Hard equality constrained integer knapsacks

Karen Aardal ${ }^{*} \quad$ Arjen K. Lenstra ${ }^{\dagger}$

February 17, 2005

Abstract

We consider the following integer feasibility problem: "Given positive integer numbers $a_{0}, a_{1}, \ldots, a_{n}$, with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ and $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$, does there exist a vector $\boldsymbol{x} \in \mathbb{Z}_{\geq \mathbf{0}}^{n}$ satisfying $\boldsymbol{a x}=a_{0}$?" We prove that if the coefficients a_{1}, \ldots, a_{n} have a certain decomposable structure, then the Frobenius number associated with a_{1}, \ldots, a_{n}, i.e., the largest value of a_{0} for which $\boldsymbol{a} \boldsymbol{x}=a_{0}$ does not have a nonnegative integer solution, is close to a known upper bound. In the instances we consider, we take a_{0} to be the Frobenius number. Furthermore, we show that the decomposable structure of a_{1}, \ldots, a_{n} makes the solution of a lattice reformulation of our problem almost trivial, since the number of lattice hyperplanes that intersect the polytope resulting from the reformulation in the direction of the last coordinate is going to be very small. For branch-and-bound such instances are difficult to solve, since they are infeasible and have large values of $a_{0} / a_{i}, 1 \leq i \leq n$. We illustrate our results by some computational examples.

AMS 2000 Subject classification: Primary: 90C10. Secondary: 45A05, 11Y50.
OR/MS subject classification: Programming, Integer, Theory.
Key words: Lattice basis reduction, Branching on hyperplanes, Frobenius number.

[^0]
1 Introduction

1.1 Problem Statement and Summary of Results

Let $a_{0}, a_{1}, \ldots, a_{n}$ be positive integer numbers with $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$, $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ and $a_{i} \leq a_{0}, 1 \leq i \leq n$, and let

$$
\begin{equation*}
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a x}=a_{0}, \boldsymbol{x} \geq \mathbf{0}\right\} . \tag{1}
\end{equation*}
$$

Consider the following integer programming feasibility problem:
Does P contain an integer vector?
If the components of \boldsymbol{x} may take any integer value, then the problem is easy. There exists a vector $\boldsymbol{x} \in \mathbb{Z}^{n}$ satisfying $\boldsymbol{a x}=a_{0}$ if and only if a_{0} is an integer multiple of $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$. The non-negativity requirement on \boldsymbol{x} makes the problem NP-complete. Examples of problems related to (2) that are very hard to solve by standard methods such as branch-and-bound, include some feasibility problems reported on by Aardal et al. (2000b), certain portfolio planning problems, Louveaux and Wolsey (2002), and the so-called market share problems originally described by Williams (1978) and later stated in a simplified form by Cornuéjols and Dawande (1999). For computational experiments on the Cornuéjols-Dawande instances see also Aardal et al. (2000a).

In this study we focus on infeasible instances to rule out that a search algorithm terminates quickly because it finds a feasible solution by luck. Infeasible instances with large ratios $a_{0} / a_{i}, 1 \leq i \leq n$, are particularly hard for branch-and-bound. The largest value of a_{0} such that the instance of (2) given by the input a_{1}, \ldots, a_{n} is infeasible is called the Frobenius number of a_{1}, \ldots, a_{n}, denoted by $F\left(a_{1}, \ldots, a_{n}\right)$. In this context we address two topics. The first one is to provide a sufficient explanation why certain coefficients a_{1}, \ldots, a_{n} will yield larger Frobenius numbers than other coefficients of comparable sizes. In Theorem 2 we demonstrate that the Frobenius number is close to a known upper bound if it is possible to decompose the \boldsymbol{a}-coefficients as $a_{i}=M p_{i}+r_{i}$ with $M, p_{i} \in \mathbb{Z}_{>0}, r_{i} \in \mathbb{Z}$, and with M large relative to p_{i} and $\left|r_{i}\right|$.

This leads to the second topic: we give a sufficient condition under which the lattice reformulation using the projection suggested by Aardal, Hurkens, and Lenstra (2000b) will work significantly better than branch-and-bound on instances of type (2). We show that with $a_{0}, a_{1}, \ldots, a_{n}$ as above, the reformulation by Aardal, Hurkens, and Lenstra is computationally very easy to solve in a way similar to Lenstra's algorithm (H.W. Lenstra, Jr. (1983)),
since the number of lattice hyperplanes intersecting the projected polytope in the direction of the last coordinate is provably small. This is demonstrated in Section 3.2. In the few existing implementations of integer programming algorithm based on Lenstra's idea, typical behavior is that the number of search nodes is smaller than the number of nodes needed by branch-andbound, but every node is more time consuming than a branch-and-bound node due to the computation of a search direction in which the polytope is thin. Here, however, evaluating a node can be done quickly since a thin search direction comes directly from the reformulation. The reformulation, based on lattice basis reduction, is briefly described in Section 2. We also see that instances with \boldsymbol{a}-coefficients that decompose in the more general way: $a_{i}=M p_{i}+N r_{i}$ with $M, N, p_{i} \in \mathbb{Z}_{>0}, r_{i} \in \mathbb{Z}$, and with $\left|\boldsymbol{a}^{T}\right|$ large compared to $|\boldsymbol{p}|$ and $|\boldsymbol{r}|$, will be easy to solve after applying the reformulation. Our results are proved using techniques from algebra and number theory.

To illustrate our observations we report on a small computational study on infeasible instances. For all the instances we use the Frobenius number as the right-hand side coefficient a_{0}. About half of the instances have \boldsymbol{a} coefficients that decompose as discussed above and in Section 3, and the others have random coefficients of comparable sizes. All instances have $5 \leq n \leq 10$. The computational results, presented in Section 4, clearly confirm our theoretical observations. The decomposable instances are very hard to solve by branch-and-bound since the Frobenius number is large, whereas they become trivial to solve once reformulated since we have a provably thin search direction. The instances with randomly generated \boldsymbol{a}-coefficients have much smaller Frobenius numbers, and can be solved reasonably quickly by branch-and-bound. The number of lattice hyperplanes intersecting the reformulated polytope in this case is approximately the same in all coordinate directions, and larger than in the decomposable case. So, for these instances the coordinate directions are not the obvious search directions.

Before presenting our results we will, in the following subsection, give a short description of some known results on integer programming.

1.2 Integer Programming and Branching on Hyperplanes

The polytope $P \subseteq \mathbb{R}^{n}$ as defined by (1) has dimension $n-1$, i.e., it is not full-dimensional. In the full-dimensional case the following is known. Let S be a full-dimensional polytope in \mathbb{R}^{n} given by integer input. The width of S along the nonzero vector \boldsymbol{d} is defined as $W(S, \boldsymbol{d})=\max \left\{\boldsymbol{d}^{T} \boldsymbol{x}: \boldsymbol{x} \in\right.$ $S\}-\min \left\{\boldsymbol{d}^{T} \boldsymbol{x}: \boldsymbol{x} \in S\right\}$. Notice that this is different from the definition of the geometric width of a polytope, see e.g. Grötschel, Lovász, and Schrijver
(1988), p 6.

Consider the problem: "Does the polytope S contain a vector \boldsymbol{x} in the integer lattice \mathbb{Z}^{n} ?" Khinchine (1948) proved that if S does not contain a lattice point, then there exists a nonzero integer vector \boldsymbol{d} such that $W(S, \boldsymbol{d})$ is bounded from above by a constant depending only on the dimension. H. W. Lenstra, Jr., (1983) developed an algorithm, exploiting this fact, for determining whether a given polytope S contains an integer vector or not. The algorithm either finds an integer vector in S, or a lattice hyperplane H such that at most $c(n)$ lattice hyperplanes parallel to H intersect S, where $c(n)$ is a constant depending only on the dimension n. The intersection of each lattice hyperplane with S gives rise to a problem of dimension at most $n-1$, and each of these lower-dimensional problems is solved recursively to determine whether or not S contains an integer vector. One can illustrate the algorithm by a search tree having at most n levels. The number of nodes created at each level is bounded from above by a constant depending only on the dimension at that level. Hence, the algorithm is polynomial for fixed dimension. A search node is pruned if, in the given direction, no lattice hyperplane is intersecting the polytope corresponding to the search node.

There are few implementations of algorithms using the idea of branching on hyperplanes. Gao and Zhang (2002) have implemented Lenstra's algorithm, and Cook et al. (1993) have implemented a heuristic version of the integer programming algorithm by Lovász and Scarf (1992). The Lovász-Scarf algorithm is similar in structure to Lenstra's algorithm. In both implementations one could observe that the number of search nodes created by the algorithms was much less than the number of nodes of a branch-and-bound tree. To compute a good search direction in each node was, however, more time consuming than computing an LP-relaxation. This raises the question of understanding if there are situations in which good search directions can be determined quickly. This is related to one of the results presented in this paper, as we demonstrate that for a class of very difficult infeasible instances, i.e., the instances that have decomposable \boldsymbol{a}-coefficients as outlined above, the projection proposed by Aardal, Hurkens, and Lenstra by itself yields an integer direction in which the projected polytope is provably thin. In our case this direction is the last coordinate direction. So, if we apply a tree search algorithm, such as Lenstra's, to the projected polytope, but branch only in coordinate directions in the order of decreasing variable indices, then the instances become very easy.

