Using Cyclotomic Polynomials to Construct
Efficient Discrete Logarithm Cryptosystems over Finite Fields

Arjen K. Lenstra

Citibank, N.A., 4 Sylvan Way, Parsippany, NJ 07054, U.S.A.
Email: arjen.lenstra@citicorp.com

Abstract. We show how to use cyclotomic polynomials to construct subgroups of
multiplicative groups of finite fields that allow very efficient implementation of
discrete logarithm based public key cryptosystems. Depending on the type of
application and implementation, the resulting schemes may be up to three times
faster than the fastest known schemes of comparable security that use more
conventional choices of subgroups or finite fields.

1 Introduction

In this paper we consider public key cryptosystems that are based, for their security,
on the difficulty of the discrete logarithm problem in the multiplicative group of a
finite field. Several such cryptosystems have been proposed. Examples are the
signature and encryption algorithms due to Taher ElGamal (cf. [3]) and variations
thereof. We propose a new variation that has distinct computational advantages over
previously proposed schemes.

The most time consuming operation in the EIGamal schemes is exponentiation in
the finite field. Therefore variants have been proposed that make the exponentiation
faster without affecting the security. Claus Schnorr proposed to work in a small
subgroup of the multiplicative group of a prime field of large characteristic (cf. [13]).
Such subgroups not only make the signature considerably shorter, but they also make
the exponentiation considerably faster by using short exponents. Supposedly, using
subgroups does not affect the security of the scheme if the subgroup order is prime
and sufficiently large (though small compared to the characteristic). A variant of
Schnorr’s proposal was adopted in the U.S. Government’s Digital Signature
Standard (cf. [6]). All these variants allow efficient software implementations.

Gordon Agnew et al. proposed to work in a large extension of the field of two
elements (cf. [2]). With a so-called ‘optimal normal basis' representation of the
extension field multiplication becomes very fast and squaring reduces to a circular
shift, so that exponentiation can be done very efficiently. Although this
representation does not affect the security of the scheme, fields of characteristic two
are generally considered to be more vulnerable to attacks than other fields of
comparable sizes. The security of Agnew’s variant can be boosted by working in a
quadratic extension, an idea that is similar to Schnorr’s. To take full advantage of
this variant a hardware implementation is strongly recommended.

We show how the ideas of using subgroups and optimal normal bases can be
combined by showing how cyclotomic polynomials can be used to efficiently
construct cryptosystems that not only use small subgroups (and thus short si gnatures
and short exponents) but that also allow very efficient exponentiation. We show that
our variant is asymptotically faster than both Schnorr’s and Agnew’s variants. We
also show that an actual software implementation of our variant can be expected to
be about three times faster than Schnorr’s variant; for this comparison both variants
used *960-bit security’, which is considered to be acceptable today. For signature
generation the performance comparison to RSA is also very favorable, even if RSA is
implemented using Chinese remaindering.

This paper is organized as follows. In Section 2 we introduce our notation and
review some well known facts about finite fields, optimal normal bases, discrete
logarithms, and cyclotomic polynomials. In Section 3 we present our new variant, Its
performance is analyzed and compared to other variants in Section 4. We conclude
with some additional observations in Section 5.

2 Preliminaries

(2.1) Finite fields. Let F(p") denote a finite field of odd characteristic p and
cardinality p'. The multiplicative group F(p) of F(p') has cardinality p'-1. We
assume that t+1 is prime (but see (5.1)) and that p is a primitive root modulo t+1
(i.e., p modulo t+1 generates F(t+1)"). Then the zeros of for i=1,p,....p‘"1 of the
polynomial (X"*'=1)/(X~1)=X"4+X""+.. . +X+1 form an optimal normal basis for F(p")
over F(p) (cf. [4]). For the definition of an optimal normal basis we refer to [9]. For
our purposes we are interested in the following properties of these bases.

