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Abstract

We propose a stochastic model for video and compute its information rates.
The model has two sources of information representing ensembles of camera
motion and visual scene data (i.e. “realities”). The sources of information are
combined generating a vector process that we study in detail. Both lossless and
lossy information rates are derived. The model is further extended to account
for realities that change over time. We derive bounds on the lossless and lossy
information rates for this dynamic reality model, stating conditions under which
the bounds are tight. Experiments with synthetic sources suggest that in the
presence of scene motion, simple hybrid coding using motion estimation with
DPCM can be suboptimal relative to the true rate-distortion bound.

1 Introduction
Consider a moving camera that takes sample snapshots of an environment over time.
The samples are to be coded for later transmission or storage. Because the movements
of the camera are small relative to the scene, there are large correlations amongst
multiple acquisitions.

Examples of such scenarios include video compression and the compression of light-
fields. The practical aspects of these two examples have been studied extensively (see
e.g. [1], [2], and references therein). But the theoretical aspects still lack a framework
that enables the development of precise information rate results that are not tied
to a particular coding scheme such as DPCM. We propose such a framework and
derive information rate bounds. We develop a simple model that can be studied with
the usual information theoretic tools, but that still bears the main elements of the
practical case.

The general problem can be posed as shown in Fig. 1. There is a world or “reality”
(e.g, panorama images, objects, moving objects), and a camera that generates a “view
of reality” V . This “view of reality” (e.g. a video sequence) is coded with a source
coder with memory M , giving an average rate of R bits. This bitstream is decoded
with a decoder with memory M to reconstruct a view of reality V̂ close to the original
one in the MSE sense.

MSE+
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V V̂

ENCODER DECODER

WITH WITH

MEMORY M MEMORY M

CHANNEL

RATE R
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Figure 1: The problem under consideration. There is a world and a camera that
produces a “view of reality” that needs to be coded with finite or infinite memory.

2007 Data Compression Conference (DCC'07)
0-7695-2791-4/07 $20.00  © 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147960115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Definitions and Problem Set Up
A simplified model for the problem described in Fig. 1 is as follows [3]. Consider a
camera moving according to a 1-D discrete Bernoulli random walk. The random walk
is the process W = (Wt : t ∈ Z

+) such that Pr {W0 = 0} = 1, and for t ≥ 1, Wt =
∑t

i=1 Ni, where Ni is drawn i.i.d. from the set {−1, +1} with Pr {N1 = +1} = pW .
We assume without loss of generality that pW ≤ 0.5. In front of the camera there is
an infinite wall that represents a scene that is projected onto a screen in front of the
camera path (i.e. we ignore occlusion). The wall is modelled as a 1-D strip “painted”
with an i.i.d. process X = (Xn : n ∈ Z) that is independent of the random walk W .
The process X follows some probability law pX drawing values from an alphabet X .
In the static case, the wall process X is drawn at t = 0. Fig. 2 (a) illustrates the
proposed model.
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Wt

· · · · · ·X0 X1 X2 X3
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Image(t)
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Figure 2: A stochastic model for video. (a) Simplified model. (b) The resulting vector
process V . Each sample of the vector process is a block of L samples from the process
X taken at the position indicated by the random walk Wt. In the figure L = 4.

At each random walk time step, the camera sees a block of L samples from the
wall, where L ≥ 1. This results in a vector process V = (Vt : t ∈ Z

+) indexed by the
random walk positions.

Definition 1 Let W be a random walk independent of X, and let L be an integer
greater than one. The vector process V = (Vt : t ∈ Z

+) is defined as

Vt := (XWt
, XWt+1, · · · , XWt+L−1). (1)

The random walk is a simple stochastic model for an ensemble of camera move-
ments and it includes camera panning as a special case. The discrete displacements of
the random walk thus neglects other effects such as zooming, rotation, and change of
angle. Consecutive samples of the vector process, which are vectors of length L, have
at least L − 1 samples that are repeated. Fig. 2 (b) illustrates the vector process V .

