
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, ZZZ 20WW 1

Geodesic Active Fields – A Geometric Framework
for Image Registration

Dominique Zosso∗, Student Member, IEEE, Xavier Bresson, Jean-Philippe Thiran, Senior Member, IEEE

Abstract—In this paper we present a novel geometric frame-
work called geodesic active fields for general image registration.
In image registration, one looks for the underlying deformation
field that best maps one image onto another. This is a classic
ill-posed inverse problem, which is usually solved by adding a
regularization term. Here, we propose a multiplicative coupling
between the registration term and the regularization term, which
turns out to be equivalent to embed the deformation field in
a weighted minimal surface problem. Then, the deformation
field is driven by a minimization flow toward a harmonic
map corresponding to the solution of the registration problem.
This proposed approach for registration shares close similarities
with the well-known geodesic active contours model in image
segmentation, where the segmentation term (the edge detector
function) is coupled with the regularization term (the length
functional) via multiplication as well. As a matter of fact, our
proposed geometric model is actually the exact mathematical
generalization to vector fields of the weighted length problem
for curves and surfaces introduced by Caselles-Kimmel-Sapiro
[1]. The energy of the deformation field is measured with the
Polyakov energy weighted by a suitable image distance, borrowed
from standard registration models. We investigate three different
weighting functions, the squared error and the approximated
absolute error for monomodal images, and the local joint entropy
for multimodal images. As compared to specialized state-of-the-
art methods tailored for specific applications, our geometric
framework involves important contributions. Firstly, our gen-
eral formulation for registration works on any parametrizable,
smooth and differentiable surface, including non-flat and multi-
scale images. In the latter case, multiscale images are registered
at all scales simultaneously, and the relations between space and
scale are intrinsically being accounted for. Secondly, this method
is, to the best of our knowledge, the first re-parametrization in-
variant registration method introduced in the literature. Thirdly,
the multiplicative coupling between the registration term, i.e.
local image discrepancy, and the regularization term naturally
results in a data-dependent tuning of the regularization strength.
Finally, by choosing the metric on the deformation field one can
freely interpolate between classic Gaussian and more interesting
anisotropic, TV-like regularization.

Index Terms—Biomedical image processing, Computational
geometry, Differential geometry, Diffusion equations, Image reg-
istration, Scale-spaces, Surfaces.
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Fig. 1. The skull of a human is registered to chimpanzee and baboon by
finding the deformation fields u(x) and u′(x), such that human features,
e.g. the mandible (shaded), at x match those of chimpanzee and baboon at
x + u(x) and x + u′(x). Skull sketches reproduced from [2]

IMAGE REGISTRATION is the concept of mapping ho-
mologous points of different images, representing a same

object. Homology, in turn, is defined as the relation between
“organs deriving from the same embryonic blanks”1. This
fundamental concept is illustrated in Fig. 1.

In practice, however, it is highly difficult to establish
homology in images strictly based on this definition. For
automatic image registration, it is therefore commonplace
to substitute homology by a measurable criterion of image
dissimilarity, which is to be minimized. Depending on the
nature of the images to be registered, different metrics are used
to assess image distances. But also the deformation model and
constraints that are applied on that deformation field can vary,
as well as the optimization technique that is used to solve the
minimization [3]–[6].

Let a deformation field u(x) : x ∈ Ω ⊂ Rn →
(u1, . . . , up) ∈ Rp describe the spatial displacement along
p ≤ n dimensions of an n-dimensional image of support
Ω. The determination of this underlying deformation field
between two images is an ill-posed inverse problem, requiring
additional prior knowledge to make it well-posed. On one
hand, parametric deformation models, including rigid and
affine transformations, which are defined globally for the

1Homologue:“sont homologues les organes dérivant des mêmes ébauches
embryonnaires”. Le trésor de la langue française informatisé.
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whole image space, restrict the degrees of freedom to a
small number of parameters. On the other hand, freeform
deformations allow for an individual local displacement of
each point in the image domain. To restrict such deformation
fields to what is believed to be “physically meaningful”
deformations, constraints on the field regularity are introduced.
Typical regularization constraints reduce the variations of the
deformation field u(x) by defining an additional penalty, e.g.,
the vectorial total variation functional [7]:∫