1.3 Notation

We conclude this section by introducing some definitions and notation. The Euclidean length of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ is denoted by $|\boldsymbol{x}|$, the $n \times n$ identity matrix by $\boldsymbol{I}^{(n)}$, the zero $p \times q$ matrix by $\mathbf{0}^{(p \times q)}$, where the dimensions are omitted if they are clear from the context.

A set of the form $L=L\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{l}\right)=\left\{\sum_{i=1}^{l} \lambda_{i} \boldsymbol{b}_{i}, \lambda_{i} \in \mathbb{Z}, 1 \leq i \leq l\right\}$, where $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{l}$ are linear independent vectors in $\mathbb{R}^{n}, l \leq n$, is called a lattice. The set of vectors $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{l}\right\}$ is called a lattice basis. A lattice has two different bases if $l=1$, and infinitely many if $l>1$.

The determinant $d(L)$ of the lattice L is defined as $d(L)=\sqrt{\operatorname{det}\left(\boldsymbol{B}^{T} \boldsymbol{B}\right)}$, where \boldsymbol{B} is a basis for L, and where \boldsymbol{B}^{T} denotes the transpose of matrix \boldsymbol{B}. If the lattice L is full-dimensional we have $d(L)=|\operatorname{det} \boldsymbol{B}|$. The rank of the lattice $L, \operatorname{rk} L$, is the dimension of the Euclidean vector space spanned by L. If $\operatorname{rk} L=0$, then $d(L)$ is defined to be equal to one.

The integer width of a polytope $S \subset \mathbb{R}^{n}$ in the non-zero integer direction $\boldsymbol{d} \in \mathbb{Z}^{n}$ is defined as:

$$
W_{I}(S, \boldsymbol{d})=\left\lfloor\max \left\{\boldsymbol{d}^{T} \boldsymbol{x}: \boldsymbol{x} \in S\right\}\right\rfloor-\left\lceil\min \left\{\boldsymbol{d}^{T} \boldsymbol{x}: \boldsymbol{x} \in S\right\}\right\rceil+1 .
$$

The number of lattice hyperplanes in the direction \boldsymbol{d} that intersect S is equal to $W_{I}(S, \boldsymbol{d})$, so if $W_{I}(S, \boldsymbol{d})=0$, then S does not contain an integer vector.

2 The Reformulation and the Search Algorithm

The starting point of the reformulation of (2) suggested by Aardal, Hurkens, and Lenstra (2000b) is the sign relaxation $X_{I}=\left\{\boldsymbol{x} \in \mathbb{Z}^{n}: \boldsymbol{a x}=a_{0}\right\}$ of $X=\left\{\boldsymbol{x} \in \mathbb{Z}_{\geq 0}^{n}: \boldsymbol{a x}=a_{0}\right\}$. The relaxation X_{I} can be rewritten as $X_{I}=$ $\left\{\boldsymbol{x} \in \mathbb{Z}^{n}: \boldsymbol{x}=\boldsymbol{x}_{f}+\boldsymbol{B}_{0} \boldsymbol{y}, \boldsymbol{y} \in \mathbb{Z}^{n-1}\right\}$, where \boldsymbol{x}_{f} is an integer vector satisfying $\boldsymbol{a} \boldsymbol{x}_{f}=a_{0}$, and where \boldsymbol{B}_{0} is a basis for the lattice $L_{0}=\left\{\boldsymbol{x} \in \mathbb{Z}^{n}: \boldsymbol{a x}=0\right\}$. That is, there is an integer vector \boldsymbol{x}_{f} such that any vector $\boldsymbol{x} \in X_{I}$ can be written as the sum of \boldsymbol{x}_{f} and a vector $\boldsymbol{x}_{0} \in L_{0}$. Since $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ and a_{0} is integer, we know that a vector \boldsymbol{x}_{f} exists. In the paper by Aardal et al. it is shown that \boldsymbol{x}_{f} and \boldsymbol{B}_{0} can conveniently be determined in polynomial time using lattice basis reduction.

Let

$$
\begin{equation*}
Q=\left\{\boldsymbol{y} \in \mathbb{R}^{n-1}: \boldsymbol{B}_{0} \boldsymbol{y} \geq-\boldsymbol{x}_{f}\right\} . \tag{3}
\end{equation*}
$$

Problem (2) can now be restated as:
Does Q contain an integer vector?

The polytope Q is a full-dimensional formulation, i.e., the dimension of Q is $n-1$, and as mentioned in the previous section we can apply Lenstra's (Lenstra (1983)) algorithm, or any other integer programming algorithm, to Q. Here we will consider a tree search algorithm inspired by Lenstra's algorithm, but using only unit directions in the search.

Let $\boldsymbol{e}_{i}, 0 \leq i \leq n-1$, be the i th unit vector, let $J=\{1,2, \ldots, n-1\}$, (assume $n>1$) and recursively define a feasibility search process $\operatorname{Search}(S)$ on a set $S \subseteq J$ as follows:

Search (S) :
if S is empty, output the point $\left\{k_{j}\right\}_{j \in J}$, print 'feasible' and quit
otherwise:
pick an $i \in S$
compute $l_{i}=\left\lceil\min \left\{\boldsymbol{e}_{i}^{T} \boldsymbol{y}: \boldsymbol{y} \in Q\right.\right.$, and $y_{j}=k_{j}$ for all $\left.\left.j \in J \backslash S\right\}\right\rceil$
compute $u_{i}=\left\lfloor\max \left\{\boldsymbol{e}_{i}^{T} \boldsymbol{y}: \boldsymbol{y} \in Q\right.\right.$, and $y_{j}=k_{j}$ for all $\left.\left.j \in J \backslash S\right\}\right\rfloor$
for all integers k_{i} in the interval $\left[l_{i}, u_{i}\right]$ do $\operatorname{Search}(S \backslash\{i\})$
print 'infeasible' and quit

The feasibility search is then defined as Search (J). For an example of a search tree, see Figure 1. Notice that the search tree created in this way is similar to the search tree of Lenstra's algorithm in that the number of levels of the tree is no more than the number of variables in the problem instance, and that the number of nodes created at a certain level corresponds to the integer width of the polytope in the chosen search direction.

Here we will investigate a class of instances that are exceptionally hard to solve by branch-and-bound when using the original formulation in \boldsymbol{x} variables, but that become easy to solve when applying the branching scheme described above to the reformulated problem in \boldsymbol{y}-variables (3). In our implementation of the algorithm $\operatorname{Search}(S)$, we always choose the index i as the highest index in the set S when we are at the step "pick an index $i \in S^{\prime \prime}$, i.e., we branch in the order $n-1, \ldots, 1$. This is done because the width in the unit direction \boldsymbol{e}_{n-1} is small for our class of instances as will be demonstrated in following section. Below we give an example of such an instance.

Example 1 Let

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{3}: 12223 x_{1}+12224 x_{2}+36671 x_{3}=149389505, \boldsymbol{x} \geq \mathbf{0}\right\} .
$$

Figure 1: The search tree for instance prob2 (cf. Section 4)

A vector \boldsymbol{x}_{f} and a basis \boldsymbol{B}_{0} for this instance is:

$$
\boldsymbol{x}_{f}=\left(\begin{array}{r}
-4075 \\
4074 \\
4074
\end{array}\right) \quad \boldsymbol{B}_{0}=\left(\begin{array}{rr}
-1 & 14261 \\
-2 & -8149 \\
1 & -2037
\end{array}\right)
$$

The polytope Q is:
$Q=\left\{\boldsymbol{y} \in \mathbb{R}^{2}:-y_{1}+14261 y_{2} \geq 4075,-2 y_{1}-8149 y_{2} \geq-4074, y_{1}-2037 y_{2} \geq-4074\right\}$.
Moreover, we have $W_{I}\left(Q, \boldsymbol{e}_{1}\right)=4752$ and $W_{I}\left(Q, \boldsymbol{e}_{2}\right)=0$, so if we consider the search direction \boldsymbol{e}_{2} first, we can immediately conclude that $Q \cap \mathbb{Z}^{2}=\emptyset$.

If we solve the formulation in \boldsymbol{x}-variables by branch-and-bound with objective function 0 using the default settings of CPLEX 6.5, it takes 1,262,532 search nodes to verify infeasibility.

An instance such as the one given in Example 1 may seem quite artificial. However, some of the instances reported on by Cornuéjols and Dawande (1999), Aardal et al. (2000a,b), and by Louveaux and Wolsey (2000) stem from applications and show a similar behavior. From a practical point of view it is therefore relevant to try to explain this behavior.

3 The Class of Instances

In the results presented in this section we will make some, or all, of the assumptions on the input vector $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ that are presented below.

1. $a_{i} \in \mathbb{Z}, 1 \leq i \leq n$.
2. $1<a_{1}<a_{2}<\cdots<a_{n}$.
3. $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.
4. $\boldsymbol{a}=M \boldsymbol{p}+\boldsymbol{r}$ with $M, p_{i} \in \mathbb{Z}_{>0}, r_{i} \in \mathbb{Z},\left|r_{i}\right|<M, 1 \leq i \leq n$, and $p_{i}=1$ for at least one i.
5. The Hermite normal form of

$$
\boldsymbol{P}=\left(\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n} \tag{4}\\
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right)
$$

is equal to

$$
\left(\begin{array}{ll}
\boldsymbol{I}^{(2)} & \mathbf{0}^{2 \times(n-2)}
\end{array}\right)
$$

In Assumption 4 we include $p_{i}=1$ for at least one i, as otherwise we could multiply the current M by $\min _{i}\left\{p_{i}\right\}$ to obtain a shorter vector \boldsymbol{p}. Assumption 5 implies that $\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1$, so even if we could find a representation of the vector \boldsymbol{a} as $\boldsymbol{a}=M^{\prime} \boldsymbol{p}^{\prime}+N \boldsymbol{r}^{\prime}$, with a shorter vector \boldsymbol{r}^{\prime} than in the case of the representation $\boldsymbol{a}=M \boldsymbol{p}+\boldsymbol{r}$ satisfying Assumptions 15, Theorem 2 does not apply to that case. Assumption 5 also implies that the system of equations

$$
\begin{aligned}
\boldsymbol{p} \boldsymbol{x} & =b_{1} \\
\boldsymbol{r x} & =b_{2}
\end{aligned}
$$

has an integer solution \boldsymbol{x} for any integers b_{1} and b_{2}. This will be used in the proof of Theorem 2.

