
A Kilobit Special Number Field Sieve
Factorization

Kazumaro Aoki1, Jens Franke2, Thorsten Kleinjung2,
Arjen K. Lenstra3,4, and Dag Arne Osvik3

1 NTT, 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan
2 University of Bonn, Department of Mathematics,

Beringstraße 1, D-53115 Bonn, Germany
3 EPFL IC LACAL, INJ 330, Station 14, 1015-Lausanne, Switzerland

4 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ, USA

Abstract. We describe how we reached a new factoring milestone by
completing the first special number field sieve factorization of a number
having more than 1024 bits, namely the Mersenne number 21039 − 1.
Although this factorization is orders of magnitude ‘easier’ than a fac-
torization of a 1024-bit RSA modulus is believed to be, the methods we
used to obtain our result shed new light on the feasibility of the latter
computation.

1 Introduction

Proper RSA security evaluation is one of the key tasks of practitioning cryp-
tologists. This evaluation includes tracking progress in integer factorization. In
this note we present a long awaited factoring milestone. More importantly, we
consider to what extent the methods we have developed to obtain our result, and
which are under constant refinement, may be expected to enable us or others to
push factoring capabilities even further.

We have determined the complete factorization of the Mersenne number
21039 − 1 using the special number field sieve integer factorization method
(SNFS). The factor 5080711 was already known, so we obtained the new fac-
torization of the composite 1017-bit number (21039 − 1)/5080711. The SNFS,
however, cannot take advantage of the factor 5080711. Therefore, the difficulty
of our SNFS factoring effort is equivalent to the difficulty of the effort that
would be required for a 1039-bit number that is very close to a power of two.
This makes our factorization the first SNFS factorization that reaches the 1024-
bit milestone. The previous SNFS record was the complete factorization of the
913-bit number 6353 − 1 (cf. [1]).

Factoring an RSA modulus of comparable size would be several orders of
magnitude harder. Simply put, this is because RSA moduli require usage of the
general number field sieve algorithm (NFS), which runs much slower than the
SNFS on numbers of comparable size. It is even the case that factoring a 768-bit
RSA modulus would be substantially harder than a 1024-bit ‘special’ one. For
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that reason we chose to first attempt a 1024-bit SNFS factorization, as presented
in this paper, before embarking on a much harder 768-bit RSA modulus using
NFS. We point out that a 768-bit NFS factorization will prove to be more helpful
than our present 1039-bit SNFS factorization to assess the difficulty of factoring
a 1024-bit RSA modulus.

The aspects of our effort where we made most progress, and where our effort
distinguishes itself most from previous factoring work such as the previous (913-
bit) SNFS record, apply equally well to NFS as they apply to SNFS. They
will therefore also have an effect on the assessment of feasibility of NFS-based
factorizations such as those of RSA moduli. This need for re-assessment is the
main reason that we feel that our result should be reported in the cryptologic
literature. For more information on this point see below under ‘Matrix’.

Descriptions of the SNFS and NFS catering to almost all levels of understand-
ing are scattered all over the literature and the web (cf. [16]). There is no need
to duplicate any of these previous efforts for the purposes of the present paper.
Although familiarity with sieving methods is helpful to fully appreciate all de-
tails, for an adequate understanding of the main points it suffices to know that
both SNFS and NFS consist of the following major steps (cf. [10]).

Polynomial selection. Decide on polynomials to sieve with. For SNFS this
does not require any computational effort, for NFS it pays off to spend a
considerable effort to find ‘good’ polynomials. Since we factored 21039 − 1
using the SNFS our choice was easy and is reported in Section 3.

Sieving. For appropriately chosen parameters, perform the sieving step to find
sufficiently many relations. Though finding enough relations is the major
computational task, it can be done in embarrassingly parallel fashion. All
relevant data for our effort are reported in Section 3.

Filtering. Filter the relations to produce a matrix. See Section 4 for the effort
involved in our case.

