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Abstract

This thesis proposes a new method to design fixed-order controllers in
frequency domain using convex optimization. The method is based
on the shaping of open-loop transfer function in the Nyquist dia-
gram with infinity norm constraints on weighted closed-loop transfer
functions. A parametric model is not required in this method as
it directly uses frequency-domain data. Furthermore, systems with
multi-model uncertainty as well as systems with frequency-domain
uncertainties can be considered.

Fixed-order linearly parameterized controllers are designed with
the proposed method for single-input single-output (SISO) linear
time-invariant plants. The shaping of the open-loop transfer func-
tion is performed based on the minimization of the difference with
a desired open-loop transfer function under H∞ constraints on the
closed-loop sensitivity functions. Since these constraints represent a
nonconvex set in the space of the controller parameters, an inner con-
vex approximation of this set is proposed using the desired open-loop
transfer function. This approximation makes the problem of robust
fixed-order controller design a convex optimization problem. An ex-
tension of the method is proposed to design two-degree-of-freedom
(2DOF) controllers for SISO plants. The method is also extended to
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tune fixed-order linearly parameterized multivariable controllers for
multiple-input multiple-output (MIMO) linear time-invariant plants
where the stability of the closed-loop system is guaranteed using
Gershgorin bands. The control problem is solved only using a finite
number of frequency-domain samples. However, the stability and
performance conditions between frequency samples are also verified
if a frequency-domain uncertainty is considered. It is shown that this
adds some conservatism to the solution.

The proposed frequency-domain method has been tested on
many simulation examples. The method has been applied to a
flexible transmission benchmark for robust controller design giving
extremely good results. Additionally, the method has also been
implemented on an experimental high-precision double-axis posi-
tioning system. These results show the effectiveness of the proposed
methods.

Keywords: robust controller; convex optimization; Nyquist
diagram; spectral models; frequency-domain data; H∞.



Résumé

Dans cette thèse, une nouvelle méthode utilisant l’optimisation
convexe est proposée afin de synthétiser des régulateurs d’ordre fixe
dans le domaine fréquentiel. Cette méthode est basée sur le calibrage
de la fonction de transfert en boucle ouverte dans le diagramme de
Nyquist avec des contraintes de norme infinie sur les fonctions de
transfert en boucle fermée pondérées. Cette méthode ne requiert pas
de modèles paramétriques car elle peut directement utiliser des don-
nées fréquentielles. De plus, cette approche peut directement traiter
des systèmes multi-modèles, ainsi que des systèmes comportant des
incertitudes fréquentielles.

Des régulateurs d’ordre fixe linéairement paramétrés peuvent être
synthétisés pour des systèmes ayant une seule entrée et une seule sor-
tie (SISO), linéaires et stationnaires. Le calibrage de la fonction de
transfert en boucle ouverte est réalisé en minimisant la différence
entre cette dernière et une fonction de transfert en boucle ouverte
désirée. Des contraintes H∞ sur les fonctions de transfert en boucle
fermées sont imposées. Ces contraintes représentent un ensemble non
convexe dans l’espace des paramètres du régulateur. Une approxima-
tion interne de cet ensemble est proposée en utilisant la fonction de
transfert en boucle ouverte désirée. Cette approximation permet de
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transformer le problème de commande robuste en un problème d’op-
timisation convexe. Une extension de la méthode est proposée pour
synthétiser des régulateurs à deux degrés de liberté (2DOF) pour des
systèmes SISO. En utilisant la même méthodologie, une extension est
proposée afin de synthétiser des régulateurs multivariables linéaire-
ment paramétrés pour des systèmes à plusieurs entrées à plusieurs
sorties (MIMO), linéaires et stationnaires pour lesquels la stabilité
de la boucle fermée est garantie en utilisant des bandes de Gersh-
gorin. Le problème de commande est résolu en utilisant un nombre
fini de données fréquentielles. Cependant, les conditions de stabi-
lité et de performance entre les données fréquentielles peuvent aussi
être vérifiées en ajoutant une incertitude. Cette incertitude ajoute
du conservatisme à la solution.

Cette méthode basée dans le domaine fréquentiel a été testée sur
de nombreux exemples. Elle a notamment été validée sur un système
de transmission flexible servant de référence lors de l’évaluation de la
performance des méthodes de commande robuste avec des résultats
satisfaisants. En outre, cette méthode a aussi été implémentée sur
un système expérimental de positionnement à deux axes de haute
précision. Les résultats montrent l’efficacité des méthodes proposées.

Mots-clés : régulateur robuste ; optimisation convexe ; dia-
gramme de Nyquist ; modèles spectraux ; données fréquentielles ;
H∞.
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Introduction

1.1 Motivation

Fundamentally, automatic control studies and develops algorithms
to tune feedback loops in order to assure that the output tracks a
desired trajectory even in presence of disturbances and uncertainty.
Automatic control can be implemented on a large variety of systems
and it is used extensively in industrial applications. Consequently,
many researchers have studied this field in the last few centuries,
proposing many methods to design feedback loops for different types
of systems.

Many controller design methods have been proposed to tune
controllers with different structures, even though most industrial
applications using a feedback controller employ the well-known
Proportional-Integral-Derivative (PID) controller. This controller
has a very simple structure with only three parameters to be tuned.
Each of the parameters has an intuitive behavior which makes them
relatively easy to tune and, in most cases, they achieve the required
specifications. However, nowadays many applications require very
demanding specifications which need more sophisticated PID con-
troller design methods or more complex controller structures, e.g.
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two-degree-of-freedom controllers (2DOF). In these cases, the meth-
ods to be implemented are not simple enough, and experienced en-
gineers are needed to apply them. This is typically the case when
the desired specifications for which the controller has been tuned are
changed or when the system is modified. If the controller structure
or/and the method that have been used to tune it are complex, an
engineer is needed to redesign the controller.

Some characteristics are desired for a controller design method to
be easy to implement on an industrial system:

• Most of the controller design methods in the literature are para-
metric model based. This latter kind of model can be obtained
either by first principles modeling or by parameter estimation
techniques using measured data. However, it is usually too dif-
ficult or time consuming to obtain a parametric model based on
physical laws. Identification of parametric models is based on
much a priori information. The user needs to choose the sam-
pling period, time-delay, number of parameters in the numerator
and denominator of the plant and noise model, optimal excita-
tion etc. which are neither easy to choose nor always available.
Consequently, data-driven controller design methods using time-
domain or frequency-domain data are preferred instead of model
based methods. Moreover, frequency-domain data or spectral
models are appropriate because stability conditions and several
performance specifications can be defined in the frequency do-
main. Additionally, they need less a priori knowledge of the plant
than the parametric models and are obtained directly from data.
Furthermore, the information is not condensed into a small set of
parameters avoiding errors of unmodeled dynamics that appear
in parametric models.

• Many industrial applications can be approximated with a low-
order system containing a pure time delay. However, most of the
design methods in the literature that can deal with this type of
systems approximate the pure time delay. Hence, a controller
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design method considering pure time delay without any approxi-
mation is preferred.

• Usually, most industrial applications have more than one operat-
ing point and, generally, the dynamics of the system change at
each operating point. Additionally, due to different types of error,
the model at each operating point is not an exact representation
of the real system at that point. This type of systems can be
represented as a multi-model plant. This is a set of models where
each of the models contains additionally a frequency-domain un-
certainty. The controller design method should be able to deal
directly with this set of uncertain systems.

• Nowadays, controllers are implemented in computers which have
limited memory and computing power. The order of the con-
troller plays a key role in this limitation. Many methods in the
literature compute high-order controllers which are not imple-
mentable. The problem can be resolved using existing methods
to reduce the order of the controller. However, it is difficult to
guarantee that the reduced controller will satisfy the requirements
in terms of stability and performance. Hence, it is desirable to
implement methods that tune directly fixed-order controllers.

1.2 State of the Art

This thesis gives some contributions in the following domains: con-
troller design based on frequency-domain data for single-input single-
output (SISO) and multiple-input multiple-output (MIMO) sys-
tems and two degree-of-freedom (2DOF) controller design based on
frequency-domain data.

1.2.1 Frequency-domain data-based methods for SISO
systems

The first systematic controller design methods are based on graph-
ical tools where loop-shaping techniques are used in the Bode di-
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agram or Nichols chart. These methods are discussed in classical
textbooks for the design and analysis of control systems. The well-
known Ziegler-Nichols tuning method based on a single point on the
frequency response of the plant model (the critical frequency) is still
used to tune PID controllers in many practical situations. These ap-
proaches are very intuitive and work well for simple systems that can
be approximated by a low-order model with a relatively small delay.
However, for unstable and nonminimum-phase systems and systems
with parametric and frequency-domain uncertainty the results are
unsatisfactory. Additionally, stability is not guaranteed. There have
been some attempts to modify the Ziegler-Nichols tuning algorithm
which are reported in [4].

Recently, it has been shown that the set of all stabilizing PID con-
trollers achieving a desired gain and phase margin or H∞ norm can
be obtained using only frequency-domain data [36]. However, this
set is not a convex set and it is only applicable for three-term con-
trollers. Another frequency-domain method is the well-known Quan-
titative Feedback Theory (QFT) [30] which is based on loop-shaping
in the Nichols chart. This approach leads usually to low-order con-
trollers but the design procedure needs some expertise and is based
on trial and error. Although recently optimization approaches have
been used to compute controllers in the QFT framework [6, 9, 24],
H2 and H∞ control criteria for spectral models have not yet been
considered.

Some iterative methods using specific points of the frequency re-
sponse function have been developed in literature. A PI controller
tuning method achieving a specified maximum sensitivity and phase
margin using a Phase Locked Loop (PLL) identifier module for mea-
suring some frequency points is presented in [11]. A PID controller
tuning technique based on the minimization of the sum of square
errors between the desired and measured specifications (gain mar-
gin, phase margin, maximum sensitivity and crossover frequency) has
been proposed in [20, 34] based on simple relay experiments. A lin-
ear quadratic control criterion in the frequency domain is minimized
iteratively using only the spectral models of the closed-loop system
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in [33]. At each iteration the closed-loop system (with the controller
from the previous iteration) is excited with a reference signal and the
gradient and Hessian of the criterion are estimated using the spectral
models identified by the measured data. It should be noted that all
of the mentioned iterative methods use the Gauss-Newton algorithm
and consequently they converge to a local optimum of their crite-
ria. Moreover, they need many experiments on the real system and
cannot consider multimodel uncertainty.

With new progress in numerical methods for solving convex op-
timization problems, new approaches for controller design with con-
vex objectives and constraints have been developed. In [23] a convex
optimization method for PID controller tuning by open-loop shap-
ing in the frequency domain is proposed. The infinity-norm of the
difference between the desired open-loop transfer function and the
achieved one weighted by a so-called target sensitivity function is
minimized. It is shown using the small gain theorem that if the in-
finity norm is less than 1 the nominal closed-loop system is stable.
This is a sufficient condition and depends on the choice of the target
sensitivity function. The condition for the stability of multiple mod-
els becomes more conservative as for each model a reasonable target
sensitivity function should be available. In [35] a robust fixed-order
controller design using linear programming is proposed. The main
feature of this method is that the stability and some robustness mar-
gins are guaranteed by linear constraints in the Nyquist diagram and
the method is applicable to multiple models as well. However, the
performance specifications are limited to the choice of a lower bound
for the crossover frequency and the minimization of the integral of
the tracking error.

1.2.2 Frequency-domain data-based 2DOF controller
design methods

Most of the control problems found in industry have specifications
in terms of robustness, disturbance rejection and tracking of a given
reference signal. It is very difficult to achieve all the specifications
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using one-degree-of-freedom controllers, therefore, 2DOF controllers
are preferred. The degree-of-freedom of a controller defines the num-
ber of closed-loop transfer functions that can be shaped indepen-
dently [29], which allows good performance to be achieved whilst
preserving robustness.

Typically, a two-step strategy is chosen in order to design the
feedback and feedforward terms of 2DOF controllers. In the first
step, the feedback term is designed to guarantee stability, robustness
and disturbance rejection specifications. Then, the feedforward term
is designed to achieve the desired tracking specifications. Many dif-
ferent methods can be found in the literature to tune the feedback or
feedforward terms separately. An example is shown in [53] where a
combined QFT/H∞ design technique is proposed. The classical H∞
method is used to tune the feedback controller to minimize the max-
imum value of the sensitivity function and the noise amplification for
a desired frequency range. Then, the QFT techniques are applied to
design the feedforward term to assure certain tracking specifications.

The general H∞ control problem, where infinity norm constraints
are defined for different weighted closed-loop transfer functions is a
general representation of most controller design problems. Further-
more, it can be desirable to minimize one or more of these norms to
achieve better performances. The classical H∞ optimization method
can deal with the mixed sensitivity controller design problem which is
a particular case of the previously mentioned control problem. As it
is shown in [58], this is achieved based on the linear fractional trans-
formation (LFT). A controller design problem for a SISO system is
transformed to an augmented MIMO system and the infinity norm
of the closed-loop weighted transfer function matrix is minimized.
This matrix contains many cross transfer functions between the dif-
ferent outputs and inputs of the augmented system which affects
the norm to be minimized. Therefore, it is not possible to minimize
the infinity norm of one of the weighted closed-loop transfer func-
tions of the original SISO problem under some constraints on the
other weighted sensitivity functions. It should be mentionned that
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this method tunes both degrees of freedom simultaneously instead of
tuning them in two different steps.

1.2.3 Frequency-domain data-based methods for MIMO
systems

Many industrial plants, particularly in the process industry, consist
of several interconnected loops, which are typically represented by
MIMO models. One approach to design multivariable controllers
is the classical optimal and robust control technique applied to a
state space representation of these MIMO models. Unfortunately,
these techniques leads to high-order multivariable controllers with a
state-space representation. This type of controller structure is not
common in industrial plants and their retuning is difficult for control
technicians. Hence, they are rarely used in industry.

A two-step technique is commonly used in practice instead. In
the first step the MIMO system is transformed into a diagonally
dominant system using a decoupling precompensator. Once the sys-
tem is diagonally dominant, SISO techniques are used to design the
decoupled controllers for each diagonal element of the MIMO sys-
tem. This strategy is easy to implement and maintain, and is very
effective in practice. An example of a two-step approach is given
in [48], where first a decoupler is obtained based on the adjoint of
the system. Then, a diagonal PID controller is tuned minimizing
the integrated absolute error for a step load disturbance for each
decoupled system satisfying an upper bound on the sensitivity and
complementary sensitivity functions. Many decoupling techniques
have been proposed in the literature. The classical decoupling meth-
ods are based on the eigenvalue decomposition [45] or the singular
value decomposition [31]. The minimization of a non-convex function
of the weighted off-diagonals of the open-loop system in some given
frequencies is considered in [55] to tune a decoupler. An appropriate
choice of the weighting function provides a better decoupling around
the crossover frequency.
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Since the decoupling step is never perfect, several methods based
on a detuning factor are proposed that take into account the coupling
effects in the design of SISO controllers. The biggest log modulus
tuning (BLT) method proposed in [44] is used to tune individual PI
controllers for each decoupled loop using Ziegler-Nichols (Z-N) ap-
proach. Then, the proportional and integral terms are multiplied by
a detuning factor so that the maximum modulus of the closed-loop
transfer function has a specific value. A decentralized PID controller
design method using Gershgorin bands is proposed in [28]. By solv-
ing a system of nonlinear equations involving the Gershgorin bands,
the decentralized controllers are tuned so that desired gain and phase
margins are guaranteed for the diagonal system. It should be noted
that the global stability is not guaranteed because only two crossover
frequencies associated with the gain and phase margins are consid-
ered for the Gershgorin bands shaping. The coupling effects for a
particular loop from all other closed loops are incorporated in a so
called effective transfer function, which is subsequently used to de-
sign decentralized controllers using single loop tuning techniques [57].
Several simulation examples show the effectiveness of this approach,
however the stability of the multivariable system cannot be guaran-
teed.

All the above mentioned methods are based on parametric mod-
els. Few controller design methods based on MIMO spectral models
are available in literature. For diagonally dominant or decoupled
systems, in [19] a non-convex frequency criterion is defined as the
weighted sum of the squared error between the desired and computed
stability margins considering the Gershgorin bands. Then, this cri-
terion is minimized iteratively using the measured data from some
specific closed-loop relay tests. The Gershgorin bands are also used
to compute the detuning factor for Z-N tuned controllers based on
the calculation of the ultimate gains and ultimate frequencies of each
loop using the frequency response of the system [10]. The minimiza-
tion of a weighted difference between a desired diagonal closed-loop
frequency response and the real response for a finite number of fre-
quencies is presented in [21] to attain the decoupling and desired
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performances via separate non-convex optimizations. Note that this
method is only applicable to 2×2 systems. It should be noticed that
these methods do not guarantee closed-loop stability.

1.3 Organization and Contributions of the Thesis

A new method to design fixed-order controllers based on open-loop
shaping with H∞ constraints on the weighted closed-loop transfer
functions for SISO models is presented in Chapter 2. Using linearly
parameterized controllers, every point of the open-loop transfer func-
tion is a linear function of the controller parameters in the Nyquist
diagram. However, it is observed that the classical H∞ conditions
lead to non-convex constraints. Based on the available desired open-
loop transfer function used for the loop shaping, the non-convex con-
straints are approximated by convex constraints (inner approxima-
tion). Hence, the controller design problem is solved using standard
convex solvers. The method can deal directly with multi-model un-
certainties. Furthermore, time delay systems can be also considered.
Additionally, only frequency-domain data are needed to apply the
method instead of a parametric model.

An extension of the method to design 2DOF controllers with RST
structures is proposed in Chapter 3. The idea is to design RST con-
trollers with a fixed feedback R polynomial by approximating the
non-convex weighted sensitivity infinity norm constraints by convex
constraints in the Nyquist diagram. The performance can be im-
proved by minimizing one or more of those infinity norms.

Chapter 4 proposes an extension of the method presented in
Chapter 2 to deal with systems consisting of several interconnected
loops which can be represented as MIMO systems. A linearly param-
eterized MIMO controller is designed and the stability is guaranteed
by approximating the eigenvalues of the transfer function matrix at
each frequency using the Gershgorin Bands. The method needs only
frequency-domain data and it can also deal with multi-model uncer-
tainties.
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In Chapters 2, 3 and 4 , the proposed controller design methods
are formulated as convex Semi-Infinite Programming (SIP) problems.
This type of optimization problem has a finite number of decision
variables to be optimized subject to an infinite number of constraints.
In Chapter 5, different solutions to deal with this optimization prob-
lem for our particular controller design problem are presented.

Finally, Chapter 6 concludes the manuscript and gives some per-
spectives related to the design methods proposed in this thesis.



2

Fixed-order H∞ Controller Design for
Spectral SISO Models

2.1 Introduction

In this chapter, a new approach to design a robust fixed-order con-
troller based on the shaping of the open-loop transfer function is
developed. It is shown that robust fixed-order linearly parameter-
ized controllers for LTI-SISO systems represented by nonparametric
spectral models can be computed by convex optimization. The sta-
bility and several performance conditions are assured with H∞ con-
straints on the weighted closed-loop sensitivity transfer functions.
It should be mentioned that the set of all fixed-order stabilizing
controllers satisfying the infinity norm constraints is a nonconvex
set. An inner convex approximation of this set is given by a set of
linear constraints in the Nyquist diagram. The proposed method
can be used for PID controllers as well as for higher order linearly
parametrized controllers in discrete or continuous time. The case
of unstable open-loop systems can also be considered if a stabilizing
controller is available or the number of unstable poles of the plant
is known. The main idea is to define new constraints such that the
designed open-loop system has the winding number satisfying the
Nyquist stability criterion. Another important feature is that, by
contrast with the standard H∞ problem, this approach can treat the
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case of multi-model uncertainty. The effectiveness of the proposed
approach is illustrated by comparison with the standard H∞ control
design in a simulation example.

