Factorization of polynomials by transcendental evaluation
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Abstract. A new polynomial-time algorithm for the factorization of polynomials in two vari-
ables with rational coefficients is presented. The algorithm works by replacing one of the vari-
ables by an approximation of a transcendental number. It generalizes recent results by Kan-
nan, Lenstra, Lovdsz [KLL] and Schénhage [Sch2]. Asymptotically the algorithm improves on
the running times of previously published methods.

Introduction

It is only a few years ago that the first polynomial-time algorithm for the factorization of prim-
itive polynomials with integral coeflicients was presented [LLL]. Since that time many general-
izations, applications, and even improvements of the original algorithm were published (among
others [CG, Kal, KLL, Len, Sch2, vzG]).

An especially interesting result was obtained independently by Kannan, Lenstra, Lovisz
[KLL) and Schdnhage [Sch2]. They showed that the minimal polynomial of an algebraic
number can be found in polynomial time, which immediately implied another polynomial-time
factorization algorithm for polynomials in Z[X]. As SchBnhage noticed, this approach to poly-
nomial factoring, which was already suggested in [LLL], led to a considerable improvement of
the worst-case running time. Therefore, it would be interesting to generalize the faster algo-
rithm to polynomials in more variables, to get faster polynomial-time algorithms for these fac-
toring problems as well.

The method from [KLL, Sch2], however, does not generalize in the same obvious way to
more variables as was the case with the original algorithm from [LLL]. For polynomials in one
variable we can compute the complex roots up to any precision that we want, and given such
an approximated root we compute its minimal polynomial; for polynomials in more than one
variable that approach makes no sense.

In this paper we show that we can apply the same trick for polynomials in two variables, if
we first replace one of the variables by a transcendental number. After this substitution we
can again compute approximations to the complex roots of the resulting univariate polynomial,
and look for the minimal polynomial (over some transcendental extension of Q) of one of the
approximated roots. The fact that we have chosen a transcendental evaluation point then
guarantees that this minimal polynomial corresponds to an irreducible factor of the original
bivariate polynomial.

For the running time analysis of our algorithm it is important to have strictly positive lower
bounds for polynomials in Z[Y] when evaluated in a transcendental number. Such a lower
bound is called a franscendence measure of the transcendental number, and for many transcen-
dental numbers a transcendence measure is known. The running time of our algorithm
strongly depends on the transcendence measure of the chosen transcendental number. There
exist transcendental numbers (like for instance 7) which make the algorithm asymptotically



faster than any other known algorithm for the factorization of bivariate polynomials. See also
Remark (3.3).

The new method can be generalized to polynomials in more than two variables by applica-
tion of simultaneous transcendence measures. As was the case with the generalizations of the
Z|X)-algorithm [Len], the practical importance of the resulting algorithm becomes rather ques-
tionable. For two variables it is not unlikely that the algorithm may prove to have practical

significance.

1. Preliminaries

For a polynomial ¢ = Z,-E,-g,-jX"}”' € C[X, Y] we denote by 6xg and dyg its degree in Xand Y

; 89 b . |
respectively, by |g| = {Z.-foE,-foig.-,F)”’ its length, and bY gmax = MAXo<i<try, 0<i<osl 93 its

height.

(1.1) Definition. For a transcendental number X we define its transcendence measure By as a
positive function By: N X N — R such that |¢)\)| > By(n, H) for all non-trivial polynomials
g € Z[Y] satisfying 6yg < n and gpyy < H.

(1.2) Example. In [Cij] transcendence measures for many well known transcendental numbers
are given. For e we have B(n, H)= covntlos ) - and for x we have By(n, H) =
cnlntlos M(1+1og 8)° 150 offectively computable constants ¢; > 0 and ¢; > 0 (cf. Remark (3.3)).

