual has a variable that is outside of the domain bound-
aries for that variable, it is put back randomly within the boundaries. In the selection phase,
the comparison operator is used to compare the candidate with the trial (in that order). If the
candidate is better than the trial, the candidate is kept, otherwise the trial is kept. This en-
sures that when both individuals satisfy the constraints and the objective functions are equal,
the trial is preferred, bringing diversity in the population and preventing stagnation. Moreover,
when both individuals do not satisfy the constraints, the candidate individual is kept only if it
dominates over all constraints at the same time, allowing the trial to be selected in most cases,
for the same diversity reasons.

2.1.3.3 PSO. When the particles’ positions are updated, if a variable is outside of the domain
boundaries, it is put back within the domain in the following way: xi ← 2 · li − xi if xi < li and
xi ← 2 · hi − xi if xi > hi. The procedure is repeated as long as the variable remains outside
of the domain boundaries. The best local and global particles are selected using the comparison
operator. If the best particles are better than the new proposed ones, they will remain the best
ones, otherwise the new ones become the new best ones.

2.1.3.4 HJ. In the global and local search, if a proposed variable is outside of the domain
boundaries, we assign f(~x) = ∞, thereby the iterate is rejected. Moreover, the new solution is
compared to the former one using the comparison operator, keeping the new one only if it is
better.

2.1.4 Implementation

An implementation in C++ of the above algorithms is available for download at
http://leso.epfl.ch/e/research_urbdev.html.

2.2 Benchmark functions

Benchmark functions are designed to test the performance of the optimisation algorithms. In
particular they are intended to represent some of the complexity that can be encountered in
real-world optimisation problems. In this study, we have chosen five functions, with different
degrees of complexity, to test the algorithms presented in the former section. We are interested
to learn which algorithm is better suited to a certain kind of objective function shape.
The first benchmark function is the generalized Ackley function of dimension n,

fn(~x) = −a exp
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Figure 1. The two dimensional Ackley function (on the left) and the two dimensional Rastrigin function (on the right)

where a = 20, b = 0.2 and c = 2π. Its domain is −32.768 ≤ xi ≤ 32.768, for all i = 1..n.
This function is multi-modal with a global minimum at f(~0) = 0 which is surrounded by many
local minima. Figure 1 shows the Ackley function in two dimensions. The step size for the
optimisation algorithms was chosen to be 0.5, which corresponds to twice the frequency of the
cosine perturbations. This allows for a complete sampling of the main features of the generalised
Ackley function.
The second benchmark function is the generalised Rastrigin function of dimension n,

fn(~x) = nA
n
∑

i=1

x2i −A cos(ωxi), (3)

where A = 10 and ω = 2π. Its domain is −5.12 ≤ xi ≤ 5.12, for all i = 1..n and the global
minimum is at f(~0) = 0. This function is highly multi-modal with many sub-peaks increasing in
intensity when approaching the global minimum. Figure 1 shows the Rastrigin function in two
dimensions. We have chosen the same step of 0.5 used for the generalised Ackley function.
The third benchmark function is the generalized Rosenbrock function for dimension n,

fn(~x) =
n−1
∑

i=1

100 · (x2i − xi+1)
2 + (1− xi)

2. (4)

Its domain is −2.048 ≤ xi ≤ 2.048, for all i = 1..n. In two dimensions, this function is unimodal
and banana shaped but slightly asymmetric, the minimum being at ~x = (x1, x2) = (1, 1).
However, for dimensions higher than three, the function is no longer unimodal and has a local
minimum in the neighbourhood of ~x = (−1, 1, ..., 1) (Shang & Qiu, 2006) in addition to the
global minimum at f(~1) = 0. In this case, a step size of 0.1 was chosen.
The fourth benchmark function is the Sphere function of dimension n,

fn(~x) =
n
∑

i=1

x2i . (5)

Its domain is −1 ≤ xi ≤ 1, for all i = 1..n and the global minimum is at f(~0) = 0. This function
for which we use a step size of 0.5 is completely symmetric along every axis.
The last benchmark function has 13 variables and 9 linear constraints, it was designed to test
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different constraint handling methods (Michalewicz & Schoenauer, 1996),

f(~x) = 5x1 + 5x2 + 5x3 + 5x4 − 5
4
∑

i=1

x2i −
13
∑

i=5

xi + 15, (6)

subject to the following constraints:

2x1 + 2x2 + x10 + x11 ≤ 10, −8x1 + x10 ≤ 0, −2x4 − x5 + x10 ≤ 0, (7)

2x1 + 2x3 + x10 + x11 ≤ 10, −8x2 + x11 ≤ 0, −2x6 − x7 + x11 ≤ 0, (8)

2x1 + 2x3 ++x11 + x12 ≤ 10, −8x3 + x12 ≤ 0, −2x8 − x9 + x12 ≤ 0. (9)

Its domain is 0 ≤ xi ≤ 1, for all i = 1..9 and i = 13 with a step size of 0.01, moreover 0 ≤ xi ≤ 100
for i = 10, 11, 12 with a step size of 0.1. The function is quadratic with a global minimum at
f(1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) = 0.