The coding problem Given the vector process V = (V0, V1, · · · ), the coding prob-
lem consists in finding an encoder/decoder pair that is able to describe and reproduce
the process V at the decoder using no more than R bits per vector sample1. The

1The vector process can be shown to be stationary and mean-ergodic provided that the wall
process X is stationary and mean-ergodic.
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decoder reproduces the vector process V = (V̂0, V̂1, · · · ) with some delay. The repro-
duction can be lossless or lossy with fidelity D. The encoder encodes each sample Vt

based on the observation of M previous vector samples Vt−1, . . . , Vt−M . Thus, M is
the memory of the encoder/decoder. Since encoding is done jointly, there is a delay
incurred. The information content of the process V provides the limiting rate needed
to either perfectly reproduce the process V at the decoder, or to reproduce it within
distortion D. The information content is usually only achievable at the expense of
infinite memory and delay [4].

Properties of the random walk The following notions are needed in what follows.

Definition 2 Let W be a random walk. We denote by Pr {Rt} the probability of
recurrence at step t. That is, the probability of the event set

Rt = {(W0,W1, . . . ,Wt) : Wt = Ws for some 0 ≤ s < t}.

The probability of the complementary set Pr
{

Rt
}

is called the first-passage proba-
bility. When a site Wt has not occurred before, we refer to it as a new site. A related
quantity is the probability of return.

Definition 3 Let W be a random walk. The probability of return at step t after step
s < t is the probability of the event set

T t
s = {(W0,W1, . . . ,Wt) : Wt = Ws but Wt 6= Wi, for i such that s < i < t}.

When s = 0 we write T t for T t
0 . For the Bernoulli random walk one can check that

Rt =
t

⋃

i=1

T t
t−i. (2)

The sets T t
s are shift invariant in the sense that T t

s = T t−s. Moreover, for the case of
the Bernoulli random walk we have the following [5].

Lemma 1 For the Bernoulli random walk with pW ≤ 1/2 the following holds:

(i) limt→∞ P (Rt) = 1 − 2pW .

(ii) For t > 0, Pr {T 2t−1} = 0, and Pr {T 2t} = 2Ct−1 ((1 − pW )pW )t, where Ct :=
1

t+1

(

2t

t

)

.

3 Information Rates for a Static Reality

Lossless Information Rates Denote V t = (V1, . . . , Vt). We assume without loss
of generality that V0 is known do the decoder. We seek to quantify the entropy rate
of V [6]:

H(V ) = lim
t→∞

1

t
H

(

V t
)

= lim
t→∞

H(Vt|V
t−1). (3)

To characterize H(V ), we describe intuitively an upper and a lower bound (resp.
sufficient and necessary rates) that will be formalized in Theorem 1 below. For a
sufficient rate, note that V can be reproduced up to time t when both the trajectory
W t = (W1, . . . ,Wt) and the samples of the wall occurring at the new sites of W t are
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available. When t is large, this amounts to H(W t) = tH(pW ) bits for the trajectory,
plus tPr

{

Rt
}

H(X) ≈ t(1 − 2pW )H(X) for the new sites. So, a sufficient average
rate is H(pW ) + (1 − 2pW )H(X). Moreover, the complexity of V is at least the
complexity of the new sites, and so (1−2pW )H(X) is a necessary rate. This intuitive
lower bound can be improved by examining the probability of correctly inferring the
random path W t from observing the vector process V t. This probability is related to
the probability of a repeated pattern represented by the following event:

AL := { (X0, . . . , XL) = (x0, x1, x0, x1, . . .), x0, x1 ∈ X} (4)

To see this, let L = 4 and consider inferring W1 from (V1, V0). If V0 = (x0, x1, x0, x1)
and V1 = (x1, x0, x1, x0), then it follows that W1 cannot be unambiguously deter-
mined. Intuitively, if W t can be determined from V t, then the complexity of the
trajectory is embedded in V t and thus has to be fully described. If, however, there
is ambiguity on W t, then sets of W t that are consistent with V t can be indexed and
coded with a lower rate. We are now ready to state and prove Theorem 1.