Choice of basis for F(p') over F(p). Because p is a primitive root modulo t+1 and
because a'=af ™ ™!, the basis (of : i=1,p,...,p'™"} for F(p') over F(p) is the same as
the basis {a : i=1,2,...,t} for F(p) over F(p). Note that the latter basis is different
from but similar to the more traditional power basis {¢/ : i=0,1,...,t—1 } for F(p') over
F(p). The identities o'= —0'™'~0/?~...~0=1 and o= —o'~0f"'~.. ot can be used to
switch quickly between these two bases. We prefer to use the basis {c' : i=125..6)
for F(p') over F(p) because it makes p-th powering essentially for free (see below).
Sometimes, however, it might be more convenient to use {od : i20;1,..,6-1] (cf,
3.3)).

Multiplication in F(p'). Using the basis {of : i=1,2,...,t} for F(p') over F(p), we can
nultiply elements of F(p') in ¢* multiplications and O(t*) additions in F(p): exponents
of o that are >t can be reduced modulo t+1 (since o'=0d ™Y and o= —o'—otI—. —
¥ can be used to handle exponents of o that are zero modulo t+1. Thus, the reduction
tage of the multiplication (and squaring) in F(p') takes only 2t—1 additions in F(p).
Chis is a consequence of the optimality of the basis. The power basis {c¢ : i=0,1,...,t—
'} for F(p') over F(p) works just as quickly for multiplication and squaring: for the
eduction stage exponents can still be taken modulo t+1, and the identity o'= —o*'—

(%~ —a—1 can be used to handle exponents that are equal to t modulo t+1.

p-th Powering in F(p'). The elements of F(p) are left unchanged by p-th powering,

and the mapping that maps i to (p*i modulo t+1) acts as a permutation on the set of

exponents {1,2,...,t} of o. Therefore, p-th powering of elements of F(p") that are

represented using the basis {of : i=1,2,...,t} for F(p') over F(p) involves only a

permutation of the elements of F(p) representing F(p') over the basis (o :

i=1,2,...,t}, and is thus virtually for free in practice. This is a consequence of the fact

that {o¢ : i=1,p,...,p'"} is a normal basis for F(p') over F(p).

Exponentiation in F(p'). To raise an element x of F(p') to the e-th power, for some
e>p, we first write e in the basis p, i.e., e=e(k)p“+e(k—1)p*'+...+¢(1)p+e(0) with
k=logse/logsp and 0<e(i)<p for i=0,1,....k. By scanning the k+1 exponents e(i) from
least to most significant bit, we next compute x*” in F(p") for i=0,1,....k using [log;p]
squarings and approximately w(e)—k multiplications in F(p"), where w(e) is the sum of
the Hamming weights of e(i) for i=0,1,... k. The result X% is then computed using k
(free) p-th powerings and approximately k multiplications in F(p'). It follows that e-th
powering can trivially be done in log,p squarings and w(e)—1 multiplications in F(phH
if we use the basis {o : i=1,2,...,t} for F(p) over F(p). For an asymptotically faster
method see (5.2).

We conclude that for appropriately chosen medium-sized p and t exponentiation in
F(p") can be carried out very efficiently, not only because of the lower than usual
number of operations in F(p'), but also because those operations themselves can be
performed very quickly,

(2.2) Discrete logarithms. The discrete logarithm problem (DL) in F(p")" is: given g
and y in F(p")", if possible find x such that g*=y in F(p'). If g gencrates F(p)" then
such an x with 0<x<p'-1 exists. More in general, if g generates a subgroup of order k
of F(p')", then x (with 0Sx<k) exists if and only if y is contained in <g>, the subgroup
generated by g.
Let
L[x,u,v] = exp(v(In(x))*(Inln(x))' ™).