2.3 Real-world applications with EnergyPlus

We used the simulation software EnergyPlus version 2.2 to compute the objective function
for real-world optimisation problems. The parameters varied during the optimisation were the
window position, HVAC control temperatures and the temperatures used for system sizing. Two
different benchmark buildings within the United States were used, each for the three locations,
Chicago (IL), Miami (FL) and San Francisco (CA). In each case our aim is to minimize the
primary energy consumption,

f(~x) = ηh ·Qh(~x) + ηel · Eel(~x), (10)

where ~x is the vector containing the independent parameters, ηh is the source-site energy factor
for the heating system primary resource, Qh is the total annual on site energy consumption
for heating and domestic hot water production (in J), ηel is the source-site energy factor for
electricity and Eel is the total annual electric consumption (in J). We have taken primary source-
site factors from Deru & Torcellini (2007) which are shown in Table 3.

Table 3. Source-site energy factors used in our study

Chicago Miami San Francisco

Gas 1.092 1.092 1.092
Electricity 3.546 3.317 3.095

2.3.1 Small Office Building

The first set of numerical experiments uses the DOE benchmark case of a single story office
building with one thermal zone. The floor area is 511 m2 and the floor height is 3.05 m. The
envelope properties vary with climate according to ASHRAE 90.1-2004. The original window to
wall ratio is 18%, which corresponds to a window of height 0.55 m which spreads on the entire
length of the wall. This ratio will vary throughout the study. The infiltration rate is 0.5 h−1

when fans are off and 0.15 h−1 otherwise. The HVAC system consists of packaged single zone
air conditioning units and a gas furnace. Twenty people occupy the office during working hours,
with an appliance load of 8.07 W/m2. The interior lights have a peak power consumption of
10.8 W/m2, of which 40% are in the central part of the building and controlled by the working
hours schedule. The remaining 60% have a dimming control that uses two measurement points
placed, respectively, at 3 m distance from the south and north windows. No shading devices or
overhangs are present in the building. Figure 2 shows a projection of this small office building.
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Figure 2. A projection of the Small Office Building simulated with the initial windows position

2.3.1.1 Parameters. The thirteen parameters for the study are shown in the Table 4. There
are eight parameters describing the windows’ lower and upper positions in each facade. The
minimal allowed value for the lower window position is 0.8 m, which corresponds to a standard
desk height. This choice was made as in office buildings desks often obstruct the daylight coming
from the windows. The maximal allowed value for the lower window position is 1.25 m, which
corresponds to the eye height of a seated person (see Watson & Crosbie (2004)) and hence
permits a view to the outside world. For the upper window position, the minimal value was set
to accommodate the minimal window size of 0.55 m. The maximal value for the upper window
position was selected to be 2.2 m, which takes into account the slab height and the space needed
for ventilation and air conditioning equipment. In addition to the window size and position,
we varied the cooling supply air temperature used when sizing the system. A higher value
results in larger flow rates which increases the fan energy use but reduces the chiller electricity
consumption. The last four parameters are the control set points for the night and week-end
temperature set-back for heating and cooling. The temperature set points during the day on

Table 4. The thirteen parameters for the Small Office Building study and the Large Office Building study

Parameter description Symbol and Domain

North, east, south and west window lower positions (m) x1, x3, x5, x7 ∈ [0.8, 1.25]
North, east, south and west window upper positions (m) x2, x4, x6, x8 ∈ [1.35, 2.2]
Cooling supply air temperature used for system sizing(◦C) x9 ∈ [12, 18]
Heating setback night set point temperatures for Weekdays & Saturdays (◦C) x10 ∈ [13, 21]
Heating setback whole day set point temperatures for Sundays & Holidays (◦C) x11 ∈ [13, 21]
Cooling setback night set point temperatures for Weekdays & Saturdays (◦C) x12 ∈ [24, 36]
Cooling setback whole day set point temperatures for Sundays & Holidays (◦C) x13 ∈ [24, 36]

weekdays and Saturdays in winter and summer are 21◦C and 24◦C. Those are included in the
range of allowed values for the setback temperatures.
To automatically size the HVAC system, EnergyPlus requires both the supply air temperature
and absolute humidity to be specified. As the supply air temperature is varied over a large
range, we compute the absolute humidity, which is input to the sizing algorithms of EnergyPlus
as follows:

ω = 6.875 · 10−4x9 − 2.5 · 10−4, (11)

where w is the moisture content of the cooling supply air (kg/(kg dry air)). This leads to a
supply air relative humidity of about 90%.
The step sizes for the optimisation algorithms were chosen to be 0.05 for the window positions
x1 to x8 and 0.25 for the temperature set points x9 to x13.

2.3.1.2 Remark. In our early optimisation experiments, the optimiser selected in all cases the
minimum supply air temperature of 12◦C as the optimum, because this led to the smallest fan
power consumption. The reason was that the small office building had a direct evaporating coil
model in which the COP is a function of the coil supply air inlet temperature but is independent
of the coil supply air outlet temperature. Therefore, this model was not detailed enough to find
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Figure 3. A projection of the Large Office Building simulated with the initial windows position

the optimum supply air temperature, as decreasing the supply air temperature does in an actual
system decrease the COP. To overcome this limitation, we replaced the HVAC system of the
small office building that is part of the DOE Commercial Building Benchmark files with that
from the large office building. The HVAC system is described in the next section.