Ω

|∇u(x)|dx =
∫

Ω

√√√√ p∑
k=1

|∇uk|2dx. (1)

Thus, image distance metric and regularization penalty are
commonly incorporated into a single energy minimization
model, a.k.a. variational model, e.g., [8]. The energy func-
tionals are commonly of the general form

E = Edata + r · Eregularization, r > 0. (2)

As a typical instance consider an energy functional consisting
of the L2-norm of the difference between the fixed and
the moving image, F,M : Ω → R, regularized by the
aforementioned vectorial total variation:

E =
∫

Ω

(M(x + u)− F (x))2 dx + r ·
∫

Ω

|∇u(x)|dx. (3)

The balancing parameter r can have a severe impact on the
registration result. Its choice is arbitrary and the optimal
depends on several conditions.

In their seminal work [9], Sochen, Kimmel and Malladi
introduced the powerful Beltrami framework for image denois-
ing and enhancement. This model is based on the Polyakov
model [10] introduced in string theory for physics. The
Polyakov model represents strings as harmonic maps in high-
dimensional and curved spaces defined by Riemannian man-
ifolds. Adopting this pure geometric point of view amounts
to seeing objects such as images, shapes, or vector fields as
geodesics or harmonic maps. Recently, a new regularization
criterion derived from the Beltrami framework was introduced
in stereo vision and optical flow modeling [11]–[13]. There,
the authors embed the disparity map or the optical flow
field, respectively, as harmonic map, and propose to use the
Polyakov energy as the regularization term, while keeping the
classical additive data terms.

In some registration problems, separate objects (Gestalts)
in the images are displaced and deformed independently. This
is illustrated by a study on the individual movements of
separate parts between slices of histological samples, where
regularization has been delimited by explicitly modeled bound-
aries [14]. Other examples can be found in computer vision,
where the optical flow often exhibits piece-wise constant
or piece-wise smooth regions, with distinct boundaries [15].
Geometric regularization offers some nice advantages in this
respect. The first, flow-driven, TV-like regularizer of [13]
intrinsically allows for sharper transitions and isolated regions.
Further, there are cases where boundaries in images – in
terms of intensities or even texture – are good predictors of
deformation field boundaries [16]. In [13], the authors present

a second, combined flow-intensity driven regularizer, where
image intensity is embedded in the manifold along with the
deformation field. Hence, this additional cue increases the
geodesic distance between independent homogeneous Gestalts
and helps defining sharp deformation field boundaries between
them.

Data-dependent regularization has also become important
when dealing with outlier pixels. In rigid registration, the
influence of mismatching regions can be drastically reduced by
cropping the image distance function, e.g., by using Tukey’s
biweight instead of squared error as an instance of robust
statistics [17]. In non-rigid registration, one can estimate a
local measure of image data reliability to spatially adapt the
strength of regularization [18], while in atlas-based registration
this information can equally be derived from atlas statistics.

The goal of this work is to define a novel image reg-
istration scheme using a geometric approach. We couple
the registration term and the regularization term locally, by
multiplication. Hence, we embed the deformation field in a
higher dimensional space and define a variational model using
the weighted Polyakov energy. While the Polyakov energy
itself only provides a regularity constraint – harmonic map –,
the weighting allows driving the deformation field toward low
image dissimilarity. This is in close analogy to geodesic active
contours in segmentation [1], where the segmentation term, i.e.
the edge detector function, is coupled with the regularizing
length function through multiplication as well. Because our
model actually represents a mathematical generalization to
vector fields of the weighted length problem for curves and
surfaces, we call this model geodesic active fields (GAF) for
image registration.

