Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Proceedings of Sy ia in lied M
Yolume 42, 1950

Primality Testing

ARJEN K. LENSTRA

1. Introduction

How does one decide whether an integer # > 1 is composite or prime? It
will be seen that for composite n a proof of compositeness can usually quite
easily be found. If several attempts to find such a proof of compositeness
have failed, there are good reasons to suspect that the number in question is
actually prime. [t then remains to prove that » is prime. Providing such a
proof is the object of primality testing.

Many of the older primality testing algorithms reduce the problem of prov-
ing the primality of #n to the problem of finding sufficiently many factors of
related numbers like n:1. But factoring integers seems to be a hard problem,
at least in general. For that reason, those older primality testing algorithms
cannot be called general purpose methods; they only work if # is lucky, e,
if factoring # + | turns out to be easy. In the early 1980s scores of primes
of less than 100 digits could not be proved prime. Nevertheless, quite im-
pressive results still can be obtained with these older methods. For instance,
the 65087-digit number 391381 x QRO {the largest prime currenilyT
known), and {IOml — 13/9, a number consisting of 1031 ones, have been
proved in this way to be prime.

More recent methods for primality testing do not have the disadvantage
of depending so heavily on factoring. While primality proofs of arbitrary
65,087-digit primes are still out of reach, for primes well beyond 300 dig-
its, and without special properties, primality proofs can now be given. The
first primality test that could routinely handle primes of several hundred
digits was the Jacobi sum test: 100-{200)-digit primes take an average of 7
(68) seconds on a single Cray X-MP processor. The Jacobi sum test runs
in time (logn)?0°818 108" " hich makes it the fastest deterministic primality
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14 ARJEN K. LENSTRA

test. Other primality tests that do not rely exclusively on factoring are based
on elliptic curves. They are the random curve test, its practical variant the
complex multiplication test, and finally the abelian variety test, the latter test
being the only primality test that can be proved to run in expected polynomial
time.

The two most powerful practical primality tests that exist nowadays are an
improved version of the Jacobi sum test and the complex multiplication test.
It 1s not unlikely that both these methods will be able to tackle 1000-digit
primes. The Jacobi sum test can easily be broken up into almost any number
of smaller subtasks. For the complex multiplication test, parallelization is
much harder to achieve. On the other hand, in case of primality, the Jacobi
sum test only gives the result yes indeed, that number is prime, without any
other way to verify the computation than redoing it, whereas the complex
multiplication test vields a certificate of primality that can be checked much
faster than it can be found.

In this note an attempt will be made to give a rough impression of those
two primality tests. For more information on primality testing the reader is
referred to the various survey articles [6, 16, 13, 14, 17, 23, 27, 28, 29, 33],
and to the original papers [1, 2, 5, 8, 9, 11, 21].

2. Classical Methods
The first question to be addressed in this section is: how do we get rid

of most composites gquickly? Let n > 1 be the integer to be examined.
In practice, the first thing to do is to check whether n is divisible by (or
even equal to) some small prime, for all primes up {o a certain trial division
bound, and to draw the appropriate conclusion if that turns cut to be the
case. Clearly, if the trial division bound is > /», then this is the end of
the story. In general, however, trial division up to /& is out of the question
and nobody will consider doing that. Instead the bound will be set 1o some
small number, say 20, so that this step only serves ag a quick way 1o cast out
trivial composites.

Now suppose that »n survives this first primitive attack. If » is prime, then
any integer a should satisfy 4" = a mod n, due to Fermat’s little theorem.
And for any ¢ and n this identity can be checked efficiently by means of
the repeated squaring method. Consequently, to prove that » is composite,
it suffices to find an integer 4 for which & # a mod n, a so-called witness
to the compositeness of 7.

A witness might be difhicult or even impossible to find, however: there
exist composite numbers, the so-called Carmichael numbers, for which no
witnesses exist. This unfortunate situation can be remedied by casting the
test in a slightly different form, a formulation essentially due to Gary Miller
[26}: if n isprimeand n—1 = r- 2% with r odd, then any integer 2 €
{1,2,..., n— 1} satisfies

i

(2.1) d =1modn or d? =-1modn for some 7/ with 0 </ < k.
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If (2.1) holds for n and a, then n is said to pass the test for that a. If n
does not pass the test for a certain a, then a is again called a witness to the
compositeness of n.