2.3.1.3 Constraints. There are four linear constraints to ensure a minimal window height of
55 cm, which is the standard window size in the DOE benchmark building description files. The
constraints are:

(1) g1(~x) = x1 − x2 + 0.55 ≤ 0
(2) g2(~x) = x3 − x4 + 0.55 ≤ 0
(3) g3(~x) = x5 − x6 + 0.55 ≤ 0
(4) g4(~x) = x7 − x8 + 0.55 ≤ 0

2.3.2 Large Office Building

The second set of numerical experiments uses a 12 stories office building with a basement. The
floor area is 42757 m2, and its aspect ratio is 1.5. The envelope thermal properties vary with
climate according to ASHRAE Standard 90.1-2004. The window to wall area ratio is 40%, which
corresponds for the floor height of 3.05 m to a window size of 1.22 m. Each floor of the building,
except the basement, is subdivided into five thermal zones. For each floor there are four 4.5 m
deep perimeter zones with an infiltration rate of 0.3 h−1 when fans are off and 0.15 h−1 when fans
are on. There is also one central zone with an infiltration rate of 0.15 h−1 when fans are off and
0.075 h−1 when fans are on. The HVAC system is a variable air volume flow system with reheat.
The internal gains are composed of lights (10.8 W/m2), electrical plug loads (8.07 W/m2) and
the heat release by the presence of 195 people. No shading devices are present, but daylighting
control is used in all perimeter zones. A projection of the building is shown in Figure 3.

2.3.2.1 Parameters. The same thirteen parameters as for the Small Office Building were
used (see Table 4). In the standard case defined in the DOE Benchmark Description files, the
parameters for the window positions are of 0.91 m and 2.13 m respectively for the lower and
upper window. The window positions x1 to x8 are interpreted as relative to each floor equipped
with windows, which excludes the basement. In other words, all windows simulated on a facade
have the same dimensions given by the first eight parameters.
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2.3.2.2 Constraints. The same four linear constraints as for the Small Office Building are
used for this Large Office Building case.

2.3.2.3 Remark. Even though the same parameters and linear constraints as for the Small
Office Building were used, we expect a more complex objective function because it has, for each
floor, separate thermal zones on each facade as well as an interior thermal zone.

3. Results

We measured the time required for one simulation with the version 2.2 of EnergyPlus on a
Linux machine equipped with a Quad-Core AMD Opteron 2.3 GHz processor and 1 GB of
RAM. The Small Office Building takes about 80 seconds to complete and the Large Office
Building about 900 seconds. We selected a limit of 3000 evaluations, leading to a reasonable 17
hours of simulations for the Small Office Building using the four cores available in parallel. For
the Large Office Building, using four of such processors (16 cores available in parallel), it leads
to 2 days of simulation. In comparison with this simulation time, the computing time overhead
associated with the optimisation algorithm is negligible. Please note that the CMA-ES/HDE will
remain close to the limit of 3000 evaluations, as it will not get interrupted during a population
evaluation. However, the PSO/HJ algorithm takes the 3000 evaluations as the limit for the PSO
algorithm, and then the solution is refined by the HJ algorithm which stops itself when no
improvement is found with the finest grid spacing allowed. Typically, the improvement by the
HJ takes only a few hundreds of evaluations and therefore the total number of evaluations is not
far from the limit established.

3.1 Benchmark functions

The tests with the benchmark functions were conducted with 10 and 20 problem variables, as
it is in this range that our real-world experiment with EnergyPlus will be. In order to obtain
useful statistics for the different algorithms, hundred runs were carried out for each objective
function, in which we varied the seed of the pseudo-random number generator. Figure 4 presents
the lowest objective function value found by the hundred runs of the algorithms in the form of
Box-Whisker plots. The median of the set is represented by the solid horizontal line in the box,
the box itself includes the values lying between the first and third quartiles of the set (50% of the
values) and outliers values included in the mustaches are within 1.5 of the inter-quartile distance.
The remaining outliers that are not within 1.5 of the inter-quartile distance are represented by
dots.
For the Ackley function, the CMA-ES/HDE algorithm consistently performs best by getting
closer to the global minimum compared to the PSO/HJ algorithm even considering all outliers.
For all the runs and all parameters, the PSO remains stuck in the neighbourhood of a local
minima. The HJ then refines the position of the local minimum and obtains its exact position,
which improves the function value, but only insignificantly. Therefore, the different objective
function values arrived at by the PSO/HJ algorithm correspond to local minima. This is not
the case for the CMA-ES/HDE algorithm, for which there is no guarantee to find a stationary
point. We notice that increasing the number of particles for the PSO (going from PSO/HJ
1 to PSO/HJ 5) improves the probability of finding a better local minimum and indeed of
approaching the global minimum as the parameter range for this function is large. We note
that our choice of limiting the number of function evaluations to 3000, in view of the typically
rather large computing time of a building simulation, leads to a limited performance of the
PSO algorithm, which usually requires more function evaluations to provide good performance
(Parsopoulos & Vrahatis, 2002). On the contrary for the CMA-ES/HDE, 100% of convergence
(considered by a fitness below 0.1) of the Ackley function with 10 variables was obtained with
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(b) Ackley n = 20
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(c) Rastrigin n = 10
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(d) Rastrigin n = 20
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(e) Rosenbrock n = 10
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(f) Rosenbrock n = 20
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(g) Sphere n = 10
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(i) Constrained n = 13

Figure 4. Comparison of different algorithms with benchmark test functions, Box-Whisker plots of hundred best candidates
shown by their objective function value f(~x).