Theorem 1 Consider the vector process V consisting of L-tuples generated by a
Bernoulli random walk with transition probability pW ≤ 1/2, and a wall process X,
drawing values on a discrete alphabet, and that has entropy rate H(X). The condi-
tional entropy H(Vt|V

t−1) obeys

Pr
{

Rt
}

H(X) + H(pW )Pr
{

AL

}

≤ H(Vt|V
t−1) ≤

1

t

t
∑

i=1

Pr
{

Ri

}

H(X) + H(pW ),

(5)
where AL is as in (4). In particular, the entropy rate H(V ) satisfies

(1 − 2pW )H(X) + H(pW )Pr
{

AL

}

≤ H(V ) ≤ (1 − 2pW )H(X) + H(pW ). (6)

Proof: For each t we have

H(Vt|V
t−1)

(a)

≤
1

t

t
∑

i=1

H(Vi|V
i−1) =

H(V t)

t

(b)

≤
H(W t) + H(V t|W t)

t
=

H(W t) +
∑t

i=1 H(Vi|V
i−1,W t)

t

(c)
= H(pW ) +

1

t

t
∑

i=1

H(Vi|V
i−1,W i), (7)

where (a) follows because H(Vt|V
t−1) decreases with t, (b) holds because H(W t|V t) ≥

0, and (c) is true because H(W t) = tH(pW ) and (Wi+1, . . . ,Wt) is independent of
(V i,W i). Further, if W i = wi recurs at i, then H(Vi|w

i, V i−1) = 0. If otherwise wi is
such that wi is new site, then H(Vi|w

i, V i−1) = H(X). Consequently,

H(Vi|V
i−1,W i) =

∑

wi∈Ri

Pr
{

W i = wi
}

H(Vi|V
i−1,W i = wi) = Pr

{

Ri

}

H(X). (8)

Combining (7) and (8) gives the upper bound in (5). We now turn to the lower
bound. Using the chain rule for mutual information, and the information inequality

2007 Data Compression Conference (DCC'07)
0-7695-2791-4/07 $20.00  © 2007



we have:

H(Vt|V
t−1) = H(Vt|V

t−1,W t) + I(W t; Vt|V
t−1)

= H(Vt|V
t−1,W t) + I(W t−1; Vt|V

t−1) + I(Wt; Vt|V
t−1,W t−1)

≥ H(Vt|V
t−1,W t) + I(Wt; Vt|V

t−1,W t−1). (9)

Moreover, because the random walk increment Wt−Wt−1 is independent of (V t−1,W t−1),
it follows that

I(Wt; Vt|V
t−1,W t−1) = H(Wt|V

t−1,W t−1) − H(Wt|V
t,W t−1)

= H(pW ) − H(Wt|V
t,W t−1). (10)

We proceed by finding an upper bound for H(Wt|V
t,W t−1). If (vt, wt−1) is such

that Wt is uniquely determined, then the conditional entropy is zero. Otherwise,
if (vt, wt−1) is such that Wt is ambiguous, then the conditional entropy is at most
H(pW ). So,

H(Wt|V
t,W t−1) =

∑

(vt,wt−1)

Pr
{

wt−1,vt
}

H
(

Wt|V
t = vt,W t−1 = wt−1

)

≤ H(pW ) Pr
{

(wt−1,vt) such that Wt is ambiguous
}

The event set on the right-hand side above is contained in the event set {Vt−1 =
(x0, x1, . . .), Vt = (x1, x0, . . .)}, which has probability Pr {AL}. So the right-hand side
above is bounded by H(pW ) Pr {AL} . Combining this with (9 - 10) and (8) we assert
the lower bound in (5). By letting t → ∞ and using Lemma 1 (i) we obtain (6). �

Example 1 Suppose that the X is uniformly distributed over |X | values. For sim-
plicity let L be even. Then, it is easily seen that

Pr {AL} = |X |−⌊L+1
2

⌋.

Consequently, the difference between upper and lower bounds decays exponentially
fast when the block length L → ∞. For fixed L, the difference also decays as |X |
increases. At the limit, when the alphabet is continuous, then the lower and upper
bounds coincide. Thus, for L and |X | sufficient large, we can estimate the entropy
rate as (1 − 2pW ) log |X | + H(pW ) bits per block. Fig. 3(a) illustrates the bounds
when X is Bern(1/2), and L = 8.

