
Rapid Fourier space solution of linear partial

integro-differential equations in toroidal magnetic

confinement geometries.

B. F. McMillana, S. Jolliet1a, A. Bottinob, P. Angelino2c, T. M. Trana, L.
Villarda

aCentre de Recherches en Physique des Plasmas, Association Euratom-Confédération
Suisse, Ecole Polytechnique Fédérale de Lausanne, PPB, 1015 Lausanne, Switzerland.

bMax Planck Institut fur Plasmaphysik, IPP-EURATOM Association, Garching
cAssociation Euratom-CEA, CEA/DSM/DRFC Cadarache, France

Abstract

Fluctuating quantities in magnetic confinement geometries often inherit a strong
anisotropy along the field lines. One technique for describing these structures is
the use of a certain set of Fourier components on the tori of nested flux surfaces.
We describe an implementation of this approach for solving partial differential
equations, like Poisson’s equation, where a different set of Fourier components
may be chosen on each surface according to the changing safety factor profile.
Allowing the resolved components to change to follow the anisotropy signifi-
cantly reduces the total number of degrees of freedom in the description. This
can permit large gains in computational performance. We describe, in particu-
lar, how this approach can be applied to rapidly solve the gyrokinetic Poisson
equation in a particle code, ORB5 [Jolliet et. al. Comp. Phys. Comm. 177,
p409, (2007)], with a regular (non field-aligned) mesh.

The geometry of a toroidal magnetic confinement system with nested flux
surfaces can be described using a toroidal coordinate system, with a radial coor-
dinate s labelling each toroidal shell (or flux surface), and χ and ζ parameterising
the poloidal and toroidal angle, respectively. We can choose the coordinates χ
and ζ so that the magnetic field lines are straight, and are given by constant
q(s)χ − ζ; q is called the safety factor.

Fourier descriptions of fluctuation quantities are particularly attractive for
describing waves in toroidal magnetic confinement systems: many equilibrium[1],
stability[2, 3, 4] and turbulence codes[5] use a Fourier description at some point.
The Fourier description is natural because of the double periodicity of the flux
surfaces in magnetic confinement devices. In practice, the radial direction tends

1Now at Japan Atomic Energy Agency, Higashi-Ueno-6-9-3, Taitou, Tokyo 110-0015, Japan
2Now at Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de

Lausanne, Switzerland

Preprint submitted to Elsevier August 18, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147960484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to be discretised using a finite-support scheme, and Fourier components are
used to represent the variation along χ and ζ. As well as being natural, Fourier
descriptions can also be quite efficient, due to the anisotropy of most of the
waves of interest (e.g., low frequency Alfvén or drift waves) along the magnetic
field lines. In a straight-field-line coordinate system, anisotropic waves can be
described using a small set of Fourier components on each magnetic surface.

The usual Fourier representation of a field φ in magnetic devices is

φ =
∑

j

∑

(m,n)∈K

cj,(m,n)Λj(s) exp(imχ − inζ), (1)

where Λj(s) are the finite element basis functions and K denotes the set of
Fourier modes chosen, and cj,(m,n) are the discrete coefficients. The simple
generalisation we suggest here is to allow K to vary with radial index j, so
that the set of resolved Fourier modes varies across the radius. This is use-
ful for anisotropic waves with small parallel wavenumber, k‖R ∼ (nq(s) −
m)Bζ/Bq(s) . 1, because the relevant Fourier components (m, n) vary with
radius (here R is the major radius and Bζ/B is the toroidal component of the
normalised magnetic field). In practise the amplitude of Fourier components
(m, n) of these perturbations often decays rapidly to zero away from the reso-
nant rational surface where m = nq(s).

An alternative way to efficiently represent field-aligned waves is to use a
field-aligned grid. This is particularly attractive for nonlinear codes, in which a
spatial domain representation (or, equivalently, a convolution of spectral com-
ponents) is necessary at some point. A field aligned grid has the advantage over
a regular grid in χ and ζ that many fewer grid points are needed to represent
field aligned waves. However, because of the varying and non-rational twist to
magnetic field lines in a typical toroidal magnetic confinement geometry, it is
quite complicated to implement a partial differential equation solver on a field-
aligned grid (one implementation is described in ref. [6]). For example, it can
be difficult to handle the magnetic axis using a field aligned grid.

