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1 Introduction
How does one decide whether an integr a > 1 is composite or prime? It

wili be seen thai for composite n a pioof of eumpositeness can usually quite
easils be found If several attempts to find such a proof of compositeness
have failed, there are good reasons to suspect that the number in question is
actually prime. It then remains to prose that n is prime Providing such a
proof is the object of primalttr testing.

Many of the older primalits testing algorithms reduce the problem of prov
ing the primalits of n to the problem of finding sufficiently many factors of
related numbers like n+ I But factoring integers seems to be a hard problem,
at least in generaL I or that reason, those older primahty testing algorithms
cannot be called general purpose methods; the only work if n is lucky.
if factoring ii ± I turns out to be easy. In the early 1 980s scores of primes
of less than 100 digits could not be proed prime. Nevertheless, quite im
pressive results still can be obtained with these older methods For instance,
the 65087digit number 391581 x 2216i93 I (the largest prime currentlyt

known) and (101031 1) 9. a number consisting of 1031 ones have been
pro ed in this way to be prime

More recent methods for pnmality testing do not have the disadvantage
of depending so hea dv on factoring. While primality proofs of arbitrary
65,087digit primes are still out of reach, for primes well beyond 500 dig
its. and without special properries, primalny proofs can now be given. The
first primahty test that could routinely handle primes of seeral hundred
digits was the Jo obi sum test. 100 (2005digit primes take an aserage of 7
68 se ond on a single Cray X MP process ir The Jacobi sum test runs

in time log n 0 oglogl g which makes it the fastest deterministic p imalitv
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test Other primality tests th’ do not r 1 x I v n ‘a to rg are based
on elliptic curses. Thes are the rand n art s cal sariant the
ompiex multiplication test, and tin I t i at 1 i y et the latter test

being the only primalils test that car e i t r xpected polk nomial
time.

The two most powerful practical primal t s s that exist nowadays are an
improxed version of the Jacobi sum test anc tl complex multiplication test.
It is not unlikely that both these methods wil he able to tackle i000.dgt
primes. The Jacobi sum test can easily be broken up into almost any number
of smaller subtasks. For the complex multiplicatton test. paralieizat1an is
much harder to achieve. On the other hand. in case of pnmalitv. the Jacobi
sum test only gives the result rec indeed. rha: number z panic, ‘a rthout any
other way to xerlf\ the computation than redoing it. whereas the complex
multiplication test yields a ceruticare of primaiit\ that can be checked much
faster than it can be found.

In this note an attempt ‘aili be made to gixe a rough impression of those
two primalit tests. For more information on primalti. testing the reader is
referred to the various sursey articles [6, 10. 13, 14, 17, 23. 27. 28, 29, 33].
and to the original papers [1. 2. 5, 8. 9. 11, 21].

2. Classical Methods
The first question to be addressed in this sccion is: how do we get rid

of most composites quickly? Let n ‘ I be the integer to be examined.
In practice, the first thing to do is to check whether n as dix isibie by or
even equal toa some small prime, for all primes up to a certain trial division
bound, and to draw the appropriate conclusio if that turns out to he the
case. Clearly, if the trial dix ision bound i yr t en this is the end of
the story. In general. howexer, trial dix ision up to fn $ out of the question
and nobody will consider doing tat stead the bound will he set to some
small number. sa 20, so that tI’ s s p c a k say to cast out
trivial composites.

