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The sawtooth control mechanism in plasmas employing toroidally propagating ion cyclotron
resonance waves is extended. The asymmetrically distributed energetic passing ions are shown to
modify the ideal internal kink mode when the position of the minority ion cyclotron resonance
resides within a narrow region close to the g=1 surface. An analytical treatment of the internal kink
mode in the presence of model distribution function with parallel velocity asymmetry is developed.
The fast ion mechanism explains the strong sensitivity of sawteeth to resonance position, and
moreover is consistent with dedicated Joint European Torus [F. Romanelli, Nucl. Fusion 49, 104006
(2009)] experiments which controlled sawteeth despite negligible current drive.

[doi:10.1063/1.3363201]

I. INTRODUCTION

The need for effective control of sawteeth has been well
documented over the past few years. Due to the stabilizing
role of trapped alpha particles, sawteeth are expected to be
strongly stabilized in the international thermonuclear experi-
mental reactor (ITER).' The collapse radius and crash ampli-
tude has been predicted to be so large in the ITER (Ref. 2)
that coupling is likely to occur with instabilities located at
other rational surfaces. Evidence of interaction between large
sawteeth and neoclassical tearing modes (NTMs) has been
observed™ in the Joint European Torus (JET),5 while dis-
charges with smaller regular sawteeth are found to have in-
creased core confinement, and are less likely to be coupled to
confinement degrading NTMs. Hence, it is seen that greater
understanding and eventual control over the mechanisms that
determine sawtooth stability is required. The key to this will
be control over the interaction between fast minority ion dy-
namics and magnetohydrodynamic (MHD) stability.

While fast trapped ions are known to stabilize
sawteeth,>®”  this paper demonstrates that under certain
conditions®’ energetic ions can also effectively destabilize
sawteeth. Sawtooth control from energetic ions injected with
near tangential unbalanced neutral beams has already been
demonstrated analytically8 and numerically.10 It was found
that an energy fluxlike quantity [dv*(v?/2)v,dF/dr of the
fast ion distribution F at the g=1 surface has a markable
effect on the internal kink stability. The energy flux clearly
coincides with fast ion parallel currents, since both require

a)Paper GI3 2, Bull. Am. Phys. Soc. 54, 95 (2009).

nvited speaker.

9See the Appendix of F. Romanelli et al., Fusion Energy Conference 2008
(Proceedings of the 22nd International FEC Geneva, 2008), IAEA (2008).
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parallel velocity asymmetries in the fast ion distribution
function. The effect on the internal kink mode enters through
finite orbit width corrections of the passing ions, which in-
creases with the kinetic energy of the particles, and with
pitch angles closer to the trapped-passing boundary. By ex-
tending the analysis and conclusions of Ref. 9, we show in
this paper that JET plasmas with —90° phased off-axis ICRH
share the same instability mechanism as the unbalanced neu-
tral beam injection (NBI) scenarios mentioned above. The
counter propagating waves yield asymmetric distributions of
passing ions, which are, of course, consistent with the fast
ion currents evaluated in such discharges.“ Dedicated SELFO
(Ref. 12) RF wave-field and fast ion distribution simulations
obtain, in particular, the parallel velocity asymmetry in the
passing ion distribution function and their deposition. Ana-
Iytical and full numerical calculations of the internal kink
mode with the JET ICRH distribution functions demonstrate
ideal instability when the deposition of —90° phased ions is
very close to the ¢g=1 radius. Such is the sensitivity to the
location of deposition, and the magnitude of the effect, that
this fast ion mechanism dominates over the previously as-
sumed classical mechanism (e.g., Refs. 13, 14, and 11) relat-
ing to the change in the magnetic shear due the fast ions, and
the resulting effect on resistive MHD and ideal MHD stabil-
ity. Furthermore, the fast ion mechanism is independent of
the bulk plasma drag current, which is expected15 to limit the
net ion cyclotron current drive (ICCD) efficiency of the pro-
posed ICRH system for ITER, and thus, diminish shear
modification and the classical sawtooth control mechanism.

In order to address the issue that sawtooth control is due
to the direct effect of fast ions, experiments have been de-
vised where the current drive is small. In the experiments
presented here, the net ion cyclotron driven current was sig-
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nificantly reduced by choosing He minority ICRH, since the
current draggedm’13 by the background plasma tends to can-
cel the *He current in the relevant region of the tokamak
(provided that the effective charge of the plasma is close to
that of *He, where Z,<2 typically). It is shown that saw-
tooth control employing low concentration minority *He is
nevertheless effective, thus strengthening the likelihood of
the dominant effect of the fast ion mechanism,9 and more-
over, demonstrating the viability of sawtooth control using
ICRH in ITER,' which is primarily and routinely expected to
employ *He minority. These experiments, and earlier hydro-
gen minority pulses,17 are used as a platform to compare
analytically derived internal kink stability with full numeri-
cal simulations.

The paper is organized as follows. In Sec. II, the internal
kink mode calculations are derived, with particular attention
given to the effects of asymmetrically distributed passing
ions (the distribution function remains general except for an
expansion in orbit width, which assumes that the energies of
the fast ions are not too large). In Sec. III, the important
features of the JET ICRH distribution functions are explored
and modeled analytically. This information is used to evalu-
ate the internal kink stability for JET demonstration dis-
charges, and comparisons are made with full numerical in-
ternal kink solutions using SELFO (Ref. 12) and HAGIS."
Here, HAGIS evaluates the fast particle contribution to the
perturbed distribution function, and ultimately the growth
rate, by following the guiding center motion of the popula-
tion of ions in the presence of the internal kink perturbation.
The analytical treatment contained in this manuscript enables
identification of the fast ion growth rate in terms of the radial
gradient of the fast ion current, thus assisting interpretation
of existing experiments, and the design of experiments em-
ployed to test the theoretical mechanism. Finally, Sec. IV
details minority *He experiments and the corresponding
simulations which demonstrate the importance of the fast ion
mechanism. Conclusions and discussions are reserved for the
final section.

Il. STABILITY OF INTERNAL KINK MODE
WITH ASYMMETRIC ION DISTRIBUTIONS

We now set out to evaluate the stability of the internal
kink mode in the presence of the fast ions. The motivation of
this section is to identify the effects of finite orbit widths and
parallel velocity asymmetry for an arbitrary distribution
function. Consequently, the results of this section will gener-
alize the fast ion contributions identified in Ref. 8, which
was valid for a slowing down distribution with parallel ve-
locity asymmetry and a delta function in pitch angle (such
that all particles are deeply passing v, =0), with application
essentially only to unbalanced strongly tangential neutral
beams. The relevant ordering employed is B,~ B.~ O(€?),
where ,8,1)C=2,uOP,M/B(2) is the ratio of hot, or core, particle
pressure and the magnetic pressure, and € is the inverse as-
pect ratio. Quantities attributed to the fast ion population, are
for convenience, henceforth absent of a subscript “A.” The
response of energetic ions to the internal kink mode is ob-
tained by perturbing the hot ion distribution F(E,Py,u,0)
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with respect to the constants of motion." We note that for
discharges employing ICRH auxiliary heating only, the equi-
librium electric field E=—V® provides only a small correc-
tion to the actual conserved total energy £+Ze®/m, and so
the equilibrium electric field, and its corresponding plasma
rotation, is neglected here. Focusing on ideal MHD modes in
a low B and small € tokamak, we write down a solution'*?°
to the perturbed distribution function &F=6F+ dF; which
treats wide radial drift excursion. From Refs. 19 and 20

OF p=— (Zelm)(§- Vapp)a‘;—F (1)
&

is the adiabatic (fluid) contribution, &=&exp(=ind—iwr) is
the MHD displacement with =3, &, exp(—im6), and the
nonadiabatic (kinetic) contribution 6F) can be approximately
written as “bounce time” 7,=27/w;, periodic function of
time:

SF,= >, SF exp[—i(w+lw, + n{))], ()
[=—00
o) @=ne. oF

o+ n{p) + lw, 2

2
><<<vﬁ + %)K & expli(w+ lw, + n<¢))t]>,
(3)

where w,=dF/JP4(JF/d€)™" is the diamagnetic frequency,
K is the magnetic curvature vector, and (X)=(1/7,) [ tdtX.