Let s be the smallest divisor of t such that <g> can be embedded in F(p®). If s<t then
F(p®) is a true subfield of F(p'); note also that the order k of g must divide p*~1. Then
DL can be solved in heuristic expected asymptotic time L[p*1/3,1.923+0(1)] for
p*—seo, which is subexponential in p* (this follows from a standard linear algebra
argument and [1,11]). Alternatively, DL can be solved in O(q") elementary operations
in F(p®), where q is the largest prime dividing k (cf. [7]). Today an acceptable level of
security would be obtained if t, p, k, s, and q are chosen such that p22** and q22'®,
because it is believed that these choices would make it infeasible to solve DL with
current algorithms and hardware (cf. [6]). Smaller values of p’, but still with p22°®,
provide marginal security (cf. [12]).

(2.3) Cyclotomic polynomials. The irreducible factorization of X'-1 in Z[X] is given
by

X1 = Hg®y(X),

IR Balag s I =L cyciotomic polynomial (Cl. {1U]), 1he lactor @(A) 15 the only
irreducible factor of X'-1 that does not appear in the factorization of X’~1 for divisors
s of t with s<t. Therefore the factors of the cardinality p'-1 of F(p")" that are not
factors of p*~1 for divisors s of t with s<t, must be factors of ®(p). Also, it follows

from the Lemma that a prime factor >t of ®(p) cannot be a factor of p*~1 for any
divisor s of t with s<t.

(2.4) Lemma. Let q>t be a prime factor of ®\(p). Then q does not divide any D (p)
for divisors s of t with s<t.

Proof. Since q divides ®(p), we find that p'=1 mod q. Combined with g>t and the
orimality of q it follows that t divides g—1. Therefore ®,(X) and the ®,(X)’s are
among the distinct irreducible factors of X%'—1. The polynomial X%'-1 factors into
1~1 distinct linear factors in F(q)[X], one of which is (X—p mod q) since q divides
Dy(p) (i.e., p is a root of ®(X) in F(q)[X]). Thus, no other factor of X% =1 over

*(@)[X] equals (X—p mod q), and therefore p is not a root of any of the ®(X)’s in
“(q)[X], which proves the lemma.

t follows that if one wishes to find a prime q dividing p'~1 such that q does not
livide any p*-1 for divisors s of t with s<t, it suffices to take a prime factor g>t of
P.(p). Because the degree of ®(X) equals ¢(t), with ¢ Euler’s totient-function, and

recause n>¢(n)>n/(6Inln(n)) for n>6, we find that ®,(p) grows at least as fast as
,lﬂﬁinln[l])l

i Efficient DL-based cryptosystems

3.1) Combining advantages. We propose to combine the advantages of the variants
roposed by Schnorr and by Agnew et al. by using F(p") for appropriately chosen
redium-sized p and t as the underlying finite field for the DL-based public key
ryptosystems. In Schnorr’s variant t is equal to 1 and large p’s allowing
ppropriately sized subgroups can easily be detcrmined; the advantage consists of
hort exponents and short signatures. In the variant by Agnew et al. p is equal to 2
nd the advantage consists of the very efficient exponentiation that is obtained by
sing an optimal normal basis.

In (2.1) we have seen how medium-sized p and t can be chosen such that we get
ery efficient exponentiation by using an optimal normal basis for F(p') over F(p). It
»mains to be shown how p and t can be selected in such a way that we can easily
etermine an appropriately sized subgroup that cannot be embedded in any true
1bfield of F(p'"). From the discussions in (2.2), (2.3) and Lemma (2.4) it follows that

suffices to select p and t in such a way that not only the conditions in (2.1) are
wisfied, but such that also p'>2*® and ®,(p) has a prime factor 2'%°,

An entirely straightforward way to find such p and t is as follows: fix some value
r t such that t+1 is prime, and generate primes p of the required length until one is

found that is primitive modulo t+1 and for which it can easily be recognized thal
®,(p) contains a sufficiently large prime factor q. The latter can be done using trial
division with the primes up to, say, 10%; any other reasonable bound or method will
do. All events have sufficiently high probability for this approach to be effective. As
can be seen below, this method works sufficiently quickly in practice. Once p, t, and q
have been found, a generator of a subgroup of order q can be constructed in the usual
fashion by computing the ((p'~1)/q)-th power g of some randomly selected element of
F(p")" until g#1. Note that <g> cannot be embedded in any F(p®) for divisors s of t
with s<t because the order q of g is constructed as a factor of p'-1 that does not divide
any p’—1 for divisors s of t with s<t.