Matrix. Find linear dependencies modulo 2 among the rows of the matrix. In
theory, and asymptotically, this requires an effort comparable to the sieving
step. For numbers in our current range of interest, however, the amount of
computing time required for the matrix step is a fraction of the time re-
quired for the sieving step. Nevertheless, and to some possibly surprisingly,
the matrix step normally constitutes the bottleneck of large factorization
efforts. This is caused by the fact that it does not seem to allow the same
level of parallelization as the sieving step. So far, the matrix step has, by
necessity, been carried out at a single location and requires many weeks, if
not months, of dedicated computing time on a tightly coupled full cluster
(typically consisting of on the order of a hundred compute nodes). Conse-
quently, our matrix-handling capabilities were limited by accessibility and
availability of large single clusters.

The major point where our effort distinguishes itself from previous work is
that we did the matrix step in parallel as four independent jobs on different
clusters at various locations. This was made possible by using Coppersmith’s
block Wiedemann algorithm [7] instead of the block Lanczos method [6].
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Further work and fine-tuning in this area can have a major impact on what
can realistically be achieved, matrix-wise, and therefore factoring-wise: as
implied by what was mentioned before, the effort required for the sieving step
is not what practically limited our factoring capabilities, it was limited by
the matrix step. The details of the new matrix step are reported in Section 5.

Square root. For each dependency in turn a square root calculation in a cer-
tain number field is performed, until the factorization is found (which hap-
pens for each dependency with probability ≥ 1/2, independent of the other
dependencies). The details, and the resulting factorization, are reported in
Section 6.

Sections 3 through 6, with contents related to our factorization of 21039 − 1 as
indicated above, are followed by a discussion of the wider consequences of our
approach in Section 7. Furthermore, in Section 2 we describe how the number
21039 − 1 was selected as the target number for our kilobit SNFS attempt.

Throughout this paper M and G denote 106 and 109, respectively, and loga-
rithms are natural.

2 Selecting a Kilobit SNFS Target Number

Once the decision had been reached to attempt a kilobit SNFS factorization by a
joint effort, it remained to find a suitable target number to factor. In this section
we describe the process that led to our choice of 21039 − 1.

Regular RSA moduli were ruled out, since in general they will not have the
special form required for SNFS. Special form numbers, however, are not espe-
cially concocted to have two factors of approximately the same size, and have
factors of a priori unknown sizes. In particular, they may have factors that could
relatively easily be found using factoring methods different from SNFS, such
as Pollard’s p − 1 or ρ method, or the elliptic curve method (ECM, cf. [12]).
Thus, for all kilobit special form numbers under consideration, we first spent a
considerable ECM effort to increase our confidence that the number we would
eventually settle for would not turn out to have an undesirably small factor, i.e.,
a factor that could have been found easier using, for instance, ECM.

Of the candidates that we tried, a 304-digit factor of 10371 − 1 turned out
to have a 50-digit prime factor (found by ECM after 2,652 curves with first
phase bound 43M), for a 306-digit factor of the number known as 2,2062M a
47-digit factor was found (by ECM, after 4,094 curves with the same bound),
for a 307-digit factor of 2,2038M a 49-digit factor was found (ECM with 5,490
curves and same bound), and 10311−1 was similarly ruled out after ECM found a
64-digit factor (11,214 curves with 850M as first phase bound and corresponding
GMP-ECM 6.0 default second phase bound 12,530G, cf. [2]).

The 307-digit number (21039−1)/5080711 withstood all our ECM efforts: 1,472
curves with first and second phase bounds 850M and 12,530G, respectively, and
256,599 curves with bounds 1,100M and 2,480G, failed to turn up a factor.
This calculation was carried out on idle PCs at NTT. It would have required
more than 125 years on a single Opteron 2.2GHz with 4GB RAM. Based on
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the number of curves and the bounds used, it is estimated that a 65-digit factor
would be missed with probability about 3.4%, a 70-digit one with probability
53.2%, and an 80-digit factor with probability 98.2%. Given the ECM failure and
the substantial effort spent on it, we settled for the 307-digit factor of 21039 − 1
for our kilobit SNFS factorization attempt.

