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Summary / Abstract 
 
This work deals with the kinematic conception and the mechanical design of ultra-high precision robots, which are at 
present costly to develop, both in time and money. The aim of this paper is thus to introduce a new modular concept of 
kinematics which allows to significantly reduce the time-to-market and a new double-stage flexure-based pivot. 
Regarding the modular concept of kinematics, this ‘robotic Lego’ consists in a finite number of building bricks allowing 
to rapidly design a high precision machine and to easily modify its mobility. The realised mock-up of a 4-DOF (De-
grees of Freedom) robot, transformable into a 5-DOF one, validates this concept and the mechanical design of its 
bricks. Flexure hinges are used to achieve the aimed sub-micrometer precision; however, existing flexure-based rotary 
joints are not able to fulfil the requirements of some applications, as they present a too low angular stroke and a para-
sitic motion of their centre of rotation. Thus, this paper also introduces a new double-stage pivot based on blades 
working in torsion; experiments performed on a prototype allow to validate its principle and the simulation model 
used for its development. 
 
 
1 Introduction 
The conception of robots capable of performing micro-
manipulation and micro-assembly tasks with a sub-
micrometer precision is becoming a crucial need as the 
current trend in numerous industrial domains is to minia-
turise products, mainly microelectronic, optic and bio-
medical devices [1]. The use of flexure-based mecha-
nisms is compulsory to achieve this precision; this paper 
thus introduces a new concept of modular kinematics 
to design ultra-high precision robots, as well as a new 
double-stage flexure-based pivot, which compensates 
for the limitations of existing rotary articulations.  
At the present time, the R&D process to design and build 
ultra-high precision machines is still highly costly, both in 
time and money. Therefore, methodologies of conception 
have been developed in order to reduce the time-to-
market, for example in [2]. However, if the requirements 
of the robot are modified due for instance to a change in 
the industrial production line, the whole design process 
has to be restarted from the beginning, which consists in a 
non-negligible loss of resources. Therefore, the main aim 
of this paper is to introduce a new modular concept of 
kinematics which allows to rapidly design a parallel 
robot and to modify only a small part of the whole 
kinematics to change its mobility. This approach can be 
compared to a robotic Lego, where a finite number of 
conceptual bricks can be chosen, inverted and assembled 
within a small amount of time to create the desired ma-
chine. In parallel with the conceptual aspects, the design 
of the building bricks is elaborated in order to achieve the 
aimed sub-micrometer precision, therefore making use of 
flexure hinges [3]. This paper details the realisation of a 

mock-up of a sub-micrometer precision 4-DOF (De-
gree of Freedom) robot, easily transformable into a 5-
DOF one. This allows to validate simultaneously the 
modular concept and the mechanical realisation of the 
bricks needed to build this kinematic solution. 
Although many flexure-based joints have already been 
designed, for example in [3], these existing solutions are 
not always able to fulfil the requirements of the applica-
tion; new high precision flexure-based articulations have 
thus to be developed in order to solve this issue. In par-
ticular, micromanipulation tasks cannot be effectively 
achieved using existing rotary joints, as they present too 
low angular strokes, as well as an upsetting parasitic dis-
placement of their centre of rotation. Thus, this paper also 
presents a new double-stage pivot based on blades 
working in torsion, which has been elaborated to make 
up for these limitations. Experiments performed on a 
scaled-up prototype are used to validate the principle of 
this articulation and the simulation model used for its 
optimisation. 
 
2 Concept of modular kinematics 

2.1 Theoretical aspects 
This new concept of modular kinematics consists in build-
ing a parallel robot composed of 1 to 3 kinematic chains, 
arranged orthogonally according to the faces of a cube. To 
do so, a finite number of conceptual bricks are used, 
namely the modules and the interfaces. The modules are 
active elements which motorise from 1 to 3 degrees of 
freedom, making use of linear actuators only. The rota-
tional movements are thus performed by the differential 
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motion of two linear motors of the same module; indeed, 
in order to preserve the modularity of the concept, the 
three kinematics chains are totally uncoupled, i.e. no dif-
ferential motion is performed between them. Moreover, 
the position of the actuators is fixed, thus providing a 
standardisation of the connexions. As for the interfaces, 
they are passive elements whose function is to link the 
output of the modules to the robot end-effector, which is 
located on a corner of the cube. This configuration allows 
several robots to work together in a small volume. Figure 
1 illustrates the modular concept. At the present time, the 
combination of 7 modules and 13 interfaces allow to per-
form any robot mobility. As a result, a solution catalogue 
has been elaborated; independently from any mechani-
cal realisation, it lists between 1 and 9 solutions for 
each possible DOF arrangement, therefore offering to 
the robot designer the opportunity to choose the most ap-
propriate one according to the specifications. 
 

