
Dynamically Translating x86 to LLVM using QEMU

Vitaly Chipounov and George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

1 Introduction

QEMU [1] is a system emulator that can run unmodified
guest operating systems on a host OS, where the guest
and host CPU architecture can be different. For exam-
ple, QEMU can run x86 guest OSes on a MIPS host, or
even x86 on x86 (e.g., a Windows guest on a Linux host).
QEMU emulates a complete system including proces-
sors, devices, and chipsets. More implementation details
regarding QEMU are available in [1].

In this paper, we focus on the design and implemen-
tation of the LLVM backend for QEMU. LLVM [5]
is a compiler framework which can optimize programs
across their entire lifetime, including compile-time and
run-time. It also performs offline optimizations. The
LLVM backend converts the guest instruction set to
LLVM bitcode, optimizes this bitcode, and turns it back
to x86, using the JIT capabilities of the LLVM run-time.
We build upon an existing attempt to write an LLVM
backend for QEMU [6].

The LLVM backend can be used for several purposes.
We interfaced QEMU with the KLEE symbolic exe-
cution engine to test OS kernel, drivers, and applica-
tions [3]; we also use the LLVM backend for device
driver testing [4] and reverse engineering [2].

The paper is structured as follows. First, we explain
how QEMU runs unmodified guest OSes (§2), then we
describe the specificities of the LLVM backend (§3), how
it is implemented (§4), evaluate its performance (§5),
discuss the limitations (§6), and conclude (§7).

2 Dynamic Binary Translation

QEMU has a dynamic binary translator (DBT) which
converts binary code from the guest CPU architecture to
the host architecture. For example, the DBT can take
x86 guest code and turn it into an equivalent sequence of
instructions natively executable on a SPARC host. Trans-
lation consists of two phases: converting guest code into

a sequence of micro-operations and turning these micro-
operations into executable code (Figure 1).

First, the DBT converts the guest binary code into a se-
quence of simple micro-operations, packaged in a trans-
lation block. The DBT takes as input the current pro-
gram counter of the virtual processor and the emulated
physical memory. The DBT disassembles all instructions
starting at the current program counter until it encounters
an instruction that changes the control flow (e.g., call, re-
turn, jump, or interrupt). The disassembly process con-
verts each guest instruction into an equivalent sequence
of micro-operations. For example, the x86 instruction
inc [eax] that increments the memory location whose
pointer is stored in theeax register, is split into a memory
load to a temporary register, an increment of that register,
and a memory store. The succession of micro-operations
forms a translation block.

Second, the DBT turns the translation block into code
executable by the host processor. The DBT maintains
a dictionary of micro-operations. This dictionary con-
tains a mapping between micro-operations and the equiv-
alent sequences of host architecture binary code. This bi-
nary code performs the task of the corresponding micro-
operation when run on the host processor. The DBT cy-
cles through each micro-operation contained in the trans-
lation block and emits the corresponding sequence of
host machine instructions by using the dictionary. The
result is a block of host machine code that performs the
same operations as the guest OS code.

3 An LLVM Backend

We extend the QEMU dynamic binary translator to gen-
erate LLVM bitcode from x86 (Figure 2). The transla-
tor takes x86 code, disassembles it to micro-operations,
maps the micro-operations to their LLVM counterparts,
and outputs LLVM bitcode. The generated bitcode can
be optionally translated to x86, using the Just-In-Time
(JIT) compiler of the LLVM framework.

Technical Report EPFL-TR-149975, Ecole Polytechnique Fédérale de Lausanne, Switzerland, March 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147960613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Host Code

x86 MIPS ... ARM

Disassembler

Micro-Operations

Host Code

Dictionary

Executable Code (e.g., x86)

Mapping

D
y

n
a

m
ic

 B
in

a
ry

 T
ra

n
sl

a
to

r

Guest Code

Figure 1: The QEMU dynamic binary translator

In this section, we give a brief overview of LLVM
(§3.1), show how to convert micro-operations to LLVM
code (§3.2), how to optimize the resulting code (§3.3),
and how to execute it (§3.4).