In the limit of zero radial drift excursion, or orbit width
A,, the adiabatic (or fluid) contribution is simply a result
of convective “c” motion perpendicular to the field line,
OoF.=-§,-VF. Meanwhile, SF, is associated with the
parallel dynamics, and is often referred to as the response
due to kinetic-compressibility In particular, replacing the
drift kinetic treatment employed here with the ideal MHD
model, one would substitute 6F; defined above with 6F},,.
=—vyF'V - &, the nonconvective “nc” stabilizing effect of com-
pressibility. Assuming an isotropic equilibrium distribution
function, taking a second velocity moment of OF.+ 6Fy,,
simply yields the MHD perturbed pressure 6P.=-§&,-VP
—vyPV - & The MHD model provides a very poor description
of the parallel dynamics of energetic particles, and clearly
cannot describe resonant wave-particle interaction. However,
MHD does a better job of representing perpendicular dynam-
ics. In particular, the perpendicular component of the MHD
equation of motion, in which 6P,=—& - VP (the second mo-
ment of OF,) appears explicitly, describes the essential per-
pendicular dynamics of a hybrid kinetic-MHD treatment.
Nevertheless, in additional to the well known nonconvective
effects associated with the kinetic response 6F, finite orbit
widths introduce additional nonconvective effects in OF f.8’9
As we will see, by expanding F with respect to small orbit
width, we are able to identify the nonconvective correction
associated with the fluid contribution:**
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OF fc =

~ (Zelm)(€- Vi) F¢+§l VF. 4)

It is in this correction that the effect of parallel velocity
asymmetry on the internal kink mode arises, and the on re-
sulting observable affect on sawteeth.

In order to relate Egs. (1) and (2) to a potential energy
oW, we recall that W is defined in terms of the perturbed
force 67 via SW=—(1/2)[d’x &’ - 67, where

87=§ XB+jX 6B-V - 5P.

Now, the fast ions primarily influence the linear perturbed
force 67 through the perturbed pressure tensor oP. This is
despite the fact that the fast ion distribution function also
yields a significant equilibrium current. As discussed in
Ref. 20, the flux averaged fast ion current contributes an
order € correction to the safety factor, and this in turn plays
a role in the MHD field line bending contribution to the
internal kink mode. The latter is, however, minimized to in-
significant ordering by the top-hat leading order displace-

ment fl -Vr=&.H[r,—r], where H is the Heaviside step func-
tion, and r; is the radius at which g=1. Moreover, even
though the poloidal modulation of the fast ion current is of
order unity, it does not contribute to 6W at significant order.
The effects of fast ions are found to enter the dynamics en-
tirely through the perturbed pressure tensor. The fast ion
pressure tensor OP is of course obtained by evaluating the
second velocity moments of 6F, and results in

2
oW = —mf d’x fd3vk fi(v )5Fh, (5)

where

o0 1/B
f dvi=> 77] dE(ZS)J d)\— and
all v o 0 0 |Uu|

2 a
fdx»*:zwf d@f drRr.
0 0

The kinetic contributions to 6W are examined first. Due to
the high energy of the ICRH species, such that w,,,, w,, and
(¢) are much larger than the frequency of the n=1 mode
responsible for sawteeth, it is appropriate to employ the ap-
proximation =0 in Eq. (3). For both trapped ions and pass-
ing ions, the largest kinetic contribution to low frequency
sawtooth modes occurs in the absence of bounce harmonics,
i.e., for /[=0. The small contribution (when w=0) that exists
when one takes /=1 for the passing ion response has been
examined pre:viously,8’21’22 and is found to be small, and is
thus neglected here. To make progress, we need to expand F
in orders of the orbit width A,, so that F=Fy+F+.... We
note that another constant of motion, defined by P,, is the
temporal average of the particles’ minor radius, 7, over a full
toroidal transit, i.e., 7= 7',:1 Jobdt (1), where 7, is the bounce
time, or transit time, for, respectively, trapped or passing
particles. Writing r(r)=7+A,(f) we have
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F0=F(5’1u*’ﬂ|7—>r and FI(S,M,r)z—A,GO(S,,u,r), (6)

and
F
Go(& p,r) = G(E, ., 7)|7, and G= = (7)
7
with
q 2
A= (|UH|R —PRoqwh), (8)

rQ}.

where o is the sign of v, p=1 for passing particles, p=0 for
trapped particles, w,=27/7, and Q.=eZB,/m. Defining
F*=F(0) and G*=G(0), etc., to separate the contributions
of particles with v;>0 and v;<0, we now have for the pass-
ing “p” and trapped “¢” ions the leading order (in orbit
w1dth) kinetic (“k”) response (by setting w=0 and /=0 in

(SFk):

e o] o)

39

q eTL)1/2<21U40> .
X| = || — Cr-C 9
) C)e-er o
and
A 3 " r\3? 2u
Wiy =- 2312 1/2f dr(—) f dkz_q_( :
me;' ")y r 0 KF, Bo
X (D] +Dy) (10)

where  SW=6W/ (2R EBE wy), the pitch angle &7
=[1-\By(1-€)]/2\Bye for trapped ions and y*=1/k> for
passing ions. Note that the upper limit r; above, and in the
equations that follow, is a result of imposing the leading
order eigenfunction which vanishes outside r,. Furthermore,
we have

T -1/2 /2 /2 3/2 o
C0:<€_J_> MJ dg(zg)ZGg’

m [*+e2-y)71 ),

together with

m(2/3)

I~ i o, 4609

and the following passing ion pressure gradient related quan-
tity will be required later

m(2/3)

_— dEQE?GY.
[y2+e<z—y2>]5/2fo (27763

0._
b=

In the above, we have used (¢)=qw, for passing ions (valid
at the required ordering in Larmor radius and orbit width),
and {py=—q[EF(r,k*)/ (rR2.)] for trapped ions, where

2

Firk®)=17 (212~ 1)

X | H) + 2500 ok) = A ()0 = 15 |,

s=(r/q)q" is the magnetic shear, a=—2Ryq>P'/B} is the
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ballooning parameter A"~ (where A is the Shafranov
shift), while H,, H,, and H; are given by Eq. (10) of Ref. 23
(written there as G| ,3), and are entirely in terms of elliptic
integrals. Moreover, the definition F ¢ O3 and G, as well as
other expressions are given in the appendix. We note how-
ever that F,, Gs, and G, involve integration of cos(¢
—(¢)t) over the full poloidal circuit. In order to make

progress we use ¢—{p)t=q6 for the trapped particles, while
for passing particles, we are at liberty to use the
result ¢p—{P)r=q(6—mwK[6/2,y*]/K[y*]), where K[¢,y?]
is an incomplete elliptic integral of the first kind, and
K[y*]=K[m/2,y*] is a complete elliptic integral of the first
kind.

We note that 6W,, involves G, +G,, and thus contributes
when the distribution is symmetric or not. Indeed, it is

generally thought that 5Wk, is responsible for conventional
sawtooth stabilization by energetic ions. The leading

order passing ion kinetic contribution, 5W,q,, scales as a finite

orbit correction,® since 5Wkp/ 5Wk, is proportional to
(q/Q.)(eT /m)">~A,/r. Furthermore, it is important to

note that 5Wk,, is proportional to Gj—Gj, and is therefore
only nonzero when the distribution is asymmetric at the low-
est order. We note that Eq. (10) generalizes the passing ion,
finite orbit kinetic response of Eq. (14) in Ref. 24, now ac-
counting for arbitrary distribution function. Nevertheless, as
is the case for a simplified passing ion distribution,® 5Wkp is
seen once again to be cancelled out by part of the adiabatic
response when finite orbit corrections are included.