3.1 The Coefficient a_{0}

The polytope P as given in (1) is an n-simplex. An instance of problem (2) is particularly hard to solve by branch-and-bound if it is infeasible and if the intersection points of the n-simplex with the coordinate axes have large values. Branch-and-bound will then be forced to enumerate many of the possible combinations of x_{1}, \ldots, x_{n} with $0 \leq x_{i} \leq a_{0} / a_{i}$. Since the instance is infeasible we cannot "get lucky" in our search, which may happen if the instance is feasible, and if we by chance have chosen an objective function that takes us to a feasible solution quickly. Example 1 of the previous section illustrates such a hard infeasible instance. Similar, but larger, instances
are virtually impossible to solve using a state-of-the-art branch-and-bound algorithm such as implemented in CPLEX.

To create infeasible instances with maximum values of a_{0} / a_{i} we choose a_{0} as the Frobenius number $F\left(a_{1}, \ldots, a_{n}\right)$. Computing the Frobenius number for given natural numbers a_{1}, \ldots, a_{n} with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ is NPhard (Ramírez Alfonsín (1996)). In Appendix 1 we discuss the algorithm that we used in our computational study. For $n=2$ it is known that $F\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$. (In "Mathematics from the Educational Times, with Additional Papers and Solutions", Sylvester published the problem of proving that if a_{1} and a_{2} are relatively prime integers, then there are exactly $\left(a_{1}-1\right)\left(a_{2}-1\right) / 2$ non-negative integers α less than $a_{1} a_{2}-a_{1}-a_{2}$ for which $a_{1} x_{1}+a_{2} x_{2}=\alpha$ does not have a non-negative integer solution. The solution to this problem was provided by Curran Sharp in volume 41 (1884) of the journal. The precise reference is Sylvester and Curran Sharp (1884). See also Schrijver (1986) p. 376.) For $n=3$ the Frobenius number can be computed in polynomial time, see Selmer and Beyer (1978), Rödseth (1978), and Greenberg (1988). Kannan (1992) developed a polynomial time algorithm for computing the Frobenius number for every fixed n. His algorithm is based on the relation between the Frobenius number and the covering radius of a certain polytope. Assume $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$. For $n>3$, the value $a_{1} a_{2}-a_{1}-a_{2}$ is an upper bound on $F\left(a_{1}, \ldots, a_{n}\right)$ since it is a valid upper bound for the case $n=2$, and since the Frobenius number can only drop if another term $a_{j} x_{j}$ is added to the Diophantine equation. Other upper bounds on $F\left(a_{1}, \ldots, a_{n}\right)$, and the related case of determining the largest number a_{0} such that $\boldsymbol{a} \boldsymbol{x}=a_{0}$ does not have a solution in positive integers, can be found in the papers by Brauer (1942), Erdős and Graham (1972) and Selmer (1977).

Below we determine a lower bound on $F\left(a_{1}, \ldots, a_{n}\right)$. We express the lower bound as a function of $\boldsymbol{p}, \boldsymbol{r}$ and M. The highest order term in M is quadratic in M, so for large values of M, and relatively small values of p_{i} and $\left|r_{i}\right|$, this term will be dominant. Before presenting the result on the lower bound, we state a lemma.

Lemma 1 Assume $\boldsymbol{a}=M \boldsymbol{p}+\boldsymbol{r}$ satisfies Assumptions 1-5. Let C denote the orthogonal complement of the hyperplane spanned by \boldsymbol{p} and \boldsymbol{r}. We denote the lattice $C \cap \mathbb{Z}^{n}$ by L_{C}. Then, $L_{C}=L_{0} \cap C$, and rk $L_{C}=n-2$.

Proof: $C=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{p} \boldsymbol{x}=0, \boldsymbol{r} \boldsymbol{x}=0\right\}$ is a subspace of $B=\left\{\boldsymbol{x} \in \mathbb{R}^{n}\right.$: $\boldsymbol{a x}=0\}$.

The fact that $\boldsymbol{x} \in L_{C}$ implies that $\boldsymbol{x} \in C$ and $\boldsymbol{x} \in \mathbb{Z}^{n}$ by the definition of L_{C}. Then, in turn, $\boldsymbol{x} \in C$ implies that $\boldsymbol{x} \in B$ since C is a subspace of
B. Hence, $\boldsymbol{x} \in B$ and $\boldsymbol{x} \in \mathbb{Z}^{n}$, which implies that $\boldsymbol{x} \in L_{0}$. Since $\boldsymbol{x} \in C$ and $\boldsymbol{x} \in L_{0}$, we have $\boldsymbol{x} \in L_{0} \cap C$.

If the vector $\boldsymbol{x} \in L_{0} \cap C$, then $\boldsymbol{x} \in \mathbb{Z}^{n}$ as $\boldsymbol{x} \in L_{0}$. From $\boldsymbol{x} \in C$ and $\boldsymbol{x} \in \mathbb{Z}^{n}$ it follows that $\boldsymbol{x} \in L_{C}$.

The rank of L_{C} is equal to $n-2$ due to Assumption 5.

Theorem 2 Write $a_{i}=M p_{i}+r_{i}, 1 \leq i \leq n$, with $\boldsymbol{a}, \boldsymbol{p}, \boldsymbol{r}$, and M satisfying Assumptions 1-5 above. Let $\left(r_{j} / p_{j}\right)=\max _{i=1, \ldots, n}\left\{r_{i} / p_{i}\right\}$, and let $\left(r_{k} / p_{k}\right)=\min _{i=1, \ldots, n}\left\{r_{i} / p_{i}\right\}$. We also assume that:

1. $M>2-\left(r_{j} / p_{j}\right)$,
2. $M>\left(r_{j} / p_{j}\right)-2\left(r_{k} / p_{k}\right)$.

Then, we obtain $f(\boldsymbol{p}, \boldsymbol{r}, M) \leq F\left(a_{1}, \ldots, a_{n}\right) \leq g(\boldsymbol{p}, \boldsymbol{r}, M)$, where
$f(\boldsymbol{p}, \boldsymbol{r}, M)=\frac{\left(M^{2} p_{j} p_{k}+M\left(p_{j} r_{k}+p_{k} r_{j}\right)+r_{j} r_{k}\right)\left(1-\frac{2}{M+\left(r_{j} / p_{j}\right)}\right)}{p_{k} r_{j}-p_{j} r_{k}}-\left(M+\frac{r_{j}}{p_{j}}\right)$,
and

$$
g(\boldsymbol{p}, \boldsymbol{r}, M)=M^{2} p_{1} p_{2}+M\left(p_{1} r_{2}+p_{2} r_{1}-p_{1}-p_{2}\right)+r_{1} r_{2}-r_{1}-r_{2}
$$

Proof: The upper bound $g(\boldsymbol{p}, \boldsymbol{r}, M)$ is derived from the expression

$$
a_{1} a_{2}-a_{1}-a_{2}
$$

In our proof of the lower bound we use the following notation:

$$
\begin{aligned}
B & =\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a x}=0\right\} \\
\Delta_{t} & =\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a x}=t, \boldsymbol{x} \geq \mathbf{0}\right\} \\
C & =\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{p} \boldsymbol{x}=0, \boldsymbol{r} \boldsymbol{x}=0\right\} \\
L_{C} & =C \cap \mathbb{Z}^{n} \\
L_{0} & =B \cap \mathbb{Z}^{n} .
\end{aligned}
$$

Notice that the definitions of B, C and L_{C} are as in Lemma 1, and the definition of L_{0} is as in Section 2. From Lemma 1 we know that $L_{C}=L_{0} \cap C$ and that rk $L_{C}=n-2$.

Before going into the details of the proof we point out that the denominator in the first term of the lower bound $f(\boldsymbol{p}, \boldsymbol{r}, M), p_{k} r_{j}-p_{j} r_{k}$, is not equal to zero. Suppose that the term is equal to zero. This implies that for all $l, 1 \leq l \leq n, l \neq i$ we have $r_{l} / p_{l}=r_{i} / p_{i}=r_{i}=c$, where i is an

Figure 2: B is the subspace orthogonal to $\boldsymbol{a}=M \boldsymbol{p}+\boldsymbol{r}$, and C is the subspace orthogonal to the plane generated by \boldsymbol{p} and \boldsymbol{r}. The lattice L_{0} is contained in parallel hyperplanes generated by C and the lattice basis vector \boldsymbol{b}.
index such that $p_{i}=1$. According to Assumption $4, p_{i}=1$ for at least one i. So, $a_{l}=M p_{l}+r_{l}=M p_{l}+p_{l} c=(M+c) p_{l}$. If $(M+c) \neq 1$, then $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right) \neq 1$, contradicting Assumption 3. If $(M+c)=1$, then $a_{i}=M p_{i}+c=M+c=1$, contradicting Assumption 2. So, we can conclude that $p_{k} r_{j}-p_{j} r_{k} \neq 0$.

