CORE

Securing the Net - the Fruits of Incompetence

Arjen K Lenstra
Foom MCC-1C317B, Bellcore, 445 South Street
Morristown, NJ 07960-6438
U. S. A
lenstrabellcore.com

Abstract

This note reviews the most popuiar mathematical primitives that are used in current attempts to build secure networks.

1 Introduction

Corporations worldwide suddenly regawd the Intemet; once the almost exchusive playground of the global commuity of computer nerds, as an immense business opporturity. Until recently phraes such as "consult our homepage at http://ww. disicrime. com" made sense to only a few; now they belong to our everyday vocabulary. This is all part of the explosive growth of what has been called the Global Information Infrastructure It is a development that cannoi be stopped and probably should be welcomed.

Vevertheless, corporations are beginning to soe that venturing out on the Internet may expose them to enormous risks. The purpose of "putting your homepage on the web" is to increase visibility and to draw attention. Unfortunately the audience includes not only potential customers but also virtually all hackers worldwide. At least some of them will, intentionally or not, cause trouble.

Solutions to the resulting security problems are not hard to find on the net, since many software vendors now advertise "secure" versions of their products. This makes using the net really risky, because users might mistakenly believe they are well protectoci. The widely publishized and rather frequent news stories about network break-ins and imperfections in security software should dispel suchillusions. It seems that our competence to secure the net cannot keep up with our dcsire to use it.

Despite the confusing array of security solutions, there are only a few mathematical primitives on which they are based. Even in faulty sccurity products, the soundness of the underlying mathematics is hardly ever in question it is the way it is used that causes the vinerabilities. In this note I discuss the mathematical pnimitives-not the manyslippery weys in which they are mployed. I cancentrate on the primitives themselves and the assumption of their soundness and will show that this is one of the most, important reasons that computational number theory has become so fashionable, even at industrial labs. This populanty, besed entirely on our incornpetence at efficiently solving a few basic number theoretic problems, is hardly something of which to be proud. Purists who object to the valgailastion of number theory should find comfort in the prospect that as soon as efficient solutions have been found,
number theory will again be the immaculately impractical Queer of Mathematics-its status beifore "security applicetions" came along.

This note is witten for an undergraduate mathematics audience that is not familiar with the mathematical notions involved in many popular security products. In Section 2 I sketch a possible sexurity application on the Internet. Of couse ruch more is involved in practice than I am able to mention here, but lshow some of the basic concepts and set the stage for the mathematical primitives that are presented in Sections 3 and 4 . No attempts are mede to formalize notions such as "infeasible", "hard" or "efficient". For further background refer to [2] (Section 2) and [1] (Sections 3 and 4).

2 Background

The following naive scenanio, though grossly oversimplified, shows some of the key issues of communication security. Suppose that two parties who have never met want to exchange confidential information over some untrusted but reliable network. "Untrusted" here means that all messages are accessible to eaverdroppers; "refable" means that no bits are dropped or changed. The Internet is a reasonable example of such a network.

If the two parties share a random string s of secret bits that is as long as the messagem, then the problem can easily be solved send the bituise exchusive or $s \oplus m$ of s and m Sinces is random, $s \oplus m$ leaks no information. Futhermore, it is easy to derive m from $s \oplus m$ because $m=s \oplus(s \oplus m)$. This would solve the problem, except that we cennot assume that any two panties have a secret string of random bits in common. A further disadvantage is that, using this simple approach, each s can be used only once (since $s \oplus m_{1}$ and $s \oplus m_{2}$ rcveal information about $m_{1} \oplus \pi m_{2}=\left(s \oplus m_{1}\right) \oplus\left(s \oplus m_{2}\right)$).

The latter probleri can be overcome by using, for instance, DES-the U.S. government's Data Encryption Standard. DES is an example of a block cipher. It can be used to construct a function f such that it is sufficiently hard to derive m from $f(s, m)$ (for any number of messages m of any lengtin), such that $m=f(s, f(s, m))$, and such that f can very efficiently be computed. Here s is a 56 -bit string, or a 168 -bit string if higher security is needed (triple-DES), this string is referred to as the key. This, if both parties had a common key s that was unknown to any other party, any message m could be encrypted as $f(s, m)$, sent to the other party using an untrusted channel and decrypted as $\pi n=f(s, f(s, m))$. This can be repeated back and forth, for any reasonable number of messages.

A description ofDES is beyond the scope of this note; it does a lot of seemingly arbitrary bit-flddling that aims to, among other things, confuse and diffuse the bits of the seys and the message m. There are many other ciphers that can be used to construct functions that have properties similar to f. For or purposes the problem that remains to be considcred is how the two parties perform the key exchange for a reistively short key (of, say, 56 bits), in such a way that the key tbat is exchanged remains hidden to an eavesdropper.