This test is often referred to as a probabilistic compositeness test, because
if » is an odd composite number, then more than § of the integers g in
{2,3,...,n— 1} are witnesses to the compositeness of »n (cf. [26]). In
other words, the probability that an odd composite number »n passes the
test for a randomly chosen a € {2,3,...,n — 1} is less than 1. This
means that the probability of proving the compositeness of an odd composite
number 7 by checking (2.1) for / independent random choices of & from
{2.3,...,n~ 1} is more than a4,

In practice, this means that composite numbers are immediately recog-
nized by checking (2.1) for only a few a’s. An odd number passing several
tests, say 10, is called a probable prime. It should be clear that a probable
prime is not proved to be prime; it is a number for which the compositeness
could not be proved, and which is therefore suspected to be prime. It remains
to prove that such a number is indeed prime.

Now that most composites have been dealt with, how do we prove the
primality of a probable prime? For,odd numbers n < 25- 10°, and unequal to
3,125,031,751 = 151 - 751 - 28,351, the proof can easily be done by checking
that n passes the test for a =2, 3,5, and 7: if n is odd, composite, and
unequal to 3,125,031,751, then at least one of 2, 3, 5, and 7 is a witness to
the compositeness of n (cf. [25]).

For larger numbers the proof would not be hard either, in theory at least,
if the generalized Riemann hypothesis were known to be true. In that case
it would suffice to verify (2.1) forthe a in {2,3, ..., [2(10gn}z]} , because
that interval would contain a witness if n were composite (cf. [3, 20]).
A proof of the generalized Riemann hypothesis therefore would lead to a
deterministic polynomial-time primality test, but in practice both the Jacobi
sum test and the complex multiplication test are expected to be faster for
numbers up to several thousands of digits.

Primality proofs that do not depend on any unproved hypotheses are in
general harder to obtain. If the factorization of, for instance, n—1 is known,
then a proof can quite easily be given. This can be seen as follows. If the
positive integers < n are all relatively prime to n, then #n is prime. So, to
prove the primality of # it suffices to find an element a of order n — 1 in
the multiplicative group (Z/nZ)”;i.e., an integer a € {1,2,...,n—1} for
which

(2.2) " ''=1mod n and
S " 924 1 modn for all primes ¢ dividing n — 1.
Finding a can be done by randomly selecting integers until one is found

satisfying (2.2); if a cannot be found then it is unlikely that n is prime, and
n should be subjected to more probabilistic compositeness tests.
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It is not necessary to know all prime divisors of n — 1. According to the
following theorem it suffices to have the prime factors of a factor > /5 — 1
of n.

(2.3) POCKLINGTON'S THEOREM (cf. [22]). Let n be an integer > 1, and
let s be a positive divisor of n — 1. Suppose there is an integer a satisfving

e
a =1modn,

(n—1}/q

ged{a —1,n)=1 for each prime q dividing s.

Then every prime dividing n is congruent to 1 modulo s, and if s > /n — 1
then n is prime.

(n—=13/s

Proor. Let p be a prime dividing # and let b = ¢ modp ¢ Fp ,

where F denotes the finite field containing p elements. From atl =
I mod n and p divides n, it follows that »* = 1, so the order of b divides
s. Let g be a prime dividing 5. From ged(a” "7 = 1, n) = 1 it follows
that 5 =" """ modp#1 in F ,» 50 that the order of b is not a divisor
of s/q, for any prime ¢ dividing s. The order of b therefore equals s. But
since the order of b also divides p—1, it follows that s divides p—1. Every
prime dividing n is therefore congruent to | modulo 5. The statement of
the theorem now follows immediately,

This theorem is applied just as (2.2): randomly select a’s until one is
found satisfying the conditions in (2.3); if that does not work, then # is
probably not prime.