Now’ suppose that n surxixcs this first pa i fix’ at ack If i is pr me. then
any integer a should satisfx a a m d r. due to F rtr at’s I ff1 theorem.
And for any a and n this iden aty c’an he heki1 ffci r lx hs ri’ins of

the repeated squaring method (onscquentl’s to ç xc tI’ a )mposite
it suffices to find an integer a fo which 0r a r sd i a s cal ed ezrniss
to the compositeness of n

A witness might be difficult or i rrposs b c I id io xc : there
exist composite numbers. the s call d C t i or! n r or which no
witnesses exist, This unfortunat situano car be r a di’ I” casting the
test in a slightly different bar a , ‘i 0 t on c s i I due o Oars Miller
[20]. if a is prime and n I r ‘ i odd tl’e i any integer a
{l 2 a 1! satisfies

(2.1) ar 1 mod n or a I m i a some i with 0 <
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If (2.1) holds for n and a then a is said to pats the test for that a. If a
does not pass the test for a certain a, then a is again called a witness to the
compositeness of a

This test is often referred to as a prohabilisttc composirenecs test. because

if a is an odd composite number. then more than of the integers a in
(2. 3..... a 1} are itnesses to the compositeness of a cf. [2611. In

other words. the probability that an odd composite number a passes the

test for a randoml chosen a 2. 3..... a — 1 is less than . This

means that the probability of proving the compositeness of an odd composite

number a by checking (2.l for / independent random choices of a from

{2. 3,., a l} is more than 1—4
In practice, this means that composite numbers are immediately recog

nized by checking (2.1) for only a few a s. An odd number passing sexeral

tests. say 10. is called a probable prime It should be clear that a probable

prime is not proved to be prime: it is a number for which the compositeness

could not be proved, and which is therefore suspected to be prime. It remains

to prove that such a number is indeed prime.
Now that most composites have been dealt with, how do we prove the

primality of a probable prime? For,odd numbers a < 25 l0. and unequal to

3.125.031.751 = 151 751 28.351. the proof can easily be done by checking

that n passes the test for a = 2. 3. 5. and 7: if a is odd. composite, and

unequal to 3.125,031,751. then at least one of 2. 3. 5, and 7 is a witness to

the compositeness of n (cf. [25]).
For larger numbers the proof would not be hard either, in theory at least.

if the generalized Riemann hypothesis were known to be true In that case

it would suffice to verify (2.1) for the a in {2. 3,,,,, [2(lognt2]}, because

that intera1 would contain a witness if a were composite (cf [3. 20]).

A proof of the generalized Riemann hypothesis therefore would lead to a

deterministic polynomial-time primalits test. but in practice both the Jacobi
sum test and the complex multiplication test are expected to be faster for

numbers up to several thousands of digits.
Prrniality proofs that do not depend on any unproved hypotheses are in

general harder to obtain. If the factorization of. for instance. a — I is known.

then a proof can quite easily he given. This can be seen as follows. If the

positive integers < a are all relatively prime to a . then a is prime. So. to

prove the prima1it of n it suffices to find an element a of order n — 1 in

the multiplicatie group (Z nZ : i e., an integer a c {l 2 ... , a — l} for

which

2.2
a I mod a and

1 mod n for all primes q dividing a 1.

Finding a can be done b randoml selecting integers until one is found

satisfing 2.2: if a cannot be found then it is unlikely that a is prime, and

a should be subjected to more probabilistic compositeness tests.
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It s not necessar to know all prime divisors of n — I . ccording to the
foiioing theorem it suffices to have the prime factors of a factor ii

of a

(2 TI PocKLINcirm S THFORFM cf. [22] . n hi in .nte;cr > I and
k s be a po3:tlre divisr of a I Suppose here is an integer a satisfjtng

a lmodn.

ged i 1 . a = I fr each prlme q diiding s.

Then even’ prime dividing n is congruent t) 1 modulo s and ir > /d 1
then n is prime.

PROOF Let p be a prime dwiding n and let /‘ = a
‘

mod p e F

where F denotes the finite field containing p elements. From a’ —

I mod a and p divides a. it follows that b I so the order of b divides
s. Let q be a prime dividing s. From gcd(a° I q 1, a) 1 it follows
that b3 q nia q modp 1 in F. so that the order of h is not a divisor
of s iq, for any prime q dividing s. The order of b therefore equals s But
since the order of b also divides p - 1 , it follows that s divides p

— I Every
prime dividing n is therefore congruent to I modulo s. The statement of
the theorem now follows immediately.