Note that the smple approcel where the (trusted) provider of the communication services assigns a uniquerandom key to each pair of possible parties is not feassible: each party world need an enormoux data base of keys, which would not only be baxd to keep upated (for new subscribers) but would also have to be safegtuarded very carefully. An elegant solution to the problom of key exchange is given in Section 4. It only requires asmall amount of public information that is accessible to the entire neiwork. While usimg it, however, all parties invoived need to siga all their messages

This requires digital signatures to convince each of the communicating partics that the messages they receive come from the party they intend to communicate with. This can be realized using public key cryptography, as explained in the next sections In public key cryptography all parties Heve a secret key and a corresponding publickey. In signature applications the secret kcy is used by its owner to generate a signatrre; the corresponding public key can be used by anyone to check the validity of the signature.

Thus, all secret keys are kept hidden by their owners, but all parties have access to each other"s public keys, just as telephone numbers are (mostiy) public information. Alternatively, parties that wish to communicate can exchenge their public keys first, this in tum leads to the problom of authenticating public keys and related issues, which can asoall be solved using public key cryptography (and which may, in certain circumstances, require a trusted third party). In practice many othor problems have to be addressed as woll. The pupose of our simpleminded example is only to introduce the basic principles as a backgrome for the mathematical primitives that are presented below.

A cryptographic technique that is oftcn used for digital signatures in conjunction with public key कptography is hashing. A hask function h, when applied to a message π of arbitrary length, results in a fixed length hash $h(m)$ of m; for MD5 (Message Digest') the reaulting length is 128 bits, for SES (the U.S government's 'Secure Hash Standard') it isl60 bits. For a good bash fanction it should be infeasible to compute anm such that $h(m)$ is equal to any prescribed valuc. Also, it should be infeasible to find different m_{1} and m_{2} such that $h\left(m_{1}\right)=h(\pi \cdot 3)$. Like DES, the currently popular hash functions are based on very efficient seemingly rendom bit manipulations, and not on clear-cut mathematicalideas as most public key cryptosystems are (even though those ideas might tum out to be incorrect). It is an open problem how to design a very efficient hash function that is provably as hard to break as one of the public key cryptosystems described below. It is also becoming an urgent problem: on May 2, 1996, Hans Dobbertin of the German Information Security Agency, who was responsible for breaking MD4 in 1990, announced a new cryptanalysis of MD5 that 'might be reason enough to substitute MDS in future applicatious'. The life expectancy of SHS is uncertain, since its design is very similar to that of MD5.

3 Factoring

Factoring a composite integer n means finding integers p and q, both >1, such that $n=p-q$ - This is, in its generality, belicved to be e hard problem, even though there is no firm mathematical groundon which this assumption can be based: the only evidence is our failure to fnd an effcient factoring method.

The supposed difficulty of factoring is crucial for the security of the RSA public key cryptosystem. which was invented in 1977 by Rivest, Shamir, and Adleman. Fach user of RSA has its own modulus $n=p \cdot q$. whare p and q are two large primes, and two integers e and d such that $e-d \equiv 1 \bmod (p-I)(q-1)$. The values n and e are made public as that user's publickey, but d is kept, secret (along with p and q) and 5 the uscr's sectet key. Sincelarge primes can efliciently be generated, and because a can quickly be found using the extended Euclidean algonthm giver e, p and q (for properly chosen e), such n, e and d can easily be found for each user of RSA.

To send a message $m \in \mathbf{Z} / n \mathbf{Z}$ to the owner of public key ($n, 0$), one computes $E(m)=m^{e}$ and transmits the encrypted message $E(m)$. The owncr of (n, e), upon receipt of $E(m)$, retrieves the unencrypted message m by computing $E(m)^{d}=m$ (cf. Fermat's little theorem). Both the encryption and the dewyption can efficiently be done uing the 'rcpeated square and rultiply' method. This is, however, considerabiy slower than, for instance, DES. RSA can also be used to sign a message mas $S(\pi)=m^{d}$; the validity of the signature can be checked by verifying that $S(m)^{e}=\pi$.

It bas not been proved that factoring n is necessary to break RSA (i.e., to decrypt $E(m)$ knowing $\pi, e_{\text {, }}$ and $B(m)$ but without lmowing the proper $\left.d\right)$, but it is obviously sufficient. There exist several variations of RSA that replase the multiplicative group $(\mathbf{Z} / \pi \mathbf{Z})^{*}$ by some other group that depends on a composite motulus, and in which the operations are carricd out. None of them, however, seems to have any substantial advantages over RSA (despite claims to the contrary), and all of them can be broken by factoring the modulus.