The bulk of this paper deals with a particular application of the Fourier
representation technique: the use of the Fourier representation for the Poisson
solve in the gyrokinetic code ORB5[5]. ORB5 is a particle-in-cell gyrokinetic
code using a control variates method, which can handle general axisymmetric
global geometries as a background equilibria. In ORB5 a grid is chosen with
similar node spacing in each direction, of size Nχ × Nζ × Ns, where Nχ, Nζ

and Ns are the grid dimensions in the poloidal, toroidal and radial directions,
respectively. A filter in Fourier space is used (instead of a field aligned grid)
to ensure that only the waves of interest are resolved, in order to maximise the
computational timestep and reduce sampling noise. The filter is applied to the
perturbed ion density, and Poisson’s equation is solved to determine the electric
field in the plasma. Poisson’s equation is discretised by representing the density
and electric potential using (up to cubic) splines in radius and toroidal and
poloidal angle.

The gyrokinetic Poisson equation is a three-dimensional partial integro-
differential equation which is similar in structure to the true Poisson equation in

2

some limits, but which in general involves a mixture of integral and differential
operators. The discrete form of the gyrokinetic Poisson equation is a matrix
equation

Ax = y (2)

for the gyro-density y in terms of the potential x which acts on the coefficients
of the splines. Because the code solves in a axisymmetric geometry, the operator
A is independent of the toroidal angle index, and a discrete Fourier transform
is performed in toroidal angle which decouples modes of differing toroidal mode
number n. In general the matrix A is different for each n, but the standard
formulation of ORB5 the toroidal derivatives are ignored, and A is the same
for each toroidal mode (with the possible exception of n = 0, which must be
treated separately for the case of adiabatic electrons). For each n we have a set
of spline coefficients labelled by (i, j) corresponding to the grid points on the
cross section (si, χj). The matrix A is a band matrix (the interior of the band
is in general not sparse when electrons are treated as adiabatic) and the inverse
operation can be evaluated using standard numerical techniques. However, the
matrix is potentially very large, and the Poisson solve can be slow and consume
large amounts of memory. For ITG simulations, we need a grid resolution
approximately equal to the ion sound gyroradius in each direction, and the
total number of gridpoints in each direction is similar to 1/ρ∗, where ρ∗ is the
ratio of the ion sound gyroradius to the minor radius. As a concrete example, in
an ITG simulation of a reactor-scale plasma (like ITER), ρ∗ ∼ 1/1000, we would
need approximately 103 grid points in each direction, and the code must solve
103 linear systems of rank 106 at each timestep. Solving these linear systems
directly using a band solver (or, where possible, a sparse solver) became very
costly in the ORB5 code even for considerably smaller grids, because these
algorithms do not scale well.

Because of the field aligned filter, the number of degrees of freedom of the
gyro-density vector is much smaller in Fourier space than in configuration space.
Also, since the operator A is relatively narrow in Fourier space (the equilibrium
and toroidicity terms are large only at long wavelength), the backsolved po-
tential is also narrow in Fourier space. It therefore seems sensible to solve the
matrix equation in Fourier space, discarding Fourier modes which are unim-
portant: that is, solving the Poisson equation in the subspace of field aligned
modes.

We explain the algorithm for the Poisson solve in Fourier space, and why
it leads to a large improvement in computational efficiency for our parallelised
solver. We then present a more generic implementation of the Fourier solver
using parallelised sparse matrices.

1. Fourier transforming the Poisson equation

One of the main computational steps in a PIC code is to rapidly determine
the spatially continuous electric field and to deposit the charge at the marker
positions. This is faster using a spline representation of the fields, rather than

3

a Fourier decomposition. We therefore choose to represent the gyrodensity and
potential using a set of spline coefficients. A discrete Fourier transform on
the spline coefficients is then used to rapidly solve a reduced matrix equation
relating the two sets of spline coefficients. When all the Fourier modes are kept,
the exact solution is the same as for the spatial domain solver: this provides a
useful way check that the implementation is correct.

In Fourier space the RHS equation is written

yF = FAF−1xF = AF xF (3)

with F the Fourier transform, and yF = Fy, xF = Fx. We use complex, rather
than real, Fourier transforms because this leads to a more elegant implementa-
tion. Because Hermiticity is conserved, exact conservation of energy is possible
(in the zero-timestep and infinite number of markers limit) according to Ref.
[7].

