User Impersonation in Key Certification Schemes

Arjen K. Lenstra and Yacov Yacobi

Bellcore, 445 South Street, Morristown, NJ 07960, U.S.A.
lenstra@bellcore.com yacov(@bellcore.com

Communicated by Gilles Brassard
Received 22 October 1991 and revised 4 September 1992

Abstract. In this note we exhibit some weaknesses in two key certification
schemes. We show how a legitimate user can impersonate any other user in an
ElGamal-based certification scheme, even if hashing is applied first. Furthermore,
we show how anybody can impersonate users of the modular square root key
certification scheme, il no hashing occurs before the certification. This shows that
it is essential for this certification scheme to hash a message before signing it.
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1. Introduction

A certificate of a public key is a proof that a linkage exists between a user’s name
and his public key. This proof is usually achieved using a signature of some trusted
authority on a function of a user’s name and his public key.” In this paper we present
several weaknesses that affect the security of two key certification schemes that have
appeared in the literature.

In [3] a key certification scheme is proposed that is based on ElGamal’s signature
scheme [4]. We show that legitimate users of this scheme who satisfy certain weak
requirements, can be impersonated by other legitimate users. Although the identity
of the impersonator can probably be detected if the impersonation is discovered,
this is clearly a severe weakness in the key certification scheme from [3].

Another disadvantage of this scheme is the fact that the verification operation
requires several modular exponentiations, and is thus fairly slow. In practical
circumstances we would like to have an easily verifiable certificate, since verification
is frequently done and in many cases by weak processors, such as can be found in
smart-cards or portable phones. The creation of a certificate, on the other hand,
may have higher complexity, since it is less frequently done and the trusted author-
ity, who creates the certificate, may have extensive computational power.

! If identity-based systems are used, then there is no need for additional certificates.



This asymmetry leads to public-key signature schemes such as the modular
square root scheme, proposed by Rabin [9], where the verification operation is a
single modular squaring. For efficiency, it is common to hash a long message before
signing it. For the modular square root key certification scheme, which is Rabin’s
modular square root signature scheme applied to the concatenation of a user’s name
and his public key, hashing is not important to achieve efficiency. It follows from
[2] and [11], however, that for this scheme hashing is important for security reasons:
even a complete outsider can impersonate any user of the modular square root key
certification scheme, if no hashing takes place before certifying. To foil the attacks
from [2] and [11] almost any hashing function suffices. For instance, interleaving
the bytes of the user's name and his public key will do. Hashing does not help to
foil our attack on the ElIGamal-based scheme.

We present an alternative attack on the modular square root key certification
scheme, which is similar to the attack from [2] and considerably simpler than the
one from [11]. Although, like the attacks from [2] and [11], our attack might be
detected by a suspicious verifier, it allows a variation which was not considered
by [2] and which cannot, as far as we know, be achieved using [11]. Like the other
attacks, our attack is foiled by hashing.

The attacks that we propose do not require any heavy machinery. On the
contrary, they are totally straightforward and most of them take only a few seconds
if the basic extended precision integer arithmetic routines are available. This raises
another neglected issue. In the theories we develop the legitimate protocols ought
to run in polynomial time, while adversarial computations should take super-
polynomial time if they want to stand a chance of breaking the protocols. However,
a theoretically clean successful attack against a given protocol should run in
polynomial time, and it should not be detectable by any polynomial-time computa-
tion that the victim may do on top of the bare-bones protocol. Our attacks achieve
these objectives except for the last: as we will see below a suspicious victim might
do some extra work and detect our fraud in polynomial time.

The remainder of this paper is organized as follows. In the next section we discuss
the ElGamal-based certification scheme and show how its users can be imperson-
ated. The modular square root certification scheme is similarly treated in the third
section.

Throughout this paper, a mod n denotes the last nonnegative remainder of a
modulon,foraeZandneZ,,.