2695±178 evaluations by Kämpf & Robinson (2009). This performance was repeated in this
experiment.
In the case of the Rastrigin function, the CMA-ES/HDE performs best for dimension 10. The
median value is comparable to that of PSO/HJ 5, but its spread is smaller as the algorithm
gets more often closer to the global minimum. However, from Kämpf & Robinson (2009), the
CMA-ES/HDE algorithm would have needed 6255±2020 evaluations for 100% of convergence
with 10 variables. For dimension 20, the CMA-ES/HDE suffers even more from the low number
of total evaluations and the PSO/HJ performs better, particulary the PSO/HJ 3.
For the Rosenbrock function, the CMA-ES algorithm is always inferior to the PSO/HJ algorithm.
The HJ part of the PSO/HJ algorithm can almost always improve the solution and get to the
global minimum with an initial step size of 0.1 and 4 step reductions, thereby the box representing
50% of the runs collapses to a line where the objective function value is zero. However, had we
selected more step reductions, then the step size would have been sufficiently small for the
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algorithm to converge to a minimum, as can formally be proven (Torczon, 1997; Lewis & V.,
1999). We note that for the PSO/HJ 5, the PSO brings the solution sufficiently close to a
minimum for the HJ to always find the local minimum around f(~x) = 4, or the global minimum
around f(~x) = 0.
For the Sphere function, both hybrid algorithms perform well. The PSO/HJ algorithm always
converges exactly to the global minimum. Indeed, as this function is uni-modal and the global
minimum on the grid defined for the algorithm, the HJ always converges. The CMA-ES/HDE
algorithm gets very close to the global minimum, but turns around it due to the nature of its
recombination and mutation operators.
For the constrained function, the variants 1 and 3 of the PSO/HJ algorithm, with a constriction
coefficient κ = 0.5, were not able to get inside the constrained space during our tests. The PSO
was concentrating rapidly on a region outside of the constrained space and got stuck there as the
speed of particles reduced quickly with generations. The other variants of the PSO algorithm
could at least find one point in the constrained space that attracted the particles. When particles
could get in the vicinity of the global minimum, the HJ algorithm lead to its exact position,
as it is on the grid defined by the algorithm. In this constrained example, the global minimum
sits at the domain boundaries, and even though it is not a stationary point of the function, the
HJ algorithm can lead to it thanks to its constraint handling procedure. The CMA-ES/HDE
provided a less good performance than variants 4 and 5 of the PSO/HJ. Due to its recombination
and mutation operators, it tends to explore the interior of the domain boundaries, however thanks
to the constraint handling procedure within the mutation phase of the CMA-ES algorithm, it
can also touch the border of the domain.
Even though the number of function evaluations is not the same for the two hybrid algorithms,
as the HJ algorithm stops itself when no further improvement is found, clear trends can be
identified. In particular it is possible to identify which algorithm is best suited to a certain
kind of objective function. For example, the CMA-ES/HDE algorithm performs best on highly
multi-modal functions such as Ackley and Rastrigin, as the algorithm was designed for just these
kinds of functions. On the other hand, for functions with one or two minima such as Rosenbrock
or Sphere, the PSO/HJ very frequently converges to the global minimum. In those cases, the
PSO algorithm explores the parameter space and when the best particle approaches the global
minimum, the HJ algorithm is able to find its exact position. The real-world experiment in
building performance optimisation presented in this paper should favour one algorithm over the
other according to the shape of the objective function.

3.2 Real-world application with EnergyPlus

From the results obtained for the benchmark test functions, the parameters of variant number
5 were adopted for the PSO/HJ algorithm.

3.2.1 Small Office Building

The results for the objective function minimisation (see Equation 10) are summarized in Fig-
ure 5. In each case the primary energy consumption has been normalised per unit floor area
to allow for an easier comparison between the different buildings. For illustration purposes, the
Box-Whisker plot presented were made with 5 runs at each location. Please note that the quar-
tiles are not statistically significant in this latter plot. For the Chicago climate, the PSO/HJ
performs the best, however from a Wilcoxon rank sum test (Mann & Whitney, 1947) the dif-
ference between the two is slightly significant (W=23, p-value=0.016). For the Miami climate,
the difference between the two algorithms is not significant (W=14, p-value=0.42). Finally for
the San Francisco climate, likewise the Miami climate, the difference is not significant (W=12,
p-value=0.58). Moreover, from an energy point of view, the energy difference between the ex-
treme cases corresponds to less or about 1% of the median value, which is negligible.
The PSO/HJ algorithm at the Chicago location stopped after a mean 3247 evaluations (stan-
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Figure 5. Primary energy consumption (in MJ/m2) for the optimised Small Office Building, Box-Whisker plots for 5 runs
at each location.