As will become clearer in the next sections, the GAF
framework has several appealing properties. The proposed
approach directly generalizes to non-Euclidean images, and
thus automatically allows working, e.g., with non-flat or
multiscale images. In particular, we will instantiate a model
for the simultaneous registration of multiscale images at all
scales, where the metric on the deformation field automati-
cally takes care of the specific relations between space and
scale. Also, we will show that the geometric GAF energy
formulation has the advantage of being invariant with respect
to the parametrization of the image domain. To the best of
our knowledge, this is the first registration method invariant
by re-parametrization. Further, thanks to the Beltrami-like
embedding of the deformation field we can benefit of all
advantages of geometric regularization, including the freedom
to choose the desired degree of anisotropy. Last but not least,
the multiplicative link between data and regularization term
represents an automatic data-dependent modulation of the
local regularization strength by the current alignment quality.
The weighting function increases regularization in regions
where low matching quality indicates missing confidence, e.g.,
due to a higher level of noise, whereas lower regularity is
required in regions where a good fit can be provided.

The structure of this paper is as follows. The next section
will introduce the mathematical tools that build the foundation
of the GAF framework. We will recall the Polyakov energy
employed in the Beltrami framework and its weighted version
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used in GAF, as well as the corresponding minimizing flows.
In section III we show how the weighted Polyakov framework
can be used to define an abstract geometric image registration
model. We then derive from this general image registration
model several instances for stereo vision as well as flat and
non-flat 2D image registration in section IV. Then, in section
V, we instantiate an extension of the framework to multiscale
image registration. Section VI studies different weighting
functions. Finally, we show some illustrative, preliminary
results obtained with our geodesic active fields framework in
section VII and we discuss our model in section VIII.

II. WEIGHTED POLYAKOV ENERGY

Sochen, Kimmel and Malladi introduced in [19] and [9]
a general geometrical framework for low-level vision, based
on an energy functional defined by Polyakov in [10]. In
this framework which is widely used for image restoration,
anisotropic smoothing and scale-spaces, images are seen as
surfaces or hypersurfaces embedded in higher dimensional
spaces.

A. Beltrami framework

An n-dimensional manifold Σ with coordinates σ1...n is
embedded in an m-dimensional manifold M with coordinates
X1...m, with m > n. The embedding map X : Σ 7→ M
is given by m functions of n variables. For example, a 2D
gray-level image can be seen as a surface embedded in 3D:
X : (x, y) → (x, y, I), where I = I(x, y) corresponds to the
gray-level intensities of the image. A Riemannian structure can
be introduced: the metric gµν locally measures the distances
on Σ, whereas on M distances are measured using hij .

To measure the weight of the mapping X : Σ 7→M , Sochen
et al. [9] use the Polyakov energy, known from high energy
physics [10], as a natural generalization of the L2-norm on
the embedded image to manifolds:

S[Xi, gµν , hij ] =
∫
√
ggµν∂µX

i∂νX
jhijdnσ, (4)

where the Einstein summation convention is used, g is the
determinant of the image metric tensor, and gµν is its inverse,
such that gµνgνγ = δµγ (δµγ is the Kronecker delta). Naturally,
the metric g is chosen as the induced metric, obtained by the
pullback-relation: gµν = hij∂µX

i∂νX
j . Under such a metric,

the Polyakov energy shortens to:

S =
∫
√
gdnσ, (5)

and represents the area of the embedded image surface.
Using the Euler-Lagrange equation technique from calculus
of variations, the following minimizing flow is obtained:

∂tX
i =

1
√
g
∂µ
(√
ggµν∂νX

i
)

+ Γijk∂µX
j∂νX

kgµν , (6)

where the Levi-Civita connection Γijk, also called the Christof-
fel symbol, is defined as

Γijk =
1
2
hil (∂jhkl + ∂khjl − ∂lhjk) . (7)

Assuming the embedding is in a Euclidean space with Carte-
sian coordinates, the Christoffel symbols are all equal to zero,
and the corresponding gradient descent equation is

∂tX
i = − 1

√
g

δS

δXi
=

1
√
g
∂µ(
√
ggµν∂νX

i) ≡ Hi, (8)

known as the Beltrami flow, where Hi denotes the i-th
component of the mean curvature vector of the manifold.