We now go about solving for the adiabatic contribution,
corresponding to Eq. (1). In order to separate zeroth order
effects from finite orbit effects, we expand Eq. (1) about the
flux label r. For this purpose we note that & Vi
=rBoé,/q(r) and 3/ P 4=Q7"(q(P)/P) I dF, riF=1+(4,/r),
q(r)1q(r)=1-(0A,/dr), where dA,/dr=A,s(r)/r. This then
yields

5Ff= 5ch+ 8E7¢‘nc (11)
with the convective contribution:
5ch=_§rG0, (12)

and the nonconvective contribution:

Ar y2 aGO
5anc=_ §r7|:(2_S)G0_ 3(2—)’2) F

], (13)

where it is important to highlight that dG/dr|\=dG/dr|,
—(2=y»)(y*/2) G/ dy|,, must be taken into account when
dealing with partial derivatives. We are reminded however,
that G, defined in Eq. (7), is the radial derivative of F, with
\ kept constant, since G=JF/ dr|,.

We now evaluate the W expressions corresponding to
each of the terms in Eq. (11). Clearly Eq. (12) is simply the
convective contribution 6F,=—§ - VF described earlier, and
leads to the usual adiabatic response in the absence of finite
orbit effects:

&(rGO)
ar
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3 r r 3/2 1
2
l/zf d}’(—) f dk (2Glt+ GZZ)
2%? 0 r 0

2 _
x(%)(DHD,), (14)

5Wfl() =

R 3 r r 3/2 1
L r 2
Wipo= 2 el fo dr( - ) Jo dy“(2G,, + Gyp)
2
X(LJ’><D;+D;>- (15)
By

The sum of Egs. (14) and (15) is the lowest order (in orbit
width) adiabatic energetic ion response, and is generally the
same order of magnitude as the well known trapped ion ki-

netic response oW;, of Eq. (10). In the isotropic limit

A=T, /Ty=1, we find 5VAVftO+ 5VApr0=0. Meanwhile, the total
fluid contribution comprises also the finite orbit response

5Wfpl, so that 5Wf: 5Wf,0+ 5Wfp0+ 5VAVf,,]. The nonconvec-
tive contribution 8Fy,. given by Eq. (13) is proportional to
Ar, i.e., corresponding to Eq. (4) for the internal kink mode,
and yields the following expression, written here in a conve-
nient form upon integration by parts:

(SWfp] = 5er + 5Wy2:l + 5Wfp] (extra), (16)

where each of the above terms are defined in the following.
First of all,

172 2

d dy?
ezRof rf y
2 2 g 2 9
X132 GL_<y_+f_+y_(2_y2)_2
2 2 20e 4 ay

(2 ) ()

X(C*=C") (17)

5Wfp,(extra) ( 71-)

is almost cancelled by the kinetic contribution for passing
ions given by Eq. (9). It turns out that sum of the intregrands
(in the y? integrals) of Egs. (9) and (17) cancel for arbitrary
€ except near the passing-trapped boundary (y=1), and due
to the magnitude of 5W’1’ it is legitimate to take
5W,pl(extra)+5ﬁ/kp=0. Thus, Eq. (10), which for arbitrary
distribution function generalizes the passing ion finite orbit
kinetic response of Eq. (14) in Ref. 24, is cancelled. The
term has been shown® to exactly cancel for the strongly par-
allel distribution employed in Refs. 24 and 8. The remaining
terms in 5Wfpl are boundary terms. In particular we have the
term evaluated on the passing side of the passing-trapped

boundary (y?=1):
2G, + Gz)( )
2K[y’]

6W ~ (z)l/Z 2 J‘rld (E
y2=1_ a GZRO 0 " 4

172
X(eTL> (2/1'0)(C+ C)l) (18)

m B0

We recall that the reflection of trapped particles requires that
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FIG. 1. (Color online) Plotting copassing and counter passing ions intersecting the g=1 surface.

G;—G,=0 in the trapped region, of velocity space, and so, if
the distribution function is continuous across the passing-
trapped boundary, we require that C*(y>*=1)—C~(y*’=1)=0,
and hence 5Wyz=] =0. Indeed, as discussed and implemented
in, e.g., Refs. 25 and 26, slowing down and pitch angle scat-
tering of fast ions due to collisions ensure that the distribu-
tion function is continuous across the passing-trapped-
trapped boundary. Moreover, since the orbit width A, is also
continuous across the boundary, it therefore follows that the
leading order (in orbit width) distribution function Fj is also
continuous with respect to pitch angle.

The only significant remaining finite orbit correction
term is the following, evaluated at r=r;:

1
o, =_<2)”£J dyz(fl_yz_wl_szin)
! ™ € Jo 2 K[y] Qc

SEASE

19
)% (19)

Equation (19) is valid for an arbitrary distribution function,
and thus generalizes Eq. (5) of Ref. 8, which is valid for an
asymmetric slowing down distribution with strongly parallel
pitch angle. Note that, in order to compare with Ref. 8, we
must take g(/)=0 in Eq. (5) of Ref. 8, which is valid for
highly energetic particles in a plasma with finite magnetic
shear, for which w<kup,.>”*' Here g(I) arises from the /=1
bounce harmonic of the kinetic response 6F), which has al-
ready been discussed and dismissed.

It is clear that oW, given by Eq. (19) above does not
vanish if Gj— G, # 0, since 5W,1 represents the effect of hav-
ing nonzero parallel energy flux at the g=1 surface. The
particular energy fluxlike quantity that matters is propor-
tional to [dv3G(V L+vﬁ/2)v“, and clearly this third moment
of dF,/dr will be nonzero when there are localized fast ion
currents. Clearly, 5W,l is enhanced for increased finite orbit
widths, which are in turn enhanced by loading the distribu-
tion function close to the passing-trapped boundary, and by
increasing the thermal energies of the particles. The sensitiv-

ity of 5W,l to the asymmetry in the lowest order distribution

function means that stability is intrinsically linked to the sign
and magnitude of the derivative of the lowest order fast ion
current. These concepts are assisted by consideration of Fig.
1. Only ions which intersect g=1 contribute to Eq. (19). If an
orbit is entirely always outside ry, the particle does not con-
tribute to the internal kink mode, due to the mode amplitude
being zero outside r. If an orbit is constrained to be entirely
inside r;, then the integral of &H[r(t)]cos 6(1)[v (1)*/2
+v(1)*]A(t)/v(t) along the path ¢ will not integrate to zero,
but the similar adiabatic and nonadiabatic contributions sum
to zero, as described above [Egs. (9) and (17) sum approxi-
mately to zero, as originally discovered in Ref. 8]. For par-
ticles that do intersect, then the portion of & H[r(t)]cos 6(t)
X[ (£)*/2+v,(1)*]A(¢)/v,(t) along the path ¢ that is inside
g=1 contributes to the integral, and this region of the orbit is
shown in bold in Fig. 1. If there are an equal number of co-
and counterpassing particles, the effect of particles intersect-
ing g=1 is nullified. However, destabilization can occur
when dF(v;>0)/dr>dF(v;<0)/dr, ie., G5>G,. These
identities occur, for example, with populations of ions cre-
ated by unbalanced neutral beam injection. Destabilization
will occur for off-axis (9F/dr>0) with injection orientated
along the plasma current (Fj>F;), or with on-axis beams
(9F/dr<0) with injection orientated counter to the plasma
current (Fj<Fj). Stabilization will occur when Gj<Gy,
thus for on-axis coinjection, and off-axis counter injection.
These combinations of unbalanced NBI have been tested'**
across various machines, and it is seen that the effect on
sawteeth is consistent with the effect on the internal kink
mode described above. Moreover, the mechanism described
by Eq. (19) has been verified against HAGIS (Ref. 18)
whereby Egs. (1) and (2) are evaluated by following guiding
centers, and deposited in W with little approximation.