This theorem is applied just as (2,2): randomh select a ‘s until one is
found satisfying the conditions in (2.3): if that does not work, then a is
probably not prime.

Not only factors of a — I can be utilized in primality proofs; factors of
ii + I are equally useful, and they can be combined with the factors of n 1
into the so-called combined theorem (ef. [6]). Fhis latter theorem leads to
a primality proving strategy called DOWNRUN: if during the simultaneous
factorization attempt of n I and a ± i the unfactored part of either a
or a ± I is found to be a probable prime, then apply the strategy recursively
to prove the primality of this newly found probable prime cf. [6]. In this
way a chain of primes n = n0 a a is built. such that a diides

+ 1 or a 1 and such that the orimality of a implies the primality
of n . It will be seen that the primalit tests based on elliptic curves build
similar chains of primes.

More complicated prirnality tests take this search for factors even further
combining factors of a 1 . n I . and a a 1: the reader is referred
to [6. 10. 14. 21, 27. 28. 31. 33] for more information on these and similar
methods. Using a test of this type. Williamc and Dubner were able to pros e
the primality of 1 9 ef. [34]i. here they also made use of the
following more recent result.

(241 IHFOREM f. [15]. Iii i c and r he, lingers ca.cfjing

s gcdr,s I
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Then there exist at most II positive do of o that are congruent to r
inodujo s. and mere ts 0 jvh’runiiai a1gorrnm fo deter,nning a/i tfleL dii’
s or.s

The algorithm referred to in 2.4 s not oni\ polynomial time: according
to [34] u is even efficient in practice. A consequence of this theorem is.
for instance, that to apph Theorem 2 3 the lower bound Ji 1 on the
factored part of n I can be relieved to a . at the cost of some extra work.
Assuming that the factored part s of n — t is > ‘H. combining 2.3 and
2.4 ields the following primaiitv test First find an integer a satisfying

both conditions of (2.3 This shows tfa the prime diisors of n are all
congruent to 1 modulo .s Next apply the algorithm from 2.4 to find the
at most 11 positixe divisors of n that are congruent to 1 modulo s. If no
nontrivial factor of n has been found in this way then n is prime. Theorem
ç2.4 plays an important role in the Jacobi sum primality test ef. [Sf1,

3. The Jacobi Sum lest
Theorem (2.3) appears to be a special case of a theorem that could be

formulated thus: if for positive integers n and .s , certain [erniat-hke’ tetts
hold !br n, s, and the prime divisors q of s, then an’ prime divisor of n
o congruent to a pon er of n modulo s Application of this theorem in a
situation where a I mod s. i.e.. s divides ii 1 as in Theorem 2.3.
leads to the conclusion that all divisors of n are 1 modulo s, just as in
Theorem 2.3. Consequently, if .c > v’ i then n is prime, and if s is
only > then the possible divisors of ii can be derived using (2.4), from
which the primalit of n will usually follow. The problem in this application
is, of course, to satisfy one of those lower bounds for an integer s for which
n as I mod s.

But in this more general theorem s can be taken as ant’ product > H. As
suming that the ‘Fermat-like’ tests van be dealt with efficiently. the primality
of n can be proved b erifying that none of the n’ mod s. for i = I . 2,
is a nontrivial divisor of n. Notice that s )/ would also suffice, but then
2.4 should be applied to each of the n mod s to xerify that none of the

possibilities leadc to a nontrivial factnr,
This will onli be an efficient general purpose primality test if all different

a mod s can be generated in a reasonable amount of time. For the proper
choice of s this is indeed possible. ssumc that any prime occurs at most
once in s,and that gcd a, s) = I . It follows that q I as 1 mod q. for all
primes q disiding s, so that n I mod . where t is the least common
multiple of the q I ‘s. This implies that. in the application of the above
theorem, it suffices to consider a mod s for i I . 2 t 1 ). To make
this efficient. r should be kept small, which implies that c should be chosen
as a product of q’s such that the q I ‘s hae man factors in common.
This suggests that it is a better idea not to select the q ‘s and to compute the
resulting t. hut to do it the other way around: select r as a product of many
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small primes, and see how many primes q can be found such that q —

divides 1.
2 - -, -

For instance, for i = 3 / = 04O. the product of the different

q ‘s for which q — I divides r is more than I0: any prime of up to 96
digits can therefore be proved prime by carrYing out the Fermat-like’ tests
and at most 5039 trial divisions.