Memory constrained coding The entropy rate H(V ) can be attained with an
encoder-decoder pair with unbounded memory. In the finite memory case, the en-
coder has to code Vt based on the observation of Vt−1, . . . , Vt−M , and the decoder
proceeds accordingly. This situation is similar to one encountered in video com-
pression, where a frame at time t is coded based on M previously coded frames.
In this case, the average code-length is lower bounded by the conditional entropy
H(Vt|Vt−1, . . . , Vt−M) = H(VM |VM−1, . . . , V0). The bound (5) in Theorem 1 describe
the behavior of H(VM |V M−1). Intuitively, by looking at the stored samples from
t−M up to t, the encoder can separately code Wt and take advantage of recurrences
existent from t−M to t− 1. In effect, finite memory prevents the encoder to exploit
long term recurrences that are not visible in the memory. Similar observations are
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Figure 3: Bounds of information rate. (a) Lower and upper bounds as a function of
pW for the binary wall with pX = 1/2 and L = 8. (b) Difference H(V )−H(VM |V M)
as a function of M . When pW = 0.5, the bit rate can be lowered significantly at the
cost of large memory. A moderate bit rate reduction is obtained with small values of
M when pW = 0.1.

verified in practice for instance in [7] and [8]. Fig. 3(b) illustrates how memory in-
fluences coding when X is uniform over an alphabet of size |X | = 256. The bounds
of Theorem 1 are tight and hence are used to compute the entropy rates.

Lossy Information Rates Consider a t-tuple (V1, . . . , Vt) and a reproduction t-
tuple (V̂1, . . . , V̂t). The rate-distortion function for each t, and for the MSE distortion
metric is given by:

RV t(D) = inf
{

t−1I(V t; V̂ t) : p(V̂ t|V t) such that Ed(V t, V̂ t) ≤ D
}

, (11)

where d(V t, V̂ t) = (tL)−1
∑t

i=1 ‖Vi−V̂i‖
2. The rate-distortion function for the process

V = (V1, V2, . . .) is given by [4]

RV (D) = lim
t→∞

RV t(D). (12)

By coding the side information W t separately, a constructive upper bound for RV (D)
similar to Theorem 1 can be developed. This upper bound is shown to be tight in
the limit of small distortions in the case where X is continuously distributed.

Theorem 2 Let RX(D) be the rate-distortion function for the memoryless wall process
X. The rate distortion function of the process V satisfies

(1 − 2pW )RX(D) ≤ RV (D) ≤ H(pW ) + (1 − 2pW )RX(D). (13)

Proof: The upper bound follows a constructive proof similar to the discussion prior to
Theorem 1. The lower bound is a consequence of Theorem 3.1 in [9] and the fact that
RV |W (D) = (1 − 2pW )RX(D), where RV |W (D) = limt→∞ RV t|W t(D), and RV t|W t(D)
is the conditional rate distortion function ([9], [4], Sec. 4.1). �

4 Information Rates for The Dynamic Reality
In the static model, the wall process X drawn at t = 0 did not change with time. To
develop a model for scenes that change over time, we model X as a 2-D random field
indexed by (n, t) ∈ Z × Z

+. A simple yet rich model for the field is that of a first
order Markov model over time. The random field is defined as follows:
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Definition 4 The random field is the field RF = {X
(t)
n : (n, t) ∈ Z × Z

+}, such that

(X
(0)
n : n ∈ Z) is i.i.d. and for each n ∈ Z, the process (X

(t)
n : t ∈ Z) is a first order

time-homogeneous Markov process.

The dynamic vector process V is defined similar to the static case, but now taking
snapshots or vectors from the random field:

Definition 5 Let RF = {X
(t)
n : (n, t) ∈ Z × Z

+} be a random field, and let W be a
random walk. The dynamic vector process is the process V = (Vt : t ∈ Z

+) such that
for each t > 0,

Vt = (X
(t)
Wt

, X
(t)
Wt+1, . . . , X

(t)
Wt+L−1).

The random field and the corresponding vector process are illustrated in Fig. 4.
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· · · · · ·
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Figure 4: A model for the dynamic reality. (a) It entails a random field that is Markov
in the time dimension t, and i.i.d. in the spatial dimension n. (b) Motion then occurs
within this random field.

Lossless Information Rates To derive bounds for H(V ) in the dynamic reality
case, we compute first the conditional entropy H(V |W ) := limt→∞ H(Vt|V

t−1,W t).
The key is to compute H(V t|W t = wt, V t−1) by splitting the set of paths into recurrent
and non-recurrent, and further splitting the set of recurrent paths according to (2).
Referring to Fig.4(b), let wt be a given path. Each Vt has L − 1 entries on the same
location as L − 1 entries from Vt−1. The remaining entry corresponds to either a
non-recurrent or a recurrent location depending on wt. If wt is non-recurrent, then
by the Markov property of the field, we have H(V t|W t = wt, V t−1) = H(X