A remarkable property of the Beltrami framework is the
freedom to choose the metric of the embedding space. For
example, let us embed a 2D gray-level image in 3D, using the
following metric tensor:

hij = diag(1, 1, β2), (9)

where β > 0 is a constant. This allows to set the scale of
the feature dimension independently of the spatial dimensions.
The pullback relation yields the metric tensor gµν :

gµν =
[

1 + β2I2
x β2IxIy

β2IxIy 1 + β2I2
y

]
. (10)

Its determinant is given by g = 1 + β2|∇I|2. Thus, the
Polyakov energy of the embedding reads:

S =
∫ √

1 + β2|∇I|2dnσ. (11)

If β → ∞, the 1 in this energy becomes negligible, and
the energy approaches the TV-norm, well-known in image
denoising [20], [21]. If, however, β → 0, then the minimizing
flow approaches the isotropic heat diffusion [9]. The impact of
β on the apparent feature amplitudes of an embedded scalar
field is illustrated in Fig. 2(a).

Moreover, the features being considered within the Beltrami
framework are not restricted to scalar values only, but gener-
alize directly to any vector value. For explicit applications of
the framework to denoising of color images and textures, we
refer the reader to [22]. For a review of the framework over
a variety of manifolds and data structures, see [23].

B. Weighted Polyakov energy

Here, we present a weighted version of the Polyakov energy
which will be used to define our registration model. In [24]
the Polyakov energy was tuned by a weighting function f :

Sf =
∫
f
√
gdnσ, (12)

where f = f(Xi, gµν , hij). In [24], the weighting function
represents an edge-detector, that attracts an evolving contour
to the edges in an image so as to segment it. In the GAF
framework, the weighting function is an image discrepancy
measure, that attracts the deformation field toward well aligned
configurations, as will be seen shortly.

Still assuming the embedding is in a Euclidean space with
Cartesian coordinates, i.e., hij is diagonal and constant, the
corresponding gradient descent equation is

∂tX
i = fHi + ∂kfg

µν∂µX
k∂νX

i − m · n
2

∂kfh
ki, (13)

where fHi corresponds to a weighted mean curvature flow on
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(a)

(b)

Fig. 2. (a) Beltrami framework: A gray-level image is embedded in 3D
according to X : (x, y) → (x, y, I). The apparent effect of the aspect ratio
β is illustrated as a relative scaling of the surface variations with respect to the
spatial dimensions x and y. Minimizing the Polyakov energy smoothens the
image, where β interpolates between total variation and Gaussian smoothing.
(b) Geodesic active fields framework: The scalar deformation field (lateral shift
u along x) of a planar image is embedded in R3. Formally, the embedding
writes X : (x, y) → (x, y, u). The arrows illustrate the corresponding
deformation field in the image plane. The Polyakov energy measures the area
of the embedded surface, and is a measure of regularity of the deformation
field. Weighting of the energy allows driving the minimization toward the
optimal registration result.

manifolds.

III. GEODESIC ACTIVE FIELDS

In this section we define the general evolution equation for
the geodesic active fields for image registration. In contrast
to the Beltrami framework for image denoising, we do not
embed images, but the deformation field that relates the image
pair to be registered. The deformation field is embedded as
a mapping between the n-dimensional image domain and
a m-dimensional space, where m > n. This is achieved
by letting the components of the deformation field become
additional dimensions of the embedding space. A very simple
such embedding is illustrated in Fig. 2(b). We will then define
metric tensors on the deformation field and the corresponding
GAF energy to be minimized. The embedded deformation field
manifold then evolves toward a weighted minimal surface,
where the weighting function attracts it to a deformation field
that brings the two images into registration.

In the most general form, we register a pair of n-
dimensional images defined on a Riemannian domain Ω with
coordinates x = (x1, . . . , xn). The deformation field acts

along p ≤ n dimensions, i.e., u : Ω 7→ Rp,u(x) =
(u1(x), . . . , up(x)).