Not only factors of n — | can be utilized in primality proofs; factors of
n+ 1 are equally useful, and they can be combined with the factors of n — 1
into the so-called combined theorem (cf. [6]). This latter theorem leads to
a primality proving strategy called DOWNRUN: if during the simultaneous
factorization attempt of n—1 and n+ 1 the unfactored part of either n — 1
or n+1 is found to be a probable prime, then apply the strategy recursively
to prove the primality of this newly found probable prime (cf. [6]). In this
way a chain of primes n = Hgs My, ..., 1, 1s built, such that n, divides
n,_;+1 or n_,~1 and such that the primality of n, implies the primality
of n,_,. It will be seen that the primality tests based on elliptic curves build
similar chains of primes.

More complicated primality tests take this search for factors even further,
combining factors of n4 1, n’ 41 , and nten+1 ; the reader is referred
to [6, 16, 14, 21, 27, 28, 31, 33] for more information on these and similar
methods. Using a test of this type, Williams and Dubner were able to prove
the primality of | 10! 1)/9 (cf. [34]), where they also made use of the
following more recent result.

(2.4) Turorem (cf. [15]). Let r, s, and n be integers satisfving

O0<r<s<un, s>n, ged(r, s) = 1.
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Then there exist at most 11 positive divisors of n that are congruent to r
modulo s, and there is a polynomial algorithm for determining all these divi-
SO7S.

The algorithm referred to in (2.4) is not only polynomial time; according
to [34] it is even efficient in practice. A consequence of this theorem is,
for instance, that to apply Theorem (2.3) the lower bound /7 — 1 on the
factored part of n -1 can be relieved to /1, at the cost of some extra work.
Assuming that the factored part s of n— 1 is > /»n, combining (2.3) and
(2.4) yields the following primality test. First find an integer a satisfying
both conditions of (2.3). This shows that the prime divisors of 1 are all
congruent 10 | modulo 5. Next apply the algorithm from (2.4) to find the
at most 11 positive divisors of » that are congruent to 1 modulo s. If no
nontrivial factor of # has been found in this way, then s is prime. Theorem
(2.4) plays an important role in the Jacobi sum primality test (cf. [S]).

3. The Jacobi Sum Test
Theorem (2.3) appears to be a special case of a theorem that could be

formulated thus: If, for positive integers n and s, certain ‘Fermat-like’ tests
hold for n, s, and the prime divisors q of s, then any prime divisor of n
is congruent to a power of n modulo s. Application of this theorem in a
situation where #n = I mods, i.e, 5 divides n — | as in Theorem (2.3),
leads to the conclusion that all divisors of n are 1 modulo s, just as in
Theorem (2.3). Consequently, if s > /n —~ 1 then » is prime, and if 5 is
only > /n then the possible divisors of n can be derived using (2.4), from
which the primality of n will usually follow. The problem in this application
is, of course, to satisfy one of those lower bounds for an integer s for which
n=1mods.

But in this more general theorem s can be taken as any product > /n. As-
suming that the ‘Fermat-like’ tests can be dealt with efficiently, the primality
of n can be proved by verifying that none of the n' mods,fori=1,2,...,
is a nontrivial divisor of 7. Notice that s > /# would also suffice, but then
(2.4) should be applied to each of the n’ mod s to verify that none of the
possibilities leads to a nontrivial factor.

This will only be an efficient general purpose primality test if all different
n' mod s can be generated in a reasonable amount of time. For the proper
choice of s this is indeed possible. Assume that any prime occurs at most
once in s, and that ged(n, s) = 1. It follows that /"' = 1 mod g, for all
primes ¢ dividing s, so that n' = | mod s, where ¢ is the least common
multiple of the g — I's. This implies that, in the application of the above
theorem, it suffices to consider n’' mod s for i € {1,2,...,t=1}. To make
this efficient, 1 should be kept small, which implies that s should be chosen
as a product of g’s such that the g — 1’s have many factors in common.
This suggests that it is a better idea not to select the ¢ ’s and to compute the
resulting ¢, but to do it the other way around: select 7 as a product of many
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small primes, and see how many primes ¢ can be found such that ¢ — 1
divides 1.