For the rest of this section we denote by J a primitive polynomial in Z[X, Y] with
bf=n>0 dyf=m>0 and height f,... The idea of our algorithm to determine the
irreducible factors of fin Z[X, Y] is as follows: replace the variable Yin X, Y) € Z[X, Y] by a
transcendental number X, and look for a factorization of X, \) in Q(\)[X]. Because X is tran-
scendental, Q()\) is isomorphic to Q(Y), so that the factorization of fAX,)\) in Q(X)[X]
automatically yields a factorization of fX, Y) in Q(Y)[X]. It then follows from Gauss' lemma
that this factorization in Q(Y)[X] is essentially a factorization in ZlX, ).

By A€R we denote a transcendental number with transcendence measure B, and
|\] < 1/2. Obviously, we cannot work with )\, but we will have to work with some approxi-
mation X to A. Therefore, we denote by X; € Q for 0 < k < m approximations to M (where
%o = 1).

The polynomial f; € Q[X] is defined as the polynomial that we get from fby replacing Y* by
Npfor1 < k< m. Inthe algorithm we will work with f; instead of fX, ). Consequently, we
will not be approximating a root of fiX; \), but instead a root of the approximated polynomial
J;. We may assume that J; has a root with absolute value at most 1 (see Section 2). Namely,
otherwise we consider the polynomial X"[1/X, Y) instead of f. We now investigate how close
X should be approximated to be able to approximate a root of AX, N).

(1.3) Lemma. (cf. [Ost, Appendiz A]) Let [= X, T= T1_of:X € C[X] be two polyno-
mials of degree n > 0 and let A = maXo<i< JAf~T|. Suppose that [ has a root B € C satisfying
|8l € 1. Then there ezists a zeroa € C of [ such that



Proof. Because fAX)NX) = SDio/-RX, we get [f8) S AT Al Abo, A=
£ITT2,|8-a, where @y, ay, ..., &, are the zeros of /. The lemma easily follows. O
(1.4) Corollary. Let [, n, m, [y, N, By, i and f; be as above, and let 8 be a positive integer.
I
(15) s ) g 2
2% 1) mfag
then a 2~ -approzimation of a zero of absolute value at most 1 of f; is a 27'-approzimation of a
zero of X, \).
Proof. Let X, \) = YL ofiX', and f5(X) = 2 ofiX'. According to Lemma (1.3) it suffices
to prove that

(n+1)max]f-fi n

I/l

To prove this we notice that |f,| > By(m, /s and that max,|f[-f] < fmuzr_d)\*-ikl. The
proof now follows from (1.5). O

< 2-0—1_

Let s be a positive integer such that

(1.6) (142 < 2,

and let X, for 1 < k < m be chosen such that (1.5) holds. Suppose that we have computed a
2-+1_approximation @ € Q(f), |& < 1, to a root of absolute value at most 1 of f;. According
to Corollary (1.4), @ is a 2 "-approximation to a root a € C of fX, A\); it follows that
la| < 142°*. Furthermore, let 8 € 27'Z[f for 0 < j < n and 0 < k < m be approximations
to a’\* (where g = 1).

By h € Z[\][X] we denote the minimal polynomial of @, so k divides [, N), and h is irredu-
cible. (So, h is the minimal polynomial in Q(X\)[X] of a normalized in such a way that A is con-
tained in Z[\|[X] and such that h is of minimal degree in X.) We identify this polynomial A
with the polynomial in Z[X, Y] which is obtained by replacing A by Y. This means that
h € Z|X, Y] is an irreducible factor of f € Z[X, Y] such that Aa, A) = 0.

For a polynomial g = gigtgj,,xw* € Z[X, Y] satisfying 6yg < n and §yg < m, we denote
98 = 2l m=0tBik € 27'Z[1], where gy = 0for fyg < j < norbdyg < k< m.

We will need an upper bound on |g(a, \)-gsl-

(1.7) Lemma. Let n, m, \, 8, a, B, and g be as above. If
(1.8) la/\t-gy < 27H
for0 < j< nand0 < k < m, then
e, N)-g4 < 27" gras(nmtntm).
Proof. Immediate. O
The following lemma gives a minimum for |g{e, \)| when g(a, X) 7£ 0.