Notice that the selection of t and s only depends on the size of n.

and not on any divisibility properties of s and n (except that gcd(n, s)
should be equal to 1), Odlvzko and Pomerance have shown that there is
a positive constant c such that for every n > e there exists an integer

< (logfl)I05l00 such that the corresponding 5 is (cf. [2]). Be

cause a similar lower bound on t can easily be derived, it follows that the trial
division step of this primalitv test requires slightly more than polynomially
many steps, namely (logn)O000>.

For a more complete picture of this primality test, it remains to say some

thing about those Termat-like tests. It appears that for each q dividing s
a certain test has to be carried out for each prime power > 1 dividing

q — 1 . with k maximal. The easiest formulation of these tests involves a huge

exponentiation of so-called Gauss sums and can be found in [9]. or in vari

ous survey articles on primality testing like [10, 14, 28, 29]. In practice this

formulation would not lead to a fast test: for a pair
(k•

q) the Gauss sum

to be considered is an element of Z[Vk ], where denotes a primitive

filth root of unity. For q = 2521 and
k 8, one of the pairs that occurs

for 1 5040. this would mean manipulation of elements of Z[L8. slJ
something that looks hardly appealing.

As explained in [9], the tests involving Gauss sums can be replaced by tests
involving Jacobi sums. From a computational point of view Jacobi sums are

much more attractive than Gauss sums, because they belong to Z[k] instead

of Z[k, ç]. Notice that p divides t and is therefore reasonably small.

The resulting Jacobi sum test is quite efficient and achieves the results that
were mentioned in the introduction (cf, [8]),

The implementation of the Jacobi sum test as described in [8] can be

improved in several major ways. In the first place, as was already noted in [9],

a Jacobi sum test can be carried out in an extension of degree order (n mod
p) instead of in In practice the degree of this extension
will therefore often turn out to be lower, although this of course cannot be

guaranteed.
In the second place. various Jacobi sum tests can be combined into one

test: a test in an extension of degree order (n mod
p V

= u1 and a test in

an extension of degree order (12 mod p2)
=

can be combined into one

test in an extension of degree lcmu1 . a2) if at least p1 p.. In practice

this means that a test in an extension of some high degree a takes care of



IM I_iS iN 19

variou other tests that would a o be carried out in extensions of degrees
dis id g a and is ith differen s

In the third place. the impiementanon i [8] does nu incorporate Theorem
2 4 but just selects

‘
a . For larfic a say around 1000 digits. it turns out

to be faster to take as small as possible but if course still > /h. Although
per i the trial dvison step becomes more time consuming because of the
appiicaton of ‘24 . this is more than outssighed by the smaller value for r
and the smaller number of exponentiations to be performed.

Finalis. the Jai.ob sum test can he combined with the classical tests to a
much higher extent than was done in [8]. The practical consequence of this
improsement is that any factor of n I . for small a . can be used to relieve
the condition on and thus make the test faster. The reader is referred to
[51, for a detailed description of all these improsements.

Thus. the Jacobi sum test consists of various ‘Fermanlike’ tests. followed
by a trial ds ision stage. The tests can be carried out independently of each
other. and the trial di ision interval { I . 2. . . t — 1 } can be split up into
some big number of nonoverlapping intervals. This means that the Jacobi
sum test can quite easil he run, for instance on a network of a few hundred
machines.

.\s was mentioned in the introduction, the Jacobi sum test does not pro
xide a certificate of primalitx. The onlvssa to check the computation is to
redo it.

