P4
brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

View metadata, citation and similar papers at core.ac.uk

Euromath Bulletin
Vol 2,No.1,1908

Securing the Net — the Fruits
of Incompetence

Arjen K. Lenstra
Room: MCC—1C317B, Bellcore, 445 South Street
Morristown, NJ 079606438
U 8 A
lenstra@bellcore.com

Abstract

This note reviews the most poprlar mathematical primitives that are used in currens
attempts to build secure networks.

1 Introduction

Corporations worldwide suddenly regard the Internat, once the almost exclusive playground of the
global community of computer nerds, as an Immense business opportunity, Until recently phreases such as
“copsult our homepage at htip://www.digicrime.com” made sense to only & fow; now they
belong te our everyday vocabulary. This is all part of the explosive growth of what bas been called the
Global Information Infrastructure. It is a development that cannoi be stopped and probably should be
welcomed. '

Nevertheless, carporaiions are beginning to see that venturing owut on the Internet may expose them
to enormous risks. The purpose of “putting your homepage or: the web' s to increase visibility and to
draw attention. Unfortunately the audience includes ot only potentiul customers but also virtually
all hackers worldwide. At least some of them will, intentionally or not, cause trouble.

Solutions to the resulting security problems are not hard to find on the net, since meny software
vendors now advertice “secire™ versions of their products. This makes using the net really risky, because
users might mistakenly believe they are well protected. The widely publishized and rather frequent news
stories about network break—ns and imperfections in security software should dispel such illusions. It
seems that our competence to secure the net cannot keep up with our desire to use it

Despite the confusing array of security solutions, there are only 2 few mathematical primitives on
which they are based. Even in faulty security preducts, the soundness of the underlying mathematics is
herdly ever in qestion: it is the way it iz used that causes the vulnerabilities. In this note I discuss the
wathematical primitives—not the many slippery ways in which they areemployed. I concentrate onthe
primitives themselves and the assumption of their soundness and will show that this is one of the most
important tessons that computational number theory has become so fashionable, even at indusirial
labs. This popularity, based entirely on our incomapetence at efficiently solving = few basic number
theoretic problems, is hardly something of which to be proud. Puzists who object to the vulgarization of
number theory should find comfort in the prospect that as soon as efficient solutions have been found,

https://core.ac.uk/display/147960172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

08/068 86 10:04 T+-42 7 727041 KI MFF UK Blava ooz

Arjen K, Lensira

amber theory will again be the immaculately impractical Queen of Mathematics—its status before
“security applicetions’ came along. '

This note is written for an undergraduate mathematics audicnce that is not familiar with the
mathematical notions involved in many populsr security products. In Section 2 I sketch a possible
security application on the Internet., Of course, much more is involved in practice than [2m able to
mention here, but I show some of the basic concepts and set the stage for the mathematical primitives
that are preseated i Sections 3 and 4 No attempts are made to formalize notions such as “infeasible”,
“hard” or “efficient’”. For further background refer to [2] (Section 2} and [1] (Sections Jand 4).

-2 Background

The following naive scensxio, though grossly oversimplified, shows some of the key issues of
communieation security. Suppose that two parties who have never met want to exchange confidential
information over some untrusted but reiiable network. “Untrusted” here means that all messages are

- accessible to eavesdroppers; Frelizble’ means that no bits are dropped or changed. The Internet isa
reasonable example of such a network. : , :

If the two parties share & random string s of secret bits that is as long as the messagem, then the
problem can easily be sclved: send the bitwise exclusive or s@® m of s and m. Sinces is random, s & m
leaks no information. Furthermore, it is easy to derive m from s & mbecause m=s ® (s ®m). This
would solve the problem, except that we cannot assume that any two parties have a secret string of
rendom bits in common. A forther disedventage is that, using this simple approach, each s can be used
only once (since s @ m, and.2 @ m,reveal information about Ty @ = (s @) @ (3 @ my)).

- The latter problem can be overcome by using, for instance, DES—the U.5. government’s Data
Encryption Standard. DES is an example of & block cipher. It can be used to construct a function f such
that it is suficiently hard to derive m from f(s,m) (for any number of messages of any lengtl), such
that m= f{s, f(s,m)), and such that f can very efficiently be computed. Here s is 2 56— bit string. or a
168—hit string if higher security is needed {triple—DES); this string is referred to as the key Thus, if
both parties had a common key & that was unknown to suy other party, any message mcould be
encrypted as f(s,m), sent to the other party using an untrusted channel, and decrypted
as = (s, f(3,m)). This can be repeated back and forth, for any reasonable number of messages.