3.1 The LLVM Assembly Language

LLVM uses a compact RISC-like instruction set and a
static single assignment (SSA) code representation. The
LLVM instruction set consists of about 30 opcodes. Only
theload andstore instructions can access memory, all
other instructions operate on virtual registers. LLVM vir-
tual registers resemble registers in traditional instruction
set architectures (e.g., x86), except that there is no bound
on how many of them can be used by LLVM code, which
enables SSA representation. In SSA, each register can be
assigned only once. Hence, SSA also provides aphi in-
struction. This instruction assigns a value to a variable
depending on the location from where the control flow
arrived. Without this instruction, it would be impossible
to modify the same variable in two different branches.

The conciseness and SSA-form of LLVM make
LLVM programs amenable to complex analysis and
transformations. The LLVM code implicitly embeds the
program’s data flow and def-use graphs. This enables
transformations like function inlining, constant propaga-
tion, dead store removal, etc. These transformations are
a key part of the x86 to LLVM translator, as we shall see
in §3.3.

Host Code

x86

Disassembler

Micro-Operations

LLVM Code

Dictionary

LLVM

bitcode

Mapping

D
y

n
a

m
ic

 B
in

a
ry

 T
ra

n
sl

a
to

r

Guest Code

x86 code
JIT

Figure 2: An LLVM backend for QEMU

3.2 Translating Micro-Operations to
LLVM

The DBT maps the micro-operations resulting from the
disassembly phase to LLVM functions, by using the
code dictionary. Each micro-operation is assigned to
one LLVM function that implements the behavior of that
micro-operation. The code for the micro-operation is
originally written in C and compiled byllvm-gcc into
LLVM bitcode. The set of LLVM functions implement-
ing micro-operations’ behavior is stored in the code dic-
tionary. Listing 1 shows a micro-operation simulating a
jump to a code location by assigning a value to the pro-
gram counter register, and another operation computing
the XOR of two registers. Micro-operations operate on
the virtual CPU state, which is passed to them as a pa-
rameter.

void op_jmp_T0(CPUState *env) {
env->eip = env->t0;

}

void op_xorl_T0_T1(CPUState *env) {
env->t0 ^= env->t1;

}

Listing 1: Examples of micro-operations.

After the DBT has mapped the micro-operations to
corresponding LLVM functions, it transforms the trans-
lation block into LLVM bitcode. The DBT converts
micro-operations to LLVM function calls, as shown in
Listing 2. In this example, the translation block is com-
posed of seven micro-operations. The translation block
is encapsulated into an LLVM function taking as a pa-
rameter a pointer to the processor state. The generated
LLVM code is equivalent to the original x86 code in ev-

2

define i32 @dyngen(%struct.CPUX86State*) {
EntryBlock:
%1 = alloca i32
%2 = getelementptr i32* %1, i32 0
store i32 -1, i32* %2
call void @op_save_exception(%0, i32 -16, i32 0)
call void @op_movl_T0_im(%0, i32 0xF000)
call void @op_movl_T1_imu(%0, i32 0xE05B)
call void @op_movl_seg_T0_vm(%0, i32 96)
call void @op_movl_T0_T1(%0)
call void @op_jmp_T0(%0)
call void @op_movl_T0_0(%0)
%3 = load i32* %2
ret i32 %3

}

Listing 2: Sequence of micro-operations forjmp
0xF000:0xE05B in LLVM format.

ery aspect. In particular, it manipulates the processor and
memory state in the same way.

3.3 Optimizing the Generated LLVM Code

The output of the translation phase is suboptimal. Each
micro-operation invocation is encoded by a function call.
Since micro-operations are small (they often have only
one line of code), the overhead of call/return instructions
becomes large. Another source of overhead can arise
from suboptimal guest code. For example, the guest code
could save a value to a register, then overwrite this value
without actually using it. This leads to larger than neces-
sary LLVM bitcode.