This chapter is organized as follows: In Section 2.2 the class of
models, the class of controllers and the control objectives are defined.
Section 2.3 introduces the control design methodology based on the
linear and convex constraints in the Nyquist diagram. The results
of a simulation example are given in Section 2.4. Advantages and
disadvantages of the proposed method are discussed in Section 2.5.

2.2 Problem Formulation

2.2.1 Class of models

The class of causal continuous-time LTI-SISO systems with bounded
infinity norm is considered. It is assumed that the plant model be-
longs to a set G that contains m spectral models with multiplicative
unstructured uncertainty :

G =
{

Gi(jω)[1 + W2i(jω)∆] ; i = 1, . . . , m ; ω ∈ R

}
(2.1)

where W2i(jω) is the uncertainty weighting frequency function and
∆ is a stable unknown transfer function with ‖∆‖∞ < 1. This type
of models can be obtained from a parametric model or by spectral
analysis from a set of input/output data.

Consider the input u(t) and the output y(t) of a discrete-time
system G(q−1) are available for a finite number of t = 1, . . . , Nt,
where q−1 is backward shift operator. Assume that the data are
noise-free and the initial and final conditions for u and y are zero, i.e
u(t) = y(t) = 0 for t ≤ 0 and t > Nt. Then

G(e−jω) =
Y (ω)
U(ω)

(2.2)
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where U(ω) and Y (ω) are the periodograms of u(t) and y(t) defined
by [43]:

U(ω) =
1√
Nt

Nt∑
t=1

u(t)e−jωt (2.3)

Y (ω) =
1√
Nt

Nt∑
t=1

y(t)e−jωt (2.4)

For noisy data (2.2) gives the so-called Empirical Transfer Func-
tion Estimate (ETFE) which is asymptotically unbiased and has a
variance of Φv(ω)/|U(ω)|2, with Φv(ω) the spectrum of a stationary
stochastic disturbance v(t) at the output of the plant. In this case,
the spectral model can be represented by a multiplicative uncertainty
model G(e−jω)[1+W2(e−jω)∆], where |W2(e−jω)| can be computed
for a given probability level. It is clear that the quality of the ETFE
estimate can be improved by different ways of smoothing which are
not discussed here.

In the sequel, for the sake of simplicity, we consider one of
the models in G with multiplicative frequency-domain uncertainty,
G(jω)[1 + W2(jω)∆] and a continuous-time controller will be de-
signed. Then the results are extended to the multi-model case and
the convex combination of m spectral models. The results are also
applicable to discrete-time models and other types of frequency-
domain uncertainty.

2.2.2 Class of controllers

Linearly parameterized controllers are given by :

K(s, ρ) = ρT φ(s) (2.5)

where
ρT = [ρ1, ρ2, . . . , ρn] (2.6)

φT (s) = [φ0(s), φ1(s), . . . , φn−1(s)] (2.7)
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n is the number of controller parameters and φi(s) are stable transfer
functions with bounded infinity norm that may be chosen from a set
of generalized orthonormal basis functions. Consider for example the
Laguerre basis [1, 46]:

φ0(s) = 1 , φi(s) =
√

2ξ(s − ξ)i−1

(s + ξ)i
for i ≥ 1 (2.8)

with ξ > 0. It can be shown that for any stable rational finite
order transfer function F (s) and for arbitrary ε > 0 there exists a
sufficiently large n such that

‖F − ρT φ‖p < ε for 0 < p < ∞ (2.9)

Therefore, with this controller parameterization any finite order sta-
ble transfer function can be approximated with a desired accuracy
by increasing the number of controller parameters. The quality of
this approximation for a finite n, however, depends on the difference
between the poles of F (s) and ξ. An appropriate choice of ξ can lead
to a better approximation for a given controller order. The optimal
choice of basis functions has already been investigated in the context
of modeling and identification [25] and will not be considered in this
thesis. However, a practical guideline for an appropriate choice of
the basis functions follows. First, a very high-order controller is de-
signed with Laguerre basis functions and an arbitrary positive value
for ξ. Then, the dominant poles of the optimal high-order controller
are identified using the standard methods for model-order reduction.
Next, the dominant poles are used as the poles of a low-order gen-
eralized orthogonal basis function (see [1]) and a second run of the
optimization problem is performed.

The main reason to use a linearly parameterized controller is
that every point on the Nyquist diagram of the open-loop transfer
function L(jω, ρ) can be written as a linear function of the controller
parameters ρ :

L(jω, ρ) = K(jω, ρ)G(jω) = ρT φ(jω)G(jω) (2.10)
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This property helps in obtaining a convex parameterization of fixed-
order H∞ controllers.
Remark: The bounded infinity-norm condition will be relaxed to
allow possible poles on the imaginary axis for plant model and con-
troller. It is clear that, in this case, PID controllers belong to the set
of parameterized controllers.

2.2.3 Design specifications

The proposed approach is based on the shaping of the open-loop
transfer function where H∞ constraints on the closed-loop sensitivity
functions are considered. It is assumed that a desired open-loop
transfer function Ld is available which represents all or a part of the
desired specifications. Consequently, it is judicious to minimize a
norm of L(ρ) − Ld. Since L(ρ) is linear with respect to ρ any norm
of L(ρ) − Ld is a convex function of ρ.

Let the sensitivity function S(s) = [1 + L(s)]−1 and the comple-
mentary sensitivity function T (s) = L(s)[1 + L(s)]−1 be defined. A
standard robust control problem is to design a controller that satis-
fies ‖W1S‖∞ < 1 for a set of models, where W1(s) is the performance
weighting filter. If the set of models is represented by multiplicative
unstructured uncertainty, the necessary and sufficient condition for
robust performance is given by [17]:

‖|W1S| + |W2T |‖∞ < 1 (2.11)

There is no analytical solution to this problem, however, in the stan-
dard H∞ framework a solution to the following approximate problem
can be found: ∥∥∥∥W1S

W2T

∥∥∥∥
∞

<
1√
2

(2.12)

This solution is conservative and leads to high-order controllers.
Moreover, it cannot be applied to systems with multi-model uncer-
tainty.
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The proposed approach is based on the shaping of the open-loop
transfer function satisfying an infinite number of linear or convex
constraints on the Nyquist diagram such that the following robust
performance constraint is satisfied:

|W1(jω)S(jω)| + |W2(jω)T (jω)| < 1 ∀ω (2.13)

2.3 Robust Controller Design in Nyquist Diagram

2.3.1 Robust performance convex constraints

The basic idea is to represent the robust performance constraints
in (2.13) in the Nyquist diagram and give a set of linear or convex
constraints which guarantee that the robust performance condition is
satisfied. This way, the controller design is represented by a convex
optimization problem where a norm of the difference between the
actual open-loop transfer function and the desired open-loop transfer
function is minimized.

Multiplying the robust performance condition in (2.13) by |1 +
L(jω, ρ)| gives:

|W1(jω)| + |W2(jω)L(jω, ρ)| < |1 + L(jω, ρ)| ∀ω (2.14)

Note that |1 + L(jω, ρ)| is the distance between the critical point
(−1+0j) and L(jω, ρ). Hence, this constraint is satisfied if and only
if there is no intersection in the Nyquist diagram between a circle
centered at the critical point with a radius of |W1(jω)| and a circle
centered at L(jω, ρ) with a radius of |W2(jω)L(jω, ρ)| for all ω [17].

Now, consider a straight line d∗(ω) which is tangent to the circle
with radius |W1(jω)| and orthogonal to the line between the critical
point (−1+0j) and L(jω, ρ). Therefore, the robust performance con-
dition in (2.13) is satisfied if and only if the circle centered at L(jω, ρ)
does not intersect d∗(ω) and is completely on the side that excludes
the critical point (−1 + 0j) (on the right hand side in Fig. 2.1).
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This condition cannot be represented as a convex constraint because
d∗(ω) is a function of the controller parameters. Using Ld(jω), d∗(ω)
can be approximated by d(ω) which is tangent to the circle with ra-
dius |W1(jω)| but orthogonal to the line connecting the critical point
(−1+0j) to Ld(jω) (see Fig. 2.1). This will be a good approximation
if Ld(jω) is “close” to L(jω, ρ).

It should be noted that the equation of d(ω) at each frequency
depends only on W1(jω) and Ld(jω). If we name x and y, respec-
tively, the real and imaginary parts of a point on the complex plane,
the equation of d(ω) at each frequency becomes :

|W1(jω)[1 + Ld(jω)]| − Im{Ld(jω)}y−
[1 + Re{Ld(jω)}][1 + x] = 0 (2.15)

where Re{·} and Im{·} represent real and imaginary parts of a com-
plex value, respectively. Therefore, the condition that L(jω, ρ) for
all ω is located on the side of d(ω) that excludes the critical point
(−1 + 0j) can be given by the following linear constraints :

|W1(jω)[1 + Ld(jω)]| − Im{Ld(jω)}Im{L(jω, ρ)}−
[1 + Re{Ld(jω)}][1 + Re{L(jω, ρ)}] < 0 ∀ω (2.16)

Replacing Re{Ld(jω)} = 1/2[Ld(jω) + L∗
d(jω)] and Im{Ld(jω)} =

1/2[Ld(jω) − L∗
d(jω)], the above linear constraints can be further

simplified to:

|W1(jω)[1 + Ld(jω)]|−
Re{[1 + L∗

d(jω)][1 + L(jω, ρ)]} < 0 ∀ω (2.17)

where L∗
d(jω) is the complex conjugate of Ld(jω).

There exist two alternatives in order that this condition be sat-
isfied for all models in the uncertainty set represented by a circle
centered at L(jω, ρ). The first alternative is to approximate the un-
certainty circle by a polygon of ν > 2 vertices. Then, the robust
performance condition in (2.13) is satisfied if all vertices are located
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|W1(jω)|

|W2(jω)L(jω, ρ)|

Ld(jω)

d∗(ω)

d(ω)

Re

Im

L(jω, ρ)

−1

Fig. 2.1. Linear constraints for robust performance in Nyquist diagram

on the right side of d(ω). This can be represented by the following
linear constraints :

|W1(jω)[1 + Ld(jω)]| − Re{[1 + L∗
d(jω)][1 + Li(jω, ρ)]} < 0
∀ω and i = 1, . . . , ν (2.18)

where Li(jω, ρ) = K(jω, ρ)Gi(jω) and

Gi(jω) = G(jω)
[
1 +

|W2(jω)|
cos(π/ν)

ej2πi/ν

]
(2.19)
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It can be observed that the number of linear constraints are multi-
plied by ν when the uncertainty circle is approximated by a polygon
of ν vertices.

The second alternative is to increase the radius of the perfor-
mance circle by |W2(jω)L(jω, ρ)| which leads to the following convex
constraints:

|W1(jω)[1 + Ld(jω)]| + |W2(jω)L(jω, ρ)[1 + Ld(jω)]|−
Re{[1 + L∗

d(jω)][1 + L(jω, ρ)]} < 0 ∀ω (2.20)

This alternative has less constraints and no conservatism but leads to
a slightly more complex convex optimization problem (convex con-
straints instead of linear constraints).

It should be noted that the nonconvex constraint in (2.11) is
convexified using the desired open-loop transfer function Ld(s). In
other words, the convex set in (2.20) is an inner approximation of
the nonconvex set defined by the constraint in (2.11).

2.3.2 Main result

The main result of this chapter is presented in the following theorem:

Theorem 2.1 Given the set of models G in (2.1) with performance
weighting functions W1i(jω), the linearly parameterized controller
in (2.5) stabilizes all models in G and satisfies the following robust
performance condition:

‖|W1iSi| + |W2iTi|‖∞ < 1 for i = 1, . . . , m (2.21)

if

|W1i(jω)| + |W2i(jω)ρT φ(jω)Gi(jω)|

−
Re{[1 + L∗

di
(jω)][1 + ρT φ(jω)Gi(jω)]}
|1 + Ldi(jω)| < 0

∀ω for i = 1, . . . , m (2.22)
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where Ldi(jω) is chosen such that the number of counterclockwise
encirclements of the critical point by its Nyquist plot is equal to the
number of unstable poles of Gi(s) and L∗

di
(jω) is the complex conju-

gate of Ldi(jω).

Proof: Since the real value of a complex number is less than or equal
to its magnitude, we have:

Re{[1 + L∗
di

(jω)][1 + ρT φ(jω)Gi(jω)]} ≤
|[1 + L∗

di
(jω)][1 + ρT φ(jω)Gi(jω)]| (2.23)

Then from (2.22) we obtain:

|W1i(jω)| + |W2i(jω)ρT φ(jω)Gi(jω)|
− |1 + ρT φ(jω)Gi(jω)| < 0

∀ω for i = 1, . . . , m (2.24)

which gives:∣∣∣∣ W1i(jω)
1 + Li(jω, ρ)

∣∣∣∣+
∣∣∣∣W2i(jω)Li(jω, ρ)

1 + Li(jω, ρ)

∣∣∣∣ < 1

∀ω for i = 1, . . . , m (2.25)

that leads directly to (2.21).
Now we should show that this controller stabilizes all models in

G. From (2.22), for i = 1, . . . , m, we have:

Re{[1 + L∗
di

(jω)][1 + ρT φ(jω)Gi(jω)]} > 0 ∀ω (2.26)

or wno
{
[1 + L∗

di
(jω)][1 + Li(jω, ρ)]

}
= 0, where wno stands for

winding number around the origin. It should be mentioned that
L∗

di
(jω) and Li(jω, ρ) are zero or constant for the semicircle with

infinity radius of the Nyquist contour so the wno depends only on
the variation of s on the imaginary axis. Therefore:

wno[1 + Ldi(jω)] = wno[1 + Li(jω, ρ)] (2.27)
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Since Ldi(jω) satisfies the Nyquist criterion, Li(jω, ρ) will do so as
well and all closed-loop systems are stable. �
Corollary 2.1 Consider the convex combination of m spectral mod-
els in G :

m∑
i=1

λiGi(jω)[1 + W2i(jω)∆] � Gλ(jω)[1 + W2(jω)∆] (2.28)

where

Gλ(jω) �
m∑

i=1

λiGi(jω) (2.29)

W2(jω) �
∑m

i=1 λiGi(jω)W2i (jω)
Gλ(jω)

(2.30)

λ = [λ1, . . . , λm],
∑m

i=1 λi = 1 and λi ∈ [0 , 1]. Then, the linearly
parameterized controller in (2.5) will stabilize this model for any ad-
missible λ and satisfies the following robust performance condition:

‖|W1S| + |W2T |‖∞ < 1 (2.31)

where

W1(jω) �
m∑

i=1

λiW1i(jω) (2.32)

if (2.22) is satisfied with Ldi(jω) = Ld(jω) for i = 1, . . . , m. Ld(jω)
should be chosen such that the number of counterclockwise encir-
clements of the critical point by its Nyquist plot is equal to the num-
ber of unstable poles of Gλ(s). A fixed Ld(jω) means that the number
of unstable poles of Gλ(s) should be fixed for all λ.

Proof: Multiplying (2.22) by λi and adding the m constraints we
obtain:

m∑
i=1

λi|W1i(jω)| +
m∑

i=1

|W2i(jω)ρT φ(jω)λiGi(jω)|−

Re{[1 + L∗
d(jω)][1 + ρT φ(jω)

∑m
i=1 λiGi(jω)]}

|1 + Ld(jω)| < 0 ∀ω (2.33)
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We have : |W1(jω)| ≤
m∑

i=1

λi|W1i(jω)| and

∣∣∣∣∣ρT φ(jω)
m∑

i=1

λiGi(jω)W2i(jω)

∣∣∣∣∣ ≤
m∑

i=1

|W2i(jω)ρT φ(jω)λiGi(jω)| (2.34)

Therefore :

|W1(jω)| +
∣∣ρT φ(jω)Gλ(jω)W2(jω)

∣∣
− Re{[1 + L∗

d(jω)][1 + ρT φ(jω)Gλ(jω)]}
|1 + Ld(jω)| < 0 ∀ω (2.35)

The rest of the proof is similar to that of Theorem 2.1. �

Remarks:

1. The results of Theorem 2.1 are valid if Li(s, ρ) has some poles
on the imaginary axis, say {jp1, jp2, . . .}. In this case ω ∈ R −
{[p1 − ε, p1 + ε], [p2 − ε, p2 + ε], . . .} where ε is a small positive
value. The stability is guaranteed if Ldi(s) contains the poles on
the imaginary axis of Li(s, ρ) because they will have the same
behavior at the small semicircular detour of the Nyquist contour
at these poles.

2. The same approach can be applied when an additive uncertainty
model is available i.e.

G̃i(s) = Gi(s) + W3i(s)∆(s) (2.36)

The robust performance condition is given by:∥∥∥∥|W1iSi| +
∣∣∣∣W3i

Gi
Ti

∣∣∣∣
∥∥∥∥
∞

< 1 for i = 1, . . . , m (2.37)
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In this case the convex constraints in (2.22) can be used with the
difference that

|W2i(jω)| =
|W3i(jω)|
|Gi(jω)| (2.38)

3. Individual shaping of the sensitivity functions is also possible
using the constraints in (2.22) with one of the filters equal to
zero.

4. Instead of minimizing a norm of L(ρ) − Ld, the robust perfor-
mance can be improved by minimizing the upper bound of the
infinity norm of the weighted sensitivity function. Consider the
following optimization problem for a single model:

min γ

‖|W1S| + |W2T |‖∞ < γ (2.39)

This optimization can be solved by an iterative bisection algo-
rithm. At each i-th iteration, for a fixed γi, we replace W1 and
W2 with W1/γi and W2/γi and we solve the feasibility problem
represented by the linear constraints in (2.18) or convex con-
straints in (2.20). If the problem is feasible, γi+1 will be chosen
smaller than γi and if the problem is infeasible γi+1 will be in-
creased.

2.3.3 Choice of Ld(s)

Open-loop shaping

The choice of Ld(s) should be coherent with respect to plant, con-
troller structure and design specifications. For example, if we de-
sign a PID controller for open-loop stable systems with no pole on
the imaginary axis a good choice is Ld(s) = ωc/s with ωc the de-
sired closed-loop crossover frequency. It is clear that Ld(s) contains
only one integrator that reflects the integrator of the PID controller.
This choice is coherent with the choice of desired open-loop trans-
fer function in the classical open-loop shaping methods that suggest



24 2 Fixed-order H∞ Controller Design for Spectral SISO Models

the magnitude of the open-loop transfer function should be large at
low frequencies and small at high frequencies. If a desired reference
model M(s) for the closed-loop system is available, Ld(s) can be cho-
sen equal to M(s)[1 −M(s)]−1. If W1(s) is designed as the inverse
of a target sensitivity function, a good choice of Ld(s) is W1(s) − 1.

The choice of Ld(s) is more important for unstable systems. In
this case, according to Theorem 2.1, the winding number of the
Nyquist plot of Ld(s) around the critical point should satisfy the
Nyquist stability criterion. For this purpose, the number of unstable
poles of the plant model should be known or a stabilizing controller
K0(s) should be available. In the latter, Ld(jω) = K0(jω)G(jω) is
a good choice that satisfies the Nyquist criterion.

H∞ control problem

In some control problems, such as feasibility problem satisfying H∞
constraints or a performance minimization problem as explained in
Remark 4, Ld(s) might not be considered as a performance specifica-
tion (e.g. as the example 2.4). In these cases, Ld(s) is only chosen to
convexify the nonconvex constraints in (2.11) giving the convex set in
(2.20). Ld(s) plays an intermediate role in reducing the conservatism
of the solution.

The following Proposition shows under what condition a feasible
point of the nonconvex set in (2.11) is also a feasible point of the
convex inner approximation set in (2.20).