A description of DES is beyond the scopce of this note; it does a lot of seemingly arbitracy bit—fiddling
that aims to, among other things, confuse and diffuse the bits of the key s and the messagem.. There
are many other ciphers that can be used to construct functions that have properties similar to f. For
our purposss the problem that remains to be considered is how the two parties perform the key
exchange for a relatively short key (of, say, 56 bits), Insuch a way that the key that is exchanged remains

' hidden to an eavesdropper. ' ‘
Note that the simple approach where the (trusted) provider of the communication services assigns &
- unique randorn key to each pair of possible parties isnot feasible: esch party would needan enormous data
base of keys, which would not only be haxd to keep updated (for new subseribers) but would also have to be
safeguarded very carefuily. An elegant solution to the problem of key exchange is given in Section 4. It
only requires a small amount of public informetion that is accessible to the entire network. While using it.
however, all parties involved need to sige all their messages.

This requires digital signatures to convince each of the communicating partics that the messages
they receive come from the party they intend to communicate with. This can be realized using vublic
key cryptography, as explained in the nesxt sections. In public key cryptography all parties huve asecret
key and a corresponding public key. In signature applications the secret key is used by its owner to
generate a signature; the corresponding public key can be used by anyone to check the validity of the
signature. '

w3

GE/G8 98 10:08 B+42 7 727041 KI MFF UK Blava oos

Sevuring the Net — the Fruits of Incompeteace

Thus, all secret keys are kept hidden by their owners, bus all parties have access to each other’s public
keys, just as telephone pumbers are (mosily) public information. Alternatively, partiss that wish to
coramunicate can exchange their public keys first; this in turm leads to the problem of authenticating
public keys and related issues, which can also all be solved using public key cryptography (and which may,
in certain circumstances, require a trusted third party). In practice many other problems have to be
addressed as well. The purpose of our simplerninded example is only to introduce the basic prineiples as 2
‘backgronnd for the mathemstical primitives that are presented below.

A cryptographic technique that is offen used for digital signatures in conjunction with pubac ey
eryptography is hashing. A hash function h, when applied to a message mn of arbitrary length. results in
a fixed length hash h{m) of m; for MD5 (*Message Digest’) the resulting length is 128 bits, for SHS (the
1.8, government’s ‘Secure Hash Standard’) it is160 bits. For a good hash function it should be infeesible
to compute anm such that () is equal to any prescribed valuc. Also, it should be infeasible to find
differént my and tnosuch that k (my)=Ah (m). Like DES, the currently popular hash functions are
based on very efficient seemingly rendom bit manipulations, and not on clear—cut mathematical ideas as
most public key cryptosystems are (even though those ideas might turn out to be incorrect}. It is an open
problers how to design 2 very efficient hash function that is provably as hard to break as one of the public
key cryptosystems described below. It is also becoming an urgent problem: on May 2, 1996, Hars
Dobbertin of the German Information Security Agency, wbo was responsible for breaking MD4in 1985,
announced a new cryptanalysis of MDS that ‘might be reason encugh to substitute MDE in future

. applicatious’. The life expectaucy of SHS is uncertain, since its design is very similar to that of MD5.

3 Factoring

, F%tamn§ & Lomposite integer n» meuns finding integers p and g, both > 1, suck that n=p-¢ Thisis,
mits gener&ty helieved to be & hard problem, even though there is no firm mathematical ground on which
this assumption can be based: the only evidence Is our failure to find an efficient factoring method.

The supposed difficulty of factoring is crucial for the security of the RSA public key cryptosystern,
which was invented in 1977 by Rivest, Shamir, and Adleman. Each user of RSA bas its own modulus
n=p.¢q, where ;g; and ¢ are two large primes, and two integers e and d such that
e-d = 1mod (p—1)(g—1) The velues nsnd e are made public as that user’s public key, but d is kept
secret (along with p and g) and Ls the user's secret key. Sincelarge primes can efficiently be generated, and
because d can quickly be found using the extended Fuclidean algorithm giver ¢, p, and ¢(for properly
chosen e), such 7, e, and d can easily be found for each user of RSA.

To send a message meZ/nZ to the owner of public key (n, ¢), one vomputes E(m) = m° and
transmits the encrypted message E(m). The owner of {n, €), upon receipt of E(m}, retrieves the
unencrypted message m by computing E(m)d = (cf. Fermat’s little theorem). Both the encryption
and the decryption can efficiently be done using the ‘repeated square and multiply’ method. This Is,
however, considerably slower than, for instance, DES. RSA car also be used to sign 2 message m a3
S(my= m*; the validity of the signature can be checked by verifyirg that §(m)® =m.