In ORB5, the Fourier space density filter is still applied to the density in
Poisson’s equation even when we solve the matrix equation in Fourier space: we
can include more modes in the subspace for solving Poisson’s equation than in
the density filter if desired. We refer to the projection applied in Fourier space
(to the matrix and vectors) to reduce the problem size as the matrix filter, to
distinguish it from the density filter.

2. Details of Fourier components and poloidal indexing

For the Fourier solve, we construct a separate matrix for each toroidal Fourier
mode: this means that n dependence of the matrix can be easily incorporated
into the code, and simplifies parallelisation. For each toroidal mode we only need
to keep weight/trial functions which are close to field aligned, with m ∈ Sn =
[nq(sj)−δm, nq(sj)+δm]. The parameter δm, which is related to the maximum
wavenumber resolved along the field line, is independent of j (the radial index)
and n so that the matrix can be handled by standard band solvers. The number
of poloidal modes kept for each surface is 1 + 2δm. For algorithmic simplicity,
it is useful to ensure that this interval of poloidal modes is inside the range
[−Nχ/2, Nχ/2−1]. δm plays a similar role to the number of parallel grid points
in a field-aligned description, restricting the maximum parallel wavenumber.
We resolve a maximum wavenumber k‖ ∼ δm/Rq. For a field-aligned grid,
the maximum resolvable wavenumber k‖ ∼ Nα/4Rq, for Nα points along each
poloidal turn of the field line. The typical choice of Nα ∼ 16 − 32, corresponds
to a choice of δm ∼ 4 − 8[8].

Because radial Dirichlet boundary conditions are implemented in our code
using a rotation in the radial spline space, we also ensure that splines in the
first and last few radial positions resolve the same range of poloidal modes:
mmin(i) = mmin(1) for i ∈ [1, k] and mmin(i) = mmin(N) for i ∈ [Ns − k, Ns]
(for kth order basis functions). In this case the mapping between poloidal array
index and Fourier index are the same for these radial positions, and the rotation

4

in radial spline space (which is an independent rotation for each poloidal position
or Fourier index) is the same as in the spatial domain solver.

The Poisson matrix in Fourier space can be constructed by explicitly Fourier
transforming the configuration space matrix, but it is more memory and time
efficient to perform the weak form integrations using the Fourier convolution
theorem (as described in the appendix). Both construction methods are imple-
mented in ORB5.

3. Computational implementation of the Poisson solve.

To solve the Poisson equation, we first take the toroidal and poloidal complex
Fourier transform of the gyrodensity spline coefficients. At this step a filter is
applied to the density to select physically relevant modes. We then project into
the smaller space of field-aligned modes: this is a simple restriction operation,
choosing the Fourier coefficients which are inside the matrix filter. The small
Fourier space problem is solved using the (precomputed) Cholesky decomposi-
tion of the matrix, and the vector components are inserted into the full Fourier
space. An inverse Fourier transform is then performed.

The purpose of projecting into this space is to reduce the size of the Poisson
matrix, and speed up the calculation of the linear solution. Seen as a block
matrix, the Fourier Poisson matrix has blocks of rank 2δm + 1, instead of Nχ.
This leads to a vast improvement in the scaling properties of the algorithm,
because for the modes of interest, k‖R ∼ 1 leads to δm ∼ q, which is fixed
as the problem size increases, whereas Nχ ∝ 1/ρ∗. For splines of order d, the
number of super-diagonal blocks is d, and the number of non-zero elements in
the matrix (and its Cholesky decomposition) and the memory use per matrix
scales as (d+1)(2δm+1)2Ns for the Fourier solver or (d+1)N2

χNs for the spatial
domain solver. We typically have Nχ/δm ∼ 1/ρ∗ (1/ρ∗ = 100 is common for
production cases), so these matrices are much smaller than the spatial domain
matrix. The code parallelization is a toroidal decomposition into P domains,
and we need to store Nζ/P of these matrices on every processor, but the memory
usage is typically negligible compared to that used to store the spline coefficients
in the spatial domain. For the spatial domain solver, memory usage can become
a problem, even if the matrix is distributed across several processors.