Proposition 2.1 Consider that ρ◦ belongs to the non-convex set
(2.11), i.e. :

‖|W1S(ρ◦)| + |W2T (ρ◦)|‖∞ = γ(ρ◦) < 1 (2.40)

then ρ◦ satisfies the constraints in (2.20) if and only if :

|∠(1 + Ld(jω)) − ∠(1 + L(jω, ρ◦))| <

cos−1
(
|W1(jω)S(jω, ρ◦)| + |W2(jω)T (jω, ρ◦)|

)
∀ω (2.41)



2.3 Robust Controller Design in Nyquist Diagram 25

The above inequality is satisfied if

|∠(1 + Ld(jω)) − ∠(1 + L(jω, ρ◦))| < cos−1 γ(ρ◦) ∀ω (2.42)

Proof: The proof is straightforward using the following relation:

Re{[1 + L∗
d(jω)][1 + L(jω, ρ◦)]} =

|1 + L∗
d(jω)||1 + L(jω, ρ◦)| cos α (2.43)

where
α = |∠[1 + L(jω, ρ◦)] − ∠[1 + Ld(jω)]| (2.44)

Replacing the right hand side of (2.43) in (2.20) gives:

|W1(jω)| + |W2(jω)L(jω, ρ◦)| <

|1 + L(jω, ρ◦)| cosα ∀ω (2.45)

Dividing both sides by |1 + L(jω, ρ◦)| leads to :

|W1(jω)S(jω, ρ◦)| + |W2(jω)T (jω, ρ◦)| < cosα ∀ω (2.46)

which is equivalent to (2.41). A sufficient condition for the above
inequality is that the maximum value of the left hand side be smaller
than cosα or:

γ(ρ◦) < cosα (2.47)

from which (2.42) can be concluded. �
Suppose for example that ρ◦ is a feasible point of the nonconvex

set with γ(ρ◦) = 0.7, then α, the phase difference of 1 + Ld(jω) and
1 + L(jω, ρ◦), should be less than cos−1 0.7 = 45◦. This represents
a very large set (one quarter of the complex plane) of admissible
Ld(jω) for which ρ◦ is in the feasibility set of the inner approxima-
tion (see Fig. 2.2). It is clear that if the specifications are too tight
(which means that for any feasible point ρ◦, γ(ρ◦) is very close to 1),
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the non convex set in (2.11) is too small and finding an inner approx-
imation by the choice of Ld becomes very difficult. However, milder
specifications leads to a larger nonconvex set in (2.11) and a reason-
able choice of Ld lead usually to a nonempty inner approximation of
the nonconvex set.

|W1(jω)|

|W2(jω)L(jω, ρ◦)|

Ld(jω)

1 + L(jω, ρ◦)

1 + Ld(jω)
45◦

Re

Im

L(jω, ρ◦)

−1

α

d1 d2

Fig. 2.2. A graphical illustration of Proposition 1 for γ(ρ◦) = 0.7

It is shown that a reasonable choice is Ld(s) “close” to L(s, ρ).
Suppose that ρ∗ is the optimal solution of the nonconvex problem.
It is well known that the optimal H∞ solution is based on cancellation
of stable poles and zeros of the plant by the controller. Therefore, an
Ld(s) that contains the unstable poles and zeros of of the plant model
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and controller (including the poles on the imaginary axis) will be
“close” to L(s, ρ∗) and the convex set generated based on this Ld(s)
probably contains the optimal controller. In this case the optimal
controller can be found by minimizing a criterion J(ρ) = ‖L(ρ)−Ld‖
under the robust performance constraint in (2.22).

If the first choice of Ld(jω) leads to a non feasible set, the itera-
tive windsurfing approach [3] can be used to compute an appropriate
Ld(s). In this approach we start with modest specifications by reduc-
ing the gain of W1 and W2 so that a feasible solution ρ1 is obtained.
Then Ld(jω) = L(jω, ρ1) is chosen and the specifications will be
tightened by increasing the gain of W1 and W2. A feasible solu-
tion ρ2 for the second feasibility problem will be used to compute a
new Ld(jω) = L(jω, ρ2). Although the convergence of this iterative
approach to the optimal solution cannot be proved, good results in
practice can be obtained.

It should be mentioned that a nonrealistic choice of Ld(s) (with
respect to plant model and controller structure) will only increase
the conservatism of the approach and never leads to a destabilizing
controller. As a result, a badly chosen Ld(s) may lead to an infeasible
solution.

2.3.4 Optimization problem

Any norm of L−Ld can be minimized subject to the linear or convex
constraints proposed in (2.18) or in (2.20) respectively. A convex
optimization approach is proposed in which the system two norm of
L − Ld is minimized under the convex constraints in (2.20):

min
ρ

‖L(ρ) − Ld‖2

Subject to:
|W1(jω)[1 + Ld(jω)]| + |W2(jω)L(jω, ρ)[1 + Ld(jω)]|−
Re{[1 + L∗

d(jω)][1 + L(jω, ρ)]} < 0 ∀ω

(2.48)

This optimization problem is known as the convex SIP problem
where a finite number of decision variables (the parameters of the
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controller) should be optimized subject to an infinite number of con-
straints. Different approaches to solving this type of optimization
problem are discussed in Chapter 5. A practical solution to solving
(2.48) is to choose a finite number of frequencies and define a finite
set of convex constraints in (2.20) for ω ∈ {ω1, ω2, . . . , ωN}. The two
norm is replaced by ‖L(ρ)−Ld‖2

2 which at the same time is approxi-
mated by

∑N
k=1 |L(jωk, ρ)−Ld(jωk)|2 to obtain a quadratic objective

function. Thus, the following optimization problem is considered:

min
ρ

N∑
k=1

|L(jωk, ρ) − Ld(jωk)|2

Subject to:
|W1(jωk)[1 + Ld(jωk)]| + |W2(jωk)L(jωk, ρ)[1 + Ld(jωk)]|−
Re{[1 + L∗

d(jωk)][1 + L(jωk, ρ)]} < 0 for k = 1, . . . , N
(2.49)

where L∗
d(jωk) is the complex conjugate of Ld(jωk).

2.4 Simulation Example

This example is a classical H∞ control problem and it is shown that
the proposed approach gives better performance with a lower order
controller. Additionally, it shows that the proposed method is appli-
cable to unstable systems. The example is taken from [16] where a
robust performance problem is defined for an unstable plant.

Consider the family of plants described by the following multi-
plicative uncertainty model:

G̃(s) =
(s + 1)(s + 10)

(s + 2)(s + 4)(s − 1)
[1 + W2(s)∆(s)] (2.50)

where

W2(s) = 0.8
1.1337s2 + 6.8857s + 9

(s + 1)(s + 10)
(2.51)

The nominal performance is defined by ‖W1S‖∞ < 1 with :
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W1(s) =
2

(20s + 1)2
(2.52)

The objective is to compute a controller K(s) that optimizes the
robust performance by minimizing γ in (2.39).

The standard H∞ solution solves an approximate problem and
leads to γopt = 0.844 for this problem with the controller K(s) =
N∞/D∞, where

N∞ = 7.409e6s6 + 1.266e8s5 + 6.335e8s4 + 1.152e9s3

+6.911e8s2 + 5.442e7s + 9.37e5 (2.53)
D∞ = s7 + 9.07e5s6 + 1.901e7s5 + 1.043e8s4 + 4.416e7s3

−4.682e7s2 − 4.962e6s− 1.262e5 (2.54)

This 7th-order controller is unstable and has a pair of complex con-
jugate poles very close to the imaginary axis.

Now, the method proposed in this chapter is applied to design a
PID controller represented by :

K(s) = [Kp Ki Kd][1
1
s

s

1 + Tfs
]T (2.55)

where the time constant of the derivative part of the PID controller
Tf is set to 0.01 s. The frequency response of the model is computed
at N = 500 linearly spaced frequency points between 10−3 and 103

rad/s. The uncertainty circle at each frequency is approximated
by an outbounding polygon with ν = 8 vertices. The plant model
contains one unstable pole and the controller contains an integrator,
so the desired open-loop transfer function is chosen as

Ld(s) = β
s + α

s(s − 1)
(2.56)

This is the simplest choice of Ld(s) that contains a stable zero to
ensure the Nyquist stability criterion. The characteristic polynomial
of the closed-loop system with Ld(s) is given by: s2 − s + βs + βα.
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Taking α = 1 for simplicity, the stability criterion is satisfied for
Ld(s) with β > 1. For instance, we choose β = 2 and we will study
later the sensitivity of the solution for different values of β.

In order to obtain the controller giving the minimal value for γ,
the bisection algorithm explained in Remark 4 of Subsection 2.3.2 is
used with the linear constraints in (2.18) and leads to

‖|W1S| + |W2T |‖∞ = 0.7262 (2.57)

The resulting PID controller is :

K0(s) =
2.074s2 + 9.702s + 6.425

0.01s2 + s
(2.58)

It is interesting to observe that this PID controller gives better per-
formance than the H∞ controller. Moreover, it is stable and eas-
ily implementable on a real system. The performance can be fur-
ther improved using a new Ld(s) based on K0(s). With this new
Ld(s) = K0(s)G(s) the optimal controller is given by :

K(s) =
2.643s2 + 23.500s + 8.589

0.01s2 + s
(2.59)

which leads to γopt = 0.7247.
In order to study the sensitivity of the solutions to the choice of

Ld(s), the value of β in (2.56) is changed from 2 to 97 with a step size
of 5. For each value of β the minimum of γ is computed. The mean
value of optimal γ’s is 0.7611 and its standard deviation 0.0394. This
shows that although the optimal solution depends on the choice of
Ld(s), it is not very sensitive to this choice. Moreover, the results
obtained by this approach, whatever the choice of β between 2 and
97, are better than the standard H∞ optimal solution.
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2.5 Discussion and Conclusions

2.5.1 Discussion

It should be mentioned that the problem of robust fixed-order con-
troller design is a non-convex NP-hard problem and all solutions to
this problem are based on some approximations. For example, if we
consider the standard H∞ control problem for design of fixed-order
controllers for systems with multi-model and frequency-domain un-
certainty, we have the following approximations :

• Approximation of the structured multi-model uncertainty with
unstructured frequency-domain uncertainty.

• Approximation of the frequency-domain uncertainty with a ra-
tional weighting filter.

• Approximation of the real robust performance condition in (2.11)
with the condition given in (2.12).

• Approximation of the resulting high-order controller with a fixed-
order controller. In this operation, it is difficult to even guarantee
the stability and performance for the reduced-order controller.

The proposed method considers directly the multi-model and
frequency-domain uncertainty and designs a fixed-order controller.
Systems with time-delay can also be considered. However, it seems
that this method has some drawbacks which are discussed below :

1. The proposed optimization problem has an infinite number of
constraints. However, in practice, a finite number of frequency
points is sufficient for almost all applications. Different ap-
proaches to deal with this problem are discussed in Chapter 5.

2. The controller is linearly parameterized, so the denominator of
the controller is fixed and it should be chosen prior to design.
In practice, some of the poles of the controller are usually fixed
to achieve certain closed-loop performances. For example a pole
at origin, an integrator, or a pair of complex poles in a certain
frequency are fixed in order to reject the disturbances (internal
model principle). Therefore, this condition is not restrictive for
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low-order controller design. For higher order controller design
the use of a set of orthogonal basis function is proposed. It is
known that by increasing the controller order any stable trans-
fer function can be approximated with such a set. On the other
hand, this restriction ensures the stability of the controller which
is required in many applications and cannot be guaranteed by a
full controller parameterization. This means that this parame-
terization cannot be applied to systems which are not stabilizable
by stable controllers.

3. The robust performance condition in (2.11) is transformed to a
set of linear constraints in (2.18) or convex constraints in (2.20)
which adds some conservatism.

2.5.2 Conclusions

It is very difficult (if not impossible) to compare, by a theoretical
analysis, the overall approximation or conservatism of different ap-
proaches to fixed-order controller design. However, the effectiveness
of the proposed approach has been shown by the simulation example.
The advantages of this approach are summarized below:

• The method uses only the frequency response of the system and
no parametric model is required. The frequency response of the
model and the uncertainty at each frequency can be obtained
directly by the discrete Fourier transform from a set of data, so
the method can be considered as completely “data-driven”. Of
course, the method can be applied as well if a parametric model
with a pure time delay and an uncertainty set is available.

• PID controllers as well as higher order controllers with H∞ type
specifications can also be designed within the same framework.

• Unstable systems can also be considered if the number of unstable
poles or a stabilizing controller is known.

• The method is very simple, at least as simple as open-loop shap-
ing methods in Bode diagram or in Nichols chart currently used
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in textbooks for undergraduate courses in control systems. More-
over, the case of multi-model uncertainty can be handled easily
just by increasing the number of linear constraints while the men-
tioned classical frequency-domain approaches cannot deal with
this type of uncertainty.





3

Fixed-order RST Controller Design for
Spectral SISO Models

3.1 Introduction

Basically, a two-step strategy can be considered to extend the pro-
posed method in Chapter 2 to tune 2DOF controllers. First, a lin-
early parameterized feedback controller can be obtained by applying
directly the method proposed in the previous chapter. Then, by a
second optimization, a linearly parameterized feedforward controller
can be tuned subject to convex constraints assuring desired upper
bounds on the magnitude of the closed-loop sensitivity functions.
The main drawback of tuning a 2DOF controller in two different
steps is that there is no guarantee of achieving the optimal solution
for the original problem. The first optimization result influences the
solution of the second optimization problem. Consequently, it is de-
sirable to tune both degrees of freedom simultaneously.

In this chapter, the idea presented in Chapter 2 is extended to de-
sign robust fixed-order RST controllers based on open-loop shaping
with H∞ constraints on the weighted closed-loop sensitivity func-
tions. An RST controller is a polynomial controller which was first
proposed in [5], and where R, S and T are polynomials in q−1 (time
shift operator) (see Fig. 3.1). It can be shown that any 2DOF
controller can be represented in an RST form choosing the correct
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feedback and feedforward terms. In this approach, we consider that
the R polynomial is fixed a priori, for example as an integrator.
The performance specifications are presented as loop shaping of the
open-loop transfer function with H∞ constraints on the weighted
closed-loop sensitivity functions. The set of all fixed-order stabiliz-
ing RST controllers satisfying these conditions is a nonconvex set.
This set is approximated by an inner convex one represented by a
set of convex constraints in the Nyquist diagram. In this chapter,
a discrete-time approach is considered, however, the results are also
applicable to continuous-time systems.

This chapter is organized as follows: In Section 3.2 the class of
models, controllers, the design specifications and the control problem
are defined. Section 3.3 introduces the RST control design method-
ology based on the convex constraints in the Nyquist diagram. A
simulation example of a robust controller design benchmark problem
for a flexible transmission system is presented in Section 3.4. The
proposed method is applied to a double-axis Linear Permanent Mag-
net Synchronous Motor (LPMSM) in Section 3.5. Some conclusions
are given in Section 3.6.

3.2 Problem Formulation

3.2.1 Class of models

The class of causal discrete-time LTI-SISO systems is considered. It
is assumed that the plant model belongs to a set G containing m
spectral models:

G =
{
Gi(e−jω); i = 1, . . . , m; ∀ω ∈ [0, π]

}
(3.1)

which are presented in normalized frequencies. This type of model
can be obtained from a parametric model or by spectral analysis
from a set of input/output data as presented in Subsection 2.2.1.

In the sequel, for the sake of simplicity, we consider a nominal
model G ∈ G and a discrete-time controller will be designed. How-
ever, the results are also applicable to the multi-model case.
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3.2.2 Class of controllers

The controller to be designed is a discrete-time 2DOF controller of
the RST-type (Figure 3.1). The R polynomial is fixed a priori, which
is typically chosen as an integrator:

R(q−1) = 1 − q−1 (3.2)

The S and T polynomials are given by :

S(q−1, ρ) = ρ1 + ρ2q
−1 + . . . + ρnS q−nS+1 (3.3)

T (q−1, ρ) = ρnS+1 + ρnS+2q
−1 + . . . + ρnS+nT q−nT +1 (3.4)

where
ρT = [ρ1, ρ2, . . . , ρnS+nT ] (3.5)

and nS and nT are the number of parameters for S and T polyno-
mials, respectively.

-
++r(t) e(t)

S(q−1, ρ)

G(q−1)

p(t)

y(t)
1

R(q−1)

v(t)

T (q−1, ρ)
u(t)

Fig. 3.1. Structure of 2DOF controller of the RST-type

As in the previous chapter, the main property of this parameter-
ization is that every point on the Nyquist diagram of the open-loop
transfer function L(q−1, ρ) can be written as a linear function of the
parameters ρ:

L(q−1, ρ) =
S(q−1, ρ)
R(q−1)

G(q−1) (3.6)
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3.2.3 Design specifications

As in the previous section, a desired open-loop transfer function Ld

is available which represents all or a part of the desired specifications
and a norm of L(ρ) − Ld is minimized subject to the constraints on
the weighted closed-loop sensitivity functions.

Following the controller structure given in Figure 3.1, different
sensitivity functions can be defined between external inputs: r(t)
(the reference signal), v(t) (the input disturbance) and p(t) (the out-
put disturbance) and outputs: y(t) (the plant output) and u(t) (the
control input).

The following 5 sensitivity functions can be considered:

Syr(q−1, ρ) = S1(q−1, ρ) =
T (q−1,ρ)
R(q−1) G(q−1)

1 + S(q−1,ρ)
R(q−1) G(q−1)

(3.7)

Syv(q−1, ρ) = S2(q−1, ρ) =
G(q−1)

1 + S(q−1,ρ)
R(q−1) G(q−1)

(3.8)

Syp(q−1, ρ) = Suv(q−1, ρ) = S3(q−1, ρ) =
1

1 + S(q−1,ρ)
R(q−1) G(q−1)

(3.9)

Sur(q−1, ρ) = S4(q−1, ρ) =
T (q−1,ρ)
R(q−1)

1 + S(q−1,ρ)
R(q−1) G(q−1)

(3.10)

Sup(q−1, ρ) = S5(q−1, ρ) = −
S(q−1,ρ)
R(q−1)

1 + S(q−1,ρ)
R(q−1) G(q−1)

(3.11)

A small tracking error for a given reference signal is usually a
desired specification in many control problems. The tracking error
sensitivity function can be defined as:

S6(q−1, ρ) = S1(q−1, ρ)−1 =
T (q−1,ρ)−S(q−1,ρ)

R(q−1) G(q−1) − 1

1 + S(q−1,ρ)
R(q−1) G(q−1)

(3.12)
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The performance and robust stability of most control problems
can be defined by constraints on the infinity norm of the weighted
sensitivity functions. A standard nominal performance control prob-
lem designs a controller satisfying ‖W1Syp‖∞ < 1 where W1 rep-
resents the performance filter. If the system’s uncertainty is repre-
sented by a multiplicative uncertainty

G̃(q−1) = G(q−1)[1 + W2(q−1)∆(q−1)] with ‖∆‖∞ < 1 (3.13)

the robust stability is given by [17]:

‖W2Syr‖∞ < 1 (3.14)

In general, any upper bound condition on the previously men-
tioned sensitivity functions can be defined by the following con-
straints:

‖WpSp‖∞ < 1 for p = 1, . . . , 6 (3.15)

These constraints are however non-convex on the controller param-
eters ρ. In this chapter, convex constraints are proposed on the
Nyquist diagram to guarantee the following performance conditions:

|Wp(e−jω)Sp(e−jω)| < 1 ∀ω ∈ [0, π] and for p = 1, . . . , 6 (3.16)

3.2.4 Control problem

The following non-convex controller design problem is treated in this
chapter:

min ‖L − Ld‖2

Subject to:
‖WpSp‖∞ < 1 for ∀p ∈ P

(3.17)

where P is a subset of the set {1, . . . , 6}.
To illustrate the advantage of tuning both degrees of freedom

simultaneously over tuning them in two steps, the following example
is considered. The 2-norm of L−Ld is minimized subject to infinity
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norm constraints on the weighted tracking error sensitivity function
W6S6 and on the weighted output sensitivity function W3S3. If a
two-step strategy is applied to solve the control problem, first the
S(q−1, ρ) polynomial is designed minimizing ‖L−Ld‖2 satisfying the
constraints in the weighted output sensitivity function W3S3. Then,
T (q−1, ρ) is designed with a feasibility problem where the constraints
in W6S6 are satisfied with the fixed S(q−1, ρ) tuned previously. In
this example, the feasibility problem of the second step might not
be feasible. However, in the case that it is feasible, the solution
would be optimal. Obviously, if S(q−1, ρ) and T (q−1, ρ) polynomials
are designed in the same optimization problem better results can be
obtained. This will be shown in Section 3.5 with an experimental
example.