(1.9) Lemma. Let f, n, m, fnar, X, By, 8, @, b, and g be as above, and suppose that h does not
divide g. Then



B’.(N{,gl Bf,g)
1.10) lgle, N)| > ——'——‘4,‘5-{.’ )

there By, = (€™ ™ fnaxImas( 1)(m+1)?)* and Ny, = 2nm.

sroof. If b6xg=0 then ga, Y) =« Y) € Z[Y], so that (1.10) follows from g¢X) >

;1(61’?! gmn)'

Now let 6yg > 0. Because h is irreducible and h does not divide g we have that
cd(h, g) = 1. This implies that there exists a non-zero polynomial R € Z[Y] and polynomials
, b€ Z|X, Y] such that ah+ bg=R, satisfying 8yR < mbyg+ndyg < Ny, Oxa < Sxg-1,
ya < m{byg-1)+nbyg, Sxd < n-1, byd < mbyg+(n-1)5yg. Here we used that 6xh < n and
yh < m because h divides /.

Another consequence of the fact that A divides fis that

hnax S € " fma
Gel]. From [GG] we then find

1.11) Rou < |Rl < By
o that
1.12) |R(N)| > By(Ny,, Byy)-

“rom |a}! < (142" < 2 (cf. (1.6)) and [\ < 1/2 we derive
n-1 Ny ok
b, M| < a3, 3 |@IIN] < 4nbse
Je=Okwm0
Jombined with (1.12) this implies (1.10), because (1.11) also holds with R replaced by b, and
secause Ha, \) gla, \) = R(X) (so that ¥a, A\) £ 0).0
Define 7 as the ((n+1)(m+1)+2)-dimensional vector (900, Fo1s ---» Inme 2°Re(gg), 2'-lm.(g5)}r &
z(=+1(m+1)+2 By |7] we denote the Euclidean length of the vector 7.
Finally we show how s should be chosen.
(1.13) Lemma. Let [, n, m, X, B,, 3, &, B, h, and g be as above. Suppose that 3 is chosen in
such a way that

2{um+3[u+m]+2],~"’3m(ﬂ+l)2{m+1)28ﬂ5
1.14 2 > )
(1.4 = By(2nm, B)

where B = (c"*"‘2{""""3("+”‘)+2]"2fm“|f|(n+1}2{ m+1)*)*. Then
A < 2™ f\(n+1)(m+1)

and if
m < 2{nm+3[-+m]+2};‘2m[ﬂ+l](m+l}

then h divides g.
Proof. First remark that (1.14) implies that (1.6) holds. This implies that Lemma (1.9) may

be applied.
Because h divides f we have 8yh < n and dyh < m so that |R] is well defined, and from

[Mah] we have



hae < |B] < 27
Combined with (e, ) = 0 and Lemma (1.7) the upper bound on |A] follows:
A2 = |h2+2%|hgl®
< (2*m)? + 22212 M| (nm ek m))?
= (2**™M)A(1+4(nm+n+m)°)
< (2| f(n+1)(m+1)>.
Now assume that |7] < 2(*m+3(++m)+2)/2|f(n41)(m+1). Because |71% = |g*+2%]g4* we find

(1.15) Jone < 1d] < 20mt3(memHD2| (0 4-1)(m+1)
and
(1.18) 2'|gq < g(nm+3(n+m)+2)/2| f|(n4-1)(m+1).