We supplement the x86 to LLVM translator with an
optimization phase to optimize individual translation
blocks. The DBT reuses the optimization passes pro-
vided by the LLVM infrastructure. To alleviate the over-
head caused by many calls to short functions, the DBT
applies the inlining pass on the translation blocks to in-
line all function calls. Listing 3 shows the effect of inlin-
ing on the code in Listing 2. Likewise, the DBT applies
passes that eliminate redundant instructions.

3.4 Turning LLVM Code into x86

The translation phase outputs LLVM code, targeted at
a “fictive” LLVM host, just as an ARM-to-x86 transla-
tor would target an x86 host. Generating LLVM code
can be useful for performing complex optimizations and
analysis. For example, the DBT could convert large por-
tions of a program to LLVM dynamically to apply vari-
ous global analysis and optimizations techniques on the
program.

It is also possible to compile the LLVM code into the
instruction set of the host platform using the LLVM Just-
In-Time compiler. The end result is the same as us-
ing original QEMU’s translator, except that the transla-
tion phase adds the step of translating to LLVM. Turning

define i32 @dyngen(%struct.CPUX86State*) {
EntryBlock:
%1 = getelementptr %0, i32 0, i32 5
store i32 -16, i32* %1, align 1
%2 = getelementptr %0, i32 0, i32 0
%3 = getelementptr %0, i32 0, i32 1
store i32 57435, i32* %3, align 1
%4 = and i32 61440, 65535
%5 = bitcast %struct.CPUX86State* %0 to i8*
%6 = getelementptr i8* %5, i32 96
%7 = bitcast i8* %6 to %struct.SegmentCache*
%8 = getelementptr %7, i32 0, i32 0
store i32 %4, i32* %8, align 1
%9 = shl i32 %4, 4
%10 = getelementptr %7, i32 0, i32 1
store i32 %9, i32* %10, align 1
%11 = load i32* %3, align 1
%12 = getelementptr %0, i32 0, i32 4
store i32 %11, i32* %12, align 1
store i32 0, i32* %2, align 1
ret i32 -1

}

Listing 3: LLVM code forjmp 0xF000:0xE05B after
inlining and optimizations.

LLVM into x86 does not require more than a simple call
to an LLVM library function to work.

Listing 4 shows the effect of compiling the LLVM
code in Listing 3 to x86 using the JIT engine. It is pos-
sible to generate any type of native code that the LLVM
JIT supports.

mov eax,dword ptr [esp+0x4]
mov dword ptr [eax+0x30],0xfffffff0
mov dword ptr [eax+0x4],0xe05b
mov dword ptr [eax+0x60],0xf000
mov dword ptr [eax+0x64],0xf0000
mov ecx,dword ptr [eax+0x4]
mov dword ptr [eax+0x2c],ecx
mov dword ptr [eax],0x0
mov eax,0xffffffff
ret

Listing 4: x86 code forjmp 0xF000:0xE05B.

4 Implementation

The original QEMU DBT maps micro-operations to ma-
chine code by copy/pasting binary code. QEMU stores
the micro-operation dictionary in theop.c file. This
file is compiled by a host platform’s compiler in order
to generate an executable representation of the micro-
operations. This representation is stored in a standard
object file (.o). At translation time, the DBT parses that
object file to extract the binary code associated with each
micro-operation. The DBT appends the extracted code
to a buffer as it processes each micro-operation, before
returning this buffer to QEMU for execution.

The x86 to LLVM translator follows the same prin-
ciple, but due to the nature of LLVM code, it requires
numerous adaptations. Like the original DBT, the x86
to LLVM translator pastes together fragments of LLVM
code. However, LLVM code requires adaptations to

3

the exception handling mechanisms (§4.2). Moreover,
LLVM code does not lend itself to dynamic patching.
Dynamic patching is used by the original DBT to handle
branches (§4.3) by relocating code and chaining transla-
tion blocks (§4.4).