3.3 RST Controller Design in Nyquist Diagram

The constraints presented in (3.16) and in the optimization problem
(3.17) are non-convex on controller parameters ρ. The idea is to
approximate these constraints by a set of convex constraints guaran-
teeing the robustness and/or performance conditions in the Nyquist
diagram. This approximation is similar to that given for the robust
performance problem presented in Chapter 2. However, a gener-
alization is presented where the individual shaping of the different
closed-loop transfer functions are proposed which permits also to
tune RST controllers.

3.3.1 Convex approximation of the constraints on
sensitivity functions

Let the inequality in (3.16) be multiplied by |1 + S(e−jω ,ρ)
R(e−jω) G(e−jω)|.

Then, define:
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W̃p(e−jω)Xp(e−jω , ρ) ≡

Wp(e−jω)Sp(e−jω , ρ)
[
1 +

S(e−jω, ρ)
R(e−jω)

G(e−jω)
]

ω ∈ [0, π] and for p = 1, . . . , 6 (3.18)

where W̃p(e−jω) and Xp(e−jω , ρ) are respectively the fixed term and
the term depending linearly on ρ. Then, the constraint in (3.16) can
be written as:

|W̃p(e−jω)Xp(e−jω , ρ)| < |1 +
S(e−jω, ρ)
R(e−jω)

G(e−jω)|

∀ω ∈ [0, π] and for p = 1, . . . , 6 (3.19)

Note that |1 + S(e−jω ,ρ)
R(e−jω) G(e−jω)| is the distance in the Nyquist

diagram between the critical point (−1+0j) and L(e−jω, ρ). Hence,
the constraints in (3.19) are satisfied if and only if, in the Nyquist
diagram, the circle centered at the critical point (−1+0j) with a ra-
dius of |W̃p(e−jω)Xp(e−jω , ρ)| does not contain the point L(e−jω, ρ)
for all ω.

The condition that the point L(e−jω, ρ) is outside the circle cen-
tered at the critical point with a radius of |W̃p(e−jω)Xp(e−jω , ρ)| is
a non-convex constraint on controller parameters ρ. The non-convex
constraint can be approximated with a convex one by replacing the
circle of radius |W̃p(e−jω)Xp(e−jω , ρ)| by a fixed line d(ω) tangent
to the circle (Fig. 3.2). The line d(ω) divides the Nyquist complex
plane in two parts at each frequency ω. Now, the condition that
the point L(e−jω , ρ) is at the side of the line d(ω), excluding the
critical point (−1 + 0j), is a convex constraint on controller param-
eters ρ. The conservatism of this approximation can be reduced if
the slope of d(ω) changes with frequency. A progressive variation
of the slope is proposed using the frequency response of Ld(e−jω).
The line d(ω) at each frequency ω can be defined orthogonal to the
line connecting the critical point (−1 + 0j) to Ld(e−jω) and tangent
to the circle centered at the critical point (−1 + 0j) with a radius
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of |W̃p(e−jω)Xp(e−jω , ρ)|. As it has been already discussed in Sub-
section 2.3.3, Ld(e−jω) represents the desired specifications and it
should be coherent with respect to the plant, controller structure
and design specifications.

|W̃p(e−jω)Xp(e−jω , ρ)|

Ld(e−jω)

−1

Re

Im

L(e−jω)

d(ω)

Fig. 3.2. Convex constraint for performance condition in Nyquist diagram

If we name x and y respectively, the real and imaginary parts of
a point on the complex plane, the equation of d(ω) is given by:
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|W̃p(e−jω)Xp(e−jω , ρ)[1 + Ld(e−jω)]|
− Im{Ld(e−jω)}y − [1 + Re{Ld(e−jω)}](1 + x) = 0

∀ω ∈ [0, π] and for p = 1, . . . , 6 (3.20)

where Re{·} and Im{·} represent respectively the real and imaginary
parts of a complex value. The condition that the point L(e−jω, ρ) is
on the side of the line d(ω) excluding the critical point (−1 + 0j) is
given by the following convex constraints:

|W̃p(e−jω)Xp(e−jω , ρ)[1 + Ld(e−jω)]|
− Im{Ld(e−jω)}Im{L(e−jω, ρ)}

− [1 + Re{Ld(e−jω)}](1 + Re{L(e−jω, ρ)) < 0
∀ω ∈ [0, π] and for p = 1, . . . , 6 (3.21)

These convex constraints can be simplified to:

|W̃p(e−jω)Xp(e−jω , ρ)[1 + Ld(e−jω)]|−

Re{[1 + L∗
d(e

−jω)][1 +
S(e−jω, ρ)
R(e−jω)

G(e−jω)]} < 0

ω ∈ [0, π] and for p = 1, . . . , 6 (3.22)

where L∗
d(e

−jω) is the complex conjugate of Ld(e−jω).
These convex constraints can be used for systems with multi-

model uncertainty by repeating the constraints for each system.

Remark: These constraints can also be presented in Theorem
2.1 if W1i = 0, Ti(jω) = Spi(e−jω), W2i(jω)ρT φ(jω)Gi(jω) =
W̃pi(e−jω)Xpi(e−jω , ρ) and ρT φ(jω) = S(e−jω ,ρ)

R(e−jω) are considered. As
in this case, discrete-time controller design problems are considered,
the wno of [1 + L∗

di
(e−jω)] and [1 + S(e−jω ,ρ)

R(e−jω) Gi(e−jω)] depend only
on the variation of e−jω on the unit circle.
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3.3.2 Optimization problem

Any norm of L − Ld can be minimized subject to the convex con-
straints proposed in (3.22). Multi-model uncertainty can be directly
considered by repeating the constraints for each of the models of the
uncertainty. The following convex optimization problem is proposed
where the two norm of Li − Ldi is minimized under the convex con-
straints to solve the control problem given in (3.17) for a system with
multi-model uncertainty:

min
m∑

i=1

‖Li(ρ) − Ldi‖2

Subject to:
|W̃pi(e−jω)Xpi(e−jω , ρ)[1 + Ldi(e−jω)]|−
Re{[1 + L∗

di
(e−jω)][1 + S(e−jω ,ρ)

R(e−jω) Gi(e−jω)]} < 0
for ω ∈ [0, π], ∀p ∈ P and for i = 1, . . . , m

(3.23)

where P is a subset of the set and L∗
di

(e−jω) is the complex conjugate
of Ldi(e−jω).

Remarks:

1. It should be mentioned that Xp(e−jω , ρ) = 1 for p = 2, 3 leads
to linear constraints on controller parameters ρ.

2. In many cases, the aim is to minimize one of the upper bounds of
the infinity norm of the weighted closed-loop sensitivity functions
under infinity norm constraints on the other weighted closed-loop
sensitivity functions. This control problem is solved with the
following optimization problem:
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min γ
Subject to:
| W̃κ(e−jω)

γ Xκ(e−jω , ρ)[1 + Ld(e−jω)]|−
Re{[1 + L∗

d(e
−jω)][1 + S(e−jω ,ρ)

R(e−jω ) G(e−jω)]} < 0
for ω ∈ [0, π]

|W̃p(e−jω)Xp(e−jω , ρ)[1 + Ld(e−jω)]|−
Re{[1 + L∗

d(e
−jω)][1 + S(e−jω ,ρ)

R(e−jω ) G(e−jω)]} < 0
for ω ∈ [0, π] and ∀p ∈ P

(3.24)

where P is a subset of the set {[1, . . . , 6] \ κ} where \κ defines
the exclusion of κ.
This optimization problem can be solved with an iterative bisec-
tion algorithm. At the i-th iteration, a feasibility optimization
problem is solved with the constraints given in (3.24) for a fixed
value of γi. If the problem is feasible, γi+1 will be chosen smaller
than γi, and if the problem is infeasible, γi+1 will be increased.
This is solved using standard solvers. Note that for fixed val-
ues of γ, the constraints in the optimization problem (3.24) are
convex on controller parameters ρ.

3. This optimization problem is also an SIP problem. As in the Sub-
section 2.3.4, a practical solution is chosen with N finite number
of frequencies ω ∈ {ω1, ω2, . . . , ωN} to solve the problem. The
two norm is replaced by ‖Li(ρ) − Ldi‖2

2 which at the same time
is approximated by

∑N
k=1 |Li(jωk, ρ) − Ldi(jωk)|2 to obtain a

quadratic objective function. Thus, the following optimization
problem is considered for multi-model case:
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min
m∑

i=1

N∑
k=1

|Li(e−jωk , ρ) − Ldi(e
−jωk)|2

Subject to:
|W̃pi(e−jωk)Xpi(e−jωk , ρ)[1 + Ldi(e−jωk)]|−
Re{[1 + L∗

di
(e−jωk)][1 + S(e−jωk ,ρ)

R(e−jωk )
Gi(e−jωk)]} < 0

for k = 1, . . . , N , for i = 1, . . . , m and ∀p ∈ P

(3.25)

where P is a subset of the set {1, . . . , 6} and L∗
di

(e−jωk) is the
complex conjugate of Ldi(e

−jωk).

3.4 Solution to a Flexible Transmission
Benchmark

One of the well-known benchmarks for robust controller design was
presented in the second European Control Conference in Rome (ECC
1995) and the results were published in a special issue of European
Journal of Control (Vol. 1 No. 2, 1995). The benchmark problem
is to design a low-order robust controller for a flexible transmission
system in three different loadings [41]. The model of the system
contains two low-damped resonance modes whose frequencies change
drastically with load. The control specifications are given in terms of
time-domain performances for tracking and disturbance rejection and
frequency-domain performances in terms of the constraints on the
magnitude of the sensitivity functions. The problem is challenging,
because the large model uncertainty is located at low frequencies
where the performances are required.

Many robust control design approaches have been already ap-
plied to the flexible transmission benchmark. Some of them are
published in the special issue dedicated to the benchmark and the
others ulteriorly with new progress in robust control approaches.
The following solutions can be found in literature: four H∞ solu-
tions [18, 32, 38, 56], two controllers based on Quantitative Feedback
Theory (QFT) [37, 49], three controllers using pole placement with
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sensitivity shaping [39,40,42], one Generalized Predictive Controller
(GPC) [13], one fractional order controller by CRONE control [50]
and one model-free approach based on Iterative Feedback Tuning
(IFT) [27]. Although all the methods stabilize the system and achieve
good performance, only two controllers meet all required specifi-
cations for all loadings with relatively high-order controllers. The
first controller that satisfied all specifications was a QFT controller
with 20 parameters. Later on, a controller using convex optimization
achieved the same performances with 16 parameters.

System description

The flexible transmission system is a laboratory setup designed
and constructed in Laboratoire d’Automatique de Grenoble (INPG-
CNRS), France. This system consists of three horizontal pulleys con-
nected by two elastic belts. The input of the system is the reference
position for the first pulley controlled by a DC motor in closed-loop.
The output of the system is the position of the third pulley measured
by a potentiometer. The schematic diagram of the system is given
in Figure 3.3. The goal is to control the position of the third pulley
which can be loaded with small disks. A PC is used to control the
system with a sampling frequency of 20 Hz.

The system has two oscillatory modes with damping factors of
less than 0.05 that vary significantly in different loadings. The dis-
crete time models of the system for the no load, half load (1.8 kg)
and full load (3.6 kg) configurations have been identified with a low
magnitude Pseudo Random Binary Sequence (PRBS) input. The
amplitude of the frequency characteristics is represented in Figure
3.4 where the frequency axis is normalized. The discrete-time trans-
fer functions of the system are given by:

Gi(q−1) =
q−dBi(q−1)

Ai(q−1)
i = 1, 2, 3 (3.26)
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where q−1 is the backward shift operator and the pure time delay
d = 2 for all models. The corresponding identified and validated
models are :

Fig. 3.3. Schematic diagram of the flexible transmission.

Unloaded model:

A1(q−1) = 1 − 1.14833q−1 + 1.58939q−2

−1.31608q−3 + 0.88642q−4

B1(q−1) = 0.28261q−1 + 0.50666q−2
(3.27)

Half loaded model:

A2(q−1) = 1 − 1.99185q−1 + 2.20265q−2

−1.84083q−3 + 0.89413q−4

B2(q−1) = 0.1027q−1 + 0.18123q−2
(3.28)
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Fig. 3.4. Frequency characteristics: Fully loaded (dashed-dotted, red),
Half loaded (solid, green) and Unloaded (dashed, blue)

Fully loaded model:

A3(q−1) = 1 − 2.09679q−1 + 2.31962q−2

−1.93353q−3 + 0.87129q−4

B3(q−1) = 0.06408q−1 + 0.10407q−2
(3.29)

Benchmark specifications

A discrete-time 2DOF polynomial form RST controller (see Fig.3.1)
has to be designed. The canonical form of the RST controller is given
by:

R(q−1)u(t) = T (q−1)r(t) − S(q−1)y(t) (3.30)

where u(t) is the plant input, y(t) the plant output, r(t) the desired
reference and R,S,T are polynomials in q−1.

The controller should be designed to satisfy the following speci-
fications:

1. A rise time (90% of the final value) of less than 1s.
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2. Overshoot of less than 10%.
3. Rejection of 90% of the output disturbance S3i filtered by 1/Ai

in less than 1.2s.
4. Perfect rejection of a constant disturbance (using integral ac-

tion).
5. Disturbance attenuation at low frequencies (less than 0.2Hz).
6. Maximum of output sensitivity function less than 6dB (modulus

margin greater than 0.5).
7. A delay margin of at least 40 ms.
8. A maximum value of less than 10dB for the input sensitivity

function S5i at high frequencies (between 8 to 10 Hz).

Solution to the Benchmark Problem

The design procedure described in Section 3.3 is applied to the flexi-
ble transmission benchmark. The linearly parameterized 2DOF con-
troller with RST structure given in (3.2), (3.3) and (3.4) is consid-
ered. For this particular example, to reduce the complexity of the
controller, nT = 1 is chosen, reducing the polynomial T to a simple
gain. The gain in T (q−1) is taken equal to the sum of the parameters
of S(q−1) giving a unit gain to the closed-loop system.

The fixed term (1−q−1) in R(q−1) is to assure the integral action
of the controller (spec. 4). The time-domain performances (spec. 1,2
and 3) are tuned using the following reference model:

M(s) =
ω2

n

s2 + 2ωnξs + ω2
n

(3.31)

This leads to the following desired open-loop transfer functions:

Ldi(s) =
ω2

n

s(s + 2ξωn)
(3.32)

for i=1,2,3 (same desired open-loop transfer function for three mod-
els). Note that since the design is carried out in the frequency do-
main, the desired open-loop transfer function can be defined either in



3.4 Solution to a Flexible Transmission Benchmark 51

continuous or in discrete time. Choosing ωn = 3.2 rad/s and ξ = 0.7
gives a reference model with a rise time of 0.8 s and 5% overshoot
which easily satisfies the time-domain specifications (spec. 1 and 2).

The delay margin cannot be transformed into a convex constraint.
However, this specification is usually met when other specifications
are satisfied (spec. 7).

Because of two very oscillatory modes in the plant models, the
output step disturbance filtered by 1/Ai will be very oscillatory such
that spec. 3 cannot be met. The disturbance rejection time can be
reduced indirectly by adding a bound on the infinity-norm of the
closed-loop transfer function between the disturbance and output,
S3i/Ai. This constraint can be represented by :∥∥∥∥S3i

Ai

∥∥∥∥
∞

< γi (3.33)

and it can be considered in the proposed approach by taking a per-
formance filter WSi = 1/(γiAi).

In addition, a performance filter

W3(e−jω) =
{

1 for 0 < ω ≤ 0.02π

1/106/20 = 0.5 for 0.02π < ω ≤ π
(3.34)

is chosen in order to assure a maximum of less than 6dB (spec. 6)
for the output sensitivity function (modulus margin of 0.5) and an
attenuation band of 0.02π rad/s (spec. 5). These performances can
be given by one weighting function for each model defined as follows:

W3i(e−jω) = max[|W3(e−jω)|, |WSi(e
−jω)|] (3.35)

The specification for the input sensitivity function |S5i(e−jω)| <
10dB at high frequencies (0.8π < ω < π rad/s) can be presented
as (spec. 8):

‖W5S5i‖∞ < 1 (3.36)

where
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W5(e−jω) =
{

0 for 0 < ω ≤ 0.8π
1/1010/20 for 0.8π < ω ≤ π

(3.37)

The controller is tuned based on the proposed method and by
solving the optimization problem given in (3.25). The frequency
response of the three models are computed at N=500 equally spaced
frequency points between 1/N and π (Nyquist frequency).

Simulation Results

Fixing the number of controller parameters nS = 12 (controller order
equal to 11), the design variable γi to 1028/20 (equal to 28dB) for
i = 1, 2, 3 and using Ldi in (3.32), the first controller K0, satisfying
almost all the specifications, is designed solving the optimization
problem in (3.25).

In order to reduce the complexity of the controller, a new itera-
tion is carried out. It has been shown that a closer Ld(e−jω) to the
optimal L(e−jω, ρ∗) will reduce the conservatism of the convex ap-
proximation. Therefore, a new desired open loop transfer function is
defined as: Ldi(e

−jω) = K0(e−jω)Gi(e−jω). It should be mentioned
that the disturbance rejection time is the most critical specification
to be met. So with this new Ldi , a tighter bound for S3i/Ai is also
considered. It means that a smaller γi equal to 22dB, 24dB and
26dB, respectively is chosen (1dB higher than those obtained in the
first iteration). By running the convex optimization problem with
nS = 8, an 7-th order controller K1 satisfying 100% of the speci-
fications is obtained. The order is further reduced to nS = 7 by
using Ldi(e

−jω) = K1(e−jω)Gi(e−jω) and γi equal to 20dB, 24dB
and 26dB, respectively. The final 6th-order controller is given by:

R(q−1) = 1 − q−1

S(q−1) = 0.632 − 1.781q−1 + 1.895q−2 − 1.062q−3

+0.5247q−4 − 0.3399q−5 + 0.1887q−6

T (q−1) = 0.05733

(3.38)
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Figures 3.5 and 3.6 show that the specifications on the input sen-
sitivity function S5i and output sensitivity function S3i are satisfied
for the three models. Figure 3.7 shows the step and disturbance re-
jection responses. The details of achieved performances for the final
controller are shown in Table 3.1.

Table 3.1. Performance of the controller

Specification No load Half load Full load
Rise Time [s] 0.80 0.75 0.70
Overshoot[%] 3.87 3.92 6.56
Dist. rejection [s] 1.15 1.15 1.2
Maximum S [dB] 5.93 4.41 5.12
Delay Margin [ms] 44 95 385
Maximum U [dB] 9.20 9.86 9.99
Attenuation band [Hz] 0.204 0.206 0.200

Table 3.2 gives a joint evaluation of the performance and com-
plexity of some controllers that have already been designed for the
benchmark problem and compare them with the proposed controller.
It can be observed that the proposed controller meets all specifica-
tions with the lowest complexity.

3.5 Application to an Industrial Double-Axis
Positioning System

In this section, the proposed approach is applied to a double-axis
LPMSM. The goal is to control the position of the mentioned sys-
tem shown in Fig. 3.8, using an RST discrete-time controller with a
sampling frequency of 6 kHz. This kind of systems have high dynam-
ics (high accelerations and decelerations), high mechanical stiffness,
reduced friction and high accuracy as there is no backlash and no
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Fig. 3.5. U of Unloaded (dashed, blue), Half loaded (solid, green) and
Fully loaded (dashed-dotted, red) systems.
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Fig. 3.6. S of Unloaded (dashed, blue), Half loaded (solid, green) and
Fully loaded (dashed-dotted, red) systems.
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Fig. 3.7. Step and disturbance rejection of Unloaded (dashed, blue), Half
loaded (solid, green) and Fully loaded (dashed-dotted, red) systems. The
straight dashed lines show the intervals in which the responses should be
located.

mechanical transmission. For simplicity, only the system identifica-
tion and feedback design for the higher axis is analyzed when the
motor is in three different positions at −0.16m, 0m and 0.16m of the
x axis.