For instance, for ¢ = 2Y.3%.5.7= 5040, the product of the 27 different
g’s for which ¢ — 1 divides ¢ is more than Ei}ag; any prime of up to 96
digits can therefore be proved prime by carrying out the ‘Fermat-like’ tests
and at most 5039 trial divisions.

Notice that the selection of ¢ and s only depends on the size of n,
and not on any divisibility properties of 5 and »n (except that ged(n, §)
should be equal to 1). Odlyzko and Pomerance have shown that there is
a positive constant ¢ such that for every n > ¢° there exists an integer
¢ < (logn)“'%1°88" gych that the corresponding s is > /7 (cf. [2]). Be-
cause a similar lower bound on ¢ can easily be derived, it follows that the trial
division step of this primality test requires slightly more than polynomially
many steps, namely (logn) 810818

For a more complete picture of this primality test, it remains to say some-
thing about those ‘Fermat-like’ tests. It appears that for each ¢ dividing s
a certain test has to be carried out for each prime power pk > 1 dividing
g—1,with k maximal. The easiest formulation of these tests involves a huge
exponentiation of so-called Gauss sums and can be found in {9], or in vari-
ous survey articles on primality testing like {10, 14, 28, 29]. In practice this
formulation would not lead to a fast test: for a pair (pk , q) the Gauss sum
to be considered is an element of Z[si'p,z e q] , where {, denotes a primitive

mth root of unity. For ¢ = 2521 and pk = 8, one of the pairs that occurs
for ¢ = 5040, this would mean manipulation of elements of Z[{., {,s,,],
something that looks hardly appealing.

As explained in [9], the tests involving Gauss sums can be replaced by tests
involving Jacobi sums. From a computational point of view Jacobi sums are
much more attractive than Gauss sums, because they belong to Z[é’pk} instead

of Z[Cpk , ¢ - Notice that pk divides ¢ and is therefore reasonably small.
The resulting Jacobi sum test is quite efficient and achieves the results that
were mentioned in the introduction (cf. [8]).

The implementation of the Jacobi sum test as described in [8] can be
improved in several major ways. In the first place, as was already noted in {9],
a Jacobi sum test can be carried out in an extension of degree order (n mod
pk} instead of in Z{Cp,;];’nl[ipg]. In practice the degree of this extension
will therefore often turn out to be lower, although this of course cannot be
guaranteed.

In the second place, various Jacobi sum tests can be combined into one
test: a test in an extension of degree order {n mod pf‘) = u, and a test in

. ) k. . .
an extension of degree order (n mod p,’) = u, can be combined into one
test in an extension of degree lem(u,, u,) if at least p, # p,. In practice
this means that a test in an extension of some high degree u takes care of
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various other tests that would have to be carried out in extensions of degrees
dividing v (and with different p’s).

In the third place, the implementation in [8] does not incorporate Theorem
(2.4) but just selects 5 > /n . Forlarge n, say around 1000 digits, it turns out
to be faster to take s as small as possible, but of course still > /n. Although
per  the trial division step becomes more time consuming because of the
application of (2.4), this is more than outweighed by the smaller value for ¢
and the smaller number of exponentiations to be performed.

Finally, the Jacobi sum test can be combined with the classical tests to a
much higher extent than was done in [8]. The practical consequence of this
improvement is that any factor of #n“ —1, for small w, can be used to relieve
the condition on 5 and thus make the test faster. The reader is referred to
{8] for a detailed description of all these improvements.

Thus, the Jacobi sum test consists of various ‘Fermat-like’ tests, followed
by a trial division stage. The tests can be carried out independently of each
other, and the trial division interval {1,2,..., ¢~ 1} can be split up into
some big number of nonoverlapping intervals. This means that the Jacobi
sum test can quite easily be run, for instance on a network of a few hundred
machines.

As was mentioned in the introduction, the Jacobi sum test does not pro-
vide a certificate of primality. The only way to check the computation is to
redo it.