The software used for the ECM attempt was GMP-ECM 6.0 [19] and Prime95
24.14 [17] on a variety of platforms.

3 Parameter Selection and Sieving

In this section we present the polynomials that we used for the SNFS factoriza-
tion of 21039 − 1 and give a superficial description of the sieving step.

With 1039 = 1 + 6 · 173 it follows that the polynomials g(X) = X − 2173 and
f(X) = 2X6 − 1 have the root 2173 in common modulo 21039 − 1. As customary,
everything related to g(X) is referred to as the ‘rational side’, as opposed to the
‘algebraic side’ for f(X). In the sieving step we find sufficiently many relations:
coprime integers a, b with b ≥ 0 such that both norms bg(a/b) = a − 2173b
and b6f(a/b) = 2a6 − b6 have only small prime factors. Here ‘sufficiently many’
depends on the meaning of ‘small’. What we deem to be ‘small’ depends in the
first place on the memory sizes of the machines used for sieving and on the
matrix size that we should be aiming for given what matrix size we think we can
handle. This means that ‘small’ cannot be too large. In the second place, the
expected time until we have enough relations should be acceptable too, which
implies that ‘small’ cannot be too small either. The choice made always involves
this trade-off and is given below. The theoretical justification, and parameter
choice, can be found in the NFS literature (cf. [10]).

To find relations we used so-called special q’s on the rational side combined
with lattice sieving: primes q dividing bg(a/b), such that each q leads to an index
q sublattice Lq of Z

2. Most of the 40M special q’s between 123M and 911M
were used (though the results of some small regions of q’s were for organizational
reasons not included in the later steps). For most special q’s the rectangular
region of size 216×215 in the upper half plane of Lq was sieved via lattice sieving.
For the special q’s smaller than 300M this was done with factor bases consisting
of all (prime, root) pairs for all primes up to 300M on the algebraic side and all
primes ≤ 0.9q on the rational side, but up to 300M on both sides for the special
q’s larger than 300M . Running our lattice siever with these parameters required
approximately 1GB RAM, which was available on most machines we were using.
A small fraction of the special q’s was used on machines with smaller amounts
of memory with factor base bounds of 120M on both sides. Large primes (i.e.,
factors beyond the factor base bounds) up to 238 were accepted on both sides,
without trying hard to find anything larger than 236 and casting aside cofactors
larger than 2105. Also, cofactor pairs were not considered for which the quotient
of the probability of obtaining a relation and the time spent on factoring was
below a certain threshold, as described in [9].
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After a period of about 6 months, at first using PCs and clusters at NTT and
the University of Bonn, but later joined by clusters at EPFL, we had collected
16, 570, 808, 010 relations. Of these relations, 84.1% were found at NTT, 8.3%
at EPFL, and 7.6% at the University of Bonn. The total CPU time would be 95
years when scaled to a 3GHz (dual core) Pentium D, or about 100 years on a
2.2GHz Athlon64/Opteron. This boils to 190 Pentium D core years and to about
2.5 relations per seconds per core. The relations required more than a terabyte
of diskspace, with copies held at NTT, EPFL, and the University of Bonn.

We used the sieving software from [8].

4 Filtering

Because of the special q’s the raw data as produced by the sieving step will con-
tain a considerable number of duplicates. Before doing the complete sieving step
we had estimated the number of duplicates as follows. We did lattice sieving for a
tiny fraction, say 1

t , of special q’s, uniformly distributed over the special q range
that we roughly expected to process. For each relation r (corresponding to (a, b))
obtained in this way, we computed how often it will be generated in the sieving
step. Denote this number by μ(r). In an ideal situation μ(r) can be calculated
as follows. First, one checks for each prime in the factorization of bg(a

b ) whether
it is in the special q range, i.e., whether it is a potential special q producing this
relation. Secondly, for each such potential special q one checks whether the point
(a, b) would be in the sieving region for this special q, and if it passed this test,
whether the cofactor bounds are kept. Since a lot of approximations are made
in the sieving process, the true μ(r) might be a bit smaller.