The backsolve solution speed per toroidal mode is proportional to the num-
ber of non-zero elements in the matrix (the precomputation of the Cholesky
decomposition is not usually burdensome), so the Fourier backsolve is much
faster, often by several orders of magnitude: the backsolve typically takes negli-
gible time compared to other parts of the code. The original backsolve became
dominant in overall computational time and memory demand in ORB5 for large
systems, so the speedup and memory reduction are valuable. For example, for
ρ∗ = 1/140, the standard spatial domain solver required 40% of the computa-
tional time, and around 100MB of memory per core. With the Fourier solver,
the memory use is 134 times smaller, and the backsolve required 0.1% of the
computational time. The difference becomes even more extreme for larger cases.

5

In fact, the improved matrix solver is usually much faster than the 2D Fourier
transform, which involves a parallel transpose in our parallelisation scheme. For
sufficiently large problems (around grid sizes of Ns×Nchi×Nζ = 1024×2048×
2048) the number of spatial grid points (which scales like the system volume)
starts to become comparable to the number of computational markers used in
the PIC scheme (which scales like the cross-sectional area of the device). The
consequence is that grid-based operations dominate and that memory use and
the computer time per timestep start to scale like the inverse cube of ρ∗ rather
than 1/ρ∗

2
. For ITG simulations, the scaling starts to become non-optimal

at a plasma size of about 1/ρ∗ ∼ 1000, around the size of ITER, which is
likely to be the largest fusion device built over the coming decades. For smaller
systems, resolving the dynamics in the 5-D space using the markers dominates
the computation, despite the redundancy of representing anisotropic variation
on an isotropic grid.

As an aside, when the spatial domain matrix is sparse (this only occurs in
specialised cases where there is no adiabatic electron species), using an iterative
sparse solver is a possible alternative way to reduce storage requirements. We
had earlier implemented an iterative sparse solver in the spatial domain, which
allowed an increase in grid size over the standard solver in the spatial domain:
using the sparse solver, the maximum feasible grid size was 512 × 2048 × 1024,
corresponding to ρ∗ ∼ 1/560. For this case using the Fourier solver rather than
the sparse solver allows a threefold reduction in overall computational time per
timestep and halving of total memory use. This is a consequence of the better
scaling of the Fourier technique with system size.

4. Using the Fourier solver in stellarator geometry and more general

problems

The approach as detailed earlier was restricted in certain ways: it becomes
inefficient for large q, and in particular, shows no improvement over a direct so-
lution in cases where q → ∞, because δm should also generally be proportional
to q in order to handle field-aligned variations. Also, the analysis was restricted
to axisymmetric background geometries where a continuous rotation symme-
try was present. For problems in non-axisymmetric geometry, such as arise in
stellarator physics, toroidal coupling prevents the separation of the problem in
toroidal Fourier index, so that all the Fourier modes are coupled together. In
Fourier space, the problem is not strictly sparse, but the terms rapidly become
small far from the diagonal, and can be ignored or treated as a correction. This
implies that a sparse solver in Fourier space might be an appropriate method
to solve the matrix problem.

As a proof of principle, we implemented a finite element model (FEM) solver
which uses the transform into discrete Fourier space to construct the matrix
problem, and used a parallel sparse solver, PETSc[9], to perform a backsolve.
Using a sparse solver (as opposed to a banded solver) allows us to store only
the coupling terms with significant strength, so that the matrix storage is not
excessive even for fairly large problems. This is useful, for example, near the

6

plasma edge, where (for diverted tokamaks) q → ∞ and a wide range of poloidal
modes are nearly field-aligned at a single n.

The algorithm involves two indexing schemes, i ∈ [1, Nm] for the full Fourier
space and i′ ∈ [1, Nk] for the restricted Fourier space. The restriction and ex-
pansion operations are very simple to program once subroutines have been built
to find the mapping i′ → i. Matrix construction is slightly more complicated,
because of the amount of indexing which burdens the code. A matrix construc-
tion routine generally loops over weight function indexes i′ ∈ Nr. For each i′,
the coupled trial function indexes j′ need to be found. One efficient way to
perform this operation is to look up the full index, i, then find the radial index
xi and Fourier index (mi, ni). We then loop over all the modes with sj ∈ si±δs,
mj ∈ mi ± δm(si) and nj ∈ ni ± δn(si) and add a coefficient to the matrix if
it is in the restricted space. This is exactly analogous to the process needed in
finite element codes with unstructured grids, where a graph of coupled nodes
needs to be constructed. In practice it is often simpler or faster to set up the
storage of the matrix first, by performing an initial loop over the trial and weight
functions, and inserting the coefficients later (perhaps in an arbitrary order).
Standard sparse matrix packages allow simple implementation of this two-step
construction technique.