It has not been proved that factoring n is necessary to break REA (ie., to decrypt E(m)knowing
7. ¢, and E{m) but without kaowing the proper 4, but it is sbviously sufficient. There exist several
variations of RSA that replace the multiplicative group (Z/nZ))" by some other group that depends on

a composite modulus, and in which the operations are carried out. None of them however, seems to have
any substantial advantages over RSA (daplte claims to the contrary), and all of them can be broken by

factoring the rnodulus,

g8/08 "898 10:08 T+42 7 727041 KI MFF UK Blava B oad

Arjan K. Lepstra

- Since the invention of RSA considerable pmgf:ss has been made towards mare efficient factoring
methods. Trial division and Pollard’s tho method {1875) find the smallest prime factor p of nin
sxponential time: Of{p) and O(\/. respectively. The ehpﬁc curve method (ecm, 1985) can be

" expected, on loose heuristic grounds, to take time {(logn) arb;{(‘f +o(1 ;}‘f 2log plog log p), for
p-+oc. Note that this is subexponential inp. These are examples of special purpose fectoring methods,

since their run time depends on the factors to be found. The largest factor found by any of these methods
{ecmm) so far has 47 decimal digits. None of them is a threat to RSA, if the primes in the modulus have at

least, say, 75 decirnal ::hgm;

The run time of general purpose factoring methods depends solely on the size of the number tobe
factored. The most important oncs are the Continued Fraction method (CFRAC, 1970), Quadratic
Sieve (QS, 1981}, and the Number Field Sieve (NFS, 1889). The first two have heuristic expected run time
exp({1 + o(1)) /log nlog log n) for n — o0 , though QS is in practice much %o be preferred to CFRAC.
They share this ran time with many other factoring algorithrns, among others the worst case pw\/f:

 ofecm NFS was the first alo'odt}.zm to substantially mprove upon this time, with heur;stic expected un
time Exp((c a;\l)(log) {Iog log m) %) for n—+00 and esome constant between =31.53 (for ‘nice’ -
npumbers like 27 + ~1) and =1. 92 (fcxr general numbers). NFS is currently considered to be more eﬁiment

. than QS for numbers that have more than, say, 110 decimal digits.

The largest number factored with QS, in 1994, is the famous 129—digit ‘RSA— challenge that
appeared in the August 1977 issue of quermﬁc American. Rivest estimated, in 1977, that this
factorization would require 40 quadrillion years. With QS it took 8 months, using the idle cycles of
compiiters worldwide. The total run time of this factoring effort has beer estimated as 5000 mips years,
(Le., 5000 years on a VAX 780). The largest number factored with NFS, in 1996, is & 130—digit
RSA~modulus, - with total run time estimated as 550 mips years. Using this fgure and the asymptotic
run time of NFS (omitting theo(1) for convenience), one can get an impression of the effort required to

o factor512—bit {155—digit) RSA moduli, and conclude that such moduli arc on the verge of being
breakable. With a moderate amount of progress in factoring, 768—bit keys (a size that is becoming
-more popular lately) could become vulnerable as well. A polynomial—time factoring algorithu would -
most likely render RSA useless.

4 Discrete logarithms

The most COmman dis&ete logarithm problcm is the following. Given some prime p, a generator g
of (Z/pL ", and y=(Z/pZ), find 2€{0,1, ...,p—1} such that g™=y. Like factoring, this is in its
generality believed to be 2 hard problem, and, again like factoring, the only evidence that itis hard is that
we have not yet been able to solve it eﬁczenﬂy ,

The supposed diffeulty of discrete logarithms is the basis for the security of the Diffie—Hellman key
exchange protocol (1976). A pnme p and gencrator g are publicly known. Party A picks a random
ae{0.1, ...,p—1}, computes g ‘e(Z /DL) and sends it to party B. Party B picks & random
be{0,1,. p-— 1}, computes g E(prZ)" and sends it to 4. Both parties can now compute the

comman key g% = ¢* e(Z/p7) . Az mentioned earlier, this key exchange protocol should be used with
. care, since otherwise it is susceptible to s man in the middle attack. ,
It has not been proved that compum_lg discrete logarithms is necessary to break the Diffie—Heliman

protocol (i.e., to compute ¢ givenp,g,g°, and gb but it is obviously suficient. Many other public key -
cryptosysterns have becn proposed that can be broken if discrete logarithms can be compubed efficiently.

a6/08 "6 1u0:12 T+42 7 727041 K1 MFF UK Blava

Securing the Net — the Froits of Incompetence

However, unlike factoring based systems which are more or less equaily hard to break, here the situstion
is & bit more complicated.

It does not seem to be possible to reduce factoring to discrete logarithms, or vice versa. Nevertheless,
there is a strong similarity betwesn the solution methods for the two problems: with & few exceptions
(such as ecm), the ideas behind maost factoring algorithms can be used to solve discrete logarithms as
well. Examples are linear search for ¢ and Pollard rho, which find z in time O(z) and O(Vz)
operations in (Z/pZ)", respectively. The ‘Gaussian integers’ method finds z i Hime

exp({1 + o(1)) ylog plog log p). for p— oo, and is based on ideas similar to the ones that led to QS. And

then ' there - is & Number Fiald Sieve based method that finds z in time
~exp((1.92 + o{1))(log p}us{iog log p)*) for p—+0. Although a Tive’ cryptosystem using &
60—digit prime was hroken in 1991, practical experience with discrete logarithm algorithms is limited.
Efforts are underway to change this situation.