(t)
0 ) +

(L − 1)H(X
(t)
0 |X

(t−1)
0 ). If a path is recurrent at t, then there is s < t such that

ws = wt but ws+1 6= wt, . . . , wt−1 6= wt. Using the Markov property again it follows

that H(V t|W t = wt, V t−1) = H(X
(t)
0 |X

(s)
0 ) + (L − 1)H(X

(t)
0 |X

(t−1)
0 ). Averaging over

all possible wt, and by letting t → ∞ using Lemma 1 (i) leads to:

H(V |W ) = H(X
(∞)
0 )(1 − 2pW ) + (L − 1)H(X

(1)
0 |X

(0)
0 ) +

∞
∑

i=1

H(X
(i)
0 |X

(0)
0 )Pr

{

T i
}

,

(14)
where Pr {T i} is the probability of return given in Lemma 1 (ii).

With the conditional entropy we can derive lower and upper bounds on the
entropy rate H(V ). The upper bound is obtained from the inequality H(V ) ≤
H(pW ) + H(V |W ). Because the process X changes at each step, W t cannot be
obtained from V t with probability 1 even in the continuous alphabet case. As a
result, we cannot use the event AL to obtain a lower bound as in the static case.
Because the development (9-11) is valid for the dynamic case, to obtain a lower
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bound we upper bound H(Wt|V
t,W t−1) using Fano’s inequality. Denote by Pe the

probability of error in estimating Wt based on observing Y := (Vt, Vt−1,Wt−1), i.e.,

Pe = Pr
{

Ŵt(Y ) 6= Wt

}

. Since W t−1 is known, estimating Wt amounts to estimating

the increment Nt = Wt − Wt−1. From Fano’s inequality, we have that

H(Wt|V
t,W t−1) ≤ H(Nt|Y ) ≤ H(Pe) + Pe log(1) = H(Pe). (15)

Consequently, a lower bound is obtained 2 by combining (9-10) with (15) above
and letting t → ∞. We arrive at the following:

Theorem 3 Consider the vector process V consisting of L-tuples generated by a
Bernoulli random walk with transition probability pW with pW ≤ 1/2, and the random

field RF = {X
(t)
n : (n, t) ∈ Z × Z

+} that is i.i.d. on the n dimension and first-order
Markov on the t dimension. The entropy rate of the process V obeys

H(pW ) − H(Pe) + H(V |W ) ≤ H(V ) ≤ H(pW ) + H(V |W ), (16)

where Pe is the probability of error in estimating Wt based on the observation of
(Vt, Vt−1,Wt−1), and H(V |W ) is as in (14).

Example 2 For each n, let X
(t)
n = ρX

(t−1)
n + ǫt for t ∈ Z

+, where ǫt ∼ N(0, 1 − ρ2)
i.i.d. and independent of X. Such a random field model is used for instance in [10]
for bit allocation over multiple frames. Let φ(σ2) denote the differential entropy of

a Gaussian density with variance σ2. It is then easy to check that h(X
(∞)
1 ) = φ(1),

and h(X
(i)
1 |X

(0)
1 ) = φ(1− ρ2i), so that we obtain an upper bound on the entropy rate

using Theorem 3. Notice that for L large and ρ close to 1, Pe and H(Pe) are small
so that the bound in Theorem 3 is tight.

Lossy Information Rates for the Gaussian AR(1) random field In the AR(1)
case of the previous example, it is possible to extend the upper bound to the lossy
information rate case. The key is to compute RV |W (D) and use the upper bound [9]:

RV (D) ≤ H(pW ) + RV |W (D). (17)

The conditional rate-distortion satisfies the Shannon lower bound (SLB) [4]:

RV |W (D) ≥ h(V |W ) − Lφ(D). (18)

The key observation is that for a given fixed trajectory wt, the rate-distortion function
of V t is that of a gaussian vector consisting of the samples of the random field covered
by W t. For a Gaussian vector, the SLB is tight when the distortion is less than the
minimum eigenvalue of the covariance matrix [4] pp. 111. The next proposition gives
a condition under which (18) is tight, and thus when combined with (17) provides an
upper bound on the rate-distortion function.