The expected number of relations for the complete special q range is t
∑

r 1,
and the estimated number of unique relations is t

∑
r

1
μ(r) . Note that by possibly

overestimating μ(r) we underestimate the number of unique relations. Doing
this calculation for 99 of the special q’s and the sieving parameters that we
actually used, we expected that slightly more than one sixth (16.73%) of the
relations found would be duplicates. It turned out that just a little less than
one sixth of the relations (namely 2, 748, 064, 961 for 16.58%) were identified as
duplicates. This resulted in a uniqued set of 13, 822, 743, 049 relations. Identifying
and removing the duplicates took less than ten days on two 2GHz Opterons with
4GB RAM each.

Next the singletons were removed: these are relations in which a prime or
(prime, root) pair occurs that does not occur in any other relation. This step is
combined with the search for cliques, i.e., combinations of the relations where
the large primes match up, as fully described in [4]. This took less than 4 days
on single cores of 113 3GHz Pentium D processors. Finally, the same hardware
was used for 69 hours for a final filtering step that produced a 66, 718, 354 ×
66, 718, 154 matrix of total weight 9, 538, 688, 635.

Overall the CPU time required to produce the matrix from the raw relations
was less than 2 years on a 3GHz Pentium D. It was completed in less than a
week, since most of the uniqueing was done during the sieving.
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As usual we did some ‘over-sieving’, i.e., a smaller number of relations suf-
ficed to produce an over-square, but harder to solve, matrix. More specifically,
at 14.32G relations (of which 12.34G were unique) we found an 82, 848, 491 ×
82, 848, 291 matrix of weight 10, 003, 376, 265, but this matrix was obtained using
suboptimal settings and the relations involving 38-bit primes were not used. At
15.61G relations (13.22G unique), using better settings and all relations found,
we obtained a 71, 573, 531× 71, 773, 331 matrix of weight 9, 681, 804, 348. We do
not know at which point precisely we had enough relations to build a matrix.
But from our figures it follows that, since 2 ∗ 238/ log(238) ≈ 20.9G, finding
0.68 ∗ 2 ∗ π(238) (non-uniqued) relations sufficed to construct a matrix. This low
value 0.68 compared to previous efforts is due to the relatively large bound 238

on the large primes.

5 The Matrix Step

In the matrix step linear dependencies modulo 2 among the rows of the
66, 718, 354 × 66, 718, 154 matrix were sought. This was done using the block
Wiedemann algorithm with block length 4 times 64. The details of this algo-
rithm are described in Section 5.1 below. It resulted in 50 dependencies which
gave, after quadratic characters tests, 47 useful solutions. A partial explanation
of why we got only 50 dependencies as opposed to the expected 200 ones can be
found in Section 5.2.

The major part of the calculation (the matrix×vector multiplies, cf. steps 2
and 4 in Section 5.1 below) was carried out in parallel on a cluster of 110 3GHz
Pentium D processors (with 2 cores per processor) at NTT and a cluster of 96
2.66 GHz Dual Core2Duo processors (with 4 cores per node) at EPFL. On the
latter cluster one or two jobs were run on a varying number of the 96 processors.
Scaled to the processors involved, the entire computation would have required
59 days on the Pentium cluster, which is 35 Pentium D core years, or 162 days
on 32 nodes of the other cluster, i.e., 56 Dual Core2Duo core years. It should be
noted that each of two parallel jobs running on the Pentium D cluster ran about
1.5 times slower than a single job, whereas the load was about 1. This seems to
indicate that the same wall-clock time can be achieved on a cluster of 110 single
core 3GHz Pentium Prescott processors on a similar network. The relatively poor
performance of the cluster at EPFL is probably caused by the fact that the four
cores per Dual Core2Duo node share a single network connection. The cluster
at NTT has torus topology and the nodes are connected with gigabit ethernet.
Transferring intermediate data between NTT and EPFL took about half a day
over the Internet.

