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Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve, Belgium
mjoye@geocities.com

Arjen K. Lenstra
Citibank, N.A.

4 Sylvan Way, Parsippany, NJ 07054, U.S.A.
arjen.lenstra@citicorp.com

Jean-Jacques Quisquater
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Abstract. We present some observations on public-key cryptosystems that use
the Chinese remaindering algorithm. Our results imply that careless implemen-
tations of such systems could be vulnerable. Only one faulty signature, in some
explained context, is enough to recover the secret key.
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1. Introduction

In public-key cryptosystems two distinct computations can be distinguished: the com-
putation that makes use of the secret, public key pair, and the one that only makes use
of the public key. The former usually corresponds to the secret decryption or to the
signature generation operation, the latter to the public encryption or to the signature
verification operation. In this paper we restrict our attention to public key cryptosys-
tems in which the former computation can be sped up using the Chinese remaindering
algorithm. Examples of such cryptosystems are: RSA [16], LUC [19], KMOV [11],
and Demytko’s cryptosystem [6]. We show that devices implementing the signature
generation of any of these cryptosystems may be tricked into revealing their secret key,
if the following three conditions are met:

(1) the message as signed is known;

(2) a certain type of faulty behavior occurs during signature generation;

(3) the device outputs the faulty signature.

Leakage of the secret key can be averted by making sure that either of these three
conditions will not be met. This can be done by adding enough random noise to the
message to be signed, by making sure that the system works properly and that faulty
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behavior cannot be induced, by checking the correctness of the signature before out-
putting it, or by any combination of these three safety measures. We note that many
devices already implement at least one of these countermeasures. Thus we feel con-
fident that the practical impact of our observation is minimal. Therefore, if carefully
implemented, Chinese remaindering based cryptosystems are not more vulnerable than
usual cryptosystems.

We note that the same observation applies to decryption using the Chinese remain-
dering algorithm, if the decrypting party shows the faulty decryption to another party.
The details of this ‘generalization’ are straightforward.

The analysis of cryptosystems in the presence of faults was launched by newspa-
per publications that cited a Bellcore press release New Threat Model Breaks Crypto
Codes. Thereafter, several researchers reported some possible implications in both
public-key [12], [3], [8], [9], [17], [20] and private-key [4], [9], [13] cryptography. The
method presented in this paper improves the Bellcore’s result, later published in [5], in
the following way. Their method requires two ‘Chinese remaindering’ signatures on
the same message, one correct and one faulty, whereas our version requires the mes-
sage and only a single faulty signature. Our version is therefore ‘more realistic’ and
potentially more dangerous.

The problem of the presence of faults in cryptosystems can be turned into an ac-
tive attack by inducing faulty behavior on computational devices. For example, this
can be achieved by ROM overwriting, EEPROM modification, gate destruction, RAM
remanence, etc. . . [1], [2], [7], [10], [14], [15]. Since these techniques are not fully
published or described (and thus controversial), we do not elaborate or comment.

Our main objective is to dwell on the importance of a careful implementation of
cryptosystems. Suppose you are in a context involving Trusted Third Parties (e.g.,
banks) and where thousands of signatures are produced each day. If, for some reason
or other, a single signature is faulty, then the security of the whole system may be
compromised.

2. Potential vulnerability of RSA using Chinese remaindering

Let p and q be two primes and let n = pq. Imagine a message m is signed with
the secret exponent d using RSA: s = md mod n. Using the Chinese remaindering
theorem, the value of s can be computed more efficiently from s p = md mod p and
sq = md mod q. Suppose an error occurs during the computation of s p (we denote
s′p the faulty value), but not during the computation of s q . Applying Chinese remain-
dering on s′p (�= sp) and sq will give the faulty signature s′ for message m. Then, the
computation of

gcd(s′e − m (mod n), n)

will give the secret factor q, where e is the public exponent.

Remarks. 1) If the attacker does not know the public modulus n, he may still be able
to recover the secret parameter q. Indeed, if e is small, he has some probability to find
q by trying to factorize s′e − m over the rational integers. This probability becomes
non negligible if he possesses two or several faulty signatures, because in that case,
he can recover q by computing gcd(s ′

1
e − m1, . . . , s

′
k

e − mk). Furthermore, from the
knowledge of one or several valid signatures, the attacker can also recover p in a similar
way.
2) A non-trivial factor of n may be derived in any scenario were exactly one of the
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remainders used in the Chinese remaindering is incorrect. This includes, for instance,
incorrect retrieval of (a possibly correctly computed) s p. Thus, also the presence of a
permanent failure, like a damaged wire, as opposed to a transient computational failure,
may expose secret information.

3. Generalization to other cryptosystems

In this section, n = pq denotes the RSA-modulus, and e and d are respectively the
public and the secret exponents. The message to be signed is m, and the corresponding
signature is s. Let

S : Zn → Zn, m �→ s = S(m)

be an RSA-type signature function. If the signature s of message m is computed with
the Chinese remaindering theorem, then the previous observation still applies.

Proposition 1 If s′ is a faulty signature such that s′ �≡ s (mod p) but s′ ≡ s
(mod q), then

gcd(S−1(s′) − m, n)

will give the secret factor q.

Proof. Since s′ ≡ s (mod q) and s′ �≡ s (mod p), we have S−1(s′) ≡ S−1(s) ≡
m (mod q) and S−1(s′) �≡ m (mod p). Hence, S−1(s′) − m (mod n) is divis-
ible by q and not by p. ��

Consequently, the observation of Section 2 works for all RSA-type cryptosystems.

Example 1. The LUC cryptosystem is based on Lucas sequences. The signature func-
tion is defined as S(m) = Vd(m, 1) mod n, and the verification function as S−1(s) =
Ve(m, 1) mod n, where ed ≡ 1 (mod lcm(p − 1, p + 1, q − 1, q + 1)). If s′ �≡ s
(mod p) but s′ ≡ s (mod q), then

gcd(Ve(s′, 1) − m (mod n), n)

will give q.

Example 2. The Demytko cryptosystem uses the x-coordinate of points on elliptic
curves over the ring Zn. Such a curve will be denoted by En(a, b). The x-coordinate
of the multiple of a point can be computed thanks to the division polynomials (see [18,
exercice 3.7]) considered as polynomials in Zn[a, b, x]. The signature function is de-
fined as S(m) = Φd(m)/Ψd(m)2 mod n, and the verification function as S−1(s) =
Φe(s)/Ψe(s)2 mod n, where ed ≡ 1 (mod lcm

(
#Ep(a, b), #Eq(a, b), #Ep(a, b),

#Eq(a, b)
)
).1 If s′ �≡ s (mod p) but s′ ≡ s (mod q), then

gcd
(

Φe(s′)
Ψe(s′)2

− m (mod n), n
)

will give q.

1Ep(a, b) denotes the complementary group of Ep(a, b). See the original paper [6] for a detailed de-
scription.
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