The motivation for the first derivation of an approxi-
mated version of Eq. (19) was to explain experiments® in
JT-60U showing sawtooth stabilization for strongly tangen-
tial beams where the trapped fraction was expected to be
small. The beam ions were highly energetic (350 keV) and as
such the orbit widths of the passing ions were large. More-
over, since the ions were injected tangentially, it was legiti-
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FIG. 2. (Color online) Showing the effective orbit width A_, normalized to
itself with pitch angle v | =0, plotted with respect to y, for two values of e.
As usual y=0 corresponds to v, =0 and y=1 corresponds to the passing-
trapped boundary.

mate to evaluate Eq. (19) for a population with delta distrib-
uted pitch angle, for which all particles had the property
v, =0. The calculation showed that the energy of the fast
ions had to be large, and the parallel asymmetry strong, in
order that the mechanism becomes important. It was there-
fore initially a surprise that MAST, JET, and TEXTOR ex-
periments (see Ref. 28), which have low energy beam ions,
showed that sawteeth were sensitive to the deposition and
orientation of beam injection, and that the HAGIS simulations
of these pulses proved that the effect on the internal kink
mode was due to the finite orbit mechanism described above.
The answer to this turns out to be that the orbit width of
passing ions becomes larger as the pitch angle approaches
the passing-trapped boundary. The orbit width is in fact con-
tinuous across the boundary, such that a barely passing ion
has the same orbit width as a barely trapped ion. For the
issue at hand it can be shown that Eq. (19) is proportional to

® 1
oW, o J dEQ2&)? f dy*>Y, GIA,,
0

0 o

where A_r is the velocity and pitch angle weighted effective
orbit width is given by

2 2 2
— |vj(6=0) | 1 R\| vj+vi/2
A — Il f ( )|: I L :|A )
g |: (25)3/2 :|27T dcos 6 RO Uy "

In Fig. 2, it is seen that the effective orbit width is strongly
enhanced close to the passing-trapped boundary. It is the
effective orbit width which determines stability/instability. It
is noted now that both high energy particles, and a large
barely passing population, is generated with ICRH. Thus it is
now clear that we should expect typical ICRH ions to have

very large A,. Moreover, radial gradients in the distribution
function tend to be high for ICRH, and parallel velocity
asymmetry is created by setting the antenna such that the
waves propagate with a preferential toroidal direction. The
conditions under which copropagating waves or counter-
propagating waves are destabilizing depends sensitively on
their radial deposition, as we shall see in the next section.
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FIG. 3. (Color online) JET Pulse 58 934 (Ref. 17), plotting the central
electron temperature, sawtooth period, sawtooth inversion radius R;,,, and
first harmonic H unshifted cyclotron resonance layers R,.(H) for +90° and
—90° phasings, and heating power for the two antennas. [From J. P. Graves
et al., Plasma Phys. Controlled Fusion 47, B121 (2005). Copyright 2005 by
Institute of Physics.]

lll. CHARACTERIZING TOROIDALLY PROPAGATING
ICRH DISTRIBUTION FUNCTIONS

In this section, we will concentrate on the key features of
the ICRH distribution functions. This will be applied to the
well documented'”"" JET demonstration discharge 58 934.
This important discharge demonstrates that an off-axis ion
cyclotron resonant wave, with —90° phasing (counterpropa-
gating waves), can destabilize (shorten period of) sawteeth
even when the sawteeth are initially stabilized by trapped
energetic RF ions in the core. Hence, in the latter part of the
discharge two resonant ICRH waves coexist. It is the sum of
these two populations that ultimately require modeling in
order to ascertain the internal kink mode stability. The time
trace of the soft x ray, heating power and unshifted resonance
locations, the inversion radius and the sawtooth period of
58 934 are reproduced from Ref. % in Fig. 3.

In the following subsections, we aim to develop a model
fast ion distribution function that encapsulates the important
features of the true distribution function. This then enables
analytical calculation of the internal kink mode to be under-
taken, and the resulting stability mechanisms to be identified
and understood clearly. In any case, within this paper, the
analytical results are compared favorably with numerical dis-
tribution functions, and with full numerical calculation of the
internal kink mode stability.

A. Fast ion density, pressure, and anisotropy

We will see that the even moments of the distribution
function, namely, the density and parallel and perpendicular
pressure, depend on the poloidal angle. The reason that the
even moments are not flux surface quantities is due to the
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056118-7 A new sawtooth control mechanism...

strong anisotropy associated with ICRH. Cyclotron reso-
nance preferentially and locally heats in the perpendicular
direction, thus developing trapped orbits with banana tips
close to the line of resonance, and hence, localized peaks of
pressure and density in the R-Z plane. These effects can be
encompassed in a model®' of the distribution function, and
due to the possibility of obtaining the even moments of the
distribution function exactly, the following model has been
incorporated in the three-dimensional (3D) equilibrium code
VMEC,” and 3D fluid stability code TERPSICHORE.™

In this section we require only the leading order distri-
bution F, as defined in Eq. (6). The first finite orbit width
correction F; does not affect the even moments, but is re-
quired for evaluation of the currents considered in the next
section. F is written in terms of a modified bi-Maxwellian
which satisfies the lowest order Vlasov equation JF/dl=0
(where [ is the arc length along the magnetic field):”'

Fo (i)mnc(F)[l + oc(7,\)]
) T ()T}

\B, |1- >\36|}
Xexp{mé{— TP - T/ } (20)

where A=pu/& is the pitch, and temperatures are in units of
electron volts. The distribution is a modified bi-Maxwellian
in the sense that it is not written in terms of v and v . The
latter quantities are not constant over the trajectory of a
single particle, since they depend in the local value of B. The
parameter B, is the resonant magnetic field for the ICRH
wave. Clearly A(r)=T, /T, is a measure of the anisotropy.
Finally, n, is related to the particle density, while ac(r,\) is
the part of the distribution function that can treat the differ-
ing deposition of co- and counterpassing particles. For the
even moments of F|,, the asymmetry is cancelled, and thus
c(r,\) does not feature until the treatment of currents in the
next section, and finite orbit width corrections to the internal
kink mode derived later. By tuning the parameters of Eq.
(20), we match the density, parallel and perpendicular tem-
perature, and currents with those of SELFO, and thereby at-
tempt to model the salient features of the distribution func-
tion. Clearly, no attempt is made to model far into the energy
tail of the distribution function. It should be recognized that
the way in which asymmetry enters F (via o¢) is necessarily
simple so that the even moments are independent of the
asymmetry parameter, and analytical progress can be made
in the SW calculations. The limitations of Eq. (20) could
explain differences observed in Sec. IV between 5W,1 calcu-
lated by the analysis and by the SELFO/HAGIS codes.

Taking the zeroth moment of F yields the variation in
the density with respect to B:

2e

n(r,B) =n.Ng, (21)

where
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La

T
NB= T

for B> B, and
L

v _h TJ_b_TJ_a(£>l/2<BC_B>I/2
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for B<B,, and
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Here we have used
n= J dv’Fo=(1/2)> Zﬁf va dv v F,.
allv o — _oo

Now, taking second moments of the distribution function
it can be shown that

PH = ncﬂ‘H” and PL = nCTLHl, (22)

where for B> B,

T T,,\
H|=<ﬂ> and HJ_=< La) .
T, T,

while for B<B,:
e
TL TII Bc TL
T 2 T 1/2 B —-B 1/2
me| (7 315
TL TH Bc
% (TJ_b_TJ_a>(£>+T2Lb_2TZLa '
o, J\B, &l

Here, 3D data files from the SELFO simulations of n, P |, and
Py are used to identify the three radially dependent param-
eters of the model distribution function. In particular, in the
following, the left-hand side of the equations correspond to
the parameters in the model, and the right-hand side of the
equations are the quantities from the SELFO simulations:

PL(RcaZ)
—————— an
en(R.,Z)

nc(r) = n(Rc’Z)7 TJ_(r) = d

TL(r) _ PL(RmZ)

A(r) - Tll(r) - PH(RC’Z) ’

where R, is the RF minority resonance major radius such that
B.=B(R,). Now, since the heating is approximately located
on a vertical line through the plasma cross section we can
resolve the minor radius on the left-hand side of the equa-
tions through r*=Z+(R,—R,)* with Z defining the distance
along a vertical chord R=R,.. Here a circular cross section
has been assumed, which is consistent with SELFO.