The embedding X and the metric tensors hij and gµν on
the deformation field are chosen as follows: X : (x1, . . . , xn)→ (x1, . . . , xn, u1, . . . , up)

hij is arbitrary
gµν = ∂µX

i∂νX
jhij ,

(14)

where x1, . . . , xn denote the spatial components of the image
and u1, . . . , up are the components of the dense deformation
field. These equations are introduced in the weighted Polyakov
functional (12) and its minimization flow (13), leading to
the following general registration energy functional and the
minimizing evolution flow of the geodesic active fields (GAF): EGAF =

∫
f
√
g

n∏
i=1

dxi

∂tui = fHn+i + ∂kfg
µν∂µX

k∂νui − m·n
2 ∂kfh

k(n+i), 1 ≤ i ≤ p,
(15)

where the weighting function f = f(x,u) is arbitrary for now,
and will be defined in more detail in section VI.

The main contributions of this framework are:
1) The freedom to register images on any Riemannian

manifold, i.e., on any smooth and parametrized surface.
This will be developed further in sections IV and V.

2) The invariance under re-parametrization of the proposed
energy, like the GAC energy [1] for the segmentation
problem.

3) The freedom to choose the metric hij in the embedding
space to obtain different regularizing behavior, as known
from the versatility of the Beltrami framework.

4) The intrinsic data-dependent modulation of the local reg-
ularization strength thanks to the multiplicative weight-
ing.

In image registration, the property of parametrization in-
variance is a very rare, but actually highly desirable property.
Indeed, there is no reason why the chosen parametrization
of the image domain should influence the outcome of the
registration process. And yet, many currently used image
registration methods lack this important invariance property.

The relevance of the contributions one and two can be
clarified with the example of catadioptric images illustrated
in Fig. 3. Such images are widely used in omnidirectional
vision and robot navigation, for example, where ego-motion
and position can be derived from a sequence of images,
e.g. [25]–[27]. Because standard image registration methods
ignore the paraboloid geometry of the actual image, they
agnostically work on either one of the flat parametrized image
versions. As can be clearly seen, there are important distortions
between the raw, disc representation on the one hand, and the
polar panorama view on the other hand, in Fig. 3a) and b),
respectively. Obviously, a simple energy like mean squared
error, employed in many standard methods, such as the popular
Demons algorithm [28], fails to be re-parametrization invariant
on those images,∫

(M − F )2dxdy 6=
∫

(M − F )2dφdr, (16)

and the registration result depends on the selected parametriza-
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(a) (x, y) (b) (φ, r) (c) P 2

Fig. 3. Omnidirectional bunny image obtained from a catadioptric sys-
tem [29]. (a) Flat 2D raw image obtained from the camera, in Carte-
sian parametrization. (b) Panoramic representation, obtained by polar re-
parametrization of the raw disc. (c) Mapping of the bunny on the parabolic
manifold, P 2 = (r cosφ, r sinφ, r2), corresponding to the focal projection
of the catadioptric system. Classical registration of images of this type with
standard methods will produce different results for the disc and panorama
parametrizations. The GAF energy uses a metric corresponding to the actual
image geometry and is therefore invariant to the chosen parametrization.

tion. In contrast, with the GAF energy, a metric tensor hij is
derived from the actual image geometry, like the paraboloid
in Fig. 3c), and the registration result becomes independent of
the chosen image representation.

IV. STEREO VISION AND IMAGE REGISTRATION

In the previous section, we have defined the general, abstract
energy of GAF and its corresponding gradient descent flow. In
the following paragraphs, we instantiate this general concept
for specific applications, namely stereo vision and 2D image
registration in the Euclidean case, as well as image registration
on non-flat manifolds. In other words, we will define specific
image geometries and deformation field embeddings, derive
the corresponding metric tensors, and thus concretize the
GAF energy and its flow. The weighting function f , however,
remains unspecified and will be described in detail only later,
in section VI.

A. The general Euclidean case

Let us first consider the case of n-dimensional images
defined on well-known Euclidean domains Ω with Cartesian
coordinates x = (x1, . . . , xn). We look for a deformation field
acting along p ≤ n dimensions.