Table 5. Results for the Small Office building optimisation, worst cases for Chicago, best cases for Miami, close to median cases for San

Franciscoa

x1 x2 − x1 x3 x4 − x3 x5 x6 − x5 x7 x8 − x7 x9 x10 x11 x12 x13

North window East window South window West window

Initial parameters 1.25 0.55 1.25 0.55 1.25 0.55 1.25 0.55 14.0 13.0 13.0 33.0 33.0

Chicago (IL)
CMA-ES/HDE 0.90 0.60 1.03 0.61 1.09 0.60 1.18 0.56 15.1 17.5 13.0 26.1 34.6
PSO/HJ 0.95 0.55 1.05 0.55 1.11 0.55 1.20 0.55 15.3 18.0 13.0 25.8 30.7

Miami (FL)
CMA-ES/HDE 0.86 0.73 0.84 1.36 0.84 1.36 1.09 1.11 12.0 18.6 16.8 27.1 31.6
PSO/HJ 0.88 0.73 0.80 1.40 0.85 1.35 1.05 1.05 12.0 15.2 19.8 27.0 34.8

San Francisco (CA)
CMA-ES/HDE 0.91 0.65 1.21 0.77 0.89 0.58 1.23 0.59 12.0 18.5 13.3 24.0 29.9
PSO/HJ 1.07 0.56 1.25 0.67 0.90 0.55 1.25 0.55 12.0 18.5 14.8 24.0 29.0

aPlease refer to Table 4 for details about the parameters

dard deviation 52). At the Miami location, it stopped after a mean 3430 evaluations (standard
deviation 89). Finally at the San Francisco location, it stopped after a mean 3307 evaluations
(standard deviation 51).
Even though the annual primary energy use is similar between the algorithms, we want to see
and understand the possible differences between the optimal variables values. For this, as an
illustration, we have selected for each algorithm the worst cases for the Chicago climate, the
best cases for the Miami climate and close to median cases for the San Francisco climate, and
reported the corresponding variables in Table 5. In addition to that, we have included the vari-
ables corresponding to the standard case, which were given in the DOE benchmark description
files. On closer inspection of the best candidates found by the two algorithms in Table 5, we
notice that the parameters can be rather different. In order to understand this, we examine the
results for each climate case in turn below.

3.2.1.1 Chicago (IL) case. For the Chicago (IL) case, the North, East and West window
sizes are consistently around the minimal allowed value. Table 6 shows a breakdown of the
energy consumption for the different systems in the building for both the initial and optimised
cases. From this, we notice that for the optimised cases we save energy for both the cooling and
ventilation compared to the initial case. However, more natural gas was consumed in heating,
which may indicate that it is more beneficial to reduce electricity consumption as its source-site
factor is about three times that of natural gas.
To produce Figure 6 we used the optimal parameters identified by the PSO/HJ algorithm shown
in Table 5, but varied the variable x9 to cover its domain. From this we find that the PSO/HJ
algorithm correctly identified the minimum for this ninth parameter in the subspace shown by
this Figure. As expected, we notice an increase in fan energy use if the supply temperature is
raised, starting at the optimal value for x9. This is because with a higher cooling supply air
temperature, a higher mass flow rate is required to provide the same cooling load. Below the
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Table 6. Details about the Chicago Small Office building’s site energy consumption in MJ/m2

Energy type and use (MJ/m2) initial CMA-ES/HDE PSO/HJ

Electricity
Interior Lighting 100.7 97.28 (-3.4%) 98.10 (-2.6%)
Interior Equipment 128.8 128.8 128.8
Cooling 45.89 33.52 (-27.0%) 32.43 (-29.3%)
Natural Gas
Heating 138.8 142.2 (+2.4%) 146.2 (+5.3%)
Electricity
Fans 76.05 55.38 (-27.2%) 53.01 (-30.3%)
Pumps 11.3 6.46 (-42.8%) 6.11 (-45.9%)
Heat Rejection equipment (cooling tower) 8.45 4.99 (-40.9%) 4.70 (-44.4%)

Total primary energy use 1468 1313 (-10.6%) 1305 (-11.1%)
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Figure 6. Variation of the fitness with x9 around the best candidate found for the Small Office Building in Chicago with
PSO/HJ

optimal value for x9, we have a constant value for fan energy use, because for x9 < 15.3◦C,
the sizing of the heating system determines the minimal mass flow rate. This behaviour cannot
be seen for San Francisco and Miami in which the fan size was determined exclusively by the
cooling load.
Looking closer at the EnergyPlus input file, we noticed that the ASHRAE 90.1-2004 regulation
leads to poorly performing double glazed windows (2× 3 mm clear glass, 6 mm air gap) having
a U-value of 3.26 W/(m2K). To understand the implications of this, we re-run the optimisation
after replacing the window construction with a better performing double glazed window. The
new glazing consists of a double layer window of 6 mm clear glass, with a gap of 13 mm filled
with Argon. The outer layer also has a low infrared emissivity coating. The new windows lead to
a reduction in the objective function between the initial cases (without optimisation) equivalent
to about 6% primary energy. Moreover, the optimised case with new glazing has larger windows
which may be preferred by the occupants (see Table 7).
From Table 5, we notice that for Chicago, the optimal night set back temperature for heating was
not at its lowest allowed value, which seems counter intuitive. To understand this, we examined
results from two simulations. The first one was based on the optimal parameters found by the
CMA-ES/HDE algorithm and the second one used the same parameters except the night set
back temperature, which was set to its lowest allowed value of 13◦C. This reduction in night
set back temperature led to an increase in primary energy consumption of 9.7%. By way of
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Table 7. Results for the Small Office building optimisation in Chicago with double glazing and low emission coating after 3000 evaluations, parameter

valuesb

x1 x2 − x1 x3 x4 − x3 x5 x6 − x5 x7 x8 − x7 x9 x10 x11 x12 x13 f(~x)
North window East window South window West window MJ/m2