4.1 Removing Host-Specific Assembly

The x86-to-LLVM DBT does not use any host-specific
inline assembly or directives. It generates translation
blocks that contain pure LLVM code. The original DBT
uses inline assembly to make the generated code fast.
The DBT keeps temporary variables used by the micro-
operations in host machine’s registers and reserves a
global register containing the pointer to the CPU state
by using the GCC__attribute__ directive. This
adds unnecessary constraints to the LLVM bitcode in
the form of host-specific inline assembly. We remove
all architecture-specific directives so that the translated
blocks only contain native LLVM instructions.

4.2 Precise Exception Handling

Another adaptation is related to precise exception han-
dling. Precise exception handling is the ability of the
processor to identify which instruction caused a fault, in
order to allow resuming execution after the fault is han-
dled. For instance, it is necessary to know the program
counter of an instruction that causes a page fault, to rerun
it after the fault is handled.

When an exception occurs, QEMU maps the host CPU
instruction pointer to the virtual address of the equiva-
lent guest instruction. This allows QEMU to know which
guest instruction caused the exception in order to restart
its execution later. Since the translated code is a se-
quence of copy/pasted executable code of known size, it
is straightforward to determine the host-to-guest instruc-
tion mapping.

However, LLVM does not allow performing this map-
ping easily. Indeed, the LLVM code loses the re-
lationship between a guest instruction and its micro-
operations, because the inlining and optimization phases
reorder the operations. The DBT solves this by explicitly
updating the program counter at the start of each instruc-
tion, to enable precise exception handling. The program
counter is updated by theop_save_exception micro-
operation.

4.3 Branches Within Translation Blocks

Translation blocks may have internal branches transfer-
ring control flow to any micro-instruction within that
same block. These branches are encoded by a special
micro-operation, which maps to a machine code absolute

jump instruction after the translation. The absolute target
of the jump is relocated by the DBT at runtime, during
the copy/paste phase. Relocation consists in patching the
address of the jump target depending on the memory lo-
cation of the translated code, similarly to what a dynamic
linker would do to absolute addresses in shared libraries
used by a program.

The x86 to LLVM translator uses the LLVM branch in-
struction for internal control flow transfers. The LLVM
bitcode does not use patching, because it is machine-
independent and does not need to be aware of the actual
code location in memory. It is the responsibility of the
JIT engine to ensure at run-time that all branches point
to correct locations. Listing 5 shows an example of such
an internal branch.

4.4 Translation Block Chaining

By default, QEMU continuously fetches new translation
blocks by querying the translation block cache or re-
questing the DBT to translate a new block. Although
cache querying is less expensive than translating the
same block over and over again, it is still slow.

QEMU can bypass the cache by chaining translation
blocks to further speed up execution. The DBT chains
the blocks using a machine jump instruction. When the
host completes executing a translation block, it jumps to
the next block directly, without going through a complex
fetching logic. The DBT implements this jump similarly
to an intra-block jump, by patching it with the address of
the next block, if this block is available. Otherwise, the
jump exits the translation block and gives control back to
QEMU.

While the original QEMU performs chaininginside
the translation blocks (using a jump machine instruc-
tion), the LLVM-enabled version does itoutside. The
translated LLMV function returns a value that QEMU
uses as an index in an array of function pointers speci-
fying the next block in the chain. This value can be 0
(take the true branch), 1 (take the false branch), or -1 (no
chaining). Listing 5 shows a translated block implement-
ing a conditional jump, with two outcomes (0 and 1).

5 Evaluation

In this section, we evaluate the overhead of the x86 to
LLVM translation phase. We compare the time it takes
to boot different OSes with two variants of QEMU 0.9.0.
The first variant uses the original x86 to x86 DBT, while
the second uses the x86 to LLVM DBT. We evaluate
OSes of increasing complexity: MS-DOS 6.22, RedHat
Linux 2.2.5, Debian Linux 2.6, and Windows XP SP2.
The measurements are performed on an AMD Turion64,
2 Ghz and 2GB of RAM.

4

define i32 @dyngen(%struct.CPUX86State*) {
%1 = alloca i32
%2 = getelementptr i32* %1, i32 0
store i32 -1, i32* %2
call void @op_save_exception(%0, i32 1040544, i32 0)
... omitted instructions ...