Arjen K. Lenstra

Since the invention of RSA considerable progress has been made towards more efficient factoring methods. Trial division and Pollard's rho method (1975) find the smallest prime factor p of π in exponeritial time: $O(p)$ and $O(\sqrt{2})$, respectively. The cliptic curve method (ecm, 1985) can be expected, on loose beuristic grounds, to take time $(\log \pi)^{2} \exp ((1+o(1)) \sqrt{2 \log p \log \log p})$, for $p \rightarrow \infty$. Note that this is subexponentialinp. These are examples of specintpurpose factoring methods, since their run time depends on the factors to be found. The largest factor found by any of these methocs (ecm) so far has 47 decimal digits. None of them is a threat to RSA, if the primes in the modulus have at least, say, 75 decimal digits.

The run time of general purpose factoring methods depencis solely on the size of the auxaber to be factored. The most important ones are the Continued Fraction method (CFRAC, 1970), Quadratic Sieve (QS, 1981), and the Number Field Sieve (NES, 1989). The first two have heuristic expected run time
 They share this run time with many other factoring algorithms, among others the worst case $p \approx \sqrt{n}$ ofecm NES was the first algorithm to substantially improve upon this time, with heuristic expected run time $\exp \left((c+o(1))(\log \pi)^{1 / 3}(\log \log n)^{2 / 3}\right)$ for $n \rightarrow \infty$ and csome constant between ≈ 1.53 (for 'nice' numbars like $2^{2}+1$) and ≈ 1.92 (for general numbers). NFS is currently considered to be more efficient than QS for numbers thet have more than, say, 110 decimal digits.

The largest number factored with QS, in 1994, is the famous 129-digit 'RSA-challenge' that appeared in the August 1977 issue of Scientific American. Rivest estimated, in 1977, that this factorization would require 40 quadrillion years. With $Q S$ it took 8 months, using the idle cycles of computers world wide. The total run time of this factoring effort has been estimated as 5000 mips years, (ie., 5000 years on a VAX 780). The largest number factored with NFS, in 1996, is a 130 -digith RSA-modulus; with total run time estimated as 550 mips years- Using this figure and the asymptotic rum time of NFS (omitting the $o(1)$ for convenience), one can get an impression of the effort required to factor 512-bit (155-digit) RSA modul, end conclude that such moduli are on the verge of being breakable. With 2 moderate amount of progress in factoring, 768 -bit keys (a size that is becoming more popular lately) could become vulnerable as well. A polynomial-time factoring algonithm would most likely render RSA useless.

4 Discrete logarithms

The most common discrete logarithm problem is the following. Given some prime p, a generator g of $(\mathbf{Z} / p \mathbf{Z})^{*}$, and $y \in(\mathbf{Z} / p \mathbf{Z})^{*}$, find $x \in\{0,1, \ldots, p-1\}$ such that $g^{2}=y$. Like factoring, this is in its generality believed to be a hard problem, and, again like fartoring, the only evidence that it is hard is that we have not yet beea able to solve it efficientily.

The supposed diffculty of discrete logarithms is the basis for the security of the Diffe-Hellman key exchange protocol (1976). A prime p and gencrator g ere publicly known. Party A picks a random $a \in\{0,1, \ldots, p-1\}$, computes $g^{a} \in(\mathbf{Z} / p \mathbf{Z})$ and sends it to party B. Party B picks a random $b \in\{0,1, \ldots, p-1\}$, computes $g \in(Z / p Z)^{*}$ and sends it to A. Both parties can now compute the common key $g^{a b}=g^{b a} \in\left(\mathbf{Z} / p^{Z}\right)^{*}$. As mentioned earlier, this key exchange protocol should be used with care, since otberwise it is susceptible to a man in the midde attack.

It has not been proved that computing discrete loganithms is necessary to break the Diffe-Heliman protocol (i.e., to compute $g^{a b}$ given $p: g, g^{a}$, and g^{b}), but it is obviously suffient. Many other public key cryptosystems have becn proposed that car be broken if liscrete logarithms can be cornputed efficiently.

However, milike factoring based systems which are more or leas equally hand to brok, here the situation is a bit more complicated.

It does not seem to be possible to reduce factoring to discrete lagarithms, or vice versa Nevertheless, there is a strong similarity between the solution methods for the two problems: with a fev exceptions (such as ecm), the ideas behind most factoring algorithms can be used to solve discrete logarithms as well. Examples are linear search for x and Pollard tho, which find x in time $O(x)$ and $O(\sqrt{x})$ operations in $(Z / p Z)^{*}$, respectively. The 'Gaussian integers' method finds z in time $\exp ((1+o(1)) \sqrt{\log p \log \log p})$, for $p \rightarrow \infty$, and is based on ideas similar to the ones that led to QS. And then there is a Nimber Field Sieve based method that Snds z in time $\approx \exp \left((1.92+o(1))(\log p)^{1 / 3}(\log \log p)^{2 / 3}\right)$ for $p \rightarrow \infty$. Although a Tive' cryptosystem using a 60-digit prime was broken in 1901, practical experience with discrete logarithm algorithms is limited. Efforts are underway to change this situation.