2. The ElGamal-Based Certification Scheme

2.1. ElGamal’s Scheme

In [4] ElGamal proposed the following public-key signature scheme. The public
key of the universally trusted authority consists of three parts: a large prime number
p, a generator g of the multiplicative group Fy of units of the finite field F, of
p elements, and some element Y € F¥. The field F, is identified with the set
{0,1,...,p — 1} in the “natural” way. A signature for a message m € Z is a pair of



integers C,, V,, such that
g"=Y-Cym modp, @2.1)

using the above mapping between field elements and integers. In practice, it is
probably better to hash the original message to an m with 0 <m<p—1. To
compute the signature as in (2.1), the authority employs the secret information it
has about its public key, namely, the discrete logarithm X with respect to g of Y,
ie, XeZ such that Y=g *modp and 0 < X < p— 1. This can be achieved
as follows. First, the trusted authority selects a random integer R,, uniformly
from the interval [1, p — 2], such that R,, and p — 1 are relatively prime. Next,
C, is set equal to the “integer” g*~mod p (again, using the above-mentioned
identification), and R, € Z is computed, using, for instance, the extended Eu-
clidean algorithm, such that R, ‘R, = I mod(p — 1). Finally, ¥,, is set equal to
((m — X-C,)* R,,) mod(p — 1).

Given the triple (m, C,, V) anybody can verify that (2.1) holds: since m =
X:C, + R, V, mod(p — 1), we have that g™ = g* Cm: gRm"¥m = YCm- Cli= mod p.
Notice that any message m € Z can be signed using this scheme, unlike the scheme
to be discussed in the next section. Clearly, anyone who can solve the discrete
logarithm problem in F, can forge signatures, which raises the issue of the integrity
of the public key (see Section 4). It is as yet unknown whether forging signatures is
as hard as the discrete logarithm problem, or the Diffie~-Hellman problem. In any
case, we are not aware of an efficient way to forge ElGamal signatures, i¢., to
produce a valid signature C,, V,, for an arbitrary message m, when the public key
is chosen properly.

2.2. Key Certification Using ElGamal’s Scheme

There is an application of this signature scheme, however, for which it is not at all
difficult to forge certificates, if one certificate is known. This concerns a key certifica-
tion scheme that was mentioned in [3], and which has never been implemented [8].
Suppose that the trusted authority has public key p, g, ¥, as described above.
Furthermore, suppose that the name of user A, plus other personal data relevant
for a unique identification of A, is coded in the positive integer I,. We assume that
A is known by this public identity I,.

To become a legitimate user of the system, user A selects a secret positive integer
X,, computes the corresponding public key ¥, = g**mod p, and presents the pair
L, Y, to the trusted authority for certification. To certify the linkage between [, and
Y,, the trusted authority computes m, = Y/ mod p, applies the EIGamal signature
scheme to m,, and provides 4 with the resulting certificate C, =C,, V, = V..
Someone who gets (I, Y, C,, ¥,) has to carry out four exponentiations modulo p
to check that g¥4 = YC4- C¥+ mod p, thus proving the linkage between A's name
I, and A’s public key Y,.

2.3. Weakness in the EIGamal Key Certification Scheme

The certification scheme in Section 2.2 has at least one major flaw. Suppose that
user A with identity I, went through the above-described procedure, and got



everything a legitimate user of the system should have: the secret key X, the
corresponding public key Y,, and the certificate C,, V,. For any integer s that is
coprime to p — 1, user A can compute I; = [,/s mod(p — 1)and Y; = Y}, and claim
that (Iz, Yz, C,, V,) certifies that the user whose identity is I; has public key Y;;
furthermore, A easily computes the secret information X; = X, s mod(p — 1) that
corresponds to this forgery. Any user B with identity I for which (I,/Iz) mod(p — 1)
is well defined can thus be impersonated by A, simply by using s=
(I4/1g) mod(p — 1).

Hashing Y/ clearly does not affect this impersonation attack. A disadvantage of
the attack is, however, that the impersonator A is detectable: a victim (i.e., a verifier)
who discovers that he is being cheated, informs the trusted authority who then traces
the forgery back to the probably very small set of users with certificate C,, V.