The idea behind the proof is as follows. We define a composition of maps from Δ_{t} to \mathbb{R} / \mathbb{Z} such that $\boldsymbol{x} \in \mathbb{Z}^{n} \cap \Delta_{t}$ maps to 0 , if such a vector \boldsymbol{x} exists. An integer number t for which 0 is not contained in the image of Δ_{t} under this map then provides a lower bound on the Frobenius number. We define such a composition of maps by first defining a projection π_{t}, along a certain vector \boldsymbol{z}_{t}, of Δ_{t} onto B, where \boldsymbol{z}_{t} is an integer vector satisfying $\boldsymbol{a} \boldsymbol{z}_{t}=t$, i.e., \boldsymbol{z}_{t} is in the same plane as Δ_{t}. We choose \boldsymbol{z}_{t} integer so that all integer points in the plane $\boldsymbol{a} \boldsymbol{x}=t$ are mapped in L_{0}. Then we consider a homomorphism $f: B \rightarrow \mathbb{R} / \mathbb{Z}$ and show that its kernel is $L_{0}+C$. Due to the First Isomorphism Theorem (see e.g. Hungerford (1996), p. 44) we know that B divided out by (ker f), i.e., $B /\left(L_{0}+C\right)$, is isomorphic to \mathbb{R} / \mathbb{Z}. Next, we apply the map π_{1} to Δ_{1} and observe that the image of $\pi_{1}\left(\Delta_{1}\right)$ under the isomorphism $B /\left(L_{0}+C\right) \rightarrow \mathbb{R} / \mathbb{Z}$ is an interval $[l, u]$ in \mathbb{R} / \mathbb{Z}. Any point in $\Delta_{t} \cap \mathbb{Z}^{n}$ will be in L_{0}, and thus under the composition of maps be mapped to zero. Finally, we determine an integer number t such that $[t l, t u]$ does not contain an integer point. The integer t then yields a lower bound on the Frobenius number under the conditions given in the theorem.

We first define a linear map $\pi_{t}: \mathbb{R}^{n} \rightarrow B$ given by $\pi_{t}(\boldsymbol{x})=t \boldsymbol{x}-(\boldsymbol{a} \boldsymbol{x}) \boldsymbol{z}_{t}$,
where $t \in \mathbb{Z}_{>0}$, and where $\boldsymbol{z}_{t} \in \mathbb{Z}^{n}$ satisfies $\boldsymbol{p} \boldsymbol{z}_{t}=0$ and $\boldsymbol{r} \boldsymbol{z}_{t}=t$, and hence $\boldsymbol{a} \boldsymbol{z}_{t}=t$. Such a vector \boldsymbol{z}_{t} exists due to Assumption 5. Notice that for any $\boldsymbol{x} \in \mathbb{R}^{n}$, the image of \boldsymbol{x} under π_{t} is in B, i.e., $\boldsymbol{a} \cdot \pi_{t}(\boldsymbol{x})=t(\boldsymbol{a} \boldsymbol{x})-(\boldsymbol{a} \boldsymbol{x})\left(\boldsymbol{a} \boldsymbol{z}_{t}\right)=$ $t(\boldsymbol{a x})-(\boldsymbol{a} \boldsymbol{x}) t=0$. We also observe that if $\boldsymbol{x} \in \mathbb{Z}^{n}$, then $\pi_{t}(\boldsymbol{x})=t \boldsymbol{x}-(\boldsymbol{a} \boldsymbol{x}) \boldsymbol{z}_{t}$ is integer and thus in L_{0}, since the number t and the vectors \boldsymbol{a} and \boldsymbol{z}_{t} are all integer.

Next we define the homomorphism $f: B \rightarrow \mathbb{R} / \mathbb{Z}$ given by

$$
\boldsymbol{x} \mapsto(\boldsymbol{p} \boldsymbol{x} \quad \bmod 1) .
$$

Claim 1: The kernel of f is $L_{0}+C$.
First we show that $\left(L_{0}+C\right) \subseteq(\operatorname{ker} f)$. If $\boldsymbol{x} \in L_{0}$ then $\boldsymbol{x} \in \mathbb{Z}^{n}$, which implies $\boldsymbol{p} \boldsymbol{x} \in \mathbb{Z}$, and hence $(\boldsymbol{p} \boldsymbol{x} \bmod 1)=0$. If $\boldsymbol{x} \in C$, then $\boldsymbol{p} \boldsymbol{x}=0$.

Next, we show that $(\operatorname{ker} f) \subseteq\left(L_{0}+C\right)$. Notice that

$$
(\boldsymbol{p} \boldsymbol{x} \bmod 1)=0 \Leftrightarrow \boldsymbol{p} \boldsymbol{x} \text { is integer. }
$$

Consider solutions to the equations

$$
\begin{align*}
& \boldsymbol{p} \boldsymbol{x}=1 \tag{5}\\
& \boldsymbol{a} \boldsymbol{x}=0 \tag{6}
\end{align*}
$$

All solutions \boldsymbol{x} to system (5)-(6) can be written as $\boldsymbol{x}=\boldsymbol{x}_{p}+\overline{\boldsymbol{x}}$, where \boldsymbol{x}_{p} satisfies (5)-(6), and where $\overline{\boldsymbol{x}}$ is a vector in the nullspace $\boldsymbol{p} \boldsymbol{x}=0, \boldsymbol{a x}=0$, which is exactly the subspace C.

Due to Assumption 5 there exists an integer vector \boldsymbol{x}_{p} satisfying

$$
\boldsymbol{p} \boldsymbol{x}_{p}=1, \boldsymbol{r} \boldsymbol{x}_{p}=-M
$$

and hence $\boldsymbol{a} \boldsymbol{x}_{p}=M \boldsymbol{p} \boldsymbol{x}_{p}+\boldsymbol{r} \boldsymbol{x}_{p}=M-M=0$. Therefore, the vector \boldsymbol{x}_{p} satisfies equations (5)-(6), and moreover, \boldsymbol{x}_{p} belongs to the lattice L_{0}.

To complete the proof of the claim we notice that the vector $\boldsymbol{y}=t \boldsymbol{x}_{p} \in L_{0}$ satisfies

$$
\begin{align*}
& \boldsymbol{p} \boldsymbol{y}=t \tag{7}\\
& \boldsymbol{a y}=0, \tag{8}
\end{align*}
$$

so for any integer t, all solutions to system (7)-(8) can be written as the sum of a vector $t \boldsymbol{x}_{p} \in L_{0}$ plus a vector in C.

Due to the First Isomorphism Theorem, the homomorphism f induces an isomorphism $f^{\prime}: B /\left(L_{0}+C\right) \rightarrow \mathbb{R} / \mathbb{Z}$. Below we determine the image of Δ_{1} under the composition of the mappings $\pi_{1}: \mathbb{R}^{n} \rightarrow B$ and $f: B \rightarrow$ $B /\left(L_{0}+C\right) \rightarrow \mathbb{R} / \mathbb{Z}$.

We use \boldsymbol{v}_{i} to denote vertex i of Δ_{1}. Vertex \boldsymbol{v}_{i}, is the vector $\left(0, \ldots, 0,1 / a_{i}\right.$, $0, \ldots, 0)^{T}$, where $1 / a_{i}=1 /\left(p_{i} M+r_{i}\right)$ is the i th component of \boldsymbol{v}_{i}. Applying the linear mapping π_{1} to \boldsymbol{v}_{i} yields $\pi_{1}\left(\boldsymbol{v}_{i}\right)=\boldsymbol{v}_{i}-\boldsymbol{z}_{1}$. Next, by the homomorphism $\boldsymbol{x} \mapsto(\boldsymbol{p} \boldsymbol{x} \bmod 1), \pi_{1}\left(\boldsymbol{v}_{i}\right)$ becomes

$$
\frac{p_{i}}{M p_{i}+r_{i}}=\frac{1}{M+r_{i} / p_{i}},
$$

because $1 /\left(M+r_{i} / p_{i}\right)<1$ and $\boldsymbol{p} \boldsymbol{z}_{1}=0$. Let d_{i} denote $1 /\left(M+r_{i} / p_{i}\right)$, and recall that $\left(r_{j} / p_{j}\right)=\max _{i=1, \ldots, n}\left\{r_{i} / p_{i}\right\}$, and $\left(r_{k} / p_{k}\right)=\min _{i=1, \ldots, n}\left\{r_{i} / p_{i}\right\}$. Then, since Δ_{1} is the convex hull of the vertices $\boldsymbol{v}_{i}, 1 \leq i \leq n$, and since π_{1} is a linear map and f a homomorphism, the image of $\pi_{1}\left(\Delta_{1}\right)$ under the isomorphism f^{\prime} is an interval $\left[d_{j}, d_{k}\right]$ of length

$$
L=\frac{p_{k} r_{j}-p_{j} r_{k}}{M^{2} p_{j} p_{k}+M\left(p_{j} r_{k}+p_{k} r_{j}\right)+r_{j} r_{k}} .
$$

Now we will demonstrate that there exists an integer $t \geq \frac{1-2 d_{j}}{L}-\frac{1}{d_{j}}$ such that the interval $\left[t d_{j}, t d_{k}\right]$ does not contain an integer point. This implies that $\frac{1-2 d_{j}}{L}-\frac{1}{d_{j}}$ is a lower bound on the Frobenius number. Notice that $1-2 d_{j}>0$ due to Assumption 1 of the theorem.