From Lemma (1.7) it follows that
|, )| € 27! gas(nm+nt+m)+|ggl.
Combining this with (1.15) and (1.16) we find
I, N)| < 2-2(rm+3(ntm+2)/2| (- 1)(m+1)(2( nm+n+m)+1)
< g-rtiglamt3(nem /2 (0 1)%(m+1)?
and with (1.14)

B,(2nm, B)
4nB

From (1.15) it follows that B > (™ ™ ax Imax( n+1)(m+1)%)", so that it follows from (1.17) that
g(a, \) does not satisfy (1.10). Lemma (1.9) therefore yields that 4 divides ¢. O

(1.17) lg(a, M| <

(1.18) Let ng, mg € Z>¢ be such that ng < nand my < m, and let M = ng(m+1)+mo+1. We
will regard the lattice ZM ag the set of polynomials ¢ = EJ-Z,.gJ}X"Y* € Z|[X, Y] for which
i) 6x9 < o,
ii) byg < m,
iii) gps = 0 for mp+1 < k < m.
We embed ZM into 2Z(+N0(m+1) by adding zero coefficients to ¢ and writing
g= Yl o iog Y. The M-dimensional lattice L contained in ZtN(mtI+2 s then
defined as {7| g € ZM}, where 7 is defined as (go0, Jo1s -+ Fam 2*Re{gg), 2'-Im(gg})f. For
7 € L we denote by z the polynomial in Z[X, Y] satisfying i), ii), and iii), consisting of the first
M coordinates of Z. (Of course, L can also be seen as a lattice in ZM*2)

Let by, By, ..., by be a reduced basis for L [LLL, (1.4), (1.5)]. According to [LLL, (1.11)] we
have

(1.19) |Bil < 212,
for every T € L, ¥ # 0, where || denotes the ordinary Euclidean length.

(1.20) Lemma. Let f, n, m)\, By, 8, h, ng, mg, M, L, and By, By, ..., by be as above such that
(1.14) holds.
i)If k¢ L then



|b_l| > 2[;m+3{n+m}+2}f2M(“+1)(m+1)’
it) If M is minimal such that h€ L, then h = +b, and in particular
ls.ll < 2(nm+3[l+m]+‘2)f2m(n+l](m+1)_

Proof. If k¢ L then for all € L, 75 0, the polynomial A cannot divide z. Because of
(1.14), Lemma (1.13) then yields that |y > 2(am+3(x+m)+2)/2|f(n4 1)(m+1). This proves i),

We now prove ii). If &€ L then 5] < 21/%R] according to (1.19), so that with (1.14) and
the upper bound on |#] from Lemma (1.13) we find &y < 2(m+3(a+m+2/2 A(n41)(m+1). This
implies, again by Lemma (1.13), that h divides b;. Because M is minimal such that kelLit
follows that b, = d-h for some d € Z,, and because k€ L and b, is contained in a basis for L
we conclude that d = £1. 0

2. The algorithm

Let f€ Z[X, Y] with 6xf = n and &yf = m be primitive. In this section we present an algo-
rithm to compute an irreducible factor of fthat is based on Lemma (1.20).

(2.1) First select a transcendental number A € R, |\| < 1/2, for which a transcendence meas-
ure B, is known and such that the bits of A can be computed efficiently. Take s € Z minimal
such that (1.14) holds, and compute N EQ for 0 < k< m such that (1.5) holds (where
%o = 1). Define fz € Q|X] by replacing Y*in X, Y) by X\; for 0 < k< m. It may be
assumed that f; has a root of absolute value at most 1 (otherwise replace f{X) by X"/{(1/X)).
This can be decided by means of the splitting circle method (see [Sch1)).

Next, apply the algorithm from [Schl] to compute a 2-*Lapproximation @ to a zero of abso-
lute value at most 1 of f;. Denote by a € C a root of flX,\) such that @ is a 2%
approximation to & (Corollary (1.4)). Compute 8;; € 27'Z() for0 < j<nand 0 < k< m
(where 8o = 1) such that (1.8) holds. Notice that in order to achieve this, one has to compute
sufficiently precise approximations to the powers of a.

Finally determine the irreducible h € Z[X, Y] such that Me, A) = 0. This is done as follows.
For ny = 1, 2, ..., n-1 in succession, and for each value of ng for my =0, 1, ..., m in succession
do the following. Put M = no(m+1)+mg+1, and define the M-dimensional lattice L contained
in Z(+D(m+1+2 a5 in (1.18). Compute a reduced basis by, by, ..., by for L by means of the
basis reduction algorithm [LLL, Section 1]. Stop for the smallest M for which
|5 < olrm+3{m+m1+2)/2)f(n4-1)(m+1) and put h = by (where by is defined as in (1.18)). If this
does not occur for any of the M values, then put A = [.