3.5.1 Non-parametric identification of the dynamics of the
higher axis

A spectral model is obtained by exciting the higher axis with a sum
of sinusoidal signals from 4.4 to 3000 Hz for each position of the x
axis. Three different frequency responce functions (FRF) Gi(e−jω)



56 3 Fixed-order RST Controller Design for Spectral SISO Models

Table 3.2. Comparison with other benchmark results

Performance Complexity
(%) (order of R+S+T)

Proposed approach 100 7
[42] 100 16
[49] 100 20
[18] 98.80 11
[50] 98.61 14
[37] 97.71 9
[27] 97.48 9
[40] 97.12 12
[32] 94.38 35
[13] 91.82 16
[56] 72.35 15

are obtained for i = 1, 2, 3 which are shown in Fig. 3.9. Though
the three frequency responce functions are similar, the controller is
designed using the multi-model uncertainty to show the effectiveness
of the method with this type of systems.

3.5.2 RST controller design of the higher axis

The objective is to design an RST controller by tuning the poly-
nomials S and T given in (3.3) and (3.4) using the proposed
method. A second-order feedback controller with a second-order
pre-compensator is designed choosing nS and nT equal to 3. The
controller should stabilize the system at all i-th positions and reduce
the settling time for an error band of 200nm for a given reference
signal designed by the manufacturer. The signal has the form of a
low-pass filtered step of 25 mm (the filter F (jω) is given) which does
not excite unwanted vibrations and avoids input saturation.

Since the design of the controller is carried out in the frequency
domain, the weighting filters can be defined in continuous-time. A
modulus margin of 0.5 is desirable to assure the robustness of the
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x

y

Fig. 3.8. Double-axis linear permanent magnet synchronous motor system

controller (i.e. maximum value of less than 6 dB of the magnitude
of the output sensitivity functions S3i). This is obtained choosing
W3i(jω) = 0.5 for all ω and for all i. On the other hand, due to
the friction appearing as a constant input disturbance, an integrator
is needed in the controller to reject it. Therefore, the open-loop
transfer functions should contain three integrators, one because of
the controller and two others because of the plant (the system can
be considered as 2 pure integrators). It is shown in [58] that internal
cancelation between integrators and the zeros of the controller can be
avoided by introducing the desired integrators in the weighting filters
W3i(jω). The desired bandwidth for the closed-loop disturbance
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Fig. 3.9. FRF of the double-axis system at −0.16m, 0m and 0.16m of the
x axis

rejection ωc is 300 rad/s. As a result, the W3i(jω) weighting filters
are chosen as a triple integrator with a bandwidth of ωc to assure the
integral action. The combination of the robustness and performance
conditions defines the following weighting filters:

W3i(jω) =




ω3
c

(jω)3 for | ω3
c

(jω)3 | > 0.5

0.5 for | ω3
c

(jω)3 | < 0.5
(3.39)

for i = 1, 2, 3.
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In order to reduce the tracking error and indirectly the settling
time, a constraint on the weighted tracking functions W6iS6i are
considered. It is desired to reduce the tracking error at the excited
frequencies for this particular reference. For this reason, the given
low-pass filtered step is used as weighted function W6i :

W6i(jω) =
F (jω)

jω
(3.40)

Figure 3.11 and 3.12 show the inverse of the filters that have been
chosen. A stabilizing controller tuned by the manufacturer is already
available:

R0(q−1) = 1 − q−1

S0(q−1) = 1.4661− 2.7567q−1 + 1.3021q−2

T0(q−1) = 9.2439− 26.0901q−1 + 24.6354q−2 − 7.7778q−3
(3.41)

Therefore, Ldi(e−jω) is chosen as K0(e−jω)Gi(e−jω) for i = 1, 2, 3
where K0(q−1) = S0(q−1)/R0(q−1). This controller leads to

‖W6S60‖∞ = 0.361360 (3.42)

The goal is to minimize the maximum value of ‖W6iS6i‖∞ for
i = 1, 2, 3. In order to obtain the optimal controller, the optimiza-
tion problem in (3.24) is solved repeating the constraints for each
system using the bisection algorithm proposed in Remark 2 and the
weighting filters given in (3.39) and (3.40). The optimization prob-
lem leads to

‖W6S6‖∞ = 0.217580 (3.43)

The resulting controller is:

R1(q−1) = 1 − q−1

S1(q−1) = 2.387724− 4.526296q−1 + 2.145863q−2

T1(q−1) = 2.558529− 4.874582q−1 + 2.323343q−2 (3.44)
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The same problem is solved based on the method proposed in
Chapter 2 using the two-step optimization and the bisection algo-
rithm as in the example 2.4. This leads to:

‖W6S62‖∞ = 0.244481 (3.45)

The resulting controller is:

R2(q−1) = 1 − q−1

S2(q−1) = 2.283279− 4.298835q−1 + 2.017491q−2

T2(q−1) = 2.404921− 4.545919q−1 + 2.142933q−2 (3.46)

Figure 3.10 shows the final part of the movement for the desired
reference signals. The outputs of the three different controllers at
the three different positions are shown. The proposed controller has
a less oscillatory behavior with a shorter settling time. Figure 3.11
and 3.12 show respectively the upper bounds (1/W3i and 1/W6i) and
sensitivity functions S3i and S6i for each controller.

As expected, the proposed controller obtains a smaller maximun
value for the weighted sensitivity functions than that obtained by
using the 2 step approach. It should be mentioned that the controller
designed by the manufacturer has not been designed for the same
purpose.

3.6 Conclusions

In this chapter, the robust fixed-order RST controller design prob-
lem based on the shaping of the open-loop transfer function with H∞
constraints on the closed-loop sensitivity functions is formulated as a
convex optimization problem. Solving only one convex optimization
problem, T and S polynomials of the RST controller with a fixed
R polynomial are tuned for a SISO system. The approach is based
on the minimization of the difference between the open-loop transfer
function and a desired open-loop transfer function with constraints
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Fig. 3.10. Output of the system for three different positions: Reference
signal (black, dashed-dotted), Proposed controller (solid, blue), 2 Step
controller (dashed-dotted, green), Manufacturer’s controller (dashed, red)
and the error band for the settling time (dashed, black)

on the weighted sensitivity functions. These constraints are approxi-
mated with convex constraints in the Nyquist diagram. This method
requires only the frequency response of the system. In contrast to the
standard H∞ controller design method, systems with time-delay can
be considered directly by this method. The multi-model uncertainty
can be directly taken into account by this approach without any ap-
proximation. Control problems where the performance is improved
by minimizing the norm of a specific weighted sensitivity function
can also be implemented using a bi-section algorithm.
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Fig. 3.11. The performance conditions on S3i : Proposed controller (solid,
blue), 2 Step controller (dashed-dotted, green), Manufacturer’s controller
(dashed, red) and 1/W3i (solid, black) for i = 1, 2, 3.

The effectiveness of the proposed approach has been shown by
two simulation examples. This approach has been applied to an
international benchmark problem for robust controller design [41]
and a controller with only 7 parameters has been designed that meets
all benchmark specifications. To the best of the authors knowledge,
the proposed controller meets all the specifications with the lowest
complexity amongst all controllers proposed for this system in the
literature. Although the resulting controller has the smallest order
among the benchmark solutions, it cannot be shown that there is no
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Fig. 3.12. The performance conditions on S6i : Proposed controller (solid,
blue), 2 Step controller (dashed-dotted, green), Manufacturer’s controller
(dashed, red) and 1/W6i (solid, black) for i = 1, 2, 3.

lower-order controller that can achieve the same performance. The
method has also been applied on an industrial double-axis LPMSM
system. It should be noted that the application considers a multi-
model uncertainty for which a controller has been designed satisfying
weighted closed-loop sensitivity constraints for all models.





4

Fixed-order H∞ Controller Design for
Spectral MIMO Models

4.1 Introduction

In this chapter, the method proposed in chapter 2 is extended to
deal with LTI-MIMO systems. It is shown that fixed-order linearly
parameterized MIMO controllers for MIMO nonparametric spectral
models can be computed with H∞ performance. The stability of the
closed-loop system is guaranteed thanks to the Generalized Nyquist
Stability criterion. It should be mentioned that the use of this crite-
rion leads to a non-convex set on the controller parameters. In this
chapter, a convex approximation of this set is given by a set of con-
vex constraints in the Nyquist diagram based on Gershgorin bands.
In this approach, decouplers and decoupled controllers are designed
simultaneously by a convex optimization technique. The proposed
method can be used for PID controllers as well as for higher order
linearly parametrized controllers in discrete or continuous time. The
case of unstable open-loop systems can be considered if a stabilizing
controller is available.

This chapter is organized as follows: In Section 4.2, the class
of models and controllers are introduced. Section 4.3 describes the
control design methodology for MIMO systems based on the convex
constraints in the Nyquist diagram which guarantees the Generalized
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Nyquist Stability criterion and single-loop H∞-SISO performance.
Section 4.4 shows some simulation results. Finally, Section 4.5 gives
some concluding remarks.

4.2 Problem Formulation

4.2.1 Class of models

A set G including m LTI-MIMO strictly proper continuous-time or
discrete-time models with bounded infinity norm are considered:

G = {Gi(jω); i = 1, . . . , m; ω ∈ R} (4.1)

where Gi(jω) is an no×ni matrix of FRF or spectral models with ni

the number of inputs and no the number of outputs of the system.
In the sequel, it will be shown that ensuring closed-loop perfor-

mance and stability for each member of the set G leads to a set of
convex constraints. Therefore, thanks to the properties of convex
sets, by repeating the constraints for m models the robust perfor-
mance and stability for the set G will be guaranteed. For the sake of
simplicity, henceforth, we derive the stability and performance con-
ditions for a single nominal model G. Obviously, the results can be
applied to the class of model G by repeating the constraints for every
model in the set.

4.2.2 Class of controllers

Consider the class of multivariable controllers given by an ni×no ma-
trix K(s) whose elements Kpq(s) for p = 1, . . . , ni and q = 1, . . . , no

are linearly parameterized. It means that Kpq(s) = ρT
pqφpq(s) where

ρT
pq is the vector of parameters for Kpq(s) and φpq(s) is the vec-

tor of stable transfer functions possibly with poles on the imaginary
axis, chosen from a set of orthogonal basis functions. Obviously,
PID matrix controllers belong to this set, whose non-diagonal ele-
ments principally decouple the system and whose diagonal elements
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are designed to achieve some single-loop desired performances. As
in previous chapters, the main property of this parameterization is
that every component of the matrix L(jω, ρ) = G(jω)K(jω) can be
written as a linear function of the controller parameters ρ:

ρ = [ρ11, . . . , ρ1ni , . . . , ρno1, . . . , ρnoni ] (4.2)

4.2.3 Control problem

The shaping of the open-loop transfer function matrix with infinity
norm constraints on the weighted closed-loop transfer functions of
the diagonal elements is considered in this chapter. A no×no desired
open loop transfer function matrix LD(jω) is available representing
all or a part of the desired specifications. For decoupling control
problems, LD(jω) can be defined as a diagonal matrix with LDq(jω)
as the q-th diagonal element for q = 1, . . . , no where LDq(jω) is a
desired strictly proper open-loop transfer function for the q-th loop.

Consequently, the 2-norm of L − LD is minimized under infin-
ity norm constraints on the weighted closed-loop transfer functions
of the diagonal elements. Let the sensitivity function and comple-
mentary sensitivity function be defined S(s) = [I + L(s)]−1 and
T(s) = L(s)[I + L(s)]−1, respectively. For simplicity, the following
optimization control problem is considered:

min
ρ

‖L(jω, ρ) − LD(jω)‖2

Subject to:
‖|W1qSqq| + |W2qTqq|‖∞ < 1 for q = 1, . . . , no

(4.3)

where Sqq(s) is the q-th diagonal component of S(s) and Tqq(s) is
the q-th diagonal component of T(s).

4.3 MIMO Controller Design in Nyquist Diagram

In this section, the loop shaping controller design method proposed
in Chapter 2 is extended to MIMO systems to solve the nonconvex
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control problem presented in (4.3). In contrast with the previous
chapters, the interconnected loops should be considered to guarantee
the stability of the feedback system.

4.3.1 Stability condition based on Gershgorin Bands

Let the open-loop system L(s) have no uncontrollable and/or unob-
servable unstable modes. Then, the Generalized Nyquist Stability
criterion shows that the feedback system will be stable if and only
if the net sum of anti-clockwise encirclements of the critical point
(−1 + j0) by the set of eigenvalues of the matrix L(jω) is equal to
the total number of right-half plane poles of L(s).

The eigenvalues of the matrix L(jω, ρ) at each frequency ω are
nonconvex functions of the controller parameters. A sufficient sta-
bility condition can be obtained by approximating the eigenvalues
using the Gershgorin bands.

Let L(jω, ρ) be the open-loop no × no matrix with complex ele-
ments Lpq(jω, ρ). For q ∈ {1, . . . , no} we define

rq(ω, ρ) =
no∑

p=1,p�=q

|Lpq(jω, ρ)| (4.4)

which is a convex function with respect to the controller parameters.
Let D(Lqq(jω, ρ), rq(ω, ρ)) be a circle centered at Lqq(jω, ρ) with
radius rq(ω, ρ). Such a circle is called a Gershgorin band. Every
eigenvalue of L(jω, ρ) lies within at least one of the Gershgorin bands
D(Lqq(jω, ρ), rq(ω, ρ)) for q = 1, . . . , no [51].

Proposition 4.1 [52]: Consider that the elements of the no × no

matrix L(jω) = G(jω)K(jω) satisfy

|rq(ω)| < |1 + Lqq(jω)| (4.5)

for q = 1, . . . , no and for all ω on the Nyquist contour, where
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rq(ω) =
no∑

p=1,p�=q

|Lpq(jω)| (4.6)

Let the q-th Gershgorin band of L(jω), which is composed of cir-
cles centered at Lqq(jω) with radius rq(ω), encircle the critical point
(−1 + j0), Nq times counterclockwise. Then, the negative feedback
system is stable if and only if

no∑
q=1

Nq = P0 (4.7)

where P0 is the number of unstable poles of L(s).

For example, for an open-loop stable system, the closed-loop is
stable if the set of the Gershgorin bands of radius rq(ω, ρ) of the
matrix L(jω, ρ) is strictly at the right hand side of a line passing
through the critical point (−1+j0) for all ω and for q = 1, . . . , no. A
line dq(ω) could be used to divide the Nyquist diagram space in two
half-planes, shown in Fig. 4.1. The slope of this line can be changed
automatically to enlarge the set of admissible controllers using the
desired strictly proper open-loop transfer function LDq(s) for each
q-th diagonal component. At each frequency ω, the line dq(ω) which
crosses the critical point (−1 + j0) and is orthogonal to the line
connecting the critical point (−1+ j0) to LDq(jω) is defined. For an
open-loop stable system, if all Gershgorin bands for all frequencies
are located on the same side of LDq(jω) with respect to the lines
dq(ω), stability is guaranteed.

The proposed approach can also be applied to unstable systems.
The main condition is that LD(jω) should be a matrix of strictly
proper transfer functions and the set of its eigenvalues has to encircle
P0 times the critical point (−1 + j0), where P0 is the number of
unstable poles of G(s) (in our approach K(s) has no unstable poles
due to its parameterization).
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Fig. 4.1. Convex constraints for the Generalized Nyquist Stability crite-
rion in Nyquist diagram

4.3.2 Main result

The main result of this chapter is presented in the following theorem:

Theorem 4.1 Given the spectral model G(jω), the linearly param-
eterized controller K(s) defined in subsection 4.2.2 stabilizes the
closed-loop system if

|rq(ω, ρ)||1 + LDq(jω)| − Re{[1 + L∗
Dq(jω)][1 + Lqq(jω, ρ)]} < 0

∀ω for q = 1, . . . , no (4.8)

where the diagonal matrix LD(jω) is chosen such that the number
of counterclockwise encirclements of the critical point by the Nyquist
plot of the set of its eigenvalues is equal to the number of unstable
poles of G(s) and L∗

Dq(jω) is the complex conjugate of LDq(jω).
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Proof: Since the real value of a complex number is less than
or equal to its magnitude, we have:

Re{[1 + L∗
Dq(jω)][1 + Lqq(jω, ρ)]} ≤

|[1 + L∗
Dq(jω)][1 + Lqq(jω, ρ)]| (4.9)

Then from (4.8) we obtain:

|rq(ω, ρ)| − |1 + Lqq(jω, ρ)| < 0 ∀ω for q = 1, . . . , no (4.10)

which leads directly to (4.5).
Now we should show that this controller stabilizes the system.

From (4.8), we have:

Re{[1 + L∗
Dq(jω)][1 + Lqq(jω, ρ)]} > 0 ∀ω (4.11)

or wno
{
[1 + L∗

Dq(jω)][1 + Lqq(jω, ρ)]
}

= 0, where wno stands for
winding number around the origin. It should be mentioned that
Lqq(jω, ρ) is zero for the semicircle with infinity radius of the Nyquist
contour so the wno of 1+Lqq(jω, ρ) depends only on the variation of
s on the imaginary axis. On the other hand, as LDq(jω) is a strictly
proper transfer function, it goes also to zero for this semicircle. Con-
sequently, the wno of 1+L∗

Dq(jω) is also determined by the variation
of s on the imaginary axis. Therefore:

no∑
q=1

wno[1 + LDq(jω)] =
no∑

q=1

wno[1 + Lqq(jω, ρ)] (4.12)

Since LD(jω) satisfies the Generalized Nyquist criterion, L(jω) will
do so as well and all closed-loop systems are stable.

Remarks:

• The results of Theorem 4.1 are valid even if Lqq(s, ρ) has some
poles on the imaginary axis, say {jp1, jp2, . . .}. In this case ω ∈
R−{[p1− ε, p1 + ε], [p2− ε, p2 + ε], . . .} where ε is a small positive
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value. The stability is guaranteed if LDq(s) contains the poles on
the imaginary axis of Lqq(s, ρ), because they will have the same
behavior at the small semicircular detour of the Nyquist contour
at these poles.

• According to this theorem LDq(s) should contain the unstable
poles (as well as the poles on the imaginary axis) of Lqq(s). If
these poles are unknown (when only the frequency response of
the system G(jω) is available), but a stabilizing controller K0(s)
is available a reasonable choice for LD(jω) is G(jω)K0(jω). In
this case, LD(jω) is no longer diagonal and LDq(jω) in the above
constraints should be replaced by the q-th eigenvalue, λq(jω), of
LD(jω).

4.3.3 Optimization problem

The convex stability constraints shown in (4.8) adds some conser-
vatism to the approach since the location of an eigenvalue is no longer
considered at a point but inside the circle D(Lqq(jω, ρ), rq(ω, ρ)). To
reduce this conservatism, the radius of this circle rq(ω, ρ) should be
minimized. This is equivalent to minimizing the magnitude of the
off-diagonal components of the open-loop transfer function matrix
L(jω, ρ). Therefore, the objective function minimizing the 2-norm
of L − LD reduces the conservatism of the approach. This way, the
off-diagonal elements of L(jω, ρ) are minimized, which helps to de-
couple the system. On the other hand, the two norm of Lqq − LDq

is minimized for q = 1, . . . , no, which ensures the single-loop closed-
loop performances. It means that by one optimization decoupling
controller and decoupled controlled systems are designed simultane-
ously.