The embedding X of the deformation field, and the corre-
sponding metric tensors hij and gµν are chosen as follows:

X : (x1, . . . , xn)→ (x1, . . . , xn, u1, . . . , up)
hij = diag(1, . . . , 1︸ ︷︷ ︸

n

, β2, . . . , β2︸ ︷︷ ︸
p

)

gµν = ∂µX
i∂νX

jhij = δµν + β2
p∑
i=1

∂µui∂νui,

(17)

where β is the scaling factor applied to the deformation field
components to get the desired aspect ratio. In analogy to
the Beltrami framework, this parameter interpolates between
isotropic Gaussian, and anisotropic TV-like smoothing of the
deformation field. Now, the general Euclidean registration
energy functional and the minimizing evolution flow, obtained
by plugging the above choice into (15), take the following

form: EGAF =
∫
f
√
g

n∏
i=1

dxi

∂tui = fHn+i + ∂kfg
µν∂µX

k∂νui − m·n
2β2 fui

, 1 ≤ i ≤ p.
(18)

B. Stereo vision

Simply put, in stereo vision the depth information corre-
sponding to a location is encoded as the lateral shift between
its representation in two adjacent image acquisitions [30].
The recovered depth information is used in e.g. satellite
imaging or robot vision to reconstruct the observed scene.
The lateral shift can be determined by registration of the two
images, where only lateral deformation is allowed. That is,
the deformation field has only one component, along the x-
dimension. We choose the following embedding and metric
tensors, corresponding to the illustration in Fig. 2b):

X : (x, y)→ (x, y, u)
hij = diag(1, 1, β2)

gµν =
[

1 + β2u2
x β2uxuy

β2uxuy 1 + β2u2
y

]
, g = 1 + β2|∇u|2.

(19)
Introducing those equations into (15), we get the following
energy functional and evolution equation:{

EGAF =
∫
f
√

1 + β2|∇u|2dxdy
∂tu = fHu + ∂kfg

µν∂µX
k∂νu− 3

β2 fu,
(20)

where Hu is simply the 3rd component of the mean curvature
vector:

Hu =
g11uyy − 2 · g12uxy + g22uxx

g2
. (21)

C. 2-D image registration

In the case of registration, involving deformations along all
image dimensions, one has p = n and m = 2n. Here, as an
example without loss of generality, we consider the registration
of 2D images. The deformation field is described by u and v,
resp. along x and y:

(u, v) : (x, y) ∈ Ω 7→ (u, v) = (u(x, y), v(x, y)) ∈ R2. (22)

We choose the following embedding and metric tensors:
X : (x, y)→ (x, y, u, v)
hij = diag(1, 1, β2, β2)

gµν =
[

1 + β2(u2
x + v2

x) β2(uxuy + vxvy)
β2(uxuy + vxvy) 1 + β2(u2

y + v2
y)

]
g = 1 + β2(|∇u|2 + |∇v|2) + β4(∇u,∇v)2,

(23)

where (∇u,∇v) = uxvy − uyvx is defined as the magnitude
of the cross product of the gradient vectors ∇u and ∇v. The
expression of the determinant g has become quite cumber-
some. The term β4(∇u,∇v)2 measures the misalignment of
the gradients between different deformation field components
[22]. All these settings put into the general equations produce
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the following energy functional and minimizing flow:
EGAF =

∫
f
√

1 + β2(|∇u|2 + |∇v|2) + β4(∇u,∇v)2dxdy
∂tu = fHu + ∂kfg

µν∂µX
k∂νu− 4

β2 fu
∂tv = fHv + ∂kfg

µν∂µX
k∂νv − 4

β2 fv.
(24)

D. Registration on non-flat manifolds

One of the main contributions of the proposed framework
is that the image domain does not necessarily have to be Eu-
clidean. Indeed, images to be registered can be defined on any
Riemannian manifold, i.e., on any smooth and parametrized
surface. In the Euclidean case, the spatial coordinates were
directly given by the image domain parameters. In the non-
Euclidean case, the spatial coordinates of the image are more
complicated functions of the domain parameters instead.