Let $k=\frac{1-2 d_{j}}{L}$. The interval $\left[I_{1}, I_{2}\right]=\left[k d_{j}, k d_{k}\right]$ has length equal to $1-2 d_{j}$. Let $\ell=\left\lfloor k d_{j}\right\rfloor$. Notice that $\ell \leq I_{1}$. Now define $k^{\prime}=\ell / d_{j}$. The number k^{\prime} satisfies $k-\frac{1}{d_{j}} \leq k^{\prime} \leq k$, and yields an interval $\left[I_{1}^{\prime}, I_{2}^{\prime}\right]=\left[k^{\prime} d_{j}, k^{\prime} d_{k}\right]$ such that I_{1}^{\prime} is integral. The length of $\left[I_{1}^{\prime}, I_{2}^{\prime}\right]$ is at most equal to the length $1-2 d_{j}$ of the interval $\left[I_{1}, I_{2}\right]$. Therefore, $\left[I_{1}^{\prime}, I_{2}^{\prime}+2 d_{j}\right]$ has length at most 1 . Since I_{1}^{\prime} is integral, it follows that $\left(I_{1}^{\prime}, I_{2}^{\prime}+2 d_{j}\right)$ does not contain an integer. Now define $k^{*}=\left\lfloor k^{\prime}\right\rfloor+1$.

Claim 2: The interval $\left[I_{1}^{*}, I_{2}^{*}\right]=\left[k^{*} d_{j}, k^{*} d_{k}\right]$ does not contain an integer point.

First, note that the second assumption of the theorem implies that $d_{k}<2 d_{j}$. Next, if k^{\prime} is integer, then $k^{*} d_{j}=I_{1}^{\prime}+d_{j}$ and $k^{*} d_{k}=k^{\prime} d_{k}+d_{k}=I_{2}^{\prime}+d_{k}$ so that $k^{*} d_{k}<I_{2}^{\prime}+2 d_{j}$. The claim now follows from the fact that $\left(I_{1}^{\prime}, I_{2}^{\prime}+2 d_{j}\right)$ does not contain an integer.

Finally, if k^{\prime} is not integer, then we have that $k^{\prime} d_{j}<\left\lfloor k^{\prime}\right\rfloor d_{j}+$ $d_{j}=k^{*} d_{j}$ so that $I_{1}^{\prime}=k^{\prime} d_{j}<k^{*} d_{j}$. The remainder of the argument follows the same reasoning as for k^{\prime} integer.

We finally notice that $k^{*}=\left\lfloor k^{\prime}\right\rfloor+1 \geq\left\lfloor k-\frac{1}{d_{j}}\right\rfloor+1 \geq k-\frac{1}{d_{j}}-1+1=k-\frac{1}{d_{j}}$, so we can conclude that $\frac{1-2 d_{j}}{L}-\frac{1}{d_{j}}$ yields a lower bound on the Frobenius number. We obtain
$\frac{1-2 d_{j}}{L}-\frac{1}{d_{j}}=\frac{\left(M^{2} p_{j} p_{k}+M\left(p_{j} r_{k}+p_{k} r_{j}\right)+r_{j} r_{k}\right)\left(1-\frac{2}{M+\left(r_{j} / p_{j}\right)}\right)}{p_{k} r_{j}-p_{j} r_{k}}-\left(M+\frac{r_{j}}{p_{j}}\right)$.

Example 2 The \boldsymbol{a}-coefficients in Example 1 decompose as follows. Let $M=12224$.

$$
\begin{aligned}
& a_{1}=M-1 \\
& a_{2}=M+0 \\
& a_{3}=3 M-1
\end{aligned}
$$

Theorem 2 yields a lower bound on the Frobenius number equal to 149, 377, 282 and an upper bound equal to the Frobenius number 149, 389, 505. The lower bound is very close to the upper bound.

For all our instances that decompose with vectors \boldsymbol{p} and \boldsymbol{r} that are short compared to M, the Frobenius number is large, see the computational study in Section 4. We have computed the lower bound on the Frobenius number for these instances and in all cases it was close to the actual value.

In the following subsection we demonstrate that instances with \boldsymbol{a}-coefficients that decompose with large M and relatively short \boldsymbol{p} and \boldsymbol{r} are trivial to solve using the reformulation outlined in Section 2. These are the instances that are extremely hard to solve by branch-and-bound due to the large Frobenius numbers.

3.2 The Coefficients a_{1}, \ldots, a_{n}

For the further analysis of our class of instances we wish to express the determinant of the lattice L_{0}, and that of the sublattice L_{C}, in terms of the input. Before presenting our results, we introduce more notation, two definitions, and present some known results. For more details, see for instance Cassels (1997) and Lenstra (2000).

Definition 1 Let L be a lattice in a Euclidean vector space E, and let K be a subgroup of L. If there exists a subspace D of E such that $K=L \cap D$, then K is called a pure sublattice.

Definition 2 Let L be a lattice in a Euclidean vector space E with $\operatorname{dim} E=r k L$. Then the dual lattice L^{\dagger} of L is defined as follows:

$$
L^{\dagger}=\left\{\boldsymbol{x} \in E: \boldsymbol{x}^{T} \boldsymbol{y} \in \mathbb{Z} \text { for all } \boldsymbol{y} \in L\right\} .
$$

The dual lattice of a lattice in E is again a lattice in E. For a lattice L and its dual L^{\dagger} we have

$$
\begin{equation*}
d(L)=\frac{1}{d\left(L^{\dagger}\right)} . \tag{9}
\end{equation*}
$$

Suppose that K is a pure sublattice of the lattice L. Then the following holds:

$$
\begin{equation*}
d(L)=d(K) \cdot d(L / K) . \tag{10}
\end{equation*}
$$

Let L be a lattice with dual L^{\dagger}, and let K be a pure sublattice of L. Then $K^{\perp}=\left\{\boldsymbol{x} \in L^{\dagger}: \boldsymbol{x}^{T} \boldsymbol{y}=0\right.$ for all $\left.\boldsymbol{y} \in K\right\}$, and we can write

$$
\begin{equation*}
K^{\perp}=(L / K)^{\dagger} . \tag{11}
\end{equation*}
$$

Theorem 3 Assume that $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ satisfies Assumptions 1-3. Then,

$$
d\left(L_{0}\right)=d\left(L\left(\boldsymbol{a}^{T}\right)\right)=\left|\boldsymbol{a}^{T}\right| .
$$

Proof: Take L to be the lattice \mathbb{Z}^{n}, and K to be the lattice L_{0}. By equation (10) we have $1=d\left(\mathbb{Z}^{n}\right)=d\left(L_{0}\right) \cdot d\left(\mathbb{Z}^{n} / L_{0}\right)$, or equivalently, by equation (9):

$$
d\left(L_{0}\right)=\frac{1}{d\left(\mathbb{Z}^{n} / L_{0}\right)}=d\left(\left(\mathbb{Z}^{n} / L_{0}\right)^{\dagger}\right) .
$$

From (11) we obtain $\left(\mathbb{Z}^{n} / L_{0}\right)^{\dagger}=L_{0}^{\perp}$, and since the dual lattice of \mathbb{Z}^{n} is again \mathbb{Z}^{n} we have $L_{0}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{Z}^{n}: \boldsymbol{x}^{T} \boldsymbol{y}=0\right.$ for all $\left.\boldsymbol{y} \in L_{0}\right\}$. Since $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ this is exactly the lattice $L\left(\boldsymbol{a}^{T}\right)$ with basis \boldsymbol{a}^{T}. So, $L_{0}^{\perp}=d\left(L\left(\boldsymbol{a}^{T}\right)\right)=\sqrt{\boldsymbol{a a ^ { T }}}=\left|\boldsymbol{a}^{T}\right|$. We have obtained

$$
d\left(L_{0}\right)=d\left(L\left(\boldsymbol{a}^{T}\right)\right) .
$$

This result is also mentioned in Section 3.2 of the survey by Nguyen and Stern (2000).

Remark 1 Notice that $d\left(L_{0}\right)$ can also be computed as $d\left(L_{0}\right)=\sqrt{\operatorname{det}\left(\boldsymbol{B}_{0}^{T} \boldsymbol{B}_{0}\right)}$, where \boldsymbol{B}_{0} is a basis for L_{0}.

We again write $a_{i}=M p_{i}+r_{i}, 1 \leq i \leq n$ with $\boldsymbol{a}, \boldsymbol{p}, \boldsymbol{r}$, and M satisfying Assumptions 1-5. Below we will make use of the matrix \boldsymbol{P} as introduced in expression (4).