Initial parameters 1.25 0.55 1.25 0.55 1.25 0.55 1.25 0.55 14.0 13.0 13.0 33.0 33.0 1381

Chicago (IL) equipped with Double Glazing and Low Emission coating
CMA-ES/HDE 0.84 0.75 0.91 1.26 0.88 1.16 0.95 0.79 13.4 17.3 13.8 26.2 30.4 1200
PSO/HJ 5a 0.96 0.77 0.98 1.19 0.90 1.15 1.18 0.72 13.9 17.3 13.1 26.0 28.8 1199

aThe parameters of the algorithm are variant 5: 100 particles, c1 = 2.05, c2 = 2.05, λ = 0.2, κ = 1

bPlease refer to Table 4 for details about the parameters
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Figure 7. Comparison between the optimal point found for Chicago by the CMA-ES/HDE and the same parameters with
the night set back temperature changed to 13◦C. The day chosen was the 14th March.

explanation, in Figure 7 we plot results for a particular day in which the performance of the
optimal case was better than the one with the night set back at its lowest value. During that
day, the power consumption for fans and heating were higher for the case with lower night set
back temperature. This higher fan power can be explained by the auto-sizing algorithm used by
EnergyPlus: during the night, the temperature of the building will decrease more, resulting in
a bigger heat load for the first hour in the morning. Therefore, a larger fan is needed to provide
the relatively larger amount of heating energy after the set point change.
The higher gas consumption was at first surprising, because the minimum outside air mass flow
rate for ventilation was fixed according to the expected occupancy, and independent of the fan
size. Furthermore, a larger fan adds more heat to the air stream. However, the EnergyPlus input
file is such that the economizer control attempts to maintain a mixed air temperature of 16◦C
until the 31st March and starting from the 1st October. Since in the case of the lowest night
temperature there is a higher air flow rate (due to a larger fan), more outside air is needed to
bring the mixed air temperature down to 16◦C. Consequently more gas is needed to reheat the
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Table 8. Details about the Miami Small Office building’s site energy consumption in MJ/m2

Miami (FL)
Energy type and use (MJ/m2) initial CMA-ES/HDE PSO/HJ

Electricity
Interior Lighting 102.4 88.60 (-13.5%) 88.75 (-13.3%)
Interior Equipment 128.8 128.8 128.8
Cooling 120.1 110.5 (-8.0%) 110.5 (-8.0%)
Natural Gas
Heating 0.96 1.41 (+46.9%) 1.39 (+44.8%)
Electricity
Fans 85.56 63.60 (-25.7%) 63.50 (-25.8%)
Pumps 19.5 15.7 (-19.5%) 15.7 (-19.5%)
Heat Rejection equipment (cooling tower) 17.1 13.9 (-18.7%) 13.8 (-19.3%)

Total primary energy use 1571 1398 (-11.0%) 1398 (-11.0%)

mixed air to the building’s supply air temperature.
From the above analysis, we conclude that the way the economizer was modeled in the DOE
benchmark files used for this study was oversimplified for the heating season. However, for the
summer, a mixed air temperature of 13◦C was used, which is correct to take advantage of night
cooling. Moreover, the temperature schedule used for the auto-sizing algorithms should ramp
up to the daytime set point, instead of having a change that looks like a step function. If the
room air set point temperature for heating had been ramped up over a period of 3 hours, then
compared to a constant night set back temperature of 13◦C, a reduction in the objective function
of 9.4% would have been achieved, which is substantial.

3.2.1.2 Miami (FL) case. In the Miami case, the optimised cases have large windows (Table
5) especially for the East, South and West facades. The cooling supply air temperature is set to
the lowest bound (12◦C). The winter heating set back temperatures are close to the initial set
point of 21◦C, but these seem non-intuitive for the PSO/HJ algorithm as the set-back temper-
ature for Sundays and Holidays is higher than that for weekdays and Saturdays. To understand
this, we analysed the office temperatures for these two periods. During Sundays and Holidays,
the minimal achieved room temperature was 19.6◦C. For Weekdays and Saturdays during night
time, the minimal temperature was 19.3◦C. Therefore, any heating temperature set point be-
low these temperatures will have the same effect, which explains the non-intuitive values. The
summer cooling set back temperatures, on the other hand, do follow our intuition. The maximal
room temperature at night time during weekdays and Saturdays achieves the set point temper-
ature. However the maximal temperature during Sundays and Holidays was 30.4◦C. Therefore
any set point above this temperature leads to equivalent energy use, which explains the differ-
ences between the set points found by the CMA-ES/HDE and the PSO/HJ.
Table 8 shows the energy details of the different systems in the building for the optimised cases
and the initial case. For the optimised cases energy for cooling is reduced but natural gas con-
sumption is slightly increased, which is, however, negligible for the Miami climate. Fan electrical
consumption shows the biggest savings. By reducing the cooling supply air temperature to its
minimal value, the optimiser reduced the necessary mass flow rate for an equivalent cooling load.