In this decoupling control problem, the diagonal loops can be
considered as independent SISO systems since a decoupler controller
is designed. Hence, it is judicious to define performance constraint on
diagonal loops. The infinity norm constraints in (4.3) are considered
by following Theorem 2.1. The following optimization problem is
proposed to solve the controller design problem:
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min
ρ

‖L(ρ) − LD‖2

Subject to:
|rq(ω, ρ)||1 + LDq(jω)| − Re{[1 + L∗

Dq(jω)][1 + Lqq(jω, ρ)]} < 0
∀ω for q = 1, . . . , no

|W1q (jω)[1 + LDq(jω)]| + |W2q (jω)Lqq(jω, ρ)[1 + LDq(jω)]|
−Re{[1 + L∗

Dq(jω)][1 + Lqq(jω, ρ)]} < 0
∀ω and for q = 1, . . . , no

(4.13)
where rq(ω, ρ) is defined in 4.6.

A weighted norm of L(ρ) − LD can be minimized to obtain a
controller with more decoupling effect or a better tracking of the
desired open-loop transfer function in a given frequency range.

Remarks:

1. The multi-model uncertainty can be considered by repeating the
constraints for each model of the uncertainty as presented in the
optimization problem below:

min
m∑

i=1

‖Li(ρ) − LDi‖2

Subject to:
|rqi(ω, ρ)||1 + LDqi(jω)|
−Re{[1 + L∗

Dqi
(jω)][1 + Lqqi(jωk, ρ)]} < 0

for i = 1, . . . , m; for q = 1, . . . , no and ∀ω

|W1qi
(jω)[1 + LDqi(jω)]| + |W2qi

(jω)Lqqi(jω, ρ)[1 + LDqi(jω)]|
−Re{[1 + L∗

Dqi
(jω)][1 + Lqqi(jω, ρ)]} < 0

for i = 1, . . . , m; for q = 1, . . . , no and ∀ω
(4.14)

where L∗
Dqi

(jω) is the complex conjugate of LDqi(jω).
2. The optimization problems in (4.13) and (4.14) are also an SIP

problems. As in Section 2.3.4, a practical solution is to choose



74 4 Fixed-order H∞ Controller Design for Spectral MIMO Models

a finite number of frequencies ω ∈ {ω1, ω2, . . . , ωN} to solve the
problem. Practically, to obtain a quadratic objective function,
the two norm is replaced by ‖L(ρ)−LD‖2

2, which is approximated
by:

‖L(ρ) − LD‖2
2 ≈

∑
ω

‖L(jω, ρ) − LD(jω)‖F (4.15)

where ‖ · ‖F is the Frobenius norm. Thus, the following opti-
mization problem is considered for the multi-model case:

min
m∑

i=1

N∑
k=1

‖Li(jωk, ρ) − LDi(jωk)‖F

Subject to:
|rqi(ωk, ρ)||1 + LDqi(jωk)|
−Re{[1 + L∗

Dqi
(jωk)][1 + Lqqi(jωk, ρ)]} < 0

for k = 1, . . . , N ; for i = 1, . . . , m and for q = 1, . . . , no

|W1qi
(jωk)[1 + LDqi(jωk)]|

+|W2qi
(jωk)Lqqi(jωk, ρ)[1 + LDqi(jωk)]|

−Re{[1 + L∗
Dqi

(jωk)][1 + Lqqi(jωk, ρ)]} < 0
for k = 1, . . . , N ; for i = 1, . . . , m and for q = 1, . . . , no

(4.16)
where L∗

Dqi
(jωk) is the complex conjugate of LDqi(jωk).

4.4 Simulation Examples

In this section, the proposed algorithm is applied to the models of
two industrial processes proposed in the literature.

4.4.1 Example 1

Consider the following process model proposed in [57]:
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G1(s) =




5e−3s

4s+1
2.5e−5s

15s+1

−4e−6s

20s+1
e−4s

5s+1


 (4.17)

where the time scale is given in minutes. A continuous-time PI con-
troller should be tuned assuring 3 dB gain margin and π/3 phase
margin. This system is not diagonally dominant and the variable
pairings are not evident.

A solution to this problem is given in [57] where single loop tuning
techniques are used to design the decentralized controller using the
effective transfer function. This effective transfer function considers
the coupling effects for a particular loop from the other closed loop.
This results in the following controller:

K0(s) =


 0.0233

(
1 + 1

4s

)
0

0 0.1094
(
1 + 1

5s

)

 (4.18)

Equally spaced N = 150 frequency points between 0.01 rad/min
and 10 rad/min are chosen to solve the optimization problem pro-
posed in (4.16). The lower limit is greater than 0 because of the
integrator. The upper limit is chosen sufficiently large so that the
frequency response of the system is negligible at frequencies above the
upper limit. The desired open-loop transfer function matrix LD(s)
is chosen as simple integrators at the diagonal elements with a band-
width similar to those obtained with the controller proposed in [57]:

LD(s) =
[

1
30s 0
0 1

30s

]
(4.19)

which satisfies the specified gain and phase margins.
Only stability constraints are considered on the optimization

problem given in (4.16), which results in the following controller:

K1(s) =


 0.002667s+0.002338

s
0.003439s−0.005726

s

−0.0004078s+0.008943
s

0.05531s+0.01166
s


 (4.20)
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Figure 4.2 shows that the proposed method decouples the system
almost perfectly, which is not the case for K0(s). It should be noted
that the controller proposed in [57] is a decentralized controller while
that proposed in this paper is centralized. The complexity of the con-
troller explains the better performances obtained with the proposed
controller. However, even that the proposed method offers the possi-
bility to design more complex controllers, the method remains simple
and intuitive.
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Fig. 4.2. Two output responses: Reference signal (blue, dash-dot), con-
troller proposed in [57] (red dashed) and proposed controller (blue solid).

One of the most important advantages of the proposed approach
is that systems with multi-model uncertainty can directly be consid-
ered. A second system with 100% higher values for the gains, time
constants and time delays than those of the previous system G1(s)
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is defined:

G2(s) =




10e−6s

8s+1
5e−10s

30s+1

−8e−12s

40s+1
2e−8s

10s+1


 (4.21)

The following multiplicative uncertainty filters are defined for the
diagonal elements of both systems, G1(s) and G2(s) by:

W2q(s) = 0.5
2s + 1
s + 1

for q = 1, 2 (4.22)

A stabilizing PI MIMO controller is tuned to satisfy the robust
performance condition in (2.11) for the diagonal elements of both
systems, where the performance filter for both systems is given by
W1q (s) = 0.5 for q = 1, 2.

The optimization problem proposed in (4.16) is solved by repeat-
ing the stability and robust performance constraints for G2(s). This
results in the following controller:

K2(s) =


 0.001851s+0.001348

s
0.002225s−0.003084

s

−0.0005015s+0.004521
s

0.03111s+0.006742
s


 (4.23)

This controller is stabilizing and satisfies the required H∞ constraints
for both systems. Figure 4.3 shows that, contrarily to K1(s), con-
troller K2(s) decouples both systems. This was expected because
K1(s) was not designed for this purpose. It should be noted that
K0(s) does not even stabilize G2(s).

4.4.2 Example 2

In this example, the proposed algorithm is applied to a multivariable
LV100 gas turbine engine and the results are compared with those of
two other data-driven controller approaches for multivariable systems
in [26,47]. The objective is to tune a multivariable PI controller for a
LV100 gas turbine engine to follow the reference model MD(z). The



78 4 Fixed-order H∞ Controller Design for Spectral MIMO Models

0 500 1000 1500 2000 2500
0

0.5

1

1.5

O
ut

pu
t y

1

0 500 1000 1500 2000 2500

0

0.5

1

1.5

Time [minute]

O
ut

pu
t y

2

Fig. 4.3. Two output responses: Reference signal (blue, dash-dot), K1(s)
(red, dashed) and K2(s) (blue, solid).

plant is represented by a continuous-time state-space model with five
states, two inputs and two outputs. The model is discretized using
Tustin’s approximation with Ts = 0.1s as the sampling period. Each
experiment is performed with a measurement noise that is generated
as a zero-mean, stationary white Gaussian sequence with variance
0.0025I.

The given reference model is:

MD(z) =
[
Md1(z) 0

0 Md2(z)

]
=
[ 0.4

z−0.6 0
0 0.4

z−0.6

]
(4.24)

which is used to define our desired open-loop transfer function:
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LD(z) =


 Md1(z)

1−Md1 (z) 0

0 Md2(z)

1−Md2 (z)




=
[

Ld1(z) 0
0 Ld2(z)

]
=
[ 0.4

z−1 0
0 0.4

z−1

] (4.25)

An experiment is realized using the simulation conditions pro-
posed in [26]. The results are compared with controller given in [47]
designed using the iterative correlation-based controller tuning ap-
proach (CbT):

KCbT (z) =
[ 0.3636z−0.09866

z−1
0.3653z−0.2691

z−1
18.69z−18.16

z−1
−3.453z+2.652

z−1

]
(4.26)

and the IFT controller provided in [26]:

KIFT (z) =
[ 0.248z−0.03

z−1
0.38z−0.199

z−1
16.47z−15.91

z−1
0.063z+0.054

z−1

]
(4.27)

The CbT approach tunes diagonal and off-diagonal elements of
the controller transfer function matrix simultaneously to satisfy de-
sired closed-loop performance and to decouple the closed-loop out-
puts. This method is a time-domain data-driven approach using
non-convex optimization which does not guarantee closed-loop sta-
bility. On the other hand, the IFT control method uses the unbiased
gradient estimate of a quadratic control criterion using closed-loop
experiment data to obtain a tuning algorithm. However, the number
of experiments needed to estimate the gradient increases with the
number of outputs and inputs of the system.

The sum of squared output errors (SSOE) is used for comparison
of different controllers. This criterion is defined as:

SSOE =
1
Nt

Nt∑
t=1

εT
oe(t)εoe(t) (4.28)

where Nt = 151 is the data length and εoe the difference between the
desired and the obtained outputs.
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Model-based design

The optimization problem proposed in (4.16) only considering the
stability constraints is solved with N = 500 equally spaced between
ωmax/N and ωmax rad/s. The smallest frequency is greater than zero
because of the integrator in the controller and ωmax is chosen equal
to the Nyquist frequency. The result of the optimization algorithm
is :

K0(z) =
[ 0.3793z−0.098

z−1
0.3582z−0.25

z−1
20.22z−19.61

z−1
−2.876z+1.992

z−1

]
(4.29)

with an SSOE equal to 0.0048. Figure 4.4 shows the experiment
without noise where an almost perfect decoupling can be observed.
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Fig. 4.4. Two output responses: Reference signal (blue, dash-dot), Refer-
ence model (black dotted), CbT (red dashed), IFT (green dash-dot) and
proposed controller using the model (blue solid)
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Data-driven design

To be fair on this comparison, a spectral model is identified based on
the same rectangular reference signal used by the iterative methods
previously mentioned. The ETFE method is used to identify the
frequency function models based on the input/output measurements
for the rectangular reference signal applied to each input while the
other is not excited. As the input’s spectral content is poor at high
frequencies and as the signal to noise ratio is very low, the ETFE
model is evaluated at N = 500 equally spaced frequency points be-
tween 1/N and ωmax = 1 rad/s for the optimization problem (this
range of frequency defines the first lobe of the input spectrum). The
resulting PI MIMO controller designed is :

K(z) =
[ 0.3392z−0.05811

z−1
0.3581z−0.2572

z−1
20.38z−19.76

z−1
−3.299z+2.339

z−1

]
(4.30)

Figure 4.5 shows that the system’s outputs using the proposed con-
troller are very close to the desired reference response except for the
effect of noise. In addition, the closed-loop system is nearly fully
diagonalized. The observed SSOE with the proposed controller is
0.0048, while those with the CbT and IFT controllers are 0.0050 and
0.0082 respectively. Even if IFT method has a noise-rejection objec-
tive function that could be advantageous in a noisy environment, the
results are not so satisfying because it is not able to fully decouple
the system, while the other methods do. This is more perceptible
in Figure 4.6, where an experiment without noise is shown. At the
instants 0s and 5s on y2 and at instant 10s on y1, it is visible that
the decoupling of the IFT controller is not as good as that proposed
by the other approaches.

It should be noticed that global stability is guaranteed thanks to
the Gershgorin bands considered as convex constraints in this ap-
proach, whereas the other data-driven approaches do not ensure the
stability of the closed-loop system. The other advantage of the pro-
posed approach is in terms of experimental cost. The CbT and IFT
methods are iterative methods which are experimentally expensive.
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Fig. 4.5. Two output responses: Reference signal (blue, dash-dot), Ref-
erence model (black dotted) and proposed controller (blue solid)

The IFT controller is designed after 6 iterations with a total of 450
seconds of experimentation and CbT is obtained after 8 iterations
(120 seconds), while the proposed method is designed based on an
experiment of 20 seconds. Moreover, the computational complexity
of this approach is very low.

4.5 Conclusions

A new decoupling fixed-order MIMO controller design method in the
Nyquist diagram for spectral MIMO models based on the shaping of
the open-loop matrix transfer function has been proposed in this
chapter. The 2-norm of the difference between the open-loop and a
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Fig. 4.6. Two output responses: Reference signal (blue, dash-dot), Refer-
ence model (black dotted), CbT (red dashed), IFT (green dash-dot) and
proposed controller (blue solid)

desired open-loop matrix transfer functions is minimized under sta-
bility constraints to design a linearly parameterized decoupling con-
troller. The method is based on an approximation of the nonconvex
Generalized Nyquist Stability criterion by convex constraints using
the Gershgorin bands. The controller is linearly parameterized and
its denominator should be fixed a priori. However, this restriction
ensures the stability of the controller and makes no problem for PID
controller design as well as for higher order controllers.

The advantages of this approach are summarized below:

1. Only the frequency response of the system is needed and no para-
metric model is required. The method can be qualified as “data-
driven” because the frequency response of the system can be
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obtained directly by discrete Fourier transform from a set of pe-
riodic data. Of course, when a parametric model is given, the
method can be also applied.

2. Simultaneously, the diagonal elements of the controller are tuned
to satisfy some desired performances, while the off-diagonal ele-
ments are tuned to decouple the system.

3. Multi-model uncertainty can be handled easily by increasing the
number of convex constraints. Most of the mentioned classical
frequency-domain approaches cannot deal with this type of un-
certainty.

4. If a stabilizing initial controller is known, unstable systems can
be also considered with this approach.



5

Controller Design with Finite Number of
Constraints

Many frequency-domain controller design methods including those
presented in this thesis define the stability and performance specifi-
cations conditions at all frequencies of the frequency response func-
tion. In several cases, this control problem is transformed into an
optimization problem where a finite number of decision variables
(the parameters of the controller) should be optimized subject to an
infinite number of constraints. This optimization problem is known
as a Semi-Infinite Programming (SIP) problem which is difficult to
solve and can even be NP-hard in many cases. Different numerical
solutions exist in the literature to solve this type of problems (see [22]
for a survey). In this chapter, three different approches are proposed
to deal with this type of optimization problems.

Typically, this problem is relaxed by considering only a finite
number of those constraints. This converts the optimization prob-
lem into a Semi-Definite Programming (SDP) problem which can
be solved with many standard solvers. Practically, if the number of
constraints is large enough, this may lead to stable controllers with
the desired performances. That the constraints are satisfied at cer-
tain frequencies does not imply, however, that the conditions are also
satisfied between those frequencies. A randomized approach can also
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be used to solve the problem. In this case, the solution satisfies the
constraints for all frequencies with a high probability level. This is
known as the scenario approach [2,7,8]. Nonetheless, it is possible to
satisfy the constraints for all frequencies only using a finite number
of frequencies if some assumptions are verified on the system. The
difficulty, however, is knowing the minimum number of necessary
frequencies. The system’s behavior between the measured frequency
samples is referred to in the sequel as its inter-grid behavior.

In [12], the set of all possible interpolants that corresponds to
the system’s measured frequency samples is defined with a prior as-
sumption on the system’s impulse response. The absolute value of
the system’s impulse response is assumed to be bounded by a de-
creasing exponential function that converges to zero. As a result,
a bound for the difference between the linear interpolation model
and all the possible interpolants between the frequency samples is
obtained. This result cannot be applied for systems with integrators
because the impulse response cannot be bounded with a decreasing
exponential function that converges to zero. A similar problem is
treated in [14]. A prior assumption is considered on the relative sta-
bility of the underlying system. This means that the real parts of the
underlying system’s poles are assumed to be greater than a chosen
positive value. A frequency dependent bound is then given for all
possible interpolants. This slightly reduces the conservatism com-
pared to the previously mentioned constant bound proposed by [12].
These results have been applied to a controller design method pre-
sented in [15]. The main drawback of the approach is that non-
parametric controllers are obtained. A second step of interpolation
is needed to obtain a parametric controller to be implementable in a
feedback loop.

This chapter is organized as follows: In Section 5.1 the Approxi-
mate approach is described where a finite number of constraints are
considered to solve the SIP problem. The Probabilistic approach is
presented in Section 5.2 where a randomized solution is given for the
SIP problem. In Section 5.3 the Exact approach is introduced for
discrete-time controller design problems where adding some conser-
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vatism, the original SIP problem is transformed to a standard SDP
problem. An example shows how the performance is affected when
this conservatism is added in Section 5.4. Finally, some concluding
remarks are given in Section 5.5.

5.1 Approximate Approach

Practically, the SIP problem can be solved choosing a sufficiently
large number of frequencies N to define a finite set of constraints for
ω ∈ {ω1, . . . , ωN}. A sufficiently large number of frequency points
means that the infinite number of constraints should be well repre-
sented by the chosen finite number of constraints.

The constraints given in the SIP problems are presented in the
Nyquist diagram based on the open-loop frequency response of the
system. Hence, it is assumed that if the open-loop frequency sam-
ples are a good representation of the open-loop frequency response,
the finite set of constraints defined based on the open-loop frequency
samples will also be a good representation of the infinite set of con-
straints. Consequently, N could be chosen such that for equally
spaced frequency samples, the open-loop frequency response in the
Nyquist diagram between two adjacent frequency samples can be well
approximated by the linear interpolation.

However, the open-loop frequency response is not available since
the controller is not known a priori. Practically, a value is chosen
for N to solve the optimization problem. A posteriori, once the con-
troller is available, it is verified if the open-loop frequency response
L(jω) between two adjacent frequency samples is well approximated
by the linear interpolation in the Nyquist diagram. As an initial
guess, N can be chosen such that the sampled frequency response
Ld(jωk) for k = 1, . . . , N is a complete representation of the under-
lying system Ld(jω). This can be verified if the dual of Shannon’s
Theorem is satisfied. The dual of Shannon’s Theorem, given be-
low, shows that uniformly spaced discrete samples of the frequency
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response of a signal are a complete representation of the frequency
response if its Inverse Fourier Transform is a time-limited signal.

Theorem 5.1 Dual of Shannon’s Theorem. X(ω) is completely
determined by its ordinates at a series of points spaced by less than or
equal to π/Ti if its Inverse Fourier Transform x(t) is 0 for t < −Ti

and t > Ti.

Proof: x(t) has non zero values for a period of 2Ti. Therefore,
it can be represented as a Fourier series expansion using any period
Tm ≥ 2Ti. The Fourier Transform expansion of x(t) can be written
as:

x(t) =
∞∑

k=−∞
Akejk2π t

Tm (5.1)

where Ak = 1
Tm

∫ Tm
2

−Tm
2

x(t)e−jk2π t
Tm dt. As x(t) is 0 for t < −Tm

2 and

t > Tm

2 , the Fourier Transform is reduced to:

X(ω) = F{x(t)} =
∫ ∞

−∞
x(t)e−jωtdt =

∫ Tm
2

−Tm
2

x(t)e−jωtdt (5.2)

By comparison, Ak = 1
Tm

X(k 2π
Tm

). Hence, this implies that X(ω)
can be fully represented by its samples.

X(ω) =
1

Tm

∫ Tm
2

−Tm
2

[ ∞∑
k=−∞

X(ωk)ejωkt

]
e−jωtdt (5.3)

where ωk = k 2π
Tm

.