Where there are two resonant surfaces the problem is
treated upon assuming the sum of model distributions. This
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FIG. 4. Showing the flux averaged density (units of 10'%) and perpendicular
pressure as a function of normalized minor radius. Comparisons between the
profiles from the SELFO code, and the flux averages of Egs. (21) and (22), for
the latter part of JET discharge 58 934.

is a reasonable assumption because RF-wave-particle inter-
action is strongest for trapped particles bouncing on a reso-
nant layer. If the width of separation of the two resonances is
not less than the radial excursion of a fast ion, then a particle
bouncing on one resonance will only be weakly affected by
the other. Hence there are now six radially dependent param-
eters to resolve, namely, n.(r), T (r), and A(r) for the two
distributions. The problem has been treated upon exploitation
of simulations with off-axis heating alone. This enabled iden-
tification of the three functions for off-axis heating, and thus
when employed in conjunction with the parameters obtained
with on-axis heating alone, provided a first guess for the
distribution function for the combined heating case. The six
functions were then normalized iteratively to provide a best
parameter fit of the 3D plots of the density, parallel pressure
and perpendicular pressure. The result of such a procedure
for the case at hand, i.e., JET discharge 58 934, has been
undertaken, and one finds, for example, that the anisotropy
A(r) is of order of ten. The resulting flux surfaced averaged
density and parallel pressure, and compared with the SELFO
data in Fig. 4 for the latter part of discharge 58 934 when
both RF antennas are being deployed. Finally, Fig. 5 shows
the density over the entire poloidal cross section. Peaks in
the density result from the localized deposition of the RF
heating (resonances shown with near vertical lines), and
again recover the salient features of the SELFO data.
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FIG. 5. Showing the fast ion density across the R-Z plane according to Eq.
(21) for the latter part of 58 934. The anisotropic distribution function re-
covers the local peaks in density, which are due to an abundance of trapped
ions along lines tangent to the resonances. The location of the resonant field
strengths are indicated with near vertical lines.

B. Currents in asymmetric fast ion distributions

The parallel velocity asymmetry is conveniently visual-
ized through the parallel current density jj=eZ[dv’v,F. We
derive the currents for a general distribution function, and
then specialize to our model distribution of Eq. (20). First we
define F* as the distribution function of particles moving in
the same direction as the plasma current, and F~ as the dis-
tribution counter to the plasma current. It is more conven-
tional to discuss current drive in terms of the toroidal current
density j,=eZf dv3v¢F than the parallel current density. In
the following it is the parallel current that is evaluated ana-
Iytically, but we label the currents as toroidal. Moreover,
SELFO evaluates the toroidal component of the parallel cur-
rent. In any case the correction is much smaller than the
currents described below. We recall the definitions of F, and
G, in Egs. (6) and (7), to reveal the orbit width expansion of
the current j,=j40+j41, Where

% 1/Bmﬂx
j¢0=Ze7Tfo d€(25)f0 d\B(F}; - F,)

and

% 1/B
Jo == Ze'n'f dS(ZE)f d)\Bi(|vH|R - pRiqwy,)
! 0 0 ch

X(G§+ Gy),

with p=1 for passing particles, p=0 for trapped particles,
and Q.=eZB,/m. Note that we have used the result for
large  aspect ratio circular  geometry A,=g[yR
~Riq(po)2m/ 7,]/ (rQ,), valid for both trapped and passing
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056118-9 A new sawtooth control mechanism...

particles, but where 7,=27/ w, is the transit time for passing
ions.

We note now that j,, is valid only for passing particles,
and hence the limit of integration A=1/B,,. Due to the
poloidal reflection of trapped particles, there is no current
associated with trapped particles at that order, and hence for
trapped ions F+ F,=0. We note that J ¢, can encompass both
Fisch currents,'® and the currents associated with detrapping
into preferentially co- or counterpassing ions.”*!! In this pa-
per we do not differentiate between which of these mecha-
nisms creates j¢0, but we note that both are consistent with
an asymmetric distribution in v, at the lowest order, i.e., in
Fy. The finite orbit corrected current g, is essentially inde-
pendent of asymmetry in the lowest order distribution func-
tion, and we see that any distribution of particles have cur-
rents associated with constraint of canonical momentum
conservation. It is seen here that j, is important when the
radial gradient of the distribution is large, and when the orbit
widths of the particles are large. Hence, these currents are
seen as the drift orbit analog of finite Larmor radius diamag-
netic currents. It is clear then that j, can be large for ICRH
because the ions are heated to high energy, and ions are
pushed toward trapped and deeply trapped pitch angles, and
also the local nature of ICRH can create large radial gradi-
ents in the distribution function. Finally, barely passing ions
contribute to a small orbit current, j¢’|’ while, due to their
small orbit width, deeply passing ions hardly contribute to
Jg, at all. Finally, we note that barely passing fast ions also
contrlbute to a bootstrap current,’ desplte being neglected in
the above definition of Jg,- However, since pitch angle scat-
tering is very weak for energetic ions, the fast ion bootstrap
current is of order e smaller than the bootstrap current asso-
ciated with electrons (given a like for like pressure proﬁle).35
Resultingly, the fast ion bootstrap current can be ignored. To
summarize, trapped ions cannot contribute to the current due
to parallel asymmetry, by but meanwhile trapped ions
strongly dominate the finite orbit width current j, . Conse-
quently, providing the currents are not dominated by the ef-
fects of nonstandard orbits, one can approximately identify
s, with the total current from passing ions, and Ja, with the
total current from trapped ions.

For the internal kink mode analysis and the interpreta-
tion that follows, it is necessary to be able to identify sepa-
rately j and jg . since the mechanism determining sawtooth
destabilization due to local ICRH deposition is found to be
dependent on asymmetric distribution functions in v, at the
lowest order, and thus must be consistent with having finite
j%. Since it is the total fast ion current j, that is either
measured or simulated (e.g., using SELFO), we can estimate
j% and hence the parallel asymmetries in the distribution
function Fg —-F,, from Jo— j¢1, where, as we have mentioned
g, is not sensitive to the asymmetry in the number of co-
and counterpassing ions. In practice however, as mentioned
above, providing the currents are not dominated by the ef-
fects of nonstandard orbits, one can approximately identify
g, with the total current from passing ions, and o, with the
total current from trapped ions.

Phys. Plasmas 17, 056118 (2010)

We now undertake to calculate the flux averaged cur-
rents for our model distribution function, parametrized with
the SELFO simulations of JET discharge 58 934. The critical
resonant field B, is written in terms of €.=(R.—R;)/R,,
so that B.=~ By(1—¢€_.). Hence for the on-axis resonant wave
of 58934, €.~0, while for the off-axis resonant wave,
€,~-03m/R,, with Ry=3m. Writing the temperature in
units of electron volts, we have upon employing the model of
Eq. (20),

12
<f¢o<r)>=2enc(2”“‘)

Jl p 2ec(r,y?)
DA = e)+ Ale—y = el P
(23)

where, from the model distribution function of Eq. (20), we
recall that n.(r)c(r,y) is the asymmetric contribution to the
density. Due to the requirement that mirror trapped particles
cannot contribute to j #0> and if the distribution function is to
be continuous across the passing-trapped boundary, we have
the condition ¢=0 at the passing-trapped boundary, i.e.,
c(r,y*=1)=0.