(3.2) Runtimes. The table below gives the runtimes in seconds on a Pentium 166MHz
processor to generate 10 satisfactory triples p, t, q using various security levels: one
using marginal security (t=18 and [logyp |=32), one with slightly better security (t=10
and l_logzp-]=64), two with acceptable security (t=30 and rlog2p1=32, and t=18 and
rioggp-|=64). and one with high security (t=30 and rlog2p1=64). Note that ®o(X)=X"-
CaX2=X+1, Dp(X)=X"-X+1, and @5X)=X*+X"-X-X'-X*+X+1. The last
column gives the bit-length range of the resulting 's.

t l-logzp] () seconds flog;q_| in
18 32 6 74 [163,189]
10 64 4 114 [210,254]
30 32 8 120 [214,251]
18 64 6 209 [340,380]
30 64 8 240 [446,506]

(3.3) Remarks. Our construction is not as fast as the construction of primes p in
Schnorr’s variant, but since it is a one-time cost this is not a serious issue. Note that,
if we are willing to invest more time in the construction of p, t, and g, we can aim for
a fixed value for [log,q) that depends on and grows with the sizes of p and t (cf.
(2.3)). Fixing the value of [log,q] irrespective of p and is not realistic because it will
quickly make the construction of satisfactory pairs p, tin feasible, unless one is willing
to spend a lot of time on the factoring attempts of ®,(p). As an example, for (=30 and
[Nogap =32 it took three hours to find the 161-bit prime

2448277722258422505098253208658636091688096875721

dividing ®10(2718153587), as opposed to just 120 seconds for 10 q’s in the 214-bit
range dividing ®so(p) for 10 different p’s in the 32-bit range.

Thus, our construction is also not as general as Schnorr’s one, because our
subgroup sizes grow with p and (. It can be argued, however, that this is from a
security point of view only natural and a distinct advantage of our proposal, and that
variants (like [6]) that keep the subgroup sizes fixed are, on the long term, bound to
run into security problems. Irrespective of the size of the multiplicative group, DL in

an order q subgroup can be solved in O(q™) field operations, as mentioned above.
Therefore, the security of systems using a fixed value for [log,q] will decrease with
time. Keeping the security level constant implies that not only the size of the
multiplicative group, but also the size of the subgroup has to grow with time.

A possible disadvantage of our variant is that there are fewer appropriate pairs p,t
than there are primes p for Schnorr’s variant (assuming comparable levels of
security). If log,p is large enough (log,p=264, say) this is not a serious problem. For
smaller p’s it depends on the type of application whether or not this is a serious
disadvantage.

(3.4) Security. The security of DL-based public key cryptosystems that work in
subgroups of finite fields as proposed here is based on the observations from (2.2),
(2.3), and Lemma (2.4). We are not aware of faster ways to solve the discrete
logarithm problem in these subgroups than the methods mentioned above.

4 Performance analysis, comparison, and runtimes

Exponentiation is the most important and most time consuming operation in DL-
based public key cryptosystems. In (4.1) we therefore analyze the time needed for a
single exponentiation in a scheme that uses a subgroup and finite field as proposed in
this paper. In (4.2) we compare the asymptotic performance of exponentiations using
our, Schnorr’s, and Agnew's variants, and in (4.3) we compare the number of
multiplications required by a single exponentiation (i.e., a single signature
generation) in various schemes using a realistic example; actual runtimes are given as
well. More runtimes are given in (4.5).