Consequently, if the open-loop transfer function Ld(jω) is negligi-
ble for ω > ωmax and if its impulse response is time limited (between
−Ti and Ti), then Ld(jω) is completely represented by Ld(jωk) where
ωk = (k−1)ωmax

N−1 for k = 1, . . . , N and N ≥ ωmaxTi

π +1. For example,
consider that the desired open-loop transfer function Ld(s) = 1

s+1 is
defined for a control problem. In this particular example, ωmax = 100
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rad/s and Ti = 10 s can be considered. The dual of Shannon’s The-
orem shows that Ld(jω) is completely represented by Ld(jωk) where
N = 320 and ωk = (k − 1)ωmax

N−1 . Hence, the control problem can
be solved taking equally spaced N frequencies between 0 and ωmax

rad/s.
The optimization problems to be solved have been already pre-

sented in (2.49), (3.25) and (4.16).

5.2 Probabilistic Approach

If the spectral models are obtained from a set of noisy data, then
the frequency-domain uncertainty sets are defined with a probability
level. In this case, even a feasible solution to the SIP will guarantee
the stability and the required performance with a probability level.
Therefore, it is more reasonable to use a randomized approach to
solve the SIP problem. According to the results of [2, 7, 8] with a
reasonable number N of randomly chosen frequency samples, the
optimal solution ρ∗ to the convex optimization problem will satisfy
the constraints for all frequencies with a high probability level. This
is known as the Scenario approach. In order to be more precise, let
the violation probability V (ρ∗) be defined as the probability that for
ω0 ∈ R the convex constraints are not satisfied for ρ∗. Then it can
be shown that:

P{V (ρ∗) > ε} ≤
n−1∑
i=0

(
N
i

)
εi(1 − ε)N−i ≤ η (5.4)

where P{·} stands for the probability of an event, n is the number
of design parameters, the violation parameter ε is a satisfying level
and η is a confidence parameter. To make the result in (5.4) more
useful, the following explicit expression is provided in [2]:

N ≥ 1
ε

(
ln

1
η

+ n − 1 +
√

2(n − 1) ln
1
η

)
(5.5)
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Then, with probability no smaller than 1 − η, the solution satisfies
all constraints but at most an ε-fraction. Actually, the value of N
returned by (5.5) can be conservative. However, it offers the possi-
bility to recognize that η plays a key role because selecting η = 0
leads to N = ∞, but practically has marginal importance since its
logarithm appears in (5.5).

Consider, for example, PID controller design (n = 3) with
N = 500 frequency points. Then, using (5.4), having a violation
probability of greater than ε = 0.01 has a probability of less than
0.1234. This upper bound goes exponentially to zero with N . There-
fore, the upper bound can be reduced to 0.0027 for N = 1000 and
to 4.2 × 10−7 for N = 2000.

The optimization problems to be solved are the same as those
proposed for the Approximate approach. The only difference is that
in this case the N frequencies are randomly chosen which assures
that constraints are satisfied with a chosen violation and probability
level.

5.3 Exact Approach

The Approximate approach and Probabilistic approach guarantee that
the stability and performance conditions are satisfied at the evaluated
N frequencies samples. However, this is not the case for all the
frequencies between the frequency samples. To assure the stability
and performance constraints, the behavior of the open-loop frequency
response between the frequency samples should be analyzed, which
is known as inter-grid behavior.

In this section, first the inter-grid behavior of a frequency re-
sponse of a discrete-time system is analyzed using only its discrete
samples. Then, the results are extended to discrete-time systems
containing an integrator. Finally, these results are implemented in
the loop-shaping discrete-time controller design method for discrete-
time systems proposed in the previous chapters.
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5.3.1 Analysis of the inter-grid behavior

Inter-grid uncertainty

Based on the results shown in [12], the frequency response samples
of a discrete-time system are used to define an uncertainty bound.
This bound represents all possible interpolants between the samples.

Assume that we have N frequency response samples, X(e−jωk)
for k = 1, . . . , N of the original frequency response X(e−jω) of a
discrete-time system between 0 and the Nyquist frequency ωN spaced
by ωN

N−1 . Let the linear interpolation frequency response model
Xλ(e−jω) be defined between two consecutive frequency response
samples X(e−jωk) and X(e−jωk+1):

Xλ(e−jω) = λX(e−jωk) + (1 − λ)X(e−jωk+1) for ωk < ω < ωk+1

(5.6)
where ω is defined as ω = λωk + (1 − λ)ωk+1 and:

λ =
ω − ωk+1

ωk − ωk+1
λ ∈ [0, 1] (5.7)

Since
∣∣∣d2 Xλ(e−jω)

dω2

∣∣∣ = 0, if the impulse response x(h) of the

discrete-time system satisfies |x(h)| ≤ Mβ−h, it is shown in [12]
that:

|Xλ(e−jω) − X(e−jω)| ≤ δ (5.8)
where

δ =
Mβ(β + 1)
2(β − 1)3

(
ωk+1 − ωk

2

)2

=
1
2

Mβ(β + 1)
(β − 1)3

(
ωN

2(N − 1)

)2

(5.9)

Inter-grid uncertainty with integrators

If the discrete-time system contains an integrator, (a pole at 1), its
impulse response x(h) cannot be bounded by a decreasing exponen-
tial function that converges to zero. In this case, a similar approach
can be applied nonetheless.
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In the sequel, it is considered that the discrete-time system has
only one integrator. For simplicity, the discrete-time integrator

1
1−e−jω is approximated by 1

jω . However, in Appendix A the re-
sults considering the discrete-time integrator without approximation
are given.

The frequency response X̃(e−jω) of the discrete-time system is
approximated by:

X̃(e−jω) =
X(e−jω)
1 − e−jω

≈ X(e−jω)
jω

(5.10)

where X(e−jω) is the frequency response of the discrete-time system
without integral part. The impulse response x(h) of the discrete-time
system without the integral term is bounded |x(h)| ≤ Mβ−h. This
bounds |Xλ(e−jω) − X(e−jω)| as in (5.9). However, now the goal is
to find a bound δint for |X̃λ(e−jω) − X̃(e−jω)| based on the bound
on |Xλ(e−jω) − X(e−jω)|. Note that the linear interpolation model
X̃λ(e−jω) between the frequency samples X̃(e−jωk) is defined as:

X̃λ(e−jω) = λ
X(e−jωk)

jωk
+ (1 − λ)

X(e−jωk+1)
jωk+1

for ωk < ω < ωk+1

(5.11)
Using the linear interpolation models, the bound for |X̃λ(e−jω)−

X̃(e−jω)| can be bounded as follows:

|X̃λ(e−jω) − X̃(e−jω)| ≤
∣∣∣∣X̃λ(e−jω) − Xλ(e−jω)

jω

∣∣∣∣
+
∣∣∣∣Xλ(e−jω)

jω
− X̃(e−jω)

∣∣∣∣ for ωk < ω < ωk+1 (5.12)

Now, each term of the previous bound is analyzed separetly. From
(5.6) and (5.7), the following equation is obtained:

Xλ(e−jω)
jω

=
ω − ωk+1

ωk − ωk+1

X(e−jωk)
jω

+ (1 − ω − ωk+1

ωk − ωk+1
)
X(e−jωk+1)

jω

for ωk < ω < ωk+1 (5.13)
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Then, if λ from (5.7) is replaced in (5.11) and combined with
(5.13), the following equation is obtained:∣∣∣∣∣X̃λ(e−jω) − Xλ(e−jω)

jω

∣∣∣∣∣ =

∣∣∣∣∣ ω−ωk+1
ωk−ωk+1

X(e−jωk)ωk−ω
ωkω −

ωk−ω
ωk−ωk+1

X(e−jωk+1)ω−ωk+1
ωk+1ω

∣∣∣∣∣
=
∣∣∣ (ω−ωk+1)(ωk−ω)

(ωk−ωk+1)ω

∣∣∣ ∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
for ωk < ω < ωk+1

(5.14)
which has a maximum value when ω = √

ωkωk+1. Then, (5.14) can
be bounded by:∣∣∣∣∣X̃λ(e−jω) − Xλ(e−jω)

jω

∣∣∣∣∣ ≤
∣∣∣ (√ωkωk+1−ωk+1)(ωk−√

ωkωk+1)

(ωk−ωk+1)
√

ωkωk+1

∣∣∣×∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
=
∣∣∣ (√ωk−√

ωk+1)
2

ωk−ωk+1

∣∣∣ ∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
=
∣∣∣ ωk−ωk+1
(
√

ωk+
√

ωk+1)2

∣∣∣ ∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
for ωk < ω < ωk+1

(5.15)
Replacing ωk+1 − ωk by ωN

N−1 :
∣∣∣∣∣X̃λ(e−jω) − Xλ(e−jω)

jω

∣∣∣∣∣ ≤ 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
for ωk < ω < ωk+1

(5.16)
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On the other hand, the second term of the bound is a direct result
from the previous subsection:∣∣∣∣∣Xλ(e−jω)

jω
− X̃(e−jω)

∣∣∣∣∣ =
∣∣∣∣ 1
jω

(Xλ(e−jω) − X(e−jω))
∣∣∣∣ ≤

∣∣∣∣ 1
jωk

∣∣∣∣ δ
for ωk < ω < ωk+1 (5.17)

Therefore, the bound δint for the difference between the linear
interpolation model X̃λ(e−jω) and all possible interpolants between
the frequency samples of the frequency response of the discrete-time
system X̃(e−jω) when the discrete-time system contains an integra-
tor, is given by:

δint(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣+ ∣∣∣ 1
jωk

∣∣∣ δ
for ωk < ω < ωk+1

(5.18)
Remark: It should be noted that these bounds are conservative but
decrease rapidly while N is increased. For the no integrator case,
the bound δ in (5.9) decreases by a factor of 1/(N − 1)2 while for
the case with one integrator, the bound δint in (5.18) decreases by a
factor of 1/(N − 1).

5.3.2 Controller design method

The inter-grid behavior of a frequency response function can be an-
alyzed following Subsection 5.3.1. To integrate these bounds in the
open-loop shaping controller design method proposed in the previous
chapters, X(e−jω) or X̃(e−jω) should be replaced by the open-loop
frequency response L(e−jω, ρ) (a function of the controller parame-
ters). However, the controller is not known a priori (ρ is not known),
so these results cannot be applied directly. Thus, the results pre-
sented in Subsection 5.3.1 should be integrated in the controller de-
sign method taking into account the inter-grid behavior as a function
of the controller parameters ρ.
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The main idea is to define linear constraints on controller pa-
rameters to bound the impulse response of the open-loop discrete-
time system L(e−jω, ρ). Then, the graphical interpretation of the
bound for the difference between the linear interpolation model and
the open-loop frequency response is used to define new convex con-
straints in the Nyquist diagram. These new constraints assure that
the frequency condition is satisfied for all frequencies between the
frequency samples. It should be noted that only a finite number of
convex constraints are used in the optimization problem.

Controller design (no integrator)

Consider that G(e−jω) is a causal discrete-time LTI-SISO system
with bounded infinity norm. A linearly parameterized discrete-time
controller should be tuned given by:

K(e−jω , ρ) = ρT φ(e−jω) (5.19)

where
ρT = [ρ1, ρ2, . . . , ρn] (5.20)

φT (e−jω) = [φ1(e−jω), φ2(e−jω), . . . , φn(e−jω)] (5.21)

n is the number of controller parameters and φi(e−jω), i = 1, . . . n
are stable transfer functions with no poles at 1 chosen from a set of
orthogonal basis functions. It is clear that PD controllers belong to
this set.

L(e−jω, ρ) = K(e−jω, ρ)G(e−jω) is the open-loop transfer func-
tion of the system. The inter-grid behavior between the open-
loop frequency response samples depend on its impulse response
�(h, ρ). This impulse response can be computed with the Discrete-
Time Inverse Fourier Transform of the open-loop frequency response
L(ejω , ρ):

�(h, ρ) =
1
2π

∫ π

−π

L(e−jω, ρ)ejωhdω h = 0, . . . ,∞ (5.22)
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The impulse response �(h, ρ) can be bounded by |�(h, ρ)| ≤ Mβ−h

at the discrete-time instants h = 0, . . . , N	 − 1 where N	 is chosen
sufficiently large. The bandwidth of the desired open-loop transfer
function Ld(jω) can be used to choose the value of N	. This bound is
presented as linear constraint on controller parameter ρ. In order to
simplify the computations, the integration can be approximated with
the desired precision based on the Inverse Discrete Fourier Transform
given by:

�(h, ρ) ≈ 1
Nd

Nd∑
k=1

L(e−jωk , ρ)ejωkh for h = 0, . . . , N	 − 1 (5.23)

Note that Nd ≥ N should be chosen where N is the number of
frequency samples of L(e−jωk , ρ) such that the dual of Shannon’s
Theorem is satisfied. This assures that the discrete frequency sam-
ples L(e−jωk , ρ) for k = 1, . . . , Nd are a complete representation of
L(e−jω, ρ). For simplicity, Nd and N	 are chosen equal to N which
gives:

�(h, ρ) ≈ 1
N

N∑
k=1

L(e−jωk , ρ)ejωkh for h = 0, . . . , N − 1 (5.24)

Then, the impulse response �(h, ρ) can be bounded with a decreasing
exponential function converging to zero using the following linear
constraints:

�(h, ρ) ≤ Mβ−h for h = 0, . . . , N − 1 (5.25)

�(h, ρ) ≥ −Mβ−h for h = 0, . . . , N − 1 (5.26)

If the above mentioned constraints are satisfied, smoothness assump-
tions can be considered as in Subsection 5.3.1.

Note that the constraints are linear because the controller to be
designed is linearly parameterized. Furthermore, it should be note
that the precision of the approximation of (5.22) by (5.23) can be
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increased by increasing Nd without increasing the number of con-
straints in (5.25) and (5.26).

Now, the inter-grid behavior of L(e−jωk , ρ) for k = 1, . . . , N can
be defined for all ω using the constant bound given in (5.9). It
should be noted that this bound is defined around the following linear
interpolation model:

Lλ(e−jω , ρ) = λL(e−jωk , ρ) + (1 − λ)L(e−jωk+1 , ρ)
for ωk < ω < ωk+1 (5.27)

For simplicity, an open-loop shaping controller design problem
with constraint on one weighted closed-loop sensitivity function is
considered. The 2-norm of L−Ld is minimized under the closed-loop
sensitivity function condition ‖W1S‖∞ < 1 where S = (1 + L)−1.

In Chapter 2 it is shown that the constraint ‖W1S‖∞ < 1 can be
approximated by the following linear constraint:

|W1(e−jω)[1 + Ld(e−jω)]|−
Re{[1 + L∗

d(e
−jω)][1 + L(e−jω, ρ)]} < 0 ∀ω (5.28)

where L∗
d(e

−jω) is the complex conjugate of Ld(e−jω).
This constraint assures that the point L(e−jω, ρ) is on the side

of d(ω) excluding the critical point for all ω (see Fig.5.1). The line
d(ω) is defined orthogonal to the line connecting the critical point
(−1+0j) to Ld(e−jω) and tangent to the circle centered at the critical
point with radius of W1(e−jω).

The infinite number of constraints defined in (5.28) can be ap-
proximated with a finite number of constraints adding some conser-
vatism. Therefore, based on the equally spaced finite set of frequen-
cies ω ∈ {ω1, . . . , ωN}, an uncertainty area is defined in the Nyquist
diagram for each pair of ωk and ωk+1 around the interpolation model
(5.27). The uncertainty area bounds all possible interpolants between
the frequency samples. If the uncertainty area described in Figure
5.1 is on the side of the line d(ω) excluding the critical point, the
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frequency-domain condition is also satisfied for all frequencies be-
tween ωk and ωk+1. The infinite number of constraints in (5.28)
defined for all ω ∈ [0, ωN ] can be replaced by the following finite
number of constraints:

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δ[1 + Ld(e−jωk)]|−
Re{[1 + L∗

d(e
−jωk)][1 + L(e−jωk , ρ)]} < 0

for k = 1, . . . , N − 1

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δ[1 + Ld(e−jωk)]|−
Re{[1 + L∗

d(e
−jωk)][1 + L(e−jωk+1 , ρ)]} < 0

for k = 1, . . . , N − 1

(5.29)

where L∗
d(e

−jωk) is the complex conjugate of Ld(e−jωk). These con-
straints assure that the uncertainty area is at the side of d(ω) ex-
cluding the critical point.

The new convex optimization approach in which the approxima-
tion of the 2-norm of L−Ld is minimized under the linear constraints
proposed in (5.26), (5.25) and (5.29) is given below:

min
ρ

N∑
k=1

|L(e−jωk , ρ) − Ld(e−jωk)|2

Subject to:
|W1(e−jωk)[1 + Ld(e−jωk)]| + |δ[1 + Ld(e−jωk)]|−

Re{[1 + L∗
d(e

−jωk)][1 + L(e−jωk , ρ)]} < 0
for k = 1, . . . , N − 1

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δ[1 + Ld(e−jωk)]|−
Re{[1 + L∗

d(e
−jωk)][1 + L(e−jωk+1 , ρ)]} < 0

for k = 1, . . . , N − 1

�(h, ρ) ≤ Mβ−h for h = 0, . . . , N − 1
�(h, ρ) ≥ −Mβ−h for h = 0, . . . , N − 1

(5.30)

where �(h, ρ) is defined in (5.24).



5.3 Exact Approach 99

|W1(e
−jω)|

δ

Ld(e−jω)

L(e−jωk )

d(ω)

Re

Im

L(e−jωk+1 )

−1

Lλ(e−jω)

Uncertainty Area

Fig. 5.1. Convex constraints guaranteeing inter-frequency behavior in
Nyquist diagram

Controller design (with integrator)

For control problems where the open-loop system contains an inte-
grator, φ(e−jω) defined in (5.21) can contain transfer functions with
poles at 1. The open-loop frequency response of the system is ap-
proximated by:

L̃(e−jω , ρ) = ρT φ(e−jω)G(e−jω) =
L(e−jω , ρ)
1 − e−jω

≈ L(e−jω , ρ)
jω

(5.31)
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Note that, L(e−jω, ρ) is the open-loop frequency response of the sys-
tem without the integral part.

The bound δint(ω) given in (5.18) depends on the controller pa-
rameters ρ and it is defined around the following linear interpolation
model:

L̃λ(e−jω, ρ) = λ
L(e−jωk , ρ)

jωk
+ (1 − λ)

L(e−jωk+1 , ρ)
jωk+1

for ωk < ω < ωk+1 (5.32)

In this case, figure 5.1 also describes graphically the constraints
for controller design if L(e−jωk) and L(e−jωk+1) are replaced by
L̃(e−jωk) and L̃(e−jωk+1) respectively, Lλ(e−jω) is replaced by
L̃λ(e−jω) and δ is replaced by δint(ω, ρ). Note that, in this case,
the uncertainty area depends on the controller parameter ρ. This
means that the linear constraints in (5.29) are now replaced by the
following convex constraints:

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δint(ωk, ρ)[1 + Ld(e−jωk)]|−
Re{[1 + L∗

d(e
−jωk)][1 + L̃(e−jωk , ρ)]} < 0

for k = 1, . . . , N − 1

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δint(ωk, ρ)[1 + Ld(e−jωk)]|−
Re{[1 + L∗

d(e
−jωk)][1 + L̃(e−jωk+1 , ρ)]} < 0

for k = 1, . . . , N − 1

(5.33)

The optimization problem proposed in (5.30) is slightly modified
giving the following convex optimization problem:
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min
ρ

N∑
k=1

|L̃(e−jωk , ρ) − Ld(e−jωk)|2

Subject to:
|W1(e−jωk)[1 + Ld(e−jωk)]| + |δint(ωk, ρ)[1 + Ld(e−jωk)]|−

Re{[1 + L∗
d(e

−jωk)][1 + L̃(e−jωk , ρ)]} < 0
for k = 1, . . . , N − 1

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δint(ωk, ρ)[1 + Ld(e−jωk)]|−
Re{[1 + L∗

d(e
−jωk)][1 + L̃(e−jωk+1 , ρ)]} < 0

for k = 1, . . . , N − 1

�(h, ρ) ≤ Mβ−h for h = 0, . . . , N − 1
�(h, ρ) ≥ −Mβ−h for h = 0, . . . , N − 1

(5.34)

where

δint(ωk, ρ) =
ωN

N−1
(
√

ωk+
√

ωk+1)2

∣∣∣L(e−jωk ,ρ)
ωk

− L(e−jωk+1 ,ρ)
ωk+1

∣∣∣ +
∣∣∣ 1
jωk

∣∣∣ δ
(5.35)

and �(h, ρ) is computed based on N samples of the open-loop fre-
quency response L(e−jωk , ρ) (which does not contain the integrator).