The computation took place over a period of 69 days, due to several periods
of inactivity caused by a variety of circumstances. In principle it could have been
done in less than 59 days: if we would have done everything at NTT under ideal
conditions (no inactivity), it would take 59 days, but if we would have used both
clusters under ideal conditions it should take less time. The software we used for
the matrix step was written by the second and third author.
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A relatively minor step of the calculation (the Berlekamp-Massey step, cf.
step 3 in Section 5.1 below) took 8 hours on 64 cores at the University of Bonn.
On 72 cores at EPFL it took a bit less than 7 hours.

5.1 The Block Wiedemann Algorithm

We give a brief description of the block Wiedemann algorithm (see [7], and
for the Berlekamp-Massey algorithm [18]). Let B be a d × d matrix over F2.
The block Wiedemann algorithm depends on two parameters m, n ∈ N and
heuristically finds n solutions of Bv = 0. For our matrix d = 66, 178, 354 and we
used m = 512 = 64 · 8 and n = 256 = 64 · 4. It consists of the following five steps
(suppressing some technical details):

1. Random vectors x1, . . . , xm and z1, . . . , zn are chosen and yl = Bzl for l =
1, . . . , n are computed. It is possible to choose xi as unit vectors to simplify
the next step.

2. For i = 1, . . . , d
m + d

n + O(1) the scalar products a
(i)
lk = 〈xk, Biyl〉 are com-

puted. We used i ≤ 393, 216. Denote the polynomial
∑

i

a
(i)
lk ti

of n × m matrices over F2 by A.
3. (Berlekamp-Massey step) In this step a polynomial F of n × n matrices is

constructed such that
FA = G + tcE

holds with deg(F ), deg(G) ≤ d
n + O(1) and c = d

m + d
n + O(1). For us the

values were approximately deg(F ) = deg(G) = 260, 600 and c = 391, 000.
Writing F =

∑deg(F )
j=0 f

(j)
lk tj this is equivalent to the orthogonality of the n

vectors ∑

j,k

f
(j)
lk Bdeg(F )−jyk (1 ≤ l ≤ n)

to the vectors (BT )ixk, 0 ≤ i ≤ d
m , 1 ≤ k ≤ m.

4. For k, l = 1, . . . , n the vectors vlk =
∑

j f
(j)
lk Bdeg(F )−jzk are computed.

5. With high probability B ·
∑

k vlk = 0 holds for l = 1, . . . , n. The vectors
vl =

∑
k vlk for which this holds are output as solutions.

For the complexity analysis the first and the last step can be neglected. The
second and the fourth step require (1+ n

m )d+O(1) resp. d+O(1) matrix vector
multiplications. If the vectors xi are chosen as unit vectors the scalar product
calculations in the second step become trivial. In the fourth step additional
computations are required, equivalent to n2d additions in F2. These can be
neglected as long as n is much smaller than the square root of the weight of
B (which we can assume). In both steps we have to store the matrix B and
two auxiliary vectors for doing the multiplications. Additionally, in step four n
vectors need to be stored.
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For the Berlekamp-Massey step we used the sub-quadratic algorithm from [18]
with FFT for polynomial multiplication. Its complexity is O( (m+n)3

n d1+o(1)) and

its space requirement is O( (m+n)2

n d).
For small m and n most of the time is spent in steps 2 and 4. The total

number of matrix vector multiplications, namely (2 + n
m )d, will be minimal for

m → ∞. So, n being chosen, m should be chosen as large as possible such
that the Berlekamp-Massey step does not dominate the run time resp. space
requirements.