(4.1) Analysis. As explained in (2.1), multiplication in F(p') can be done in t?
multiplications in F(p) (throughout this section we only count multiplications) and
squaring can be done in t+t(t—1)/2 multiplications in F(p). Exponentiations will be
done in the order q subgroup, so that exponents have at most [log,q | bits. Therefore,
using the straightforward exponentiation method from (2.1), a single exponentiation
can be expected to take approximately

t*([logyp] + log,q)/2

nultiplications in F(p). Here we make the reasonable assumption that on average
v(e)=(log,q)/2 for an exponent e, with w(e) as in (2.1).

4.2) Asymptotic comparison. We compare the asymptotic performance of our
rariant with Schnorr’s and Agnew’s variants of the ElGamal signature scheme,
issuming comparable levels of security. The expected number of multiplications in
“(p) needed for one exponentiation in a subgroup of order q as constructed in (3.1) is
siven in (4.1), where we do not use any fast multiplication or exponentiation
echniques (except that we make use of the fact that p-th powering is for free).

Comparison with Schnorr’s variant. Let t be a prime close to p'. One exponentiation
in an order =q subgroup of F(r)" can be expected to take

(3%4+%)(logaq) = 1.25 logaq

multiplications in F(r). Here we assume that a squaring in F(r) takes (asymptotically)
approximately 75 percent of the time of a multiplication in F(r), and that only half of
the bits of the exponents are on. Again not assuming fast multiplication techniques, 2
single multiplication in F(r) takes approximately the same time as t* multiplications
in F(p). We find that a single exponentiation using Schnorr’s variant takes the same
time as

1.25 *logxq
multiplications in F(p), as opposed to
t*(logap + logxq)/2

for our variant. Thus, for realistic choices of log;p (32<log,p<64, say) and log.q
(log;q2160), our variant can be expected to be approximately twice as fast as
Schnorr’s variant. In an actual software implementation, our variant may even do
better, as shown below.

Comparison with Agnew’s variant. The relative performance of our variant and the
one by Agnew et al. must be assessed in a different manner, because of the entirely
different type of operations involved. If we do a simple operation count of both
variants (and do not incorporate the possible effects of parallelized implementation,
cf. [2]), we can say the following. Omitting constants, a single exponentiation using
our variant takes

O(t(logzp + logzq)(logap)’) = O(t(logzp)’) + O(P(logxq)(logzp)®)

elementary operations (where we do not use fast multiplication techniques, cf. (4.1)).
To get the same level of security as our variant, Agnew’s variant has to be
implemented in an extension field of degree approximately t*log,p over F(2). Using
standard multiplication techniques, an exponentiation in a comparable realization of
Agnew’s scheme therefore takes

O((logzp)’)
clementary operations. Thus, our variant can be expected to have better asymptotic

behavior than Agnew’s variant because, based on existing methods to solve DL (cf.
(2.2)), t*log,p should grow faster than log:q.

(4.3) Comparison by example. The table below gives the approximate average
number of standard multiplications (in millions) required by a single digital signature

generation as computed by a generic software implementation of various DL-based
cryptosystems, all with [log;p']=960. RSA with a 960-bit modulus and a full-length
exponent (with or without use of ‘Crt’, the Chinese remaindering theorem) is also
included. The actual runtimes in seconds on a Pentium 166MHz processor and the
resulting signature lengths are given in the last two columns. Note that the signature
verification runtime for each of the DL-based systems equals about twice the signature
generation runtime (but only 25% more time than signature generation if multi-
exponentiation is used); for RSA the signature verification runtime is negligible if a
short public exponent is used.