Theorem 4 Assume that $\boldsymbol{a}=M \boldsymbol{p}+\boldsymbol{r}$ satisfies Assumptions 1-5. Then,

$$
d\left(L_{C}\right)=d\left(L\left(\boldsymbol{P}^{T}\right)\right)=\sqrt{\operatorname{det}\left(\boldsymbol{P} \boldsymbol{P}^{T}\right)}=\sqrt{|\boldsymbol{p}|^{2} \cdot|\boldsymbol{r}|^{2}-\left(\boldsymbol{p} \boldsymbol{r}^{T}\right)^{2}} .
$$

Proof: This proof follows the same lines as the proof of Theorem 3. Here we choose the lattice L from Definitions 1 and 2 to be the lattice \mathbb{Z}^{n}, and the sublattice K to be the lattice L_{C}. We have

$$
\begin{equation*}
d\left(L_{C}\right)=d\left(\left(\mathbb{Z}^{n} / L_{C}\right)^{\dagger}\right)=d\left(L_{C}^{\perp}\right) \tag{12}
\end{equation*}
$$

and since $\left(\mathbb{Z}^{n}\right)^{\dagger}=\mathbb{Z}^{n}$, we obtain $L_{C}^{\perp}=\left\{\boldsymbol{x} \in \mathbb{Z}^{n}: \boldsymbol{x}^{T} \boldsymbol{y}=0\right.$ for all $\left.\boldsymbol{y} \in L_{C}\right\}$. Due to Assumption 5, \boldsymbol{P}^{T} forms a basis for L_{C}^{\perp}. Hence, we have

$$
d\left(L_{C}\right)=d\left(\left(\mathbb{Z}^{n} / L_{C}\right)^{\dagger}\right)=d\left(L_{C}^{\perp}\right)=d\left(L\left(\boldsymbol{P}^{T}\right)\right) .
$$

The determinant of the lattice $L\left(\boldsymbol{P}^{T}\right)$ is equal to $\sqrt{\operatorname{det}\left(\boldsymbol{P} \boldsymbol{P}^{T}\right)}=$ $\sqrt{|\boldsymbol{p}|^{2} \cdot|\boldsymbol{r}|^{2}-\left(\boldsymbol{p r} \boldsymbol{r}^{T}\right)^{2}}$.

Let $\boldsymbol{b}_{0}^{1}, \boldsymbol{b}_{0}^{2}, \ldots, \boldsymbol{b}_{0}^{n-1}$ be a basis for L_{0}, and assume without loss of generality that these basis vectors are ordered such that $\boldsymbol{b}_{0}^{1}, \boldsymbol{b}_{0}^{2}, \ldots, \boldsymbol{b}_{0}^{n-2}$ form a basis for the lattice L_{C}. Hence, \boldsymbol{b}_{0}^{n-1} does not belong to L_{C}. Let $H=\sum_{i=1}^{n-2} \mathbb{R} \boldsymbol{b}_{0}^{i}$ and let h be the distance of \boldsymbol{b}_{0}^{n-1} to H. Notice that $h \leq\left|\boldsymbol{b}_{0}^{n-1}\right|$.

Corollary 5 If $\boldsymbol{a}=M \boldsymbol{p}+\boldsymbol{r}$ satisfies Assumptions 1-5, then

$$
\left|\boldsymbol{b}_{0}^{n-1}\right| \geq \frac{\left|\boldsymbol{a}^{T}\right|}{\sqrt{|\boldsymbol{p}|^{2} \cdot|\boldsymbol{r}|^{2}-\left(\boldsymbol{p r}^{T}\right)^{2}}}
$$

Proof: The following holds:

$$
d\left(L_{0}\right)=d\left(L_{C}\right) \cdot h \leq d\left(L_{C}\right) \cdot\left|\boldsymbol{b}_{0}^{n-1}\right|
$$

So,

$$
\left|\boldsymbol{b}_{0}^{n-1}\right| \geq \frac{d\left(L_{0}\right)}{d\left(L_{C}\right)}=\frac{d\left(L_{0}\right)}{d\left(L\left(\boldsymbol{P}^{T}\right)\right)}=\frac{\left|\boldsymbol{a}^{T}\right|}{\sqrt{|\boldsymbol{p}|^{2} \cdot|\boldsymbol{r}|^{2}-\left(\boldsymbol{p} \boldsymbol{r}^{T}\right)^{2}}} .
$$

Suppose \boldsymbol{p} and \boldsymbol{r} are short relative to M, and hence to $\left|\boldsymbol{a}^{T}\right|$. Lovász' basis reduction algorithm (Lenstra et al. (1982)) yields a basis in which the basis
vectors are ordered according to increasing length, up to a certain factor. In a basis \boldsymbol{B}_{0} for L_{0}, such as we generate it, the first $n-2$ vectors form a basis for the lattice L_{C}. These vectors are short, since the basis is reduced and since the determinant of the lattice L_{C} is equal to $\sqrt{|\boldsymbol{p}|^{2} \cdot|\boldsymbol{r}|^{2}-\left(\boldsymbol{p r}^{T}\right)^{2}}$. The length of the last vector of \boldsymbol{B}_{0} will be bounded from below according to Corollary 5.

Example 3 Recall the decomposition of the \boldsymbol{a}-coefficients from Examples 1 and 2 . Let $M=12224$.

$$
\begin{aligned}
& a_{1}=M-1 \\
& a_{2}=M+0 \\
& a_{3}=3 M-1,
\end{aligned}
$$

so $\boldsymbol{p}=(1,1,3)^{T}$ and $\boldsymbol{r}=(-1,0,-1)^{T}$. The first column of $\boldsymbol{B}_{0},(-1,-2,1)^{T}$, is short. This vector is orthogonal to $\boldsymbol{a}, \boldsymbol{p}$, and \boldsymbol{r}. The second, and last, column of $\boldsymbol{B}_{0},(14261,-8149,-2037)^{T}$, is long.

To summarize, if the determinant of the lattice L_{0} is large due to a large value of M, then this large value basically has to be contributed by the last vector \boldsymbol{b}_{0}^{n-1} of \boldsymbol{B}_{0}. The long vector \boldsymbol{b}_{0}^{n-1} implies a small value of the integral width of Q in the unit direction \boldsymbol{e}_{n-1}, so only a few, in fact often zero or one, lattice hyperplanes intersect Q in this direction for the instances we consider. In Example 1 we observed that $W_{I}\left(Q, \boldsymbol{e}_{2}\right)=0$, which immediately gave us a certificate for infeasibility.

It is interesting to notice that if we write

$$
a_{i}=M p_{i}+N r_{i}, \quad \text { for } i=1, \ldots, n,
$$

where $\boldsymbol{a}, \boldsymbol{p}, \boldsymbol{r}, M$, and N satisfy Assumptions $1-3,5$, and $p_{i}, M, N \in$ $\mathbb{Z}_{>0}$, and $r_{i} \in \mathbb{Z}, 1 \leq i \leq n$, then Theorem 4 and Corollary 5 still hold.

4 Computational Results

To illustrate our results we have solved various instances of type (2). The instances are given in Table 1. In the first column the instance name is given. Next, in column " \boldsymbol{a} ", the \boldsymbol{a}-coefficients are given, and in the last column the Frobenius number can be found. For all the instances we computed the Frobenius number using the algorithm described in Appendix 1.

The instances can be divided into two groups. The first group contains instances cuww1-cuww5 and prob1-prob10, and the second group consists

Table 1: The instances

Instance	a										Frobenius number
cuww1	12223	12224	36674	61119 48908	85569 61139	73365					89643481 89716838
cuww3	12137	24269	36405	36407	48545	60683					58925134
cuww4	13211	13212	39638	52844	66060	79268	92482				104723595
cuww5	13429	26850	26855	40280	40281	53711	53714	67141			45094583
prob1	25067	49300	49717	62124	87608	88025	113673	119169			33367335
prob2	11948	23330	30635	44197	92754	123389	136951	140745			14215206
prob3	39559	61679	79625	99658	133404	137071	159757	173977			58424799
prob4	48709	55893	62177	65919	86271	87692	102881	109765			60575665
prob5	28637	48198	80330	91980	102221	135518	165564	176049			62442884
prob6	20601	40429	42207	45415	53725	61919	64470	69340	78539	95043	22382774
prob7	18902	26720	34538	34868	49201	49531	65167	66800	84069	137179	27267751
prob8	17035	45529	48317	48506	86120	100178	112464	115819	125128	129688	21733990
prob9	13719	20289	29067	60517	64354	65633	76969	102024	106036	119930	13385099
prob10	45276	70778	86911	92634	97839	125941	134269	141033	147279	153525	106925261
prob11	11615	27638	32124	48384	53542	56230	73104	73884	112951	130204	577134
prob12	14770	32480	75923	86053	85747	91772	101240	115403	137390	147371	944183
prob13	15167	28569	36170	55419	70945	74926	95821	109046	121581	137695	765260
prob14	11828	14253	46209	52042	55987	72649	119704	129334	135589	138360	680230
prob15	13128	37469	39391	41928	53433	59283	81669	95339	110593	131989	663281
prob16	35113	36869	46647	53560	81518	85287	102780	115459	146791	147097	1109710
prob17	14054	22184	29952	64696	92752	97364	118723	119355	122370	140050	752109
prob18	20303	26239	33733	47223	55486	93776	119372	136158	136989	148851	783879
prob19	20212	30662	31420	49259	49701	62688	74254	77244	139477	142101	677347
prob20	32663	41286	44549	45674	95772	111887	117611	117763	141840	149740	1037608

Table 2: A value of M for instances cuww1-5 yielding short \boldsymbol{p} and \boldsymbol{r}

	cuww1	cuww2	cuww3	cuww4	cuww5
M	12223	12228	12137	13211	13429

of instances prob11-prob20. Instances cuww1-cuww5 were generated by Cornuéjols, Urbaniak, Weismantel, and Wolsey (1997), and the remaining instances were generated for this study. For each of the instances cuww1-cuww5 there is a decomposition $a_{i}=M p_{i}+r_{i}$ with short vectors \boldsymbol{p} and \boldsymbol{r}. In Table 2 we give values of M that yield short vectors \boldsymbol{p} and \boldsymbol{r} for these instances. Instances prob1-prob10 were generated such that the \boldsymbol{a}-coefficients have a decomposition $a_{i}=M p_{i}+N r_{i}$ with short \boldsymbol{p} and \boldsymbol{r} and long \boldsymbol{a}^{T}. We randomly generate M from the uniform distribution $U[10000,20000], N$ from $U[1000,2000], p_{i}$ from $U[1,10]$, and r_{i} from $U[-10,10]$.