4, Primality Testing Using Elliptic Curves

The main problem with the classical primality tests is that they are tied to
groups that are fixed as soon as » is fixed. If those groups turn out not to
have the favorable properties that are needed to complete the primality proof,
then nothing can be done about i, since changing the group would change »n
and consequently change the problem. For instance, while applying Theorem
(2.3) our success depends entirely on the order of the group (Z/nZ)".

In this section it will be seen that primality proofs can be given that use
groups that can be chosen in a more flexible way. If the group that has been
chosen does not have the right properties, then another group will be chosen,
and so on, until the group satisfies the requirements of the proof.

This possibility of choosing groups such that their relevant properties are
randomized in the proper way is provided by elliptic curves. Let p be a
prime unequal to 2 or 3 and let Fp denote the finite field containing p
elements. An elliptic curve E = FE «.p over FQ isapair a,be Fp for which
4a’+27b* # U, to be thought of as the coefficients in the Welerstrass equation

7 ks

v =X 4ax 4+ b

The set of points E(F ) of an elliptic curve E over Fy is defined as

E

E(F,)={x.y)eF: )’ =x"+ax+b}U{0},

r/
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where O is called the zero point. The set of points E {FS} has the structure
of an abelian group. The group law, which will be written additively, can
be found in Carl Pomerance’s contribution to this short course [24], or for
instance in [13, 32}; for the purpose of this note it suffices to know that for
any P, Qe kE {F ythesum P+ Qe FE §F can be computed efficiently. It
follows that for any k € Z and P € E(F ) the element k- P € E(F,) can
be computed efficiently by repeated éoubéangg and additions in E{ Fp}

Suppose that an elliptic curve £ = E_, over Fp has been selected at
random. What can be said about the or{ier #E(F,) of the abelian group
E(F, )? In the first place it is known that #E(F, } = p-+ 1 —1t for some
intege;‘ t with |t| < 2/p (Hasse, 1934). Furthermore, for any set § of
integers s for which |s — (p + 1)] < /P, the probability that a random pair
a,be F, defines a curve E over F, for which #F {Fp y €8 is essentially
equal to the probability that a random integer near p + 1 is in §. More
precisely, this probability lies between

A2 ogp)”! and =5 ¢ (logp) - (loglogp)’
2A/pl+1 gp AVpl+1 gP) - OgI0gD)

where ¢, and ¢, are positive constants independent of the choice of p (cf.
[16]).

The order of E(F,) can be computed by means of a deterministic method
that is guaranteed to work if p is prime, the division point method, due 1o
Schoof {30]. Although this method runs in polynomial time, its practical
value seems to be questionable.

Now let n be a positive integer with ged{(n, 6) = 1. An elliptic curve F =
E, , over Z/nZ is a pair a, b € Z/nZ for which 40> +276° € (Z/nZ)" .
Notice that for any prime p dividing » the pair @ mod p, b mod p defines
an elliptic curve over Fp ; the set of points of the latter curve will be denoted
by E(F ). The set of points E(Z/nZ) can be defined in a similar fashion as
above, and on this set of points a “pseundoaddition” can be defined that has
the following properties (cf. [13, 21]). When applied to P, Q€ E(Z/nZ) 1t
either vields a nontrivial divisor of », or it yields an element R € E(Z/nZ)
such that R, = P + (), in F (F,) for any prime divisor p of n. Here
P, e E{Fﬁf} is obtained from P & E(Z/nZ) by reducing its coordinates
modulo p.

These definitions make it possible to replace in Theorem (2.3) the order of
the fixed group (Z/nZ)" ,ie., n—1 if n is prime, by the order of E(Z/nZ),
which will be the order of E(F,) if n is prime. For a randomly chosen curve
E and prime n, this order will behave as a random integer near n+ 1, and
the choice of E can be repeated until E(F,) has the favorable properties
required. The following analogue of Theorem (2.3) can be formulated {cf.
{11, 13, 21)).

(8.1) TueorEM. Lei n > | be an integer with ged(n, 6)= 1. Let E bean
elliptic curve modulo n, and let m and s be positive integers with s dividing
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w1 . Suppose there is a point P € E(Z/nZ) satisfying

m-P =0,
(m/q) - P is defined and different from O, for each prime q dividing s.