By ‘standard multiplications’ we mean multiplications on 32-bit integers (Long in
C) or 56-bit mantissa floating point numbers (double in C). By ‘generic software
implementation’ we mean that all programs were written in plain C without assembly
language routines, and that no fast multiplication or m-ary exponentiation methods
were used (see (5.2)). In the implementation used, the 32x32—64-bit multiply needed
for long integer arithmetic takes three standard multiplies, and a 32x32-—32-bit
modular multiply with a 32-bit modulus takes four standard multiplies. The most
advanced tool that was used is Montgomery multiplication for division-free modular
arithmetic on long integers (cf. [8]). Of course, using more sophisticated methods
would affect the data given in the table. Experiments indicated, however, that the
relative performance is hardly affected.

Row (1) refers to an ordinary ElGamal signature scheme over a prime field with a
960-bit characteristic. Row (II) refers to Schnorr’s variant of it, using a 224-bit
subgroup of the same field. Row (III) refers to the variant proposed in this paper, with
t=30 and a 32-bit characteristic. Schemes based on the variant proposcd by Agnew et
al. use bit-operations and require a hardware implementation to reach their full
potential; therefore we have not included them in this comparison.

t rlogzp-| r]uggq-l million seconds signature

multiplies length
(40 1 960 N/A 6.6 0.83 1920 bits
(IT) 1 960 224 1.5 0.23 448 bits
(1) 30 32 224 0.5 0.09 448 bits
RSA-Crt ((480+480)-bit modulus) 1.6 0.24 960 bits
RSA (960-bit modulus) 6.6 0.82 960 bits

It can be seen from the table that the variant proposed in this paper requires
substantially fewer multiplies and less runtime, compared to the other schemes
considered. It follows from the data in the table that using ElGamal (i.e., working in
the full multiplicative group) in a degree 30 extension of a 32-bit prime field that is
represented with an optimal normal basis, results in about (960/224)*0.5=2.1 million
multiplies and (960/224)%0.09~0.39 seconds per signature generation; this is much
better than ElGamal over a prime field of comparable size (I), but inferior to
Schnorr’s variant with a 224-bit subgroup (II).

Of course, the performance of our new variant strongly depends on the efficiency of
the multiplication in F(p). On current 32-bit architectures a relatively high degree of

cfficiency can be achieved for 32-bit primes p. We anticipate that the emerging 64-bit
architectures will allow us to efficiently use 64-bit primes as well.

(4.4) Remark. A small additional advantage of our variant is that the size of the
public key is somewhat shorter than in Schnorr’s variant. In the latter the public key
consists of p,q,g,y, where p is a (large) prime, q a divisor of p—1, g a generator of a
subgroup of order q, and y an element of that subgroup (i.e., y=g" for the secret
key x). For a 960-bit p and 224-bit q, the public key takes 960+224+960+960=3104
bits (i.e., 388 bytes). Using our variant with t=30 and p a 32-bit prime, this can
immediately be reduced to 324+304224+960+960=2206 bits (i.e., 276 bytes). A small
additional saving can be obtained by replacing q in the public key by its much smaller
cofactor with respect to @(p); the value for q can then be computed using the cofactor
and @,(p).

(4.5) More runtimes. We conclude this section with more extensive examples of
actual runtimes of the ElGamal signature scheme, Schnorr’s variant, and the newly
proposed variant. The rows refer to (1), (II), and (III) as in (4.3). Per column the value
of t and the numbers of bits of p' and q are given: the third column refers to t=30 and
a 953-bit p' with a 165-bit prime q. The signature generation runtimes are given in
seconds on a Pentium 166MHz processor, averaged over only 10 examples (because
the standard deviation is very small).