A moderate size test case was run on 8 processors resolving relevant Fourier
modes on a 1024×1024×512 grid. The physical geometry of the grid is an oblate
cylinder (the cross-section is an ellipse with aspect ratio of 2), with a sinusoidal
modulation to the z coordinate along the axis of the ellipse (z′ → z + Asin(z)
produces a coupling between the Fourier modes in z). The Poisson equation
∇2V = U was represented using linear finite elements. We restricted the modes
to |m−nq| < ǫ, with q(r) = 1.2+0.5r, and ǫ = 7. Only coupling between modes
mi − mj ≤ 5 and ni − nj ≤ 2 was included in the matrix. For this system,
we resolve 3840 resonant modes per surface. For 8 Processors, 1.7 Gigabytes
of memory was used in matrix construction, and the backsolve required 200
seconds to achieve a relative accuracy of 1×10−5. For comparison, if we resolved
each resonant Fourier component over the entire radial extent, we would require
∼ 50 times as many degrees of freedom in the matrix, and the matrix would be
proportionally larger. Solving the problem in the spatial domain would require
more than 200 times as many degrees of freedom; even if only nearest neighbour
coupling coefficients were stored, 115 gigabytes would be needed just for the
sparse matrix storage, before any inversion could be attempted.

5. Conclusions

The Fourier-transform solver described here allowed a massive speedup and
reduction in memory resources in the spatial part of our gyrokinetic code. This
kind of semi-spectral technique has been applied before: the novel ingredient
is that we choose a different set of Fourier components at each surface. This
method appears to be generally applicable in codes which treat waves aligned
with the magnetic fields of confinement devices and should allow performance
improvements to codes which currently resolve a fixed set of Fourier components

7

across the entire minor radius. The code changes required to implement such a
solver are rather superficial because all we have performed is a projection of the
problem onto a smaller space; the main burden is to provide a mapping between
the full and restricted space and a means to determine which components are
coupled together.

References

[1] S. P. Hirshman, O. Betancourt, Preconditioned descent algorithm for rapid
calculations of magnetohydrodynamic equilibria, J. Comput. Phys. 96 (1)
(1991) 99–109. doi:http://dx.doi.org/10.1016/0021-9991(91)90267-O.

[2] D. V. Anderson, W. A. Cooper, R. Gruber, S. Merazzi, U. Schwenn, The
Terpsichore Code for the Stability Analysis of Magnetically Confined Fusion
Plasmas, Supercomputer 8 (3) (1991) 32–35.

[3] B. F. McMillan, R. G. Storer, Spector3d: a resistive magnetohydrodynamic
stability code for stellarators, Journal of Plasma Physics 72 (2006) 829–832.

[4] P. Popovich, W. Cooper, L. Villard, A full-wave solver of the Maxwell’s
equations in 3d cold plasmas, Computer Physics Communications 175 (4)
(2006) 250 – 263.

[5] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T. Tran, B. McMillan,
O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC code
in magnetic coordinates, Computer Physics Communications 177 (2007)
409–425.

[6] Y. Nishimura, Z. Lin, J. Lewandowski, S. Ethier, A finite element Poisson
solver for gyrokinetic particle simulations in a global field aligned mesh,
Journal of Computational Physics 214 (2006) 657–671.

[7] R. Hatzky, T. M. Tran, A. Könies, R. Kleiber, Energy conservation in a non-
linear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven
modes in theta-pinch geometry, Physics of Plasmas 9 (2002) 898.

[8] S. Jolliet, Gyrokinetic particle-in-cell global simulations of ion-temperature-
gradient and collisionless-trapped-electron-mode turbulence in tokamaks.,
Ph.D. thesis, EPFL (2009).

[9] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc users manual, Tech.
Rep. ANL-95/11 - Revision 3.0.0, Argonne National Laboratory (2008).