In contrast, the second group of instances prob11-prob20 were randomly generated such that the \boldsymbol{a}-coefficients are of the same size as in prob1-prob10, but they do not necessarily decompose with short vectors \boldsymbol{p} and \boldsymbol{r}. We chose the same size of the \boldsymbol{a}-coefficients since this yields values of $d\left(L_{0}\right)$ of approximately the same size as for the instances prob1-prob10. For instances prob11-prob20 coefficient a_{i} is randomly generated from $U[10000,150000]$.

We present the computations purely to illustrate how our theoretical results translate into computations. The instances are therefore quite artificial. But, as mentioned in Section 1, other instances stemming from applications show similar, but less extreme, behavior in comparison with the instances reported on here, and our results partly explain this behavior.

The computational results of verifying infeasibility for the instances is reported on in Table 3. For each instance \boldsymbol{a} we used the Frobenius number $F\left(a_{1}, \ldots, a_{n}\right)$ as the right-hand side coefficient a_{0}. For each of the instances we computed $d\left(L_{0}\right)$, the length of each of the basis vectors of the basis \boldsymbol{B}_{0}, and the number of lattice hyperplanes intersecting Q in the coordinate directions \boldsymbol{e}_{1} and \boldsymbol{e}_{n-1}. We then applied the integer branching algorithm described in Section 2 to Q. The number of nodes that were generated, and the computing time in seconds are given in the columns "\# Search tree nodes" and "Time". Finally, we attempted to solve the instances, using the original formulation P, by standard linear programming based branch-and-bound using CPLEX version 6.5.3 . The number of nodes needed by
branch-and-bound, and the computing time in seconds are reported on in the columns "\# B\&B nodes" and "B\&B time". For the branch-and-bound algorithm we set the node limit to 50 million nodes. If an instance was not solved within this node limit, this is indicated by " $>50 \times 10^{6 "}$ in the column "\# B\&B nodes". The time t needed to evaluate the 50 million nodes is then indicated as " $>t$ " in the column " $\mathrm{B} \& \mathrm{~B}$ time". All the computations were carried out on a Sun Ultra 60 Model 2360 workstation with two UltraSPARC-II 359 MHz processors (our implementation is sequential) and 512 MB of memory.

We make the following observations. First, the Frobenius number of the instances cuww1-cuww5 and prob1-prob10 is about two orders of magnitude larger than the Frobenius number of instances prob11-prob20 (see Table 1).

Infeasible instances having large values of the intersection points a_{0} / a_{i} between the n-simplex P and the coordinate axes are hard for branch-andbound to solve, and the larger these values are, the harder an instance becomes computationally. So, as a class, the first group of instances is harder for branch-and-bound than the second one. In Table 3 we can see that instances cuww1-cuww5 and prob1-prob10 are considerably harder to solve by branch-and-bound than instances prob11-prob20. The presolver of CPLEX claimed infeasibility for instances cuww2 and prob10, but none of the other instances in the first group was solved within the node limit of 50 million nodes. All of the instances prob11-prob20 were solved by branch-and-bound within half a million search nodes and one minute of computing time.

We also observe that the shape of the polytope Q is very much influenced by the decomposition of the \boldsymbol{a}-coefficients. If the coefficients decompose with short vectors \boldsymbol{p} and \boldsymbol{r} relative to M, then the width of the corresponding polytope Q in the unit direction \boldsymbol{e}_{n-1} is very small. This made the instances trivial for our tree search algorithm applied to Q. All instances were solved using less than twenty search nodes and a fraction of a second computing time. For instances prob11-prob20 where the \boldsymbol{a}-coefficients are generated randomly from a certain interval we observe that the width of Q is of the same magnitude in all unit directions, and in general greater than two. Our tree search algorithm applied to Q therefore needed more nodes and longer computing times than for the first group of instances. For such instances more effort needs to be spent in order to compute good search directions.

Table 3: Verification of infeasibility

Instance	$d\left(L_{0}\right)$	$\left\|b_{i}\right\|$									$W_{I}\left(Q, e_{1}\right)$	$W_{I}\left(Q, e_{n-1}\right)$	\# Search tree nodes	Time	\# B\&B nodes	B\&B time
cuww1	112700.5						2.0	3.5	3.5	4823.1	1862	0	1	. 0001	$>50 \times 10^{6}$	> 8139.3
cuww2	119803.3					2.0	2.2	2.6	3.9	2922.9	1291	1	3	. 001		0.0
cuww3	97088.2					2.0	2.4	2.8	4.0	2218.0	1155	2	3	. 001	$>50 \times 10^{6}$	>8079.9
cuww4	154638.3				1.7	2.4	2.4	4.0	3.0	2726.8	2429	1	2	. 001	$>50 \times 10^{6}$	>7797.5
cuww5	123066.9			2.0	2.2	2.0	2.2	2.6	2.8	1711.4	1279	1	3	. 001	$>50 \times 10^{6}$	>6080.6
prob1	227895.5			2.0	2.2	2.6	2.6	2.8	4.7	678.4	347	2	7	. 001	$>50 \times 10^{6}$	>7912.6
prob2	256849.8			1.7	1.7	2.6	3.0	3.2	4.4	1016.0	274	2	7	. 001	$>50 \times 10^{6}$	>6529.2
prob3	337663.2			2.2	2.4	3.0	3.0	3.3	3.6	988.4	466	2	11	. 002	$>50 \times 10^{6}$	>6872.1
prob4	226877.3			2.6	2.4	2.6	2.4	3.6	3.5	1058.4	468	2	8	. 001	$>50 \times 10^{6}$	>8432.2
prob5	324461.5			2.0	2.4	2.8	3.2	3.0	3.7	937.6	964	2	10	. 002	$>50 \times 10^{6}$	>8368.4
prob6	191805.0	2.0	2.0	2.2	2.2	2.4	2.2	2.8	2.6	646.6	502	2	8	. 001	$>50 \times 10^{6}$	>5550.1
prob7	207240.4	1.7	1.7	1.7	2.2	2.4	2.4	2.4	2.8	888.6	588	2	9	. 002	$>50 \times 10^{6}$	>5411.5
prob8	288168.2	2.2	2.2	2.2	2.6	2.6	2.2	2.4	2.4	773.4	455	2	7	. 001	$>50 \times 10^{6}$	>5565.4
prob9	235618.6	1.7	2.8	2.8	2.6	2.4	2.4	2.4	2.8	788.6	430	2	18	. 003	$>50 \times 10^{6}$	>6944.7
prob10	363052.5	2.0	2.2	2.2	2.4	2.2	2.6	2.4	2.4	1165.2	880	2	10	. 002		0.0
prob11	225420.4	3.6	4.0	4.5	4.4	4.6	4.2		5.2					. 005	88858	
prob12	307211.3	4.4	4.5	4.6	4.4	4.4	4.5	4.4	6.0	5.4	2	4	86	. 012	445282	51.0
prob13	266246.9	4.6	4.2	4.6	4.0	4.8	4.6	5.3	5.1	5.8	6	6	41	. 006	580565	62.6
prob14	286676.3	4.4	4.1	4.0	4.4	4.7	4.8	5.1	5.1	5.6	9	7	112	. 012	371424	43.4
prob15	238047.7	3.6	4.5	4.1	3.9	3.9	5.1	4.8	5.5	6.0	3	3	66	. 080	426692	49.4
prob16	297717.2	4.0	3.7	3.7	4.2	4.2	4.2	4.6	4.7	9.7	3	2	67	. 080	549483	61.4
prob17	294591.6	4.6	4.4	4.2	4.6	4.6	5.1	4.0	4.2	5.7	2	4	126	. 150	218374	24.1
prob18	300087.6	3.5	4.6	4.6	4.5	5.1	5.2	5.5	5.0	5.8	4	5	90	. 120	425727	46.9
prob19	249577.9	3.9	3.7	4.1	5.1	5.2	5.6	4.8	5.5	4.6	11	6	78	. 100	255112	27.7
prob20	314283.7	3.7	4.7	4.5	3.9	4.6	4.7	5.1	5.5	6.2	5	3	39	. 005	423608	46.1

*) CPLEX Presolve determines problem is infeasible or unbounded.

Acknowledgments

We want to thank Hendrik Lenstra for his valuable suggestions and in particular for the outline of the proof of Theorem 2. We also wish to thank Bram Verweij for providing a framework code, based on his general enumeration library, for our integer branching algorithm.

The research of the first author was partially financed by the project TMR-DONET nr. ERB FMRX-CT98-0202 of the European Community.

References

Aardal K., R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, J. W. Smeltink. 2000a. Market split and basis reduction: Towards a solution of the CornuéjolsDawande instances. INFORMS J. Comput. 12 192-202.

Aardal K., C. A. J. Hurkens, A. K. Lenstra. 2000b. Solving a system of diophantine equations with lower and upper bounds on the variables. Math. Oper. Res. 25 427-442.