18,512,160 30,900,220 30,953,165 36,960,315 36,1032,307

(I 0.18 0.68 0.83 0.83 1.00
(1D 0.06 0.22 0.18 0.34 0.38
(I1) 0.02 0.08 0.07 0.13 0.14

5 Additional remarks

(5.1) Adding flexibility. Considerably more t’s can be used if we do not require an
optimal normal basis, but simply carefully select the way we represent the t-th degree
extension of F(p). Note that we may assume that t itself is not prime, because if that
were the case we would not be able to easily find a small (but large enough) prime
factor of ®,(p). If t has a large prime factor s such that s+1 is prime and k=Us is
small, then we can represent F(p') as a k-th degree extension of F(p*). Assuming that
p is primitive modulo s+1we represent F(p*) using an optimal normal basis over E(p).
In this representation of F(p") p-th powering is again almost for free; the reduction
stage of the multiplication (and squaring) of elements of F(p') takes slightly more than
211 additions in F(p"), but is still relatively cheap.

This can for instance be seen as follows. Let k=2 and X%+c be irreducible in
F(p*)[X]. We compute X* mod X2+c once and for all as ¢;X+cg in F(p’)[X]. Then
(a,X+20) for aX+a, in F(p)[XJ(X*+c) (which is isomorphic to F(p')) can be
computed as (a;)°XP+(ao)’= ¢,(a;)PX+co(a;)P+(ap). Thus p-th powering in F(p') can be

done in two (free) p-th powerings in F(p*), two multiplications in F(p*), and one
addition in F(p®). The product of a;X+as and b, X+by in F(p’)[le{X3+c) equals
(abg+agh))X+ agbg—a;b;c, so that multiplication in F(p') can easily be done in five
multiplications and two additions in F(p®). The performance figures for row (III) in
the table from (4.3) are hardly affected if k is, say, at most 3. Note that subgroups can
still be constructed as indicated above.

If no optimal normal basis can be used at all, one can try to find a minimal
polynomial of the form X'+g(X) where g(X) is a sparse low-degree monic polynomial,
because that makes the reduction stage of the multiplication (and squaring) in F(p")
cheap. Subgroups can of course still be constructed as usual, but p-th powering is no
longer for free. The performance figures from row (III) in the table from (4.3) are
about 50 percent worse in this case. This may still be competitive with other variants.

Alternatively, one can use a normal basis for F(p') over F(p), so that p-th powering
is still a permutation; the reduction stage may become more expensive unless the
normal basis is chosen with care,

(5.2) m-ary Exponentiation. There are several methods to speed up exponentiation
which can be applied to improve the figures in rows (I), (II), and the two RSA rows in
the table from (4.3), and also those in row (III). For the former rows one can use the
well known m-ary exponentiation (cf. [5: 4.6.3]), for row (III) a variant that applies to
the situation in (2.1) can be found in [5: exercise 4.6.3.32]. The overall effect of
application of these methods is that all figures in the table from (4.3) can be improved
by about 20 percent. The same observation applies o the figures in the table from
(4.5).

(5.3) Inversion in F(p'). We consider the computation of the inverse of a non-zero
element xeF(p') that is represented using the optimal normal basis {o¢ : i=1,2,...,t}
for F(p') over F(p). Although inversion of elements of F(p") is not needed for the DL-
based cryptosystems over finite fields discussed in this paper, it might be useful if the
approach presented here is used in other circumstances. The traditional extended
Euclidean algorithm can be used in the standard fashion after converting the
representation of x to the power basis {of :i=0,1,...,t—1} (remember that the identities
a'= —o' -0~ ~a~1 and 0= —o'~0"'~...—ot can be used to switch quickly between
these two bases, cf. (2.1)). Thus, computing x™' can be done in at most,
approximately, t inverses in F(p), t division-with-remainder computations on
polynomials of degree <t over F(p), t multiplications in F(p'), and t* multiplications in
F(p). A division-free binary variant can also be used; it requires approximately the
same number of computations.