To give a basic example, that will be illustrated in section
VII, consider a spherical patch S described by two angles, θ
and φ, on which the images are defined:

S : (θ, φ) ∈ Ω ⊂ R2 → (x, y, z) ∈ R3

Ω = [θmin, θmax]× [φmin, φmax]
0 < θmin < θmax < π, 0 ≤ φmin < φmax < 2π
x(θ, φ) = sin θ cosφ
y(θ, φ) = sin θ sinφ
z(θ, φ) = cos θ

(25)

The induced metric on S is naturally given by
gS = diag(1, sin2 θ). Further, let the deformation field
(ϑ(θ, φ), ϕ(θ, φ)) act on the two angles describing the patch.
This suggests the following embedding:{

X : (θ, φ) ∈ Ω ⊂ R2 → (θ, φ, ϑ, ϕ) ∈ R4

hij = diag(gS , β2gS) = diag(1, sin2 θ, β2, β2 sin2 θ)
(26)

where the metric tensor hij has been set by taking the induced
metric gS of the patch parametrization into account. The
pullback relation yields the following metric tensor gµν in
parameter space:

gµν =
[

1 0
0 sin2 θ

]
+β2

[
ϑ2
θ + sin2 θϕ2

θ ϑθϑφ + sin2 θϕθϕφ
ϑθϑφ + sin2 θϕθϕφ ϑ2

φ + sin2 θϕ2
φ

]
.

(27)
Given this metric tensor hij , the embedding space is not Eu-
clidean anymore, and the computation of the mean curvature
vector involves the Levi-Civita connection as in (6), to account
for the Riemannian part.

For the spherical patch, only two relevant Christoffel sym-
bols computed by (7) differ from zero:

Γϕjk =


cot θ j =̂ ϕ, k =̂ θ,

cot θ j =̂ θ, k =̂ ϕ,

0 otherwise,
(28)

and Γϑjk = 0 ∀j, k, where, with some abuse of notation,
j =̂ ϕ denotes the one j corresponding to the parameter ϕ,
and consequently Γϕjk = Γijk|ib=ϕ. This gives the following

evolution equations for the deformation field:
∂tϑ = fHϑ + ∂kfg

µν∂µX
k∂νϑ− 4

β2 fϑ,

∂tϕ = fHϕ + ∂kfg
µν∂µX

k∂νϕ− 4
β2 sin2 θ

fϕ,

Hϑ = 1√
g∂µ

(√
ggµν∂νϑ

)
,

Hϕ = 1√
g∂µ

(√
ggµν∂νϕ

)
+ 2 cot θ(gθθϕθ + gθφϕφ),

(29)
where gθθ = gµν |µb=θ,νb=θ, and gθφ = gµν |µb=θ,νb=φ.

V. MULTISCALE IMAGE REGISTRATION

A. Motivation

It is today commonly accepted, that the scale at which one
measures a certain property becomes an additional dimen-
sion of the imaging space. Images are naturally composed
of objects which are meaningful only at certain scales of
observation [31], [32]. This has given rise to Witkin’s patented
notion of a scale-space [33]. Witkin introduced the concept
of artificially generating larger (coarser) scales of an image
through low-pass filtering.

Scale-spaces have particular importance in the context of
image registration. As an example, let us consider the human
brain. It exhibits a highly convoluted and irregular structure,
with high complexity and variability. For example, sulci and
gyri vary a lot between subjects. On the other hand, high
level structures of the brain – the “big picture” – are highly
conserved, such as the two hemispheres, the lobes and main
folds. Hence, a hierarchical representation of these structures
is important in the context of inter-subject registration: consid-
ering the complexity of the cortical surface, directly involving
local small-scale features would mislead the registration to
be trapped in bad local minima. A robust method needs to
rely on large-scale features, describing the main landmarks of
the cortex, such as the main gyri or sulci, while small-scale
features drive the registration more locally to reach the desired
precision [34].