This finishes the description of Algorithm (2.1).

(2.2) Remark. The condition in the last step of Algorithm (2.1) follows from the results of the
previous section. If AL, ie. M is still too small, then 5-1 has length at least
o(am+3(n+m)+2)/2| (54 1)(m+1) according to Lemma (1.20).

3. Running time analysis

Obviously the running time of Algorithm (2.1) strongly depends on the transcendence measure
B, of the transcendental number A chosen in (2.1). We analyse the running time for the choice
X\ = 7-3 , o that |\| < 1/2 and By(n, H) = ¢-cn{r+los A1+log " for some ¢ > 0 (cf. Example
(1.2)). This implies that s can be chosen such that



(3.1) s = Of(n®*m*+n*mlog|f)log*(nm)) .

According to [Schl] a 2"*'-approximation @ to a root of absolute value at most one of o
where the X, satisfy (1.5), can be computed in O{n*(max(s, nlog|f|)!**)) bit operations. With
log|f5] = O(n*m?+n3mlog|/|)log%(nm)) (cf. (1.5) and (3.1)) this yields

O(n*((n®m?+n*mlog|f])log?(nm))*)

bit operations to compute &.

Let G denote an upper bound for the Gramian determinants of the initial bases of the lat-
tices considered in (2.1). From the proof of [LLL, (1.26)] and [LLL, (1.37)] we find that all
applications of the basis reduction algorithm can be done in O(n4malog G) operations on
integers having Oflog G) binary bits, where @ = 6yh . An upper bound on log G follows for
this type of lattice from [Sch2, lemma (6.1)], namely

G < (1+2%*M)®
(where M < f{m+1)+m+1), so that, with (3.1)
log G = O{(n*m*+n%mlog|f|)log?(nm)).
Therefore
O an*m¥((n® m*+n®mlog|f])log?(nm))2*)
bit operations suffice to compute A ( clearly, this number of bit operations also suffice to com-

pute the X;) .
Because |f/h| < 2**™|/] [Mah], the complete [actorization of f can be found in

O n®m®((n3m®+n® mlog]|/])log?(nm))?*)
bit operations.

(3.2) Remark. The running time of our algorithm can be improved by a factor am if we use
Sch3nhage's speed-up of the basis reduction algorithm [Sch2]. Because the analogue of [LLL,
(1.37)] does not hold for this modified basis reduction algorithm, the formulation of Algorithm
(2.1) should be changed. Instead of taking M = m+2, m+3, ... up to at most n(m+1) in suc-
cession, we have to double the dimension each time no short vector is found. This method is
described in detail in [LLL, (3.3)] (cf. [LLL, (3.10)]).

(3.3) Remark. Throughout this paper the transcendental number A\ can be replaced by any
algebraic number 7 of sufficiently high degree, like for instance a sufficiently large integer (or a
sufficiently small rational number). It is not difficult to see that the proofs are essentially
unaffected by this change, and that the resulting algorithm has a slightly better running time
(namely, the same running time without the log(nm) factors). This also implies that we do not
have to worry about the actual size of the constant ¢ involved in the transcendence measure of
A, because this constant does not occur in the new formulae.

Choosing such an alternative evaluation point 4 for Y might however change the factoriza-
tion of flX, 7). Because all factors of X, Y) have height bounded by 2**™|/], we can restrict
our attention to factors of f{X| 7) that satisfy this same upper bound on their height, i.e. vec-
tors in L with entries in absolute value at most 2"*™|/| in the first M coordinates. It follows
from the adapted version of Lemma (1.13) that we then only find those factors of NX, 7) that

correspond to factors of X, Y).
Generalization to polynomials in more than two variables follows in the obvious way.
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