4. Primalitv Testing sing Elliptic Curves

The main problem with the classical primality tests is that they are tied to
groups that are fixed as soon as a is fixed If those groups turn out not to
have the favorable properties that are teeded to complete the primality proof,
then nothing can he done about it since changing the group would change n
a d e r sequentls change the g b r s c hil applying Theorem

2 3 our success depends entirel on he order of the group (Z/nZ).
In this section it will be seen t’at orimalit proofs can be given that use

groups that can he chose i in a n ore flexible way. If the group that has been
chosen does n t have the r ght p opernes then another group will be chosen,
and so on, until the grou at sf s th equirements of the proof,

Th s possibil t of cho j ng groups such that their reles ant properties are
rindorri’ ed i the pr r sa pr vided b elliptic curves Let p be a
prime uneq a to 2 or at 1 F ci o the finite field containing p
elements. n ellipth can [ f set F is pair a b E F0 for which

4a b’ 0. to be thought )f s th coLffi er ts in the Weierstrass equation

Th r ofpoint.’ E. F,, of an ci pt cur e c er F, is defined as

F F, .v . c F1
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where 0 is called the ‘er p i t I he sc of porn s I F2 has the structure
of an abehan group. lhc grup law win h will be written add tis ly. can
be found in Carl Pomcrance’s ontribution to this short cour c [24] or fo
mstanc’ in [13, 32]. for the purpos f th $ note t uffi cs o know that for
any F Q c F F the sum F Q L F, an b c uputed fficientl It
follows that for any k E Z and F L F2 the lcmcnt k P 1 F can
be computed efficiently by repeated doublings and additions in F F

Suppose that an elliptic curve F F over F has been selected at
random ‘s% hat can be said about the order #E F of the abelian group
E(F1) In the first place it is known that #1 F p t 1 t fc r some
integer t with t c 2/j (Hasse. 1934 . Furthermore for ans set 5 of
integers s fot which s ip + I I < ,,/i the probabilits that random pair
a, b e F2 defines a curve F over F for which #F F1 5 is essentially
equal to the probability that a random integer near p 1 i’ n “ More
precisely, this probability lies between

#S 2 #5

2[Ip] + 1
c1(logp and

2[/] + I
logp ‘log logp

where c1 and c2 are positie constants independent of the choice of p (cf
[16])

The order of E(F2) can be computed by means of a deterministic method
that is guaranteed to work if p is prime, the thvz5son point method, due to
Schoof [30]. Although this method runs in polynomial time, its practical
value seems to be questionable.

Now let n be a positive integer with gcd( n, 6) 1. An elliptic curse E

Eab over Z/nZ is a pair a b E Z nZ for which 4a3 27b2 E (Z nZl.
Notice that for any prime p dividing n the pair a mod p b mod p defines
an elliptic curve over F2; the set of points of the latter curve will be denoted
by F F1 The et of points F I / Z s be defir ed n a sira I r 2ishio i a
above, and on this set of points a ‘pseudoaddition’ can be defined that has
the following properties (cf. [13, 21] hen applied to F, Q E f(Z nZ) it

either yields a nontrivial divisor of n or it ‘acIds an element R i E Z nZ
such that R — F t Q in L(F for any prime divisor p of n Here

P2 €. E(F,) is obtained from P c 1(7 nZ by reducing its coordinates

modulo p
These definitions make it possible to replace in Theorem 2 3 the order of

the fixed group (Z nZ ‘. i.e n I if n is prime, b the order of L Z nl)
which will be the order of F Fr if n is prime For a randomly chosen curve
F and prime n this order will behase as a random integer near n 1 , and
the choice of F can be repeat’d until F Fl has the favorable properties
required. Ihe following analogue of Theorem 2 3 can be formulated cf
[11, 13, 21]