8

A. Convolution construction of the Fourier transformed Poisson ma-

trix

We consider here the discretisation of the gyrokinetic Poisson equation in
the long wavelength limit. Typical terms in the matrix A(kj)(k′j′), with k and k′

the weight and trial function radial indexes, and j and j′ the poloidal indexes,
can be written as a sum of nw terms, each term being a product of the weight
and trial functions (Λk,j and Λk′,j′ or their derivatives) and a spatially varying
equilibrium function Cw(s, χ). There is also a nonlocal ‘zonal flow’ term (a flux
surface average) due to the modelling of the adiabatic electrons which must be
handled differently. In the standard case the integrations are approximated in
the code via a sum over q Gauss quadrature points and Ns intervals in radius,
Nχ intervals in poloidal position as

A(kj)(k′j′) =

nw
∑

w=1

nq
∑

q=1

Ns−1
∑

K=0

Nχ−1
∑

J=0

Λuw

k (s)Λvw

j (χ)Cw(s, χ)Λuw

k′ (s)Λvw

j′ (χ)
∣

∣

∣

(s,χ)=(sK,q ,χJ,q)

(4)
Here, nw is the number of terms in the weak form and nq is the number of
quadrature points, and uw and vw describe the number of times the spline
functions must be differentiated for each term in the weak form. The evaluation
position (s, χ) depends on the quadrature point q and the interval indices K
and J . The periodicity of the poloidal coordinate χ is implicit. Note that many
terms will be zero (compact support of spline functions). The Fourier transform
of A(kj)(k′j′) is written

A′
(km)(k′m′) =

1

Nχ

Nχ−1
∑

j=0

Nχ−1
∑

j′=0

exp

[

−
2πi

Nχ

(mj − m′j′)

]

A(kj)(k′j′) (5)

We now show how this can be written in a convolution form. The sums over the
radius, weak form and quadrature points can be moved outside of the Fourier
transform, and we only need consider the poloidal sums over the interval: we
define the summand B via

A′
(km)(k′m′) =

1

Nχ

nw
∑

w=1

nq
∑

q=1

Ns−1
∑

K=0

Λuw

k (s)Λuw

k′ (s)|
s=sK,q

B′
(m)(m′)qwK . (6)

The poloidal positions of the quadrature points can be written χJ,q = χq +
2πJ/Nχ. And we have

B′
(m)(m′)qwK =

Nχ−1
∑

j=0

Nχ−1
∑

j′=0

∑

J

exp

[

−
2πi

Nχ

(mj − m′j′)

]

Λvw

j (χq + 2πJ/Nχ)

Λvw

j′ (χq + 2πJ/Nχ)Cw(sK,q, χq + 2πJ/Nχ). (7)

9

We also have Λj(χ) = Λ0(χ − 2πj/Nχ) (because the spline functions are all
identical displaced copies), so we can write:

B′
(m)(m′)qwK =

Nχ−1
∑

j=0

Nχ−1
∑

j′=0

∑

J

exp

[

−
2πi

Nχ

(mj − m′j′)

]

Λvw

0 (χq + 2π(J − j)/Nχ)

Λvw

0 (χq + 2π(J − j′)/Nχ)Cw(sK,q, χq + 2πJ/Nχ).
(8)

The sum indices can be cyclically permuted and the sums separated to give

B′
(m)(m′)qwK =

Nχ−1
∑

j=0

Λvw

j (χq) exp[−2πimj/Nχ]

Nχ−1
∑

j′=0

Λvw

j′ (χq) exp[2πim′j′/Nχ]

∑

J

Cw(sK,q, χq + 2πJ/Nχ) exp[2πi(m − m′)J/Nχ]

= ZP(m)ZP(m′)C′
w(sK,q, m − m′),

(9)

which is a product of three separate 1-D Fourier transforms in j,j′ and J . After
performing these transforms, the terms B′

(im)(i′m′)qwI
can be rapidly evaluated.

The zonal flow operator involves a surface average. This leads to terms in
the weak form which involve a product of sums, BZF

(j)(j′)qwK = P(j)qwKP(j′)qwK ,
with

P(j)qwK =

nq
∑

q=1

M
∑

J=0

G(sK,q, χJ,q)Λj(χJ,q), (10)

where G is a geometrical term. The Fourier transform of BZF can be straightfor-
wardly expressed as B

′ZF
(im)(i′m′) = P ′

(m)qwKP ′
(m′)qwK in terms of Fourier trans-

forms P ′
m of Pj .

10