Both these algorithms require substantial special purpose software. We discuss an
exponentiation-based method because software for exponentiation is usually already
available. From x™=x for m=p' it follows that x'=x"2, so that inversion can be done
with a single exponentiation with exponent m—2. Writing m-2 in basis p, we can take
advantage of the normal basis representation of x, and compute x™ using log;p
squarings and w(m-2)-1 multiplications in F(p'), as in (2.1). This estimate can be
improved by observing that

m-2 = p'=2 = p'=p+p-2 = (p~1)(p"'+ p' ... +p)+p-2,

i.e., the radix p digits of m—2 are all equal to p—1 except for the least significant one
which equals p—2. Thus, with one exponentiation with exponent p—2 followed by a
single multiplication we may compute x" and x?™'. The result x™' then follows after
1~2 multiplications and t—1 p-th powerings in F(p').

It depends on the relative sizes of p and t if this exponentiation-based approach is
faster than the straightforward application of the extended Euclidean algorithm. If
logop and t are of comparable size, then the speed of the two methods should be
comparable.

(5.4) Computing random powers. In many digital signature schemes the most time
consuming step of the signature generation is computing g*, where g generates a
subgroup of order q of the multiplicative group of a finite field and k is a random
positive integer less than q. Various methods have been proposed to speed up this
message independent step, without affecting the unpredictability of the random
power k. If the finite field is F(p') and it can be represented using a normal basis over
F(p) (as the fields considered in this paper), it should be possible to develop new
methods to quickly compute g* for random (and known) k’s because p-th powering is
for free. We give an example of a possible approach, but leave this subject for further
research.

First note that the log;p consecutive squares of g (as needed in the exponentiation,
cf. (2.1)) can be tabulated, which would save all squaring steps. For Schnorr’s variant
this is less attractive because p is much bigger there. Further, we could restrict
ourselves to k's with small w(k) (cf. (2.1)), because the number of multiplications in
F(p") to be carried out is w(k)—1. However, this would limit the space of k's and make
them too predictable. A solution may be to consider exponents k' that are larger than
q (but still smaller than p'=1) with low w(k’), and to obtain k as k’ modulo q. With
the proper parameter setting the number of k’s thus obtained can easily be made large
cnough. It would be interesting to see if the k’s obtained are indeed sufficiently
random.

References

1. M. Adleman, J. DeMarrais, A subexponential algorithm for discrete logarithms
over all finite fields, Proceedings Crypto’93, Lecture Notes in Comp. Sci. 773.
147-158 (1994).

2. G. Agnew, R.C. Mullin, .M. Onyszchuk, S.A. Vanstone, An implementation for
a fast public-key cryptosystem, Journal of Cryptology, 3, 63-79 (1991).

3. T.ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory, 31, 469-472 (1985).

4. S. Gao, HW. Lenstra, Jr., Optimal normal bases, Designs, Codes and
Cryptography, 2, 315-323 (1992).

13.

D.E. Knuth, The art of computer programming. volume 2, Seminumerical
algorithms, second cedition, Addison-Wesley, Reading, Massachuselts. 1981.
D.W. Kravitz, Digital signature algorithm, U.S. Patent # 5,231,668, 27 Jul 1993,
AK. Lenstra, H'W. Lenstra, Ir., Algorithms in number theory, J. van Lecuwen,
editor, Handbook of Theoretical Computer Science, 674-715, Elsevier Science
Publishers, 1990.

P.L. Montgomery, Modular multiplication without trial division, Math. Comp.,
44, 519-521 (1985).

R.C. Mullin, LM. Onyszchuk, S.A. Vanstone, R.M. Wilson, Optimal normal
bases in GF(p"), Discrete Appl. Math., 22, 149-161 (1988/89).

. H. Riesel, Prime numbers and computer methods for factorization, Birkhauser,

1985.

. 0. Schirokauer, Using number fields to compute logarithms in finite fields, 1o

appear.

. 0. Schirokauer, D. Weber, T. Denny, Discrete logarithms: the effectiveness of

the index calculus method, H. Cohen, editor, Preproceedings ANTS 11,
Algorithmic number theory symposium, 327-351, Université de Bordeaux I,
1996.

C.P. Schnorr, Efficient signature generation by smart cards, Journal of
Cryptology, 4, 161-174 (1991).