(4 1) THEoREM Let n I f an integcr Ri/h gcd 6 1 1 1 he an
el/p z urvemodu/o n ardi t n and b psi i e n ger nith do ding
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Sujpe there i’ a po/nI P E Z nZ iti ti Inc

0? P - 0

iii c. P o dehned and djfint r’on f i p, one , dlt dtna

iien L. 0 mod 1 r ei en’ prinit p do d:nc a and > i’

then a o prime

PRooF. Let p he a prime dividing a. and let Q ‘ii P. F F
From niP 0 and p divides n it follos hat Q m P iuf’ 0
so the order of ( d sides Let q be ire disiding From Ic f
that (m q P is d fined and different from 0 it follows that q (.
ni q F a- q) P 0,.. so that tl 1 d- f Q is no a d is
s/q. for an prime q di iding T[e ord r 11 Q therefo e equals
follows that #E(F ) 0 rr od s

From #LcF) — p 1 for some nteger t ant t < jp follows

that p1 +1 >#F(F Theterms s r ll and Oirods
impis that p ‘> *h’, for any prime p disiding a so that a must be pnrie
This proves the theor m.

Combined with the ideas mentioned aho e, this theorem leads to the fol
lowing primalit test.

(42 PRIMALITx TEST BASED ON ELI 1PTiC CURSES. Select an elliptic curve
E = Ea over Z nZ and an integer in such that

01 = if a is prime, and
in k q for a small integer It > I and probable prime q >

(n 1

Given the pair F. a- select a point P u F Z nZ satisfying the require
ments of 4,1 with i h performing stps 1 ii and iN

ii) Randomly select an x in ZnZ until ax - I’ is a square ir
Z nL [his can be done bs checking whethe x3+ax k
because n is suspected to be a prime Dete mine r as a ero cf the
po’snomial I[’ ax C Z r/iLx] using icr n tanee
probabilisti method for find g roots of m I nomials o er rite fi ds
cf [19]) again, for this method to work a p oof of the pri nality jf
a is not needed Put P n F Z a!

ii Compute in q P - It P. If It P sundefined, a nontri ia d s sr
of a has been found, which is exceed nglv unlikely, If A It )
then go back to i this happens w tl probabllit\ -. if a is p me
Otherwise. f A P 0. serif that q A P =- P 0. whtch
must be the case if a is prime, because then aEtF — a-

in Prose the primaiit\ of q recursiselr using $,, unless the primaiit\
of q can be proved drectl using some other method like DOWN
RLN cf. 2.
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Upon completion of the primalitv test in 4.2 a chain ii -= F. in . P
ii.. F,. m . P. . ii . F.,. iii . P. - n. has been computea

such that the ii are primes, each in F is a small multiple of n
and in n F. is defined and different irom 0. uhere P F. F This
chain is a certificate for the primaiitv of n that can be verified much more
easily than it can be constructed cf. Theorem 4. 1

It remains to explain hos to select the pair F. ifi in .4.2 Golthsascer
and Kilian. to hom the original idea of 4.2 is due. proposed to do this b
performing the foliossing three steps cf. [11]

RandomiF select a. b c Z nZ until both 4a - 27/ 0 and
gcd n, 43

+ 2b ) 1 11 n is prime the probabi1it of success per
trial is (n I n (onsider the elliptic curve F F , over Z nZ

Use SchooPs dis ision point method to comput a number iv that isill
be equal to #1 (Fr if n is prime If tF e division point method does not
succeed in computing anything. then apparently n is not prime.

If in is not of the form k q for some small integer k > 1 and probable
prime q, then return to the first step othivwisc the pair F. in has been
computed successfully

What about the expected running time of this random curie rest, i.e., 4.2)
combined with Goldwasser and Kilian’s wa of selecting F and in? Because
in = #E(F( * 2v and Ic > i . the next prime in the chain is <

ii I ± 2’/d(72. so that the length of the chain as produced b\ the random
curve test is OUogn). If n is indeed prime. EFr behaves approximately
as a random number near n. so that 0 log ni choices for F should suffice
to find a pair F, in: the probabilirs of hitting a small nontrsia1 multiple
of a prime should be of the same order as the orobahilit\ of hitting a prime
near n . and is therefore of the order log n Because all computations.
including the appli anons of the di ision point icihod. can he carried out in
(expected) polynomial time. this heuristic argument isould lead to the con
elusion that the expected running time of the random curve test is polynomial
in logn.