It should be noted that the optimization problem proposed in
(5.30) contains only linear constraints while that proposed in (5.34)
contains linear and convex constraints (because δint is a function of ρ
but δ is not). The optimization problem in (5.30) can be solved very
efficiently even with thousands of constraints by standard quadratic
programming. On the other hand, an SDP solver is needed to solve
the optimization problem in (5.34) (e.g. SeDuMi [54]).

5.4 Simulation Results

A simulation example is presented in this section where a discrete-
time PD controller is designed. The idea is to show the conservatism
of the Exact approach in comparison with the Approximate approach
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in a controller design problem. At the same time, it is shown how
this conservatism is reduced when the number of frequency samples
used in the Exact approach is increased.

The following continuous-time transfer function system is consid-
ered:

G(s) =
1

(s + 1)(s + 2)
(5.36)

which is discretized using Tustin approximation with Ts = 0.1s as
sampling period. The following PD controller should be tuned for
this system:

K(z) =
ρ1z + ρ0

z
(5.37)

The goal is to design a controller minimizing the 2-norm of L − Ld

with a modulus margin of at least 0.5 (W1(z) = 0.5) where Ld(s) =
1

s+1 is chosen (which is also discretized using Tustin approximation).
The impulse response of Ld(s) is e−t which let us define β = 1 and
M = 1. However, β and M are chosen 10% higher than these values,
giving β = 1.1 and M = 1.1. The Nyquist frequency ωN is π

Ts
rad/s.

Based on the Exact approach, the optimization problem presented
in (5.30) is solved with N equally spaced frequency samples between
0 and ωN rad/s for different values of N . The results are shown
in Table 5.1 for N equal to 50, 100, 1000, 10000 and 100000. It
should be noted that the computation of the impulse response of
the open-loop system is not accurate for high values of h for some
chosen values of N . Therefore, only the constraints bounding the
impulse response for which the bound Mβ−h is higher than 10−4

are considered. Looking at the Table 5.1, it can be seen that the
2-norm of L − Ld is reduced when N is increased. This result is
expected because the inter-grid uncertainty δ is decreasing when N is
increased which reduces the conservatism of the approach. However,
the computational cost (TC) is also increased.

As expected, if the same control problem is solved using the Ap-
proximate approach, better performances can be obtained for the
same number of data N . The results are shown in Table 5.2. Note
that using the Exact approach, if N is large enough, the results are
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Table 5.1. Exact approach

N ‖L − Ld‖2 ρ1 ρ0 TC [s]
50 Not feasible
100 Not feasible
1000 0.1769 11.0329 -10.997 2.5
10000 0.1445 11.3952 -10.9894 12.49
100000 0.0440 12.0155 -10.0977 730

the same as those obtained with the Approximate approach with a
different computational cost.

Table 5.2. Approximate approach

N ‖L − Ld‖2 ρ1 ρ0 TC [s]
50 0.0441 12.0260 -10.0888 0.81
100 0.0440 12.0213 -10.0926 0.82
1000 0.0440 12.0162 -10.0971 0.83
10000 0.0440 12.0156 -10.0976 2.5
100000 0.0440 12.0155 -10.0977 148.04

5.5 Conclusions

In this chapter, three different approaches to solve the SIP optimiza-
tion problems in the context of controller design are proposed. The
proposed approaches transform the original SIP optimization prob-
lem with an infinite number of convex constraints to an SDP opti-
mization problem with a chosen finite number of convex constraints.
The Approximate approach and Probabilistic approach assure that
the constraints are only satisfied for the chosen constraint. However,
the Probabilistic approach gives a probability level for which the so-
lution will satisfy all the convex constraints of the original problem
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with a given violation level. On the other hand, the Exact approach
using only a finite number of constraints assures that all the con-
straints are satisfied. This is made possible by defining a frequency
uncertainty in the Nyquist diagram which considers the inter-grid
behavior of the open-loop transfer function. This approach is ap-
plicable to the controller design methods proposed in this thesis. In
this approach, the inter-grid behavior is used to satisfy desired stabil-
ity and performance constraints between the samples. Convex con-
straints are defined to bound the impulse response of the open-loop
system. This allows one to include smoothness assumptions which
are used to bound the difference between the linear interpolation
model and all possible interpolants between the frequency samples
of the open-loop system. Additionally, it is shown how this bound is
reduced when the number of frequency samples is increased. These
results are integrated in an H∞ controller design method proposed
in Chapter 2 where a linearly parameterized controller is designed
by convex optimization.

The simulation results show that based on the Exact approach,
using a finite number of frequency samples, the stability and perfor-
mance conditions can be satisfied even for frequencies between the
samples. The conservatism of the approach decreases if the number
of frequency samples increases. Consequently, the complexity of the
optimization problem increases. The same results can be obtained
with much less computational complexity by only verifying the con-
straints at the available frequency samples based on the Approximate
approach. It should be noted that in this case, there is no guarantee
that the conditions are verified between the frequency samples.
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Conclusions

6.1 Summary

In this thesis, a new method for the design of fixed-order linearly pa-
rameterized controllers is proposed. The method consists of shaping
the open-loop transfer function in the Nyquist diagram by convex
optimization with infinity norm constraints on the weighted closed-
loop sensitivity functions. This new controller design method designs
controllers for systems using either parametric models or frequency-
domain data. Moreover, it can also directly treat multi-model sys-
tems and systems with frequency-domain uncertainties.

In Chapter 2, a method to design fixed-order linearly parameter-
ized controllers for SISO systems is proposed. The open-loop trans-
fer function is shaped by minimizing its difference with a desired
open-loop transfer function subject to constraints on the weighted
closed-loop sensitivity functions. The nonconvex constraints on the
closed-loop sensitivity functions are approximated by convex con-
straints on the controller parameters using the desired open-loop
transfer function. Hence, the robust control problem is presented as
a convex optimization problem.

In Chapter 3, an extension of the method to design 2DOF con-
trollers with an RST structure for SISO systems is presented. The
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shaping of the open-loop transfer function with H∞ constraints on
the weighted closed-loop sensitivity functions is proposed as a con-
vex optimization problem. The T and S polynomials of the RST
controller with a fixed R polynomial are tuned by a single convex
optimization.

In Chapter 4, the method is extended to design decoupling fixed-
order MIMO linearly parameterized controllers for MIMO systems.
The shaping of the open-loop matrix transfer function is proposed
with constraints in order to satisfy the Generalized Nyquist Stability
criterion. The nonconvex stability constraints are approximated by
convex constraints using the Gershgorin bands.

In Chapter 2, 3 and 4, the different control problems are presented
as SIP optimization problems where a finite number of decision vari-
ables (the parameters of the controller) should be optimized subject
to an infinite number of constraints. In Chapter 5, three different ap-
proaches are proposed to solve this type of optimization problems by
relaxing the original infinite number of constraints to a finite number
of constraints. The Approximate approach and Probabilistic approach
assure only that the chosen constraints are satisfied. The solution
using the Probabilistic approach satisfies the unseen constraints with
a certain probability which depends on N . However, the Exact ap-
proach assures that the solution satisfies all the constraints even if
only a finite number of constraints are considered. This is possible by
defining a frequency uncertainty area in the Nyquist diagram which
envelops the inter-grid behavior of the open-loop transfer function.

This methodology is tested on numerous simulations examples.
The method is applied to an international benchmark problem for
robust controller design for which the proposed controller meets all
the specifications with the lowest complexity of all the controllers
proposed for the system in the literature. Additionally, the method
is used to design a 2DOF controller with an RST structure for an in-
dustrial double-axis LPMSM high-precision positioning system. The
simulations and the experimental results illustrate the effectiveness
of the method.
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6.2 Perspectives

There are a number of interesting extensions that arise from this
work. These are briefly presented below:

• The methods proposed in this thesis design linearly parameter-
ized controllers or RST controllers with a fixed R polynomial.
This means that the denominators of the controllers are chosen a
priori. Thus, it would be potentially useful to extend the method
to have also the denominators of the controllers as decision vari-
ables on the convex optimization problems.

• The proposed MIMO controller design method considers stabil-
ity conditions of the interconnected loops with H∞ constraints
on the decoupled diagonal SISO loops. The original MIMO H∞
controller design problem has not been considered because it has
not been possible to approximated MIMO H∞ constraints to con-
vex constraints. Basically, these constraints are a function of the
singular value of the weighted closed-loop transfer function ma-
trix, for which was not possible to find a convex approximation.
An extension of the method to consider MIMO H∞ constraints
would be interesting.

• The proposed methods are formulated as optimization problems
with an infinite number of constraints. An approach has been
proposed to assure that the solution satisfies all the constraints
even using a finite number of constraints. This is possible if
the impulse response of the discrete-time open-loop system is
bounded with a decreasing exponential function that converges
to zero. This can be guaranteed with a finite number of linear
constraints added on the optimization problem. This is possible
if discrete-time control problems are considered since its impulse
response is a discrete-time signal. For continuous-time systems,
the impulse response is also continuous-time signal for which in-
finity number of constraints are needed to bound it. It would be
interesting to find another approach to consider control problems
for continuous-time systems.
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Additionally, the proposed approach for discrete-time systems
adds some conservatism. This conservatism decreases if the cho-
sen number of finite constraints is increased. However, even for a
very large number of constraints the added conservatism is high.
A new approach adding less conservatism and guaranteeing that
the solution satisfies all the constraints would be useful.
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Exact Approach with Integrators

A.1 Inter-grid behavior

Assume that we have N samples X̄(e−jωk) for k = 1, . . . , N of the
original frequency response of the discrete-time system X̄(e−jω) be-
tween 0 and the Nyquist frequency ωN spaced by ωN

N−1 . The fre-
quency response X̄(e−jω) is given by:

X̄(e−jω) =
X(e−jω)
1 − e−jω

(A.1)

where X(e−jω) is the frequency response of the discrete-time system
without the integral part.

As in Subsection 5.3.1, it is assumed that impulse response
x(h) of the discrete-time system without the integral part X(e−jω)
is bounded |x(h)| ≤ Mβ−h. This bounds |Xλ(e−jω) − X(e−jω)|
as in (5.9). However, now the goal is to find a bound δint for
|X̄λ(e−jω)− X̄(e−jω)| based on the bound on |Xλ(e−jω)−X(e−jω)|.
Note that the linear interpolation model X̄λ(e−jω) between the fre-
quency samples X̄(e−jωk) is defined as:
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X̄λ(e−jω) = λ
X(e−jωk)
1 − e−jωk

+ (1 − λ)
X(e−jωk+1)
1 − e−jωk+1

for ωk < ω < ωk+1

(A.2)
The bound is obtained with the help of an intermediate frequency

function X̃(e−jω), which approximates the discrete integrator 1
1−e−jω

by 1
jω . X̃(e−jω) is defined as follows:

X̃(e−jω) =
X(e−jω)

jω
(A.3)

An intermediate linear interpolation model is defined between the
approximated frequency response samples X̃(e−jωk) as follows:

X̃λ(e−jω) = λ
X(e−jωk)

jωk
+ (1 − λ)

X(e−jωk+1)
jωk+1

for ωk < ω < ωk+1

(A.4)
Using the intermediate frequency responses X̃(e−jω) and

X̃λ(e−jω), the bound is divided in four different terms as follows:

|X̄λ(e−jω) − X̄(e−jω)| ≤
∣∣∣X̄λ(e−jω) − X̃λ(e−jω)

∣∣∣
+
∣∣∣X̃λ(e−jω) − Xλ(e−jω)

jω

∣∣∣
+
∣∣∣Xλ(e−jω)

jω − Xλ(e−jω)
1−e−jω

∣∣∣
+
∣∣∣Xλ(e−jω)

1−e−jω − X̄(e−jω)
∣∣∣ for ωk < ω < ωk+1

(A.5)
Now, each of these terms are bounded independently:

• The error between the linear interpolation model and the approx-
imated interpolation model is always maximum when ω is ωk or
ωk+1. Hence, this error is bounded by:∣∣∣X̄λ(e−jω) − X̃λ(e−jω)

∣∣∣ ≤ ∣∣∣ 1
1−e−jωk

− 1
jωk

∣∣∣ ∣∣X(e−jωk)
∣∣

for ωk < ω < ωk+1

(A.6)
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or by:∣∣∣X̄λ(e−jω) − X̃λ(e−jω)
∣∣∣ ≤ ∣∣∣ 1

1−e−jωk+1
− 1

jωk+1

∣∣∣ ∣∣X(e−jωk+1)
∣∣

for ωk < ω < ωk+1

(A.7)

• The bound for the second term

∣∣∣∣∣X̃λ(e−jω)− Xλ(e−jω)
jω

∣∣∣∣∣ has already

been defined in (5.16).
• The bound for the third term

∣∣∣Xλ(e−jω)
jω − Xλ(e−jω)

1−e−jω

∣∣∣ is tranformed
to: ∣∣∣Xλ(e−jω)

jω − Xλ(e−jω)
1−e−jω

∣∣∣ =
∣∣∣( 1

jω − 1
1−e−jω

)
Xλ(e−jω)

∣∣∣
=
∣∣∣ 1
jω − 1

1−e−jω

∣∣∣ |Xλ(e−jω)|

for ωk < ω < ωk+1

(A.8)

where
∣∣∣ 1
jω − 1

1−e−jω

∣∣∣ is the approximation error of the integral

part which has its maximum for ω = ωk+1. Since |Xλ(e−jω)| is
the linear interpolation model, its maximum value is given when
ω is ωk or ωk+1. Hence, (A.8) is bounded by:∣∣∣Xλ(e−jω)

jω − Xλ(e−jω)
1−e−jω

∣∣∣ ≤ ∣∣∣ 1
jωk+1

− 1

1−e−jωk+1

∣∣∣ |X(e−jωk)|

for ωk < ω < ωk+1

(A.9)

or by:∣∣∣Xλ(e−jω)
jω − Xλ(e−jω)

1−e−jω

∣∣∣ ≤ ∣∣∣ 1
jωk+1

− 1
1−e−jωk+1

∣∣∣ |X(e−jωk+1)|

for ωk < ω < ωk+1

(A.10)
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• Finally, the bound of the fourth term is a direct result from Sub-
section 5.3.1:∣∣∣Xλ(e−jω)

1−e−jω − X̄(e−jω)
∣∣∣ =

∣∣∣ 1
1−e−jω (Xλ(e−jω) − X(e−jω))

∣∣∣
≤
∣∣∣ 1
1−e−jωk

∣∣∣ δ for ωk < ω < ωk+1

(A.11)

Therefore, combining the different bounds for each term, three
bounds δint are defined which bounds the difference between the
linear interpolation model X̄λ(e−jω) and all possible interpolants be-
tween the frequency samples when the frequency response contains
an integrator :

δint1(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
+2

∣∣∣ 1
1−e−jωk

− 1
jωk

∣∣∣ ∣∣X(e−jωk)
∣∣+ ∣∣∣ 1

1−e−jωk

∣∣∣ δ
for ωk < ω < ωk+1

(A.12)

δint2(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
+2

∣∣∣ 1

1−e−jωk+1
− 1

jωk+1

∣∣∣ ∣∣X(e−jωk+1)
∣∣+ ∣∣∣ 1

1−e−jωk

∣∣∣ δ
for ωk < ω < ωk+1

(A.13)

δint3(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣X(e−jωk )
ωk

− X(e−jωk+1 )
ωk+1

∣∣∣
+
∣∣∣ 1
1−e−jωk+1

− 1
jωk+1

∣∣∣ ∣∣X(e−jωk+1)
∣∣

+
∣∣∣ 1
1−e−jωk

− 1
jωk

∣∣∣ ∣∣X(e−jωk)
∣∣ +

∣∣∣ 1
1−e−jωk

∣∣∣ δ
for ωk < ω < ωk+1

(A.14)
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A.2 Controller design method with integrator

The idea is the same as in Subsection 5.3.2. Linear constraints are
used to bound the impulse response. Then, this allows to use the
bounds presented in (A.12), (A.13) and (A.14). These bounds define
a frequency-domain uncertainty which is integrated in the convex
constraints of the controller design method.

To integrate the bounds (A.12), (A.13) and (A.14) in the open-
loop shaping controller design method, X(e−jω) or X̄(e−jω) should
be replaced by the open-loop frequency response with an integra-
tor L̄(e−jω , ρ) and without an integrator L(e−jω, ρ) respectively.
L̄(e−jω , ρ) and L(e−jω, ρ) are defined as follows:

L̄(e−jω , ρ) = ρT φ(e−jω)G(e−jω) =
L(e−jω, ρ)
1 − e−jω

(A.15)

The new bounds are introduced into the optimization problem
proposed in (5.34). The constraints are defined using the three dif-
ferent bounds to assure that the constraints are verified between the
frequency samples for the worst case. The following convex opti-
mization problem is considered:
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min
ρ

N∑
k=1

|L̄(e−jωk , ρ) − Ld(e−jωk)|2

Subject to:
|W1(e−jωk)[1 + Ld(e−jωk)]| + |δintp(ωk, ρ)[1 + Ld(e−jωk)]|−

Re{[1 + L∗
d(e

−jωk)][1 + L̄(e−jωk , ρ)]} < 0

for k = 1, . . . , N − 1 and for p = 1, 2, 3

|W1(e−jωk)[1 + Ld(e−jωk)]| + |δintp(ωk, ρ)[1 + Ld(e−jωk)]|−

Re{[1 + L∗
d(e

−jωk)][1 + L̄(e−jωk+1 , ρ)]} < 0

for k = 1, . . . , N − 1 and for p = 1, 2, 3

�(h, ρ) ≤ Mβ−h for h = 0, . . . , N − 1

�(h, ρ) ≥ −Mβ−h for h = 0, . . . , N − 1
(A.16)

where

δint1(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣L(e−jωk )
ωk

− L(e−jωk+1 )
ωk+1

∣∣∣
+2

∣∣∣ 1
1−e−jωk

− 1
jωk

∣∣∣ ∣∣L(e−jωk)
∣∣+ ∣∣∣ 1

1−e−jωk

∣∣∣ δ
for ωk < ω < ωk+1

(A.17)

δint2(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣L(e−jωk )
ωk

− L(e−jωk+1 )
ωk+1

∣∣∣
+2

∣∣∣ 1
1−e−jωk+1

− 1
jωk+1

∣∣∣ ∣∣L(e−jωk+1)
∣∣ +

∣∣∣ 1
1−e−jωk

∣∣∣ δ
for ωk < ω < ωk+1

(A.18)
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δint3(ω) = 1
N−1

ωN

(
√

ωk+
√

ωk+1)2

∣∣∣L(e−jωk )
ωk

− L(e−jωk+1 )
ωk+1

∣∣∣
+
∣∣∣ 1
1−e−jωk+1

− 1
jωk+1

∣∣∣ ∣∣L(e−jωk+1)
∣∣

+
∣∣∣ 1
1−e−jωk

− 1
jωk

∣∣∣ ∣∣L(e−jωk)
∣∣+ ∣∣∣ 1

1−e−jωk

∣∣∣ δ
for ωk < ω < ωk+1

(A.19)

and �(h, ρ) is computed based on the open-loop transfer function
L(e−jωk , ρ) (which does not contain the integrator) and L∗

d(e
−jωk) is

the complex conjugate of Ld(e−jωk).
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