The finite orbit corrections must be broken down into
trapped and passing, denoted by superscript ¢ and p, respec-
tively, so that employing the model of Eq. (20),

b 3\ Rog
Gutor=—e(2)(22)
(26)3/2

1
d
J y[y2(1—€)+A|26 y(e-€.)|]"?

X|:(I’lCTlA1/2)’ _ (%)

(n, T, AV?)A"[2e-y*(e-€))]
yz(l - ec) +A|26_y2(€_ e-c)|

}Jphzyzh

(24)

and for trapped particles,

= el 2 ) Bed
aior=={3)( 5]
1 (263/2
,fdk2[l—e +A2ek* - (e-€)|]?

X {(nCTLA”Z)' - (%)

(n. T, A")A"|2€k* - (- €,)|
1— €. +A|2ek* - (e-€.)|

}J’(n i),
(25)

where X' =dX/dr, e=r/R,, and we have
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FIG. 6. Showing (a) the sELFO deduced flux averaged current density (j4(r))
(after plasma drag has been deducted) as a function of minor radius for
discharge 58 934. (b) Plots finite orbit currents (j4;(r)), the sum of Egs. (24)
and (25), while (c) plots the current due to the asymmetries in the lowest
order distribution function {j(r)), and is obtained by subtracting the cur-
rents shown in (b) from (a) multiplied by j;'. [Figure partially reproduced
from J. P. Graves, I. T. Chapman, S. Coda, L.-G. Eriksson, and T. Johnson,
Phys. Rev. Lett. 102, 065005 (2009). Copyright 2009 by American Physical
Society. ]

2 k-1 2
J'=ZE@) + ——K(®) and = ZEG) - —
T ™ m

2K(y?)’

where K and E are complete elliptic integrals of the first and
second kinds, respectively.

Figure 6(a) shows the SELFO deduced flux averaged cur-
rent density (j4(r)) as a function of minor radius for dis-
charge 58 934. We note that the SELFO current has been ob-
tained by evaluating the parallel current from fast ion
distribution function, and subtracting the drag current from
the background plasma. Figure 6(b) plots (j(r)), the sum of
Egs. (24) and (25), which are the currents due to finite drift
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FIG. 7. In (a) showing a contour plot of the lowest order distribution func-
tion F, according to Egs. (20) and (6), while in (b) plotting the more
accurate F=~ Fy—ArG,, with G, given by Eq. (7), all for discharge 58 934.

orbits. These currents are now straightforward to calculate
because T, (r), n.(r), and A(r) were obtained in Sec. III A for
the two distributions. We note here that (j4(r))" is found to
be at least an order of magnitude larger than (j 4 (r))”. Since
the currents from passing ions are found to be the same order
of magnitude as trapped ions."" This means that the majority
of the current attributed to passing ions must be contained in
(Jgo(r)) (note that this statement may need to be relaxed if
the passing ion currents are dominated by the effects of non-
standard orbits). The flux averaged current (j 4(r)) due to the
asymmetries in the lowest order distribution function Fj, is
identified with (j4(r))—{j4 (r)). It is obtained by multiplying
the SELFO current of Fig. 6(a) by the inverse of the plasma
drag coefficient [i.e., by 1/, where j, is defined in Eq.
(30)], and then to subtract from this (j (7)), i.e., the current
of Fig. 6(b). Figure 6(c) shows (j4(r)) after it has been
smoothed.

Nevertheless, knowledge of the full distribution func-
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tion, and development of the internal kink analysis in the
next subsection, requires the asymmetry function c(r,y?) be
resolved. Identification of the latter requires further model-
ing. We let c=c,(r)c,(y?), and choose c, to be log-normal in
1—y?. This enables the lowest order asymmetry to disappear
at the passing-trapped boundary as required. Hence, setting

2
¢,(?) = f—“ jyzexp[— (ln{g(l —yz)}> ]

we can now resolve ¢,(r) and hence c(r,y?), and thus the
entire distribution function. Shown in Fig. 7(a) is a contour
plot of F,, given by Egs. (20) and (6), i.e., the distribution
function in absence of finite orbit corrections, plotted
with respect to v; and v on the outboard side (#=0) and at
r/a=0.35. Features shown in Fig. 7(a) include the peaking of
the distribution function on the trapped side of the passing-
trapped boundary, which is due to an abundance of trapped
particles along the line of the off-axis RF resonance, and also
the asymmetry in v, which is consistent with ¢(r,y?) and the
lowest order current {j4(r)) at 7/a=0.35 shown in Fig. 6(c).

Phys. Plasmas 17, 056118 (2010)

Finally, Fig. 7(b) shows Fy—ArG,=F given by Egs. (20),
(6), and (7), i.e., the total distribution including the effects of
finite orbit widths, plotted with respect to v, and v, on the
outboard side (#=0) and at /a=0.35. We now see additional
asymmetries in v, particularly inside the trapped cone. The
corresponding currents are consistent with the total current

(jo(r)) at r/a=0.35 shown in Fig. 6(a).

C. Internal kink stability for JET minority H
demonstration discharge

In this section, we will develop the internal kink stability
in terms of the model distribution function given by Eq. (20),
and compare results with the solution to the fast ion oW
given by the HAGIS code for the full distribution function
obtained by SELFO. The results will be compared with the
main features of the relevant experiment.

For the semianalytical treatment, it just remains to cal-
culate Dy +D;, D, +D,, and C*~C~ for F, given by Eq. (20).
This is easily achieved:

4 or Al (5>dA [ (neT,A")2e-y*(e-€,)|
Line =
DYy Do dr <t 2/ dr| y (1 -€)+Al2e-y*(e—¢€,)| (26)
L [Y2(1 —€,) +Al2e—y*(e—€.)|]P? ’
d e (5\dA[ (neT A2k — (e €)|
R e Y e Al2ek?
DY 4D o r r| 1-€ +AlR2ek* - (e—¢€,)] (27)
! ! [1-€ +A|2ek> - (e-€.)|]? ’
and
1% 2\ o dA 2e(r,y?)) 26—y (e— €,
A e(ry?)] - n A2 —y2)<y—)—2c(r,y2) _ 3_[ (nch c(r,y?)] yz( |
C - C =T\ (1) ar 2/ dy dr| y*(1-¢€)+A|2e-y*(e-€,)| 28)
—C =eT, ,

where we recall that A=T, /T, and c are dimensionless, so
that D +D7, D;+D;, and C*—C~ are seen to be pressure
gradients weighted appropriately to account for the single
particle dynamics concerned.

It is now straightforward to evaluate oW for the fast ion
distribution function of JET discharge 58934. It is necessary
to take into account D} +D;, D;+DI‘,, and T'*(C*-C") for
both of the two fast ion populations, corresponding to reso-
nance with the two ICRH waves. The resulting W contribu-
tions are then added together and compared with ideal and
resistive stability criteria. In order to demonstrate the sensi-
tivity of 6W to the position of the current drive, and hence
the position of the off-axis resonance, we instead allow r; to
move relative to fixed off- and on-axis resonance locations.
This then also allows us to compare with HAGIS simulations,
which take the full marker distribution from SELFO, and cal-
culates the internal kink mode stability over a range of ry.
The results of the analytical calculation are shown in Fig. 8.