/* Conditional jump */
%3 = call i32 @op_jnz_ecxw(%0, i32 0)
%4 = icmp eq i32 %3, 0
br i1 %4, label %5, label %7

; <label>:5
.....
store i32 0, i32* %2 /* Return index 0 */
call void @op_movl_eip_im(%0, i32 57511)
call void @op_movl_T0_im(%0, i32 15669600)
%6 = load i32* %2
ret i32 %6

; <label>:7
store i32 1, i32* %2 /* Return index 1 */
.....
%8 = load i32* %2
ret i32 %8

}

Listing 5: Translation block chaining in LLVM.

Table 1 shows the boot time when using the original
x86 to x86 translator or the x86 to LLVM translator. We
observe that QEMU runs out of memory while booting
Linux and Windows crashes during logon (the Winlogon
process terminates unexpectedly shortly after the login
screen appears).

Vanilla
QEMU

LLVM
QEMU

Slowdown

MS-DOS 6.22 4s 80s 20x
Linux 2.2 20s 10min 35x
Linux 2.6 70s - -
Windows XP 75s 45min > 35x

Table 1: Boot time and overhead for various OSes.

Most of the time is spent in code translation, because
turning guest code into LLVM is a complex operation.
For example, when booting Linux up to the GRUB menu,
33 seconds are spent inside the translator from a total of
39 seconds. The DBT takes 5 ms on average to translate
a bock of guest code to LLVM. Converting LLVM code
to x86 using the JIT engine further adds 1 to 2 ms.

Although QEMU has a translation cache which avoids
that the same executed blocks get translated over and
over again, the translation overhead outweighs by far any
benefit of caching. It is about three orders of magnitude
slower than the original translator, that only copy/pastes
bits of precompiled code usingmemcpy. In contrast, the
LLVM engine has to inline all operations, which builds
instructions from scratch and uses memory allocation.

6 Discussion

The current implementation of the x86 to LLVM transla-
tor suffers from two problems: non-negligible overhead
and large memory consumption.

Translating guest code to LLVM brings a large over-
head, which considerably slows down the emulated sys-
tem. This can be alleviated by making the code cache
persistent. QEMU currently flushes this cache when it is
full. Moreover, the contents of the cache are lost when
the virtual machine is turned off. One approach towards
this issue is to make the cache persistent, e.g., by sav-
ing it to disk. This can be accomplished by leveraging
the LLVM framework, which allows saving dynamically
generated LLVM code to files.

The second problem is the large memory consumption
caused by LLVM (the 2.4 version used by the DBT). One
cause of it is that the hundreds of thousands of transla-
tion blocks generated during execution use a large num-
ber of constants (e.g., program counter values). LLVM
keeps these constants in a cache and does not destroy
them when no more basic blocks reference them.

7 Conclusion

In this paper we presented the implementation of an x86
to LLVM dynamic binary translator for QEMU. This
translator turns x86 binaries into LLVM bitcode and en-
ables the use of numerous code optimization techniques
provided by the LLVM compiler framework. We also
demonstrated the use of the LLVM Just-In-Time capa-
bilities to turn LLVM code into x86 that can be run on
the host machine.

References

[1] F. Bellard. QEMU, a fast and portable dynamic
translator. InUSENIX, 2005.

[2] V. Chipounov and G. Candea. Reverse engineering
of binary device drivers with RevNIC. InEuroSys,
2010.

[3] V. Chipounov, V. Georgescu, C. Zamfir, and G. Can-
dea. Selective symbolic execution. InHotDep, 2009.

[4] V. Kuznetsov, V. Chipounov, and G. Candea. Testing
closed-source binary device drivers with DDT. In
USENIX, 2010.

[5] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and trans-
formation. InCGO, 2004.

[6] T. Scheller. LLVM-QEMU Google Summer of
Code. http://code.google.com/p/llvm-qemu/, 2007.

5