) B ) . . Y 2
Then #E{\Fp} = O mod s for every prime p dividing n, and if s > éz’zi"@ + 13
then n is prime.

Proor. Let p be a prime dividing #n, and let @ = (m/s)- P & E(F o)
From m-P = O and p divides »n it foH{)vas that 5O = m- P = (m- P‘ = O
5o the order of (J divides 5. Let ¢ be a prime dividing 's. From {he fact
that (m/q)- P is defined and different from O, it follows that (s/q) - O =
(m/q) P, = ((m/q)- P), # O,, so that the order of ¢ is not a divisor of
5/g, for any prime ¢ dividing s. The order of O therefore equals 5. It
follows that #E(F ;) =0mods.

From #E(F ) = p+ 1 -1t for some integer ¢ with |1} < 2,/p it follows

that (pi"’lz-% 3}2 > #E{F }. The terms 5 > fn " 1} and #E£(F,) =0 mod s
imply that p > /n, for any prime p dividing #, so that » must be prime.
This proves the theorem.

Combined with the ideas mentioned above, this theorem leads to the fol-
lowing primality test.

(4.2) A PRIMALITY TEST BASED ON ELLIPTIC CURVES. Select an elliptic curve
E =E, , over Z/nZ and an integer m such that

m = #E(F, ) if n is prime, and
m = k- q for a small integer & > | and probable prime ¢ >
( 1/41_ 1}

Given the pair £, m, select a point P € E(Z/nZ) satisfving the require-

ments of (4.1) with s = g by performing steps (i), (ii), and (iii).

(1) Randomly select an x in Z/nZ until X rax+bisa square in

Z/nZ.. This can be done by checking whether {x3—§~ax+!3}§"'l}/2 =]
because n is suspected to be a prime. Determine v as a zero of the
polynomial X - {XB +ax + by € (Z/nZ){ X] using for instance a
probabilistic method for finding roots of polynomials over finite fields
{cf. [19]); again, for this method to work, a proof of the primality of
n is not needed. Put P = (x,y) in E(Z/nZ).

(11} Compute (m/q)-P =k -P. I k-P isundefined, a nontrivial divisor
of n has been found, which is exceedingly unlikely. If k- P = O,
then go back 1o {1); this happens with probability < % if # is prime.
Otherwise, if k- P #£ O verify that g - (k- P)=m - P = O, which
must be the case if »n is prime, because then #E(F, ) =m.

(111} Prove the primality of ¢ recursively using (4.2), unless the primality
of ¢ can be proved directly using some other method like DOWN-
RUN (cf. §2).
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Upon completion of the primality test in (4.2) a chain (n = n, £, m,, Py),

(n,E,,m P),....n_,,E_,,m_,,P_,), n has been computed
such that the »n,; are primes, each m, = #E(F, ) is a small multiple of Hils
and (m,/n, ) P, is defined and different from O, where P. e E(F, ). This
chain is a certificate for the primality of » that can be verified much more
easily than it can be constructed (cf. Theorem (4.1)).

It remains to explain how to select the pair F, m in (4.2). Goldwasser
and Kilian, to whom the original idea of (4.2} is due, proposed to do this by

performing the following three steps (cf. [11]).

Randomly select a.b & Z/nZ until both 4a® + 27b* # 0 and
gedin, 4a® + z?bz} = 1. If n is prime, the probability of success per
trial is {n — 1)/n . Consider the elliptic curve £ = E, , over Z/nZ.

Use Schoof’s division point method to compute a number m that will
be equal to #E(F,) if n is prime. If the division point method does not
succeed in computing anything, then apparently »n is not prime.

If m is not of the form k-g for some small integer & > | and probable
prime g, then return to the first step; otherwise the pair £, m has been
computed successfully.