[Y2(1-€) +Al2e-y*(e-€)|]

The dot-dash curve shows the conventional fast ion contri-
bution 5W0=5Wkt+ 5Wf,0+ 5Wfp0 given by the sum of Eqgs.
(10), (14), and (15), which yields the effect of fast ions on
stability in the absence of finite orbit effects, and is plotted as
a function of r;. The magnetic shear, as well as all plasma
and fast ion related profiles remain fixed. It is seen that as r;
increases, 5W0 increases, and this result is consistent with
(roughly) the dependence of [{'drr**(~P;) on r;. The solid
line in Fig. 8 plots the finite orbit correction of 5W,l, given
by Eq. (19), as a function of r;. It is seen that there is a deep
and narrow minimum in 5W,1 close to ry/a=0.41, which is
close to the measured inversion radius of r;,,/a=0.34. As we
will see, the large and negative SW at ri/a=0.41 would
make the internal kink mode ideally unstable, and is thus
consistent with the very small sawteeth observed in dis-
charge 58 934.

Let us examine in more detail the physics behind the
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FIG. 8. 6W,= oW, + 6Wf,0+ 5‘;pr0 and 8W,, according to Eq. (19), and also

5W,1 according to the fit of Eq. (29), plotted as a function of r,, for dis-
charge 58 934. [Figure reproduced from J. P. Graves, I. T. Chapman, S.
Coda, L.-G. Eriksson, and T. Johnson, Phys. Rev. Lett. 102, 065005 (2009).
Copyright 2009 by American Physical Society.]

extreme sensitivity of 5W,l to the location of r;. Simply by

inspection of Egs. (23), (19), and (28), it is clear that 5W,l
and the radial derivative of j, are related. We recall that the
current associated with energetic passing ions, in the absence
of drag, is almost entirely encapsulated in jg, since jg4; is
dominated by trapped ions. This means that we should be
able to determine the stability of the internal kink mode rela-
tive to the passing ion current profile prior to the deduction
of the plasma drag current. In fact, some simple algebra and
numerical integration over pitch angle y? reveals the follow-
ing fit:

. 2121 [ 2u, d .
oW, ~— " (— Tll/le}/zz(](w}

- — 29
" WG%ZQC Bg (29)

L

The dashed line of Fig. 8 plots Eq. (29), for the current
profile of Fig. 7(a), as a function of r|, and it seen that there
is excellent agreement with Eq. (19). It is therefore clear that
maximum instability occurs when the largest positive gradi-
ent in the fast ion current dipole coincides with the location
of r;. The location of the maximum gradient in j 4 is close to
the Doppler shifted resonance position, corresponding also
closely to the zero in j 4. Furthermore, we recall that one can
approximately identify j, with the entire passing ion current
prior to the deduction of the plasma drag current, and hence

we can now directly obtain an approximation for 5W,1 fol-
lowing calculation of the passing ion current profile such as
those obtained by SELFO [see e.g., Fig. 19(a) of Ref. 11].
These new calculations and derivations in this manu-
script provide an answer to why toroidally propagating RF
waves are so successful at sawtooth control despite only hav-
ing a modest effect on the magnetic shear. In particular, for
JET discharge 58 934, SELFO simulations demonstrate that
the effect of the fast ion current profile leads to a maximum
change in the shear of only 0.1. The corresponding change in
the ideal or resistive internal kink threshold, in the absence
of the finite orbit effect of Eq. (29), is small. It is in fact clear
that the classical mechanism involving only the shear at
g=1 is dwarfed by the fast ion mechanism described here.
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IV. MINORITY 3HE SAWTOOTH EXPERIMENTS
AND SIMULATIONS

In order to clearly show that the fast ion mechanism is
responsible for sawtooth control it is desirable to attempt to
reduce the effect that fast ions have on the magnetic shear.
While for the hydrogen minority pulse analyzed above the
change in the shear due to ions was around 0.1, the change in
the shear arising from minority *He is much smaller. This
subsection summarizes dedicated experiments employing
minority *He, with resonance placed on the high field side
close to r;. The details of these pulses, and other more ad-
vanced pulses, have been published elsewhere.®

As mentioned already, the experimental objective of
generating negligible net minority ion current in the core is
made realizable upon choosing minority *He. The fast ion
current density j,=en;Z,v, can be evaluated by SELFO,
where v, is the v; moment of the distribution function. How-
ever, the plasma is dragged along with the fast ions, such that
the total current is proportional to a drag coefficient j, such
that j,,,=Jj, X jz The fast ion current is subject to momentum
conservation, quasineutrality and the balance of collision
rates of electrons on all ion species,16 giving

mZZinl1 - (Z/ Zeff)]

. { Z
Ja=1-Y—"+
Zeff ZyXinm;

Z m Elanlz
- G(—h - ”—) : (30)
Zogp ZnZeprZinim;

where G=1.46A(Z,;/)€"?, A is a weak function of Z,, and i
denotes ion species other that hot (7). Due to the minority
ion mass number m,=3 and charge Z,=2 and moderate
Z.;r=1.8 giving A= 1.4, the effect of the plasma drag is to
reverse the sign of the net current density inside g=1, and to
neutralize the current density and the change in the shear at
qg=1.

The objective of the experiment was for the *He reso-
nance to pass slowly through the inversion radius on the high
field side in each discharge. This was technically difficult,
because the fundamental hydrogen resonance needed to re-
main outside the antenna region (>4m) at all times. A par-
ticular configuration was chosen which permitted the *He
resonance to access a g=1 radius which was not compro-
mised in size. The two pulses summarized in Fig. 9 had the
slowest field and current ramp, and the clearest sawtooth
control signatures. The field was varied from 2.97 to 2.96T.
The pulses were identical, except, crucially, 76 189 em-
ployed 3 MW of counterpropagating waves (—90°), while
76 190 employed 2 MW of copropagating waves (+90°).
Also shown in Fig. 9 is the NBI power, the core central
electron temperature, the sawtooth period, and the n=1 mag-
netics amplitude for both pulses. All of these signals show
the contrasting effects of the antenna phasing on the sawteeth
(and internal kink instability in the case of the magnetics
signal).

The minority ion concentration was around 1%, giving
fast ion tail temperatures in excess of 250 keV. Sawteeth
were strongly affected when the resonance was about 2—6 cm
inside the inversion radius (ri,,). Discharge 76 189 (—90°)
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FIG. 9. (Color) Showing the time traces of NBI and ICRH power, the *He
resonance position and inversion major radius, central electron temperature,
sawtooth period, and n=1 magnetics amplitude for pulses 76 189 (blue,
—90° antenna phasing) and 76 190 (red, +90° antenna phasing).

demonstrates sawtooth destabilization (small period) over a
width of a few percent of the minor radius. For 76 190
(+90°), the signature of the sawtooth stabilization is slightly
broader. Nevertheless, since contrastingly different signa-
tures occur for +90° and —90° phasings, we have demon-
strated that the sawteeth were not merely modified by a
change in the local conductivity, which nevertheless would
not be expected to result in sawteeth that are highly sensitive
to resonance position.

A. Modeling of 3He pulses

Figures 10(a) and 10(b) plots the passing and trapped
contributions of the fast ion current profiles for, respectively,
76 189 and 76 190 before the plasma drag is subtracted. It is
seen that the trapped currents are very similar for co- and
counterpropagating waves. This is expected, since from Eq.
(25), the trapped ion current depends on the radial derivative
of the distribution function, which is expected to be quite
similar for the two phases (except for the pinch effect de-
scribed later). However, it is seen that the radial gradient in
the passing ion currents for the two phases have the opposite
sign in the relevant region close to r;. From Eq. (29) it is
clear that this will lead to the opposite sign in 6W and hence
the opposite effect on internal kink stability, as expected
from the observed effect on the sawteeth.