3. The Modular Square Root Certification Scheme

3.1. Rabin's Scheme

In [9] Rabin proposed the following public-key signature scheme. The public key
of the universally trusted authority consists of a composite number N € Z. ,. The
ring of integers Z/NZ is identified with the set {0, 1,..., N — 1} in the “natural”
way. A signature for a message m € Z is an integer C_, such that

m=C2 modN. (3.1)

Evidently, this equation only has a solution if m is a square modulo N; we may
assume that m consists of a hash of the original message concatenated with a few
bits to make it a square modulo N. To compute the signature, and to decide which
bits to concatenate,the trusted authority uses the secret information it has about N,
i.e., N's factorization (see [7]).

Rabin [9] showed that taking square roots modulo N is as hard as factoring N.
With the proper choice of N and without a further breakthrough in factoring
techniques, it therefore seems to be infeasible to forge signatures, and we have no
intention of refuting this assumption.

3.2. The Modular Square Root Certification Scheme

In an early version of [1] the following key certification application of Rabin's
scheme was proposed. Suppose that the trusted authority has public key N as in
Section 3.1, and that user A has public identity I, as in Section 2.2. Furthermore,
let the bitstring N, be A’s public key, Often, N, will be identified with the positive
integer represented by its bits. As usual, it is assumed that A possesses some
additional secret information about the public key N, that enables 4 to carry out
a certain protocol based on N, that cannot be carried out by parties that do not
have this additional information about N,. For example, N, can be the product of
two large primes that are only known to A; this enables 4 to compute square roots
modulo N,, which is commonly believed to be computationally infeasible for parties
who do not know N,'s factorization.



To get a certificate for the pair I,, N,, user A presents h(I,, N,) to the trusted
authority. Here h is some simple publicly known and length-preserving function of
1, and N,: it might simply concatenate I, and N, in any order, interleave their bits,
or hash them in any other length-preserving way; in [1] the bits of I, and N, were
simply concatenated. The trusted authority then employs its secret information
about N to select a short bitstring w such that the concatenation (h(I,, N,), w) of
h(l,, N,) and w is a quadratic residue modulo N, and provides A with one of the
square roots C, of (h(I,, N,), w) modulo N. Someone who gets the triple (I,, N,, C,)
needs to perform only h and one modular squaring to verify the linkage between
A’s name I, and A’s public key N,. Without loss of generality we assume that w has
length 0, so we omit w in the following.

3.3. Weaknesses in the Modular Square Root Certification Scheme

We suppose that the protocol based on N, is such that, for some random bit string
N, of approximately the same length as N, there is a fair probability that the
protocol based on N, can be carried out efficiently (possibly after deriving the
“secret” information about N, which might not be hard to find for random N,).
Notice that the example mentioned in Section 3.2 satisfies this requirement. Further-
more, we assume that log, I, is smaller than the length of N, say by a factor of at
least 2.

Under these assumptions we can, for any I,, construct C, and N, such that C,
is a certificate for h(I,, N,), and such that we are able to carry out the protocol based
on N,. This enables us to impersonate user A. Our attack will be successful if our
potential victim, the verifier, only inspects the triple (I, N,, C,) by certifying that
indeed C? = h(I,, N,) mod N. Our foiling scheme breaks down, however, if the
verifier becomes suspicious and has a much closer look at the forged public key N,.
We are not aware of any applications that do more than the basic verification.

Our attacks work by constructing many different triples (I,, N, C,) with C? =
h(I,, N,) mod N, where the N, behave, more or less, like random bitstrings of the
proper length. For the example in Section 3.2, where we need to know the factoriza-
tion of N, in order to impersonate user 4 successfully, it suffices to try until one of
the N,'s can be easily factored (for instance, by being prime). A suspicious verifier
might notice such an easy N, but for practical protocols on small machines it is
too costly to check that N, is indeed composite and difficult to factor. Furthermore,
we might spend quite some time on our impersonation attack for some particularly
interesting user A, and try until we have found an N, that has, for instance, one
large and one medium-sized factor of, say, 25-35 digits, that can only be found after
a fairly serious elliptic curve attack. The density of candidate N,’s is sufficiently high
for this approach to work.