Unfortunately, this cannot yet be prosed r gorously X4hat can be proved
is that. if there is a positive constant c such that for all v i R the number

of primes between x and x y2x is of he order logs then the
random curve test runs in expected time 0( logn) cf. [11] For a
further discussion of this point, the reader is ref r ed to [11] and [1].

So. the main obstacle in prosing the expc ted polynomial time behavior
of the random curse test is that it cannot be proved that an interval of length
U around contains sufficiently mans primes. For a siightl bigger
intersal. namel Ox’ . this can be prosed cf. [12]. This fact is used by
Adieman and Huang in their abe/ian vane,t rev’, which can be guaranteed to
run in expected polynomial time cf. [1] - Like the random curve test, the
abeIan sariet test builds a chaimlike certificate of primalitv. -\ remarkable
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feature of the resulting chain of primes is that initially the primes get bigger

and bigger: i.e.. the recursion goes in the wrong direction. It can be proved.
however, that after a few iterations the chain is expected to hit upon a prime

that can be proved to be prime using the random curve test, so that from that
point on the primes in the chain shrink again. For a detailed description of
the abelian variety test, see [1].

From a practical point of view the random curve test can be improved as
well. Although the test is quite likely to run in polynomial time, it will not be
very fast because it makes use of the division point method. Atkin therefore

proposed to select the pair E, m in (4.2) in a different and considerably

more complicated way. The practical performance of the resulting algorithm,

however, the complex multiplication test, is quite impressive (cf, [21]).

The complex multiplication field of an elliptic curve E over a finite field
F1, with #E(F) = p + I — t is defined as the imaginary quadratic field

L The complex multiplication test is based on the following

two observations:

(4.3) If the complex multiplication field L of an elliptic curve E over

F1, is known, then in = #E(F) can quite easily be computed. But

even if only L and p are known and E is not known, then a small

list of candidate in ‘s can be computed for those elliptic curves over

F that would have L as their complex multiplication field,

(4.4) Given some imaginary quadratic field Q(IA) and a prime p. a

small list of elliptic curves over F having Q v) as their complex

multiplication field can be constructed.

In the application of (4.3( and (4.4) in the complex multiplication test the role

of p will be played by ii: both (4,3) and (4.4) will work if n is prime, but

they do not need a proof of the primality of n. The complex multiplication

test combines (4.2) with the following way of selecting the pair E, m:

Select some imaginary quadratic field L = Q(/) that has not yet been

tried in the primality proof for this n
Given L, compute a list of candidate m ‘s for the elliptic curves having

L as their multiplication field (cf. (4.3)).
If none of the in’s on the list is of the form k q with k > 1 and q

a probable prime >
(l

+ 1)2. then go back to the first step.
Otherwise, let m have the proper form. Compute a small list of elliptic

curves over Z/nZ corresponding to L (cf. (4.4)). and select E from this

list such that #EF,7 n . if n were prime. The selection of E can be

done by selecting points on the curves (cf. 4.2Hi) until only one pair P.

£ is left for which in P = 0.

Thus, in the complex multiplication test the elliptic curve will only be con

structed if the cardinalitv of its set of points satisfies the requirements of

4.2). The many details of the complex multiplication test will be left
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untouched here; they can be found in [21]. \ heuristic argument that the ex
pected running time of the complex multiplication test is polynomial in log n
actually. O(’ log 6± for any a > 0 can be found in [13], Several peo

ple are working on improving this method. so it is not unlikely that more
references ili appear soon.

Other primalit tests that make use of elliptic cur’es can be found in [4]
and [7].
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