The computations in steps 2 and 4 can be parallelized in several ways. First,
the calculation of Biyl can be done simultaneously for different l. These compu-
tations are completely independent. Notice that for current computers there is
almost no difference in doing one or, e.g., 64 such computations. So, we might
set n = 64n′ and do the computations on n′ independent computers or clusters
thereof. We used n′ = 4 and ran the 4 computations on two clusters, sometimes 2
jobs in parallel per cluster. This ability to spread the computation across differ-
ent clusters is the crucial difference between our block Wiedemann approach and
many previous factoring efforts that relied on the block Lanczos method [6,13].
Unlike block Wiedemann, block Lanczos does not allow this type of indepen-
dent distribution, roughly speaking because it requires the inversion of an n × n
matrix modulo 2 per iteration, which would obviously lead to considerable com-
munication and synchronization issues when run at different locations.

Second, the calculation of Bv for a vector v can be parallelized. As opposed
to the above, this requires a lot of communication. More precisely, for a cluster
with n1 × n2 nodes in a torus topology the communication required for one
multiplication is approximately d

n1
+ d

n2
per node. When n1 and n2 are chosen

approximately equal, the communication costs deteriorate as the square root√
n1n2 of the number of participating nodes. At NTT we mostly used n1 = 11

and n2 = 10. At EPFL we used 8 × 8 on 64 cores (sometimes two simultaneous
jobs totalling 128 cores, i.e., 32 processors), 10 × 8 on 80 cores, and 12 × 12 on
144. Lower numbers of cores were noticeably more efficient per core: when going
from 64 to 144 cores we did not get a speed-up of more than 100% (as one would
hope for when increasing the number of cores by more than 100%), but only a
speed-up of approximately 50%. Roughly, in steps 2 and 4, a third of the time
was spend on computation and two-thirds on communication.

A wider collaboration would lead to a larger n′ and thus larger n and m.
Given currently available hardware and the fact that we used a little more than
128GB of memory to run the Berlekamp-Massey step with our parameters, it
might be possible to increase m and n by a factor 4. This would increase the run
time by a factor 16. Given our 8 hours on 64 cores, this would result in slightly
more than 5 days on existing hardware, which is feasible. Unless a much bigger
cluster is used, increasing m and n by larger amounts seems to be difficult at
the moment.

Finally, we mention a promising idea that we have experimented with. If
approximately the same amounts of time are spent on computation and com-
munication, it is possible to run two different jobs simultaneously on a single
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cluster, in such a way that one job is computing while the other is communicat-
ing, and vice versa. If run as independent—but intertwined—jobs (as we did),
this approach requires the matrix to be stored twice. Combining the two chunks
in a single job in such a way that they have non-overlapping computational and
communication needs would require the matrix to be stored just once.

5.2 Only 50 Dependencies

As mentioned above, we expected to find 200 dependencies but found only 50.
Two independent oversights contributed to this phenomenon, but as far as we
currently understand still fail to fully explain it.

In the first place an error was uncovered in the selection of the zl vectors (cf.
Step 1 of the algorithm in Section 5.1) that has a large effect on the number of
solutions one may expect to find and that depends on the cluster configuration
one is using. In our case this led to a reduction of the dimension of the solution
space from 200 to about 34.

Secondly, after close inspection of the input matrix it was found that it con-
tains 37 duplicate rows. Due to the peculiar way their arrangement interacts with
the other error, this leads to 54 expected dependencies. Both these problems are
easily avoided during future computations.

6 The Square Root Step

Each independent solution has a chance of at least 50% to lead to a factorization.
The main calculation per solution involves the computation of a square root
of a huge algebraic number that factors into small prime ideals whose norms
are known. To calculate this square root we used Montgomery’s square root
method [14] as described in [15] and implemented by Friedrich Bahr as part
of his diploma thesis (cf. [3]). The first three solutions all led to the trivial
factorization, the fourth one produced the following 80-digit prime factor