The above comments are quantified in Fig. 11, where in
(a) the HAGIS code calculates W for 76 189 (—90° phasing)
with the marker distribution taken directly from the SELFO
code, and with calculations made for varying r; but with
fixed resonance position (i.e., for varying r|—r. as occurs in
the experimental scan of B). This is compared favorably with
the potential energy evaluated from Eq. (29), with the current
taken from SELFO [i.e., Fig. 10(a)], and with T, =250 keV
and 7;=T, /4. The fit of Eq. (29) recovers the trend in 6W,
and moreover, both are consistent with the observed varia-
tion in the sawtooth period with respect to r;—r,.. Finally,
Fig. 11(b) attempts to recover the trend in the sawtooth pe-
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FIG. 10. Showing the passing and trapped ion currents calculated by SELFO
for (a) 76 189 and (b) 76 190.

riod for 76 190 (+90° phasing). The SELFO/HAGIS simula-
tions do this successfully. Strong internal kink stabilization
occurs in a narrow region of r;. However, the semianalytic
calculation from Eq. (29) does not show such a strong varia-
tion with |, and this follows from the smaller negative de-
rivative in the passing contribution of the current, shown in
Fig. 10(b), in the region r;>r,, More work is needed in
order to understand this discrepancy better, however, it is
clear that the analysis leading to the derivation of Eq. (29)
assumed a number of simplifying assumptions and models
for the distribution function. Identifying the role of barely
passing ions, detrapping, long tail distribution functions
(non-Maxwellian tails), and nonstandard orbits will be re-
quired in that study. Nevertheless, it is pointed out here, that
both the passing and trapped currents for 76 190 are more
on-axis than for 76 189, which is consistent with the concept
of inward pinching37 of particles in the presence of copropa-
gating waves, and it is primarily the latter that leads to the
contrasting distribution functions.

V. CONCLUSIONS

This paper outlines in detail a new mechanism’ that has
been proposed to explain the highly effective nature of saw-
tooth control using off-axis toroidally propagating ICRH. By
developing an analytical treatment, initially for a general dis-
tribution function, and later with a specialized ICRH model
distribution, it is shown that energetic passing ions influence
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FIG. 11. (Color online) Showing the passing ion contributions to W for
(a) 76 189 and (b) 76 190. Comparisons are made between numerical solu-
tions from the SELFO and HAGIS codes with evaluations using Eq. (29).

the internal kink mode when the distribution of ions is asym-
metric in v. The latter is clearly a natural feature of co- or
counterpropagating ICRH waves. A JET demonstration
discharge” has been used to quantify the control mechanism,
and demonstrate its viability.

In other recent discharges,38 it has been shown that a
change in the magnetic field of only about 2% can be suffi-
cient to enable or disable sawtooth control. The correspond-
ing change in the magnetic shear has been calculated, and
was shown to be quite modest, thus questioning the viability
of the classical'® sawtooth control mechanism. Nevertheless,
it is shown in this manuscript that when a counter propagat-
ing wave is deposited sufficiently accurately on the high field
side, a newly discovered fast ion effect is so strong that the
internal kink mode is driven not only resistive unstable (e.g.,
Ref. 2), but ideally unstable, and this in turn is consistent
with measured sawteeth that are much shorter in period than
those obtained in Ohmic plasmas. Furthermore, it is shown
that the response of the fast ions on the internal kink mode is
very sensitive to the difference between the position of the
RF resonance position and the g=1 surface. This is due to
the fact that the only fast ions that contribute are those that
intersect the g=1 radius, and thus the mechanism does not
rely on integrals over radial extent. Finally, the mechanism
can also explain sawtooth stabilization with copropagating
waves on the high field side.

It is of interest to consider the implications of this re-
search for sawtooth control in ITER. The available range of
antenna frequencies in ITER are such that *He is the likely
minority species to be employed. Primarily due to the high
plasma drag in plasmas with He minority, the net current
drive efficiency is expected to be poor.15 While the classical
sawtooth control mechanism (e.g., Ref. 13) would fare badly
from such a prediction, the fast ion mechanism outlined in
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this manuscript is unaffected by the bulk plasma drag cur-
rent, since the orbit widths of the bulk plasma particles are
negligible. *He minority ion experiments in present day ma-
chines would be a fitting test of the fast ion sawtooth control
model, and the viability of ICRH control of sawteeth in
ITER. Initial experiments of this sort, undertaken in JET, are
presented here. It is shown that, despite weakly driven cur-
rent, sawtooth control is viable with low concentration *He.
This work, therefore, not only serves to strengthen the theory
first put forward in Ref. 9, but furthermore, gives some con-
fidence that sawtooth control in ITER using ICRH might be
viable.
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APPENDIX: ANALYTICAL EXPRESSIONS
FOR POLOIDAL INTEGRALS

The following provide closed forms for orbit averaged
integrals required in the J6W expressions of this paper.
k*=[1-\B(1-€)]/2\Be for trapped ions and y>=1/k* for
passing ions. Now,

Gy,= ;% df cos 6(1 — € cos O){1 — yz[sin(0/2)]2}1/2

and

G _y_2§ 1658 6(1 — e cos 6)°
274 F U =y [sin(02) 2

where G,, and G,, are obtained by replacing y> with 1/k* in
the corresponding equations above, and integrating over the
poloidal orbit of the trapped particles. The following exact
results are obtained

Gi(ek’) = (2?6)[(1 ~)K(K) + (2k* = DE(K?)]

+0(é), (A1)

Gy(ek?) =2E(K*) - K(k) + (2?6)

X[(1 - 4k2)K(K?) + (8K* — ) E(K?)] + 0(€),
(A2)
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2
Giyler?) == 3507 =2) + Ty + 857 - 9)}E(?)
+{207 - -5+ 2607 - DBK()
(A3)
1
Gpoley?) = @[{3@4 - 40ey*(y* - 2) +2€

X (32 - 3292 + 17y EG?) + {15y*(y* - 2)
— 10ey[8 - 8y* + 3y*]+ €(y? - 2)

X (32 - 32y% + 15yHIK(y?)], (A4)
i 0/2,y?
Gs= ;f_ﬂdﬁ cos{qw) - W%]

X (1 - € cos O){1 —y[sin(8/2)}}'2,

and
(" K[6/2,y]
G,= %f_ﬁd& cos[q(ﬂ) - WT)’%]
(1 - €cos 6)?
{1 - y*[sin(612) P}

We note that unless y is very close to unity, a very good

approximation is  obtained by replacing cos[q(6
— K[ 6/2,y?]/K[y*])] with unity, giving the result,
o _ 2€00 2 2 N (2
Gs(ey) = 32 {3y™+ e(y™ = 2)}E(yT) +{1 - yIK(y7)],
(A5)
1
Gyley) = 3—y2[{— 12¢y” +4€°(y* - 2)}E(y)
+{3y%(4 - y%) - e(8y* + 6y")
+ €8 +3yNK0O)]. (A6)

The trapped precession drift frequency

. GEF /(r,k?)
(P)=——""7",
rR()QC
where
2
Fy(r,?) = ——————
k)= e o)

. (H 1(62) + 25 (N H (k%) = A" (r) H3 (k) - é) ,

s=(r/q)q' is the magnetic shear, «=—2R(g*P’/Bj is the bal-
looning parameter, while H,, H,, and H; are given by Eq.
(10) of Ref. 23 and are,
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H,=E(K*)/K(K?) - 3,

H,=E(K*)/K(K*) + (K - 1), (A7)
Hy =3[k = DEGKK(K?) + (1 - K]
Another result required is
F,- f”’z d¢;COS[27] arcsin(k sin ¢)]. (A8)
0 V1 —k? sin® ¢

The following fit can be employed,39

4(1 = g)cos(mq)
1-4(1-¢)

X[E(K?) + (kK = DK(k*)] = [1 + cos(mq)1f1(q)

F,(q.k*) =[2E(K*) - K(k*)] -

X | E(k*) + (k* = 1)K (k) + %E(kz) -1

— (1 + cos(mq))[E(k*) — K(k*)] - f(q)(1 — k%)

(A9)

% g—K(kz)},

with

fi(g) = 757[1 0841 -0.3193(1 — ¢)> - 0.0683(1 — ¢)*],

£q) =5.1(q— %)(1 — g1 - 0.034(1 - g)].
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