We present three types of attack, depending on three different functions h of I,
and N,: functions that arbitrarily interleave the bits of I, and N, in Section 3.4,
bit-wise concatenation of I, and N,, with I, on the left, in Section 3.5, and finally
concatenation with I, on the right in Section 3.6. We will see that the function from
Section 3.5 is most susceptible to impersonation attacks. This variant was also
considered in [2] and [11]; neither of these papers considers the variants from
Sections 3.4 or 3.6.



Suppose that NV has nbits (1., 2" < N < 27)and that [, the identity of the user
we want to impersonate, has m bits. Because the concatenation of I, and the public
key N, must be a positive integer less than N, we find that the integer N, has at
most n — m bits; without loss of generality we may assume that this integer has
n — m bits.

3.4. Artack on Arbitrary h

If h arbitrarily interleaves the bits of I, and N,, we simply try positive integers C,
at random, until C2 mod N = h(l,, N,), for some N, that is feasible, i.e., a number
for which A4’s protocol can be carried out efficiently. Although the numbers that we
generate in this way do not entirely behave as random numbers, it is not unreason-
able to expect that the number of trials required will be close to 2™ divided by the
probability that the n — m bit number is feasible. Depending on the protocol, and
for small m, say up to 20, this attack might work. Evidently, it is not a polynomial-
time attack.

However, we do not have to try until a particular name I, shows up, we can
simply try until any name, or any name in a certain class of targets, shows up.
Depending on the density of (target) names among the m-bit numbers, this might
drastically increase the success rate of this approach. For instance, attacks to get
access to the computing facilities of a major company or of a major network might
use this approach (and actually have used a similar approach [10]).

Notice that the above attack works irrespective of how h intermingles the bits of
I, and N,. It follows that in this type of key certification scheme in the first place
m should be sufficiently large. Secondly, the probability to hit any name should also
be kept as low as possible, which means that the number of legitimate identities
should be very small compared with 2™. A one-way h would also be sufficient to foil
this attack.

3.5. Identity Concatenated to the Left

Let h(I,, N) = 2"""I, + N,, i, the identity appears in the m most significant bits
of the message to be signed. Without loss of generality we assume that h(I,, N,) < N.
Let x be a random n — 2m — 4 bit integer such that the interval [xN + 2"™"I, +
27~m=1 xN + 2""™], + 2"™™ — 1] contains at least one perfect square; this condi-
tion can be trivially checked, and it can be easily seen that most n — 2m — 4 bit xs
satisfy it. For any such x we can compute the plain “real” square root, rounded

downward, C, = |\/xN + 2", + 2"™™ — 1. It follows from the condition on x
and I, that C2 mod N equals h(l,, N,) for some integer N, that satisfies 2"™""! <
N, < 2"™ Selection of x's is repeated until N, is feasible, in which case we put
C,=C, and N, = N,. The expected number of random x’s needed before this
happens depends of course on the protocol that is used. For the example mentioned
in Section 3.2 the search-space is more than rich enough to make this approach
successful, under the usual assumptions concerning the random behavior of the
numbers involved. Notice that C, can have length up to n — m — 2, which we call
a forgery of length n —m — 2. Even a very naive verifier might notice that the
certificate is quite short, also if we disguise C, by using N — C, instead.




This problem of short forgeries is overcome by the more complicated approach
from [11] which can be used under the reasonable assumption that m < n/3 (see
Section 3.3). Using a method based on lattice basis reduction, the following is shown
in [11]: given almost any bitstring x of length n — m with 2"x + 2"™™ — 1 < N and
m < n/3, one can efficiently compute C, with 0 < C. < N such that the most
significant n — m bits of C, are equal to x, and such that C? mod N consists of the
concatenation of I, and an n — m bit integer N,. For details we refer to [11]. This
construction, which is much more general than ours but requires considerably more
computing time, can again be repeated until a feasible N, is found. If this imperson-
ation attack is used, only the much more suspicious verifier who also inspects the
foiled public key will notice the forgery.