An important distinction between the exporential and subexponential time discrete logarithm

~methods is that in the former the group (Z/pZ)t can be replaced by any group, but in the latter,
arithmetic properties of the set {1,2, ... p—1} (which is used to represent (Z/p% '}*} arecrucial. This

. hasseversl interesting consequences, of which I mention a few.

If g generates only a subgroup of order g<<p—10of { Z/pZ }$, and y€ <g>>, then z can still be found
in O \/;) <0(\/q—} operations in (Z/pZ) (using Pollard’s rho method, or using Shanks’
‘baby—step—giant—step’ method), or in time subexponential in p using any of the ksubm;ponen%ial
. methods. But a methed that runs in time subexponential iz ¢ is not knowy, If ¢ generstes the group of

points of some elliptic curve modulo p, then £ can again be found in O(vz) operations in the elliptic
curve group. But no method is known that runs in time subexponential in the order of g or even in p. If,
onthe other hand, ¢ generates (E) " ora subgroup thereof, for some fixed integer m> 1, then z can
be found in time subexponential in 9" The latter is a consequence of the fact that the relevant arithmetic
properties of the set of polynomisls modulo p of degree <« iz similar to those of the set

{12, ..., p"~1}.

This apparent lack of discrete logarithm algorithms that run in time subexponential in the orderof &

subgroup or of an entirely different group that cannot be represented in the way the subexponential
algorithms require, is cxploited in the design of several public key systems. In DSS (the U.S. government’s
Digital Signature Standard) an order g subgroup of (Z/pZ }* iy used to improve the speed of the
cryptogystem, while at the same time reducing the size of the resulting signatures, without, hopefully,
compromising = the security: brealdng & requres time either O{vg) or
= exp((1.92 + o(1)){log) 1 *og Tog p) 2‘?&), bath of which are supposedly infeasible for the specified

sizes | logoqf=159 and [logyp]>511 (the Russian variant of DSS requires [logs g =239). Elliptic -

curve based cryptosystems achieve the same objectives simply by choosing p small, but large enough to
make O{Vp) ettacks infeasible. '

Since | log,q] is fixed at 159 and the increase of processor speed has ot leveled off vet, it is conceivable
that a moderste amonnt of progress in exponential time discrete logarithm algorithms could make DSS

vulnerzble within the foresesable future. Also, some specialists find it too early to give up hope for better.

than exponential time attacks on elliptic curve based systems.

(¥

@ioos

g6/08 98 10:15 T+42 7 727041 KI MFF UK Blava ‘@8‘06

Arjen K. Lenstre
5 Conclusion

We have seen that the factoring and discrete logarithm problems are remarkebly similar: both are
easy to formulate, believed to be hard purely based on our lack of success solving them efficiently, suitable
for the design of public key cryptosystems, and, most rémarkably, they seem to be susceptible to very
similar sohution methods. The last paint is quite worrisome: even though not all factoring methods can be
turned into discrete logarithm methods ((ecm is the most notable exception), most can. Thus, it is
conceivable that a newly invented factoring method that wipes out all factoring based cryptosystems,
would have the same effect on discrete logarithm based ayptosystems. Obvi ausiy there is a strong need
for diversification in the design of public key eryptosystems. '

These issues, though crucisl {oc the design of secure networks, are actually the least of our current
worries. It is not unlikely that instead of enjoying the fruits of our number thecretic incompetence we will ,
soon be harvesting the rotten fruits of our incompetence at properly implementing or use the much cesn,,
needed security measures. As soon as we leave the realm of mathemarics, security considerations become 7
much more confused and complicated: human factors, compatibility issues. trost management, key
management, key escrow, export restrictions, to mention only a few, are crucial issues that have an
enormous potential to be exploited by a worldwide army of hackers that cannot necessarily distinguish a
prime from a composite. This is not to say that security on the net cannot be a.t:h}eved but the subject
requires study of much more thao the mathematical issues alone. :

References

1] A K. Leostra and H W. Lenstra, Jr. Handbook of theoretical computer science. Volume A,
~ Algorithms and complexity.(J. van Leeuwen, ed.). Algorithms in number theory C‘napte* 12.

’Elseﬂe; Amsterdam. 1990.

2 | D. R. Stinson. Cryptography, theory ond practice. CRC Press. Boca Raton Lcudon,
 ~ Tokyo.1995.

6