3.2.1.3 San Francisco (CA) case. As with the Chicago case, for the San Francisco case the
windows are set around the minimal allowed height. The cooling supply air temperature is also
at its lowest value (12◦C), allowing for a reduction in fan power. Table 9 shows the energy
details of the different systems in the building. For the optimised cases we save about half the
energy for cooling compared to the initial case. Perhaps of more interest is that for a similar
reduction in total primary energy consumption, the CMA-ES/HDE results in larger windows
and therefore reduces lighting energy use, but it also results in an increase of all other energy
end uses compared to the solution found by the PSO/HJ algorithm. This indicates what may be
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Table 9. Details about the San Francisco Small Office building’s site energy consumption in

MJ/m2

San Francisco (CA)
Energy type and use (MJ/m2) initial CMA-ES/HDE PSO/HJ

Electricity
Interior Lighting 99.78 93.56 (-6.2%) 95.83 (-4.0%)
Interior Equipment 128.8 128.8 128.8
Cooling 40.14 19.55 (-51.3%) 19.06 (-52.5%)
Natural Gas
Heating 35.03 26.52 (-24.3%) 24.15 (-31.1%)
Electricity
Fans 47.36 32.86 (-30.6%) 32.25 (-31.9%)
Pumps 13.0 5.48 (-57.8%) 5.36 (-58.8%)
Heat Rejection equipment (cooling tower) 11.1 4.76 (-57.1%) 4.66 (-58.0%)

Total primary energy use 1091 911 (-16.5%) 911 (-16.5%)

Table 10. Results for the optimisation of the Large Office building in different locations after 3000

evaluations, yearly primary energy consumption in MJ/m2

Chicago (IL) Miami (FL) San Francisco (CA)

Standard parameter set 1689 1718 1440
Best candidate with CMA-ES/HDE 1347.7 (-20.2%) 1596.2 (-7.1%) 1014.5 (-29.6%)
Best candidate with PSO/HJ 5a 1348.2 (-20.2%) 1596.0 (-7.1%) 1015.2 (-29.5%)

aThe parameters of the algorithm are variant 5: 100 particles, c1 = 2.05, c2 = 2.05, λ = 0.2, κ = 1

a multi-modal objective function with two almost equivalent minimum objective function values
but different independent parameters.

3.2.2 Large Office Building

For the Large Office Building, considering the large simulation time of about 800 seconds
for each function evaluation and the similar reduction in primary energy consumption obtained
by different runs, we chose to do the optimisation only once for each algorithm. The results
for the objective function minimisation are summarized in Table 10. We have added a further
digit to the yearly energy consumption to help display the actual difference between the two
algorithms, however this difference is insignificant in terms of energy consumption. As for the
Small Office Building, the most significant improvement was achieved for San Francisco. For the
Large Office Building, we expected a more complex objective function because it has, for each
floor, separate thermal zones on each facade as well as an interior thermal zone, and therefore
would favour the CMA-ES/HDE like the Ackley or Rastrigin benchmark functions. However,
there is no discernable difference between the two tested optimisation methods as far as only
one run of the algorithms is concerned.
Table 11 shows that both algorithms found similar parameters. We show in Figure 8 the evolution
of the objective function with the number of evaluations for San Francisco. This Figure shows
that the HDE component of the CMA-ES/HDE is most effective in improving the solution, as is
the PSO component in the PSO/HJ. With both algorithms, a plateau has been reached around
2200 evaluations. The apparent divergent behaviour of the CMA-ES algorithm was already
observed on the Rastrigin function in Kämpf & Robinson (2009). At each generation, the CMA-
ES algorithm selects the new parents amongst the children, and those children may have a worse
fitness than the actual parents. It appears that such a small populated CMA-ES algorithm with
µ = 5 and λ = 11 is not suited for this kind of function, which justifies the hybrid approach, as
this knowledge comes after the optimisation. Moreover, this behaviour of the CMA-ES algorithm
does not impact on the robustness of the hybrid, but rather brings diversity to the population
of the HDE during the exchange of individuals.
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Table 11. Results for the Large Office building optimisation in different locations after 3000 evaluations, parameter valuesb

x1 x2 − x1 x3 x4 − x3 x5 x6 − x5 x7 x8 − x7 x9 x10 x11 x12 x13

North window East window South window West window

Standard 0.91 1.22 0.91 1.22 0.91 1.22 0.91 1.22 14.0 13.0 13.0 33.0 33.0

Chicago (IL)
CMA-ES/HDE 1.22 0.55 1.01 0.56 1.15 0.55 1.22 0.59 12.1 14.6 13.0 24.8 34.4
PSO/HJ 5a 1.21 0.55 1.00 0.55 1.00 0.55 1.15 0.55 12.8 14.6 13.0 24.5 33.5