Brauer A. 1942. On a problem of partitions. Amer. J. Math. 64 299-312.
Brauer A., J. E. Shockley 1962. On a problem of Frobenius. J. Reine Angew. Math. 211 399-408.

Cassels, J. W. S. 1997. An Introduction to the Geometry of Numbers. Second Printing, Corrected. Reprint of the 1971 ed. Springer-Verlag, Berlin, Heidelberg.

Cook, W., T. Rutherford, H. E. Scarf, D. Shallcross. 1993. An implementation of the generalized basis reduction algorithm for integer programming. ORSA J. Comput. 5 206-212.

Cornuéjols G., M. Dawande. 1999. A class of hard small 0-1 programs. INFORMS J. Comput. 11 205-210.

Cornuéjols, G., R. Urbaniak, R. Weismantel, L. A. Wolsey. 1997. Decomposition of integer programs and of generating sets. R. E. Burkard, G. J. Woeginger, eds., Algorithms - ESA '97. Lecture Notes in Computer Science 1284, Springer-Verlag, Berlin, Heidelberg, Germany, 92-103.

Erdős P., R. L. Graham. 1972. On a linear diophantine problem of Frobenius. Acta Arithm. 21 399-408.

Gao L., Y. Zhang. 2002. Computational experience with Lenstra's algorithm. Technical Report TR02-12, Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA.

Greenberg H. 1988. Solution to a linear Diophantine equation for nonnegative integers. J. Algorithms 9 343-353.

Grötschel M., L. Lovász, A. Schrijver. 1988. Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, Germany.

Hungerford T. W. 1996. Algebra; corrected eighth printing. Springer-Verlag, New York, USA.

Kannan R. 1992. Lattice translates of a polytope and the Frobenius Problem. Combinatorica 12 161-177.

Khinchine A. 1948. A quantitative formulation of Kronecker's theory of approximation (In Russian). Izvestiya Akademii Nauk SSR Seriya Matematika 12 113-122.

Lenstra, A. K., H. W. Lenstra, Jr., L. Lovász. 1982. Factoring polynomials with rational coefficients. Math. Ann. 261 515-534.

Lenstra, H. W., Jr. 1983. Integer programming with a fixed number of variables. Math. Oper. Res. 8 538-548.

Lenstra, H. W., Jr. 2000. Flags and lattice basis reduction. C. Casacuberta, R. M. Miró-Roig, J. Verdera, S. Xambó-Descamps, eds., Proceedings of the third European Congress of Mathematics Volume I, Birkhäuser Verlag, Basel, 37-51.

Lovász, L., H. E. Scarf. 1992. The generalized basis reduction algorithm. Math. Oper. Res. 17 751-764.

Louveaux Q., L. A. Wolsey. 2002. Combining problem structure with basis reduction to solve a class of hard integer programs. Math. Oper. Res. 27 470-484.

Nguyen, P. Q., J. Stern. 2000. Lattice reduction in cryptology. W. Bosma, ed., Algorithmic Number Theory: 4th International Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000, Proceedings. Lecture Notes in Computer Science 1838, Springer-Verlag, Berlin, Heidelberg, 85-112. An updated version can be found at URL:
http://www.di.ens.fr/~pnguyen/pub.html

Ramírez Alfonsín J. L. 1996. Complexity of the Frobenius problem. Combinatorica 16 143-147.

Rödseth Ö. J. 1978. On a linear diophantine problem of Frobenius. J. Reine Angew. Math. 301 171-178.

Schrijver A. 1986. Theory of Linear and Integer Programming, Wiley, Chichester, UK.

Selmer E. S. 1977. On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 293/294 1-17.

Selmer E. S., Ö. Beyer. 1978. On the linear diophantine problem of Frobenius in three variables. J. Reine Angew. Math. 301 161-170.

Sylvester J. J., W.J. Curran Sharp. 1884. [Problem] 7382. Mathematics from the Educational Times, with Additional Papers and Solutions 4121.

Williams, H. P. 1978. Model Building in Mathematical Programming. John Wiley \& Sons Ltd., Chichester.

Appendix 1: Computing the Frobenius Number

Since the main aim of this paper is not to compute the Frobenius number we use the Frobenius number to create infeasible instances - our approach is quite simple and based on a theorem by Brauer and Shockley (1962). Assume that a_{i} is integer for $1 \leq i \leq n$, that $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, and that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$. Let r_{l} be the smallest positive integer congruent to $\left(l \bmod a_{1}\right)$ that can be expressed as a non-negative integer combination of a_{2}, \ldots, a_{n}. Each residue class modulo a_{1} does contain numbers representable as $a_{2} x_{2}+\cdots+a_{n} x_{n}$ with $x_{i} \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$. Let $r=\max _{l \in\left\{1,2, \ldots, a_{1}-1\right\}} r_{l}$.

Theorem 6 (Brauer and Shockley (1962).)

$$
F\left(a_{1}, \ldots, a_{n}\right)=r-a_{1} .
$$

Proof: Suppose we can express $r-a_{1}$ as

$$
r-a_{1}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \text { with } x_{i} \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq n .
$$

Then,

$$
r-a_{1}\left(1+x_{1}\right)=a_{2} x_{2}+\cdots+a_{n} x_{n} \text { with } x_{i} \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq n,
$$

which contradicts that r is the smallest number in its residue class.
Next, take any integer number $N>r-a_{1}$ and assume that N is not an integer multiple of a_{1}, in which case we are done. Assume that $N=$ ($\ell \bmod a_{1}$) with $\ell \in\left\{1, \ldots, a_{1}-1\right\}$, so we can write $N=p a_{1}+\ell$ for some $p \in \mathbb{Z}_{\geq 0}$. We know that N is greater than or equal to the smallest number in its residue class that can be represented as $a_{2} x_{2}+\cdots+a_{n} x_{n}$ with $x_{i} \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$, i.e., $N \geq r_{\ell}=q a_{1}+\ell$ for some $q \in \mathbb{Z}_{\geq 0}$. The following holds: $N-r_{\ell}=p a_{1}+\ell-q a_{1}-\ell=a_{1}(p-q)$, and since $N-r_{\ell} \geq 0$ we have $(p-q) \geq 0$. So, N can be written as

$$
N=a_{1}(p-q)+r_{\ell}=a_{1}(p-q)+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

with $(p-q) \geq 0$ and $x_{i} \in \mathbb{Z}_{\geq 0}$ for $2 \leq i \leq n$.
For each $l=1, \ldots, a_{1}-1$ we compute the value of r_{l} as:

$$
\begin{equation*}
r_{l}=\min \left\{\sum_{i=2}^{n} a_{i} x_{i}: \sum_{i=2}^{n} a_{i} x_{i}=l+a_{1} x_{1}, \boldsymbol{x} \in \mathbb{Z}_{\geq 0}^{n}\right\} \tag{13}
\end{equation*}
$$

Since the instances of type (13) that we tackled are hard to solve by branch-and-bound we again applied the reformulation described in Section 2 to each subproblem and solved the reformulated subproblems by branch-and-bound. Notice that the reformulation only has to be determined for $l=1$. The basis for $L=\left\{x \in \mathbb{Z}^{n}:-a_{1} x_{1}+\sum_{i=2}^{n} a_{i} x_{i}=0\right\}$ is independent of l, and if we have computed \boldsymbol{x}_{f} for $l=1$, then $l \boldsymbol{x}_{f}$ can be used in the subsequent computations of subproblems $l=2, \ldots, a_{1}-1$. Cornuéjols et al. (1997) used a formulation similar to (13) for computing the Frobenius number, but instead of using the reformulation described in Section 2 combined with branch-and-bound, they used test sets after having decomposed the \boldsymbol{a}-coefficients.

In Table 4 we give the computational results for the Frobenius number computations. In the two first columns the instance name and number of variables are given. Then, the computing time and the total number of branch-and-bound nodes needed for all $a_{1}-1$ subproblems are given. Since a_{1} can vary quite a lot, we report on the average number of branch-andbound nodes per subproblem in the last column.

Table 4: Results for the Frobenius number computations

Instance	\# Vars	Time	Total B\&B nodes	Ave. \# nodes per subprob.
cuww1	5	50.0	11652	1.0
cuww2	6	62.3	25739	2.1
cuww3	6	64.6	39208	3.2
cuww4	7	76.3	28980	2.2
cuww5	8	130.2	210987	15.7
prob1	8	891.3	3782264	150.9
prob2	8	90.2	53910	4.5
prob3	8	396.2	571199	14.4
prob4	8	371.1	204191	4.2
prob5	8	257.6	349320	12.2
prob6	10	9057.3	39164012	1901.1
prob7	10	200.7	93987	5.0
prob8	10	304.8	577948	33.9
prob9	10	162.6	91223	24.5
prob10	10	586.8	445777	9.8
prob11	10	241.3	577134	49.7
prob12	10	515.8	1518531	102.8
prob13	10	391.8	998415	65.8
prob14	10	476.7	1551241	848.6
prob15	10	418.0	1178543	89.8
prob16	10	821.7	2063690	58.8
prob17	10	385.4	1027115	73.1
prob18	10	567.3	1494456	73.6
prob19	10	499.0	1289971	63.8
prob20	10	79.2	2070667	63.4

[^0]: *Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.
 ${ }^{\dagger}$ Lucent Technologies, Bell Laboratories, 1 North Gate Road, Mendham, NJ 079453104, USA, and Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands.