Clearly, to foil these impersonation attacks it suffices to apply almost any less
trivial function h before the square root is taken, as long as the bits of I, are
sufficiently “mixed up” with the bits of 4’s public key. This is how the application
of this certification scheme is fixed in [1]. However, whenever the bits of I, can
be recognized in a sufficiently short initial segment of the concatenation, these
approaches will work.

3.6. Identity Concatenated to the Right

Let h(l,, N,)=2"N, + I,, ie., the identity appears in the m least significant
bits of the message to be signed. Also in this case we can build a forgery, if,
for instance, I, = 1 mod 4. If that is the case, the polynomial X2 — I, = X2 -1 =
(X —1)(X +1) in (Z/4Z)[X]. Using, for instance, Hensel's lemma [7], this
factorization can be lifted to a factorization in (Z/2™Z)[X], i.e., we can efficiently
find an integer r with 0 <r<2™ such that X2 — [, =(X —r)(X +7) in
(Z/2mZ)[X]. Such an r can be trivially used to fabricate a forgery of length n/2:
guess (n/2) —m bit x's until the leftmost n — m bits of the (n bit) square of
C, = 2™x + r represents a feasible number. Notice that the least significant m bits
of C2 mod N indeed represent I,.

With a little more work such an r can also be used to make a forgery of length
n—m — 4. Let x have n — 2m — 4 bits, and form C, as above. We require that the
m least significant bits of (2™x + r)> mod N represent I,. Because (2™x + r)? =
23mx2 4 2™*Hlxp 4 r?, because 2"*'xr +r? < N/2, and because 2"*'xr +r? =
I, mod 2™ we find that x must be chosen in such a way that 22"x? mod N is divisible
by 2™ and < N/2, i.e., such that it does not “contaminate” the correct bits that are
already in place at the m least significant positions. This can, for instance, be
achieved by selecting x such that x2mod N < N/22™*!  which is satisfied if the
leading 2m + 2 bits of x> mod N are zero. Using the first approach from Section
3.7onan"l,” consisting of 2m + 2 zero bits, we can generate quiteafewn — 2m — 4
bit x's that satisfy this condition, if 2m + 2 < n. After a number of trials that depends
on the protocol, this should enable us to find an x such that the n — m most
significant bits of the n-bit number (2™x + r)* mod N represent a feasible number.
Notice that the forgery is of length n — 2m — 4 + m = n — m — 4. Of course, this
approach extends to any case where the polynomial X2 — I, can be factored over
(Z/2"Z)[X].



4. Conclusion

This paper illustrates that it is easy to overlook potential weaknesses in otherwise
strong algorithms. For both key certification schemes discussed in this paper the
security was believed to be based on the usual assumptions that discrete logarithms
(ElGamal) and factoring (Rabin) are hard; proper selection of the public keys (finite
field or composite number) supposedly sufficed to create an unbreakable scheme,
In both instances apparently more care has to be taken to make the transition from
“research scheme” to “practical application” successful and viable. We are, however,
not aware of any applications that do more than the bare-bones protocol, and in
the literature the need for extensions is not mentioned.

We did not address the many questions that are related to proper selection of
public keys. The difficulty of discrete logarithms modulo p is probably not weak-
ened if the factorization of p — 1 is made public as well (as long as there is at least
a sufficiently large prime in the factorization), but this information can be used to
check that the claimed generator indeed has the proper order. Thus the integrity of
discrete logarithm public keys can be made believable in practical situations, if the
characteristic is sufficiently large to rule out number field sieve attacks [5], [6]. Do
similar methods exist to prove the integrity of composite moduli in factoring-based
systems?
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