Miami (FL)
CMA-ES/HDE 1.22 0.55 1.18 0.75 1.17 1.02 1.24 0.70 12.0 17.3 16.2 24.3 35.8
PSO/HJ 5a 1.18 0.56 1.25 0.73 1.23 0.97 1.25 0.68 12.0 17.6 16.0 24.3 36.0

San Francisco (CA)
CMA-ES/HDE 1.20 0.69 1.17 0.69 1.20 0.55 1.19 0.58 12.0 14.4 13.0 24.5 34.9
PSO/HJ 5a 1.25 0.78 1.25 0.68 0.95 0.55 1.25 0.56 12.0 13.0 13.0 24.5 35.8

aThe parameters of the algorithm are variant 5 with 100 particles, c1 = 2.05, c2 = 2.05, λ = 0.2 and κ = 1

bPlease refer to Table 4 for details about the parameters
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Figure 8. The improvement in cost function as a function of the number of evaluations for the Large Office in San Francisco,
on the left for the CMA-ES/HDE and on the right for the PSO/HJ

4. Conclusion

The novel hybrid evolutionary algorithm CMA-ES/HDE was compared with the established
performance of the PSO/HJ. The first set of numerical experiments involved benchmark func-
tions with different complexities (Ackley, Rastrigin, Rosenbrock, Sphere and Constrained). The
CMA-ES/HDE performed better than the PSO/HJ on difficult multi-modal functions such as
those of Ackley and Rastrigin for a parameter space of dimension 10 and within a limit of 3000
evaluations. However, when the problem dimension was increased to 20, the CMA-ES/HDE per-
formed less well than the PSO/HJ algorithm for the Rastrigin function, which indicates a limit
of the algorithm for complex functions when using low number of function evaluations. For the
non-convex Rosenbrock function in dimensions 10 and 20, the PSO/HJ performs best because
the HJ algorithm finds very often the global minimum once the PSO algorithm has reached a
basin of attraction of the global minimum. The uni-modal Sphere function is best solved by the
HJ part of the PSO/HJ, which always converges exactly to the global minimum. Even though
the CMA-ES/HDE algorithm does not get the exact position of the global minimum, it gets very
close to it. The uni-modal constrained function favours some parameter variants of PSO/HJ and
therefore indicates which algorithm parameters should be preferred.
We then tested the algorithms’ performance for minimising the energy use of small and large
office buildings simulated by EnergyPlus. Thirteen parameters were varied, representing window
positions, HVAC system design variables and control set-points. The optimal configuration led
to a reduction of primary energy consumption of up to 30%. The optimal values represented
a trade-off that one can obtain by sizing the windows properly in order to save electricity for
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artificial lighting, and by setting the HVAC sizing and control temperatures to reduce energy for
fans, pumps and air conditioning systems. A quasi similar performance was obtained by the two
algorithms CMA-ES/HDE and PSO/HJ for the small office building. For one climate only the
PSO/HJ provided better results that were slightly significant. Moreover, similar performance
was obtained for the large office building, as far as only one run of each algorithm is concerned.
However, the resultant parameter sets were different, indicating that the objective function is
multi-modal or locally just a flat landscape. We can conclude that even though the performance
of the optimisation algorithms tested was significantly different on benchmark functions, it was
not the case for the experiments with EnergyPlus. Even though the total number of function
evaluations was not the same between the two hybrid algorithms, as the HJ algorithm stops
itself when no further improvement is found in the objective function, clear trends were iden-
tified regarding the performance of the hybrid algorithms with benchmark functions. Highly
multi-modal objective functions were best solved by the CMA-ES/HDE algorithm and objective
functions with one or two minima by the PSO/HJ algorithm. The objective function of the
building performance optimisation problem seemed to lie somewhere between these extremes, as
no algorithm was significantly favoured over the other. Nevertheless, when we have no a-priori
knowledge of the nature of the objective function that we wish to evaluate, it would be prudent
to use the hybrid CMA-ES/HDE algorithm, which is able to handle highly multi-modal func-
tions that may be found in building and urban optimisation problems. To this end work is under
way to apply the hybrid CMA-ES/HDE algorithm in conjunction with an urban scale resource
flow modelling tool, called CitySim. It is anticipated that results from application of this work
will be reported in the near future.
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5. Nomenclature

f objective function
~x variables
n problem dimension
m constraints number
gj jth constraint
li ith lower bound
ui ith upper bound
µ CMA-ES number of parents
σ CMA-ES global step size

NP HDE population size
F HDE constant of differentiation
Cr HDE constant of crossover
ǫ2 HDE relative precision for migration
~ǫ3 HDE absolute precision for migration
c1 PSO cognitive acceleration constant
c2 PSO social acceleration constant
λ PSO maximum velocity gain
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κ PSO constriction coefficient
r HJ mesh size divider
s HJ initial mesh size exponent
t HJ mesh size exponent increment

m HJ number of step reductions
ηh source-site energy factor for the heating primary ressource
Qh total annual on-site energy consumption for heating and domestic hot water

production (J)
ηel source-site energy factor for electricity
Eel total annual on-site electric consumption (J)
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