 
Figure 1 Concept of modular kinematics 

2.2 Mechanical realisation of the bricks 
As aforementioned, the kinematic solutions of the concept 
are independent from any technical realisation; the second 
step of the conception process therefore consists in devel-
oping the mechanical design of the modules and inter-
faces. As this step needs to be done only once for each 
building brick, the concept also provides a mechanical 
solution catalogue, in which the robot designer can 
choose the best technical realisation for the considered 
module or interface. As a consequence, the development 
process of modular robots is significantly shortened, 
which constitutes a crucial advantage over more tradi-
tional conception procedures. It is also to note that al-
though this work focuses on ultra-high precision ma-
chines, the results of the concept can also be used to build 
machine-tools or any other type of industrial robots.  
In order to obtain a sub-micrometer resolution, the use of 
flexure hinges is compulsory; this type of joints, ma-
chined by Wire-EDM (Wire Electro-Discharge Machin-
ing), indeed presents the advantages of being without 
wear and backlash [3]. The flexure-based mechanical de-
sign of some modules and interfaces is detailed in the fol-
lowing paragraphs.  

2.2.1 T module 
As its name indicates, this module performs a single 
translation motion. The most straightforward flexure-
based design consists in a 4-hinge parallel table, detailed 
in [3]. Note that the simple hinges can be substituted with 
cross pivots in order to compensate for the loss of rigidity 
occurring as the translational stroke increases. Figure 2 
shows the mechanical principle of this module along with 
a flexure-based cross pivot described in [3]. 
 

Figure 2 Principle of the T module and cross pivot devel-
oped in [3] 

2.2.2 2T module 
This brick is an extension of the previous one, as it per-
forms two translations whose directions belong to the 
plane defined by the module. As the concept imposes that 
both actuators are oriented along the same direction, the 
solution consisting in using two aforementioned 4-hinge 
parallel tables is not adequate. Thus, the chosen mechani-
cal realisation makes use of a lever whose role is to 
change the direction of one linear motion. This princi-
ple has been developed in [4] and is illustrated in Figure 
3. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3 Principle of the 2T module 
 
2.2.3 T-R module 
This element performs a translation along an axis belong-
ing to the plane defined by the module, as well as a rota-
tion whose axis is orthogonal to this plane. The actuators 
also have to be oriented along the same direction; their 
synchronous motion performs the translation, whereas 
their differential action performs the rotation. Unlike the 
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addition, it has been shown that the concept offers a con-
venient way of rapidly modifying the mobility of the 
robot during or after the development process; it thus 
avoids restarting a whole procedure from scratch if the 
industrial needs were to change. 
The next step now consists in realising the real 4-DOF 
to 5-DOF robot by Wire-EDM; this will allow to char-
acterise its dynamical performances and will thus prove 
that they are at least similar to the ones of robots which 
are conceived with more traditional methods. Then, in or-
der to achieve an absolute precision of around 10 [nm], 
the calibration of the machine will be performed, mak-
ing use of the thermal and forces compensation procedure 
developed in [8].  
Then, this paper has also introduced a new double-stage 
flexure-based pivot, which has been developed in order 
to achieve a high angular stroke, as well as to avoid para-
sitic displacement of the centre of rotation. A scaled-up 
Wire-EDM machined prototype has been realised in 
aluminium, allowing to perform measurements of these 
two parameters; the results have validated the concept 
of this new pivot, as well as the simulation model used 
for its optimisation. 
The future work on this flexure-based articulation consists 
in optimising the double-stage version, in order to to-
tally compensate the axial displacement of the 1st stage 
output. Then, the control mechanism which guarantees 
that the stroke of the 1st stage is half the one of the 2nd 
stage will be designed. Lastly, a steel Wire-EDM real 
size pivot will be realised; its characterisation will allow 
to prove the principle of compensation of the parasitic 
motion. This articulation will then be integrated in the de-
sign of the interfaces of the concept of modular kinemat-
ics. 
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