What about the expected running time of this random curve test, ie., (4.2)
combined with Goldwasser and Kilian’s way of selecting £ and m 7 Because
m=#E(F,) <n+1+4+2/n and k > 1, the next prime in the chain is <
(n+1+42yn)/2, so that the length of the chain as produced by the random
curve test is O(logn). If n is indeed prime, E(F,) behaves approximately
as a random number near #, so that O(logn) choices for £ should suffice
to find a pair £, m: the probability of hitting a small nontrivial multiple
of a prime should be of the same order as the probability of hitting a prime
near #, and is therefore of the order (log n)”z . Because all computations,
including the applications of the division point method, can be carried out in
{expected) polynomial time, this heuristic argument would lead to the con-
clusion that the expected running time of the random curve test is polynomial
in logn.

Unfortunately, this cannot vet be proved rigorously. What can be proved
is that, if there is a positive constant ¢ such that forall x € R, the number

of primes between x and x + v/2x is of the order /x(logx)™°, then the
random curve test runs in expected time O{(log &}9“} {cf. [11]). Fora
further discussion of this point, the reader is referred to [11] and [1].

So, the main obstacle in proving the expected polynomial time behavior
of the random curve test is that it cannot be proved that an interval of length
O(/x) around x contains sufficiently many primes. For a slightly bigger
interval, namely O{XBff 4}, this can be proved (cf. [12]). This fact is used by
Adleman and Huang in their abelian variety rest, which can be guaranteed to
run in expected polynomial time (cf. [1]). Like the random curve test, the
abelian variety test builds a chain-like certificate of primality. A remarkable
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feature of the resulting chain of primes is that initially the primes get bigger
and bigger; i.e., the recursion goes in the wrong direction. It can be proved,
however, that after a few iterations the chain is expected to hit upon a prime
that can be proved to be prime using the random curve test, so that from that
point on the primes in the chain shrink again. For a detailed description of
the abelian variety test, see [1].

From a practical point of view the random curve test can be improved as
well. Although the test is quite likely to run in polynomial time, it will not be
very fast because it makes use of the division point method. Atkin therefore
proposed to select the pair £, m in (4.2) in a different and considerably
more complicated way. The practical performance of the resulting algorithm,
however, the complex multiplication test, is quite impressive {cf, [21]).

The complex multiplication field of an elliptic curve E over a finite field
F, with #E(F ) = p+1 -1 is defined as the imaginary quadratic field

L=Q > — 4p) . The complex multiplication test is based on the following
two observations:

(4.3) If the complex multiplication field L of an elliptic curve E over
Fp 1s known, then m = #E (Fg) can quite easily be computed. But
even if only L and p are known and £ is not known, then a small
list of candidate m’s can be computed for those elliptic curves over
Fp that would have L as their complex multiplication field.

(4.4) Given some imaginary quadratic field Q(v/A) and a prime p, a
small list of elliptic curves over F, having Q(v/A) as their complex
multiplication field can be constructed.

In the application of (4.3) and (4.4) in the complex multiplication test the role
of p will be played by »: both (4.3) and (4.4) will work if » is prime, but
they do not need a proof of the primality of n. The complex multiplication
test combines (4.2) with the following way of selecting the pair £, m:

Select some imaginary quadratic field L = Q(v/A) that has not yet been
tried in the primality proof for this n.

Given L, compute a list of candidate m’s for the elliptic curves having
L as their multiplication field {cf. (4.3}).

If none of the »1°s on the list is of the form k-¢ with Xk > 1 and ¢
a probable prime > (ni"l M 1)2 , then go back to the first step.

Otherwise, let m have the proper form. Compute a small list of elliptic
curves over Z/nZ corresponding to L (cf. (4.4)), and select £ from this
list such that #E(F ) = m, if n were prime. The selection of £ can be
done by selecting points on the curves (cf. (4.2)(i)) until only one pair P,
E isleft for which m- P = 0.

Thus, in the complex multiplication test the elliptic curve will only be con-
structed if the cardinality of its set of points satisfies the requirements of
(4.2). The many details of the complex multiplication test will be left
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untouched here; they can be found in [21]. A heuristic argument that the ex-
pected running time of the complex multiplication test is polynomial in logn
{actually, O{{Iegn‘}é%} for any & > 0) can be found in [13]. Several peo-
ple are working on improving this method, so it is not unlikely that more
references will appear soon.

Other primality tests that make use of elliptic curves can be found in [4]

and
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