An important distinction between the exponential and subexponential time discrete loganithm methods is thet in the former the group $(\mathbf{Z} / \mathbf{p} \mathbf{Z})^{*}$ can be replaced by any group, but in the latter; zrthrnetic properties of the set $\{1,2, \ldots, p-1\}$ (which is used to represent $(\mathbb{Z} / \mathrm{p} Z)^{*}$) are crucial This has several interesting consequences, of which I mention a few.

If g generates only a subgroup of order $q<p-1$ of $(Z / p \mathbf{Z})^{*}$, and $y \in\langle g>$, then x can still be found in $O(\sqrt{x}) \leq O(\sqrt{q})$ operations in $(\mathrm{Z} / p Z)^{*}$ (using Pollard's tho method, or using Shanks: 'baby-step-giant-step' method), or in time subexponential in p using any of the subexponential methods. But a method that runs in time subexponential in q is not known. Fig generates the group of points of some elliptic curve modulo p, then x can again be found in $O(\sqrt{x})$ operations in the elliptic curve group. But no method is known the rums in fime subexponential in the order of g or even in p. If, on the other hand, g gencrates (F_{m}) or a subgroup thercof, for some fixed integer $m>1$, then x can be found in time subexponential in p^{m}. The latter is a consequence of the fact that the relevant anthmetic properties of the set of polynomials modulo p of degree $<m$ is similar to those of the set $\left\{1,2, \cdots, p^{m}-1\right\}$.

This aparent leck of discrete loganthm algonthms that run in time subexponential in the order of a subgroup or of an entirely different group that cannot be represented in the way the subexponential algorithms require, is exploted in the design ofscveral public hey systems. In DSS (the U.S. goverument's Digital Signature Standaad) an order q subgroup of $(\mathbf{Z} / p \mathbf{Z})^{*}$ is used to improve the speed of the cryptosystem, while at the same time reducing the sizc of the resuling signatures, without, hoperully, compromising the security: breaking it requires time either $O(\sqrt{q})$ or $\approx \exp \left((1.92+o(1))(\log p)^{1 / 3}(\log \log p)^{2 / 3}\right)$, both of which are supposedy infeastule for the specified sizes $\left[\log _{2} q\right]=159$ and $\left[\log _{2} p\right] \geq 511$ (the Russian variant of $D S S$ requires $\left.\left[\log _{2} q\right]=239\right)$. Eliptic curve based cryptosystems achieve the same objectives simply by choosing p small, but large enough to make $O(\sqrt{p})$ attacks infeasible.

Since $\left[\log _{2} q\right]$ is fixed at 159 and the increase of processor speed has not leveled off yet, it is conceivable that a moderste amount of progress in exponential time discrete logarithm algorithms could meke DSS vulnexable within the foresecable future Also, some specialists find it too early to give up hope for better than exponential time ettacks on eliptic curve based systems.

Agen K. Lenstra

5 Conclusion

We have seen that the factoring and discrete logarithre problems are remarkably similar: both are easy to formulate, believed to be hard purely based on our lack of success soiving them efficiently, sxitable for the design of public key cryptosystems, and, most remarkably, they seem to be susceptible to very similar solution methods. The last point is quite worrisome: even though not all factoring methods can be turned into discrete logarithm methods (ecm is the most notable exception), ruost can. Thus, it is conceivabie that a newly invented factoring method that wipes out all factoring based cryptosystems, would have the same effect on discrete Icgarithm based cryptosystems. Obviously, there is a strong need for diversification in the design of public key cryptosystems.

These issues, though crucisi for the design of secure networks, are actually the least of our current worrien. It is not unlikely that instead of enjoying the fruits of our number theoretic incomperence we will soon be harvesting the rotten fruits of our incompetence at properly implementing of use the much needed security measures. As soon as we leave the realm of mathenatics, security considerations become much more confused and complicated: humam factors, compatibility issues, trust management, key management, key escrow, export restrictions, to mention only a few, are crucial issues that have an enormous potential to be exploited by a worldwide army of hackers that cannot necessarily distingusish a prime from a composite. This is not to say that security on the net cannot be acbieved, but the subject requires study of much more than the mathematical issues alone.

References

[1] A. K. Lenstra and H. W. Lenstra, Jr. Handbook of theoretical computer science. Volume A, Algorithms and complexity. (J. van Leellwer, ed.). Algerithms in number theory. Ohapter 12. Elsevier. Amsterḍam. 1990.
[2] D. R. Stinson. Cryptography, theory and practice CRC Press. Boca Raton London, - Tokyo 1995.