Proposition 1 Consider the vector process V resulting from the Gaussian AR(1)
random field with correlation coefficient 0 < ρ < 1, and a Bernoulli random walk with
probability pW ≤ 1/2. The Shannon Lower Bound for the conditional rate-distortion
function is tight whenever the distortion satisfies

0 < D <
1 − ρ

1 + ρ
. (19)

2Sharper lower bounds can be obtained by estimating Nt using (V t,W t−1). However, the estimate
using Y is easily computed and already leads to a sharp enough bound.
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Proof: The SLB for each t > 0 is given by

RV t|W t(D) ≥
h(V t|W t)

t
− Lφ(D). (20)

Because I(V t; V̂ t|W t) =
∑

wt Pr {wt} I(V t; V̂ t|wt), it suffices to show that for each
t > 0, and for 0 ≤ D ≤ 1−ρ

1+ρ
, the bound

I(V t; V̂ t|wt)

t
≥

h(V t|wt)

t
− Lφ(D), for E(d(V t, V̂ t)|wt) ≤ D

is achievable3. Given wt, the above bound is attainable if D is smaller than the
minimum eigenvalue of the covariance matrix of the random field samples covered
by wt. Denote this covariance by Cwt := Cov(V t|wt). Because the random field
is independent in the spatial dimension n, the spectrum of the covariance matrix
is the disjoint union of the spectra of the covariance matrices corresponding to the
random field samples of V t at similar location n. Each Cwt is a submatrix of the t× t
Toeplitz matrix Tt(ρ) with entries [Tt(ρ)]ij = ρ|i−j|. Since λmin(Tt(ρ)) decreases to
(1−ρ)/(1+ρ) as t → ∞ [11], by applying Theorem 4.3.15 in [12] pp. 189 we conclude
that

λmin(Cwt) ≥ λmin(Tt(ρ)) ≥
1 − ρ

1 + ρ
. (21)

Therefore, the bound (20) is achievable for each t and since the limit of RV t|W t(D)
exists it follows that the bound is achievable for t → ∞. �

Example 3 We simulate the AR(1) dynamic reality model. To compress the process
V t, we estimate the trajectory and send it as side information. With the trajectory
at hand, we encode the samples with DPCM, encoding the residual with entropy
constrained scalar quantization (ECSQ). We build two encoders. In the first one,
prediction is done utilizing only the previously encoded vector sample; in the second,
all encoded samples up to time t are available to the encoder (and decoder). Fig. 5
illustrates the SNR as a function of rate when the block-length L = 8. In Fig. 5
(a) and (b) we have ρ = 0.99 and the upper bound is valid for SNR greater than
23dB. Because the scene changes slowly and is highly recurrent, the infinite memory
encoder (M = ∞) is about 3.5dB better than when M = 1. The same behavior is
not observed when the scene is not recurrent (panning case, pW = 0.1, Fig. 5 (b) ),
and when the background changes too rapidly (ρ = 0.9, Fig. 5 (c)).

5 Conclusion
We have proposed a stochastic model for video that enables the precise computation
of information rates. For the static case, we provided lossless and lossy information
rate bounds that are tight in a number of interesting cases. The theoretical results
support the ubiquitous hybrid coding paradigm of extracting motion and coding a
motion compensated sequence. However, the use of DPCM to code such sequence
can be suboptimal.

We extended the model to account for changes in the background scene, and
computed bounds for the lossless and lossy information rates for the particular case of

3A simple argument can show that distortion allocation for each V t|wt is not needed when
D < (1 − ρ)/(1 + ρ). We omit this argument for lack of space.
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Figure 5: Performance of DPCM with motion. (a) Memory provide considerable
gains, pW = 0.5, ρ = 0.99. (b) Modest gains when pW = 0.1. (c) Modest gains when
ρ = 0.9, as background changes too rapidly.

AR(1) innovations. The bounds for this “dynamic reality” are tight in some scenarios,
namely when the background scene changes slowly with time (i.e. ρ close to 1).

The model explains precisely how long-term motion prediction helps coding in
both static and dynamic cases. In the dynamic model, this is related to the two
parameters (pW , ρ) that symbolizes the rate of recurrence in motion and the rate of
changes in the scene. As (pW , ρ) → (0.5, 1), long term memory predictions results in
significant improvements (in excess of 3.5dB). By contrast if either ρ is away from 1,
or pW is away from 0.5, long term memory brings very little improvements.

Although we developed the results for the Bernoulli random walk, the model
can be generalized to other random walks on Z and Z

2. Our current work includes
estimating ρ and pW for real video signals and fitting the model to such signals.
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