55853666619936291260749204658315944968646527018488637648010052346319853288374753

with prime 227-digit cofactor

20758181946442382764570481370359469516293970800739520988120838703792729090324679
38234314388414483488253405334476911222302815832769652537609141018910524199389933
4109711624358962065972167481161749004803659735573409253205425523689

thereby completing the factorization of 21039 − 1.
Preparing the data for 4 solutions simultaneously took 2 hours, and processing

thereafter took 1.8 hours per solution, all run times on a 2.2GHz Opteron.
Note that our attempt to select a special number with a large smallest factor

was only partially successful: with more luck we would have found the 80-digit
factor using ECM. To some this result is somewhat disappointing, because an
80-digit factor is considered to be ‘small’ given the size of the 307-digit compos-
ite (21039 − 1)/5080711 that we factored. Note, however, that the factor-size is
irrelevant for our result. Also, as may be infered from the figures presented in
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Section 2, one may expect to spend much more computing time to find this factor
using ECM than we spent on SNFS: we estimate it would require about a mil-
lion curves with first phase bound 8G, at a cost of several thousand CPU years
and ignoring the very substantial memory demands for the second phase (much
more than 4GB RAM). If (21039 − 1)/5080711 would have had a 70-digit factor,
we would have been quite unlucky, a 60-digit factor we should have caught with
ECM and we would most likely have selected another ‘special’ number to factor.

7 Discussion

As far as we are aware our factorization is the first kilobit factorization achieved
using the special number field sieve. It must be stressed, and was already pointed
out in the introduction, that our work does not imply that 1024-bit RSA moduli
can now be factored by a comparable effort. Quite on the contrary, according to
all information available to us, and as far as we know to anyone else in the open
community, factoring a 1024-bit RSA modulus is still beyond the capabilities of
anyone with resources a few orders of magnitude larger than ours. We estimate
that the effort we spent would suffice to factor a 700-bit RSA modulus.

Nevertheless, our work showed that one major hurdle is not as unsurmountable
as some thought it would be: unlike previous efforts we managed to distribute the
major computation of the matrix step into 4 chunks whose completion did not
require any interaction. It required a huge data exchange among our three loca-
tions. This was enabled by the advancement of the Internet, allowing relatively
efficient, economical, and convenient communication among geographically dis-
persed locations at speeds up to about 100megabits per second. It remains a
subject of further research how the adverse effects of wider parallelization can
be addressed and how substantially larger chunks could be handled per location.
But, the beginning is there, and without any doubt our work will inspire further
work in this area and lead to more and better results.

Until our work there were two major factoring milestones on our way to 1024-
bit RSA moduli. One of these milestones, a kilobit SNFS factorization, is now be-
hind us. The next one, and the only remaining major milestone before we would
face 1024-bit RSA moduli, is the factorization of a 768-bit RSA modulus. We
have no doubt that 768-bit RSA moduli are firmly within our reach, both as far as
sieving effort and size of the matrix problem are concerned. If it would indeed be
reached, as is now safe to predict, factoring a 1024-bit RSA modulus would begin
to dawn on the horizon of what is practically possible for the open community.

It is unclear how long it will take to get there. But given the progress we keep
making, and given that we consistently keep reaching our factoring milestones,
it would be unwise to have much faith in the security of 1024-bit RSA moduli
for more than a few years to come. To illustrate, substantiate, and quantify this
remark, note that the first published factorization of a 512-bit RSA modulus is
less than a decade ago (cf. [5]) and that

T (1024)
T (768)

<
1
5

× T (768)
T (512)

,
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where
T (b) = exp(1.923 ln(2b)1/3(ln(ln(2b)))2/3)

is a rough growth rate estimate for the run time of NFS when applied to a b-bit
RSA modulus (cf. [11]). A more precise estimate, involving the o(1) which we
omitted in T (b), would result in a value that is even smaller than 1

5 . This means
that by the time we manage to factor a 768-bit RSA modulus—something we
are convinced we are able to pull off—the relative effort of factoring a 1024-bit
RSA modulus will look at least 5 times easier than the relative effort of factoring
a 768-bit RSA modulus compared to a 512-bit one. As a final remark we note
that since 1989 we have seen no major progress in factoring algorithms that can
be run on existing hardware, but just a constant stream of refinements. There
is every reason to expect that this type of progress will continue.
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