The most intuitive and commonly used approach to multi-
scale image registration consists of repeated, hierarchical
registration at single scales – from coarse to fine. The result
of one stage is used as initialization for the next finer scale.
This pyramidal approach has reasonable computational load,
but the link between scales is relatively weak, however, and
unidirectional: information is only relayed from coarse to fine.
Here, we propose a method of registering pairs of entire scale-
spaces. All scales are registered simultaneously, thus allowing
for bidirectional communication between scales.

The geometry of a large class of scale-spaces can be defined
by a general metric tensor [35]:

hij = diag

 1
c2
, . . . ,

1
c2︸ ︷︷ ︸

n times

,
1

c2ρ2

 , (30)

where the first n elements of the diagonal correspond to the
spatial dimensions x1, . . . , xn, and the last element refers to
the scale σ. c and ρ are two functions that represent the
conductance and the density in the general model of heat
transfer. The spatial derivative within such a scale-space is
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(a) (b) (c) (d)
Fig. 4. (a)–(b) Linear and Beltrami scale-spaces of the Von Koch snowflake.
The scale σ increases linearly from bottom to top of the image stack, thus
constituting an additional image dimension. (c)–(d) Multiscale representation
of a T1-weighted magnetic resonance image of a human brain, in a linear and
Beltrami scale-space.

now obtained as c∇, whereas the scale derivative is given by
ρc∂σ . The natural heat equation, that defines the scale-space,
is:

∂σI =
1
ρ
∇ · (c∇I). (31)

Different choices for c and ρ yield different well-known scale-
spaces. The linear scale-space, e.g., corresponds to c = σ
and ρ = 1: ∂σI = σ∆I . The Perona-Malik scale-space is
reproduced with ρ = 1 and c = exp(−α|∇I|2), α > 0 [36].
The Beltrami flow of Sochen-Kimmel-Malladi requires c =
ρ = 1√

1+β2|∇I|2
[9], [19]. The linear and the Beltrami scale-

space are illustrated at the example of the fractal image of a
Von Koch snowflake, and a single slice of a T1-weighted brain
MR image in Fig. 4.

B. Multiscale active deformation fields

Multiscale images have an additional image dimension: the
scale σ. Along this scale-dimension, no deformation takes
place. The multiscale deformation field is embedded as fol-
lows:

X : (x1, . . . , xn, σ)→ (x1, . . . , xn, σ, u1, . . . , un)
hij = diag( 1

c2 , . . . ,
1
c2 ,

1
c2ρ2 ,

β2

c2 , . . . ,
β2

c2 )
gµν = ∂µX

i∂νX
jhij ,

(32)

where the structure of the metric tensor hij is arbitrary, and
inspired by (30).

Considering a linear scale-space, i.e., c = σ and ρ = 1, the
embedding thus looks like:

X : (x1, . . . , xn, σ)→ (x1, . . . , xn, σ, u1, . . . , un)
hij = 1

σ2 diag(1, . . . , 1, 1, β2, . . . , β2)

gµν = ∂µX
i∂νX

jhij = 1
σ2

(
δµν + β2

n∑
i=1

∂µui∂νui

)
.

(33)
Again, as for non-flat image domains, the multiscale em-

bedding is not Euclidean, and the Levi-Civita connection (7)
is required to compute the complete mean curvature vector
according to (6).

Note, that the deformation field u = u(x, σ) evolves at
all scales simultaneously. At each scale, the deformation field
is attracted by the corresponding data term, while coherence

between scales is obtained thanks to the regularizing power of
harmonic maps.

C. Multiscale 2-D image registration

In the case of 2D images to be registered, the only relevant
non-zero Christoffel symbols computed as (7) are Γuuσ =
Γuσu = Γvvσ = Γvσv = − 1

σ . The evolution equations for both
components (u, v) of the deformation field along (x, y) are

∂tu = fHu + ∂kfg
µν∂µX

k∂νu− 15σ2

2β2 fu

∂tv = fHv + ∂kfg
µν∂µX

k∂νv − 15σ2

2β2 fv
Hu = 1√

g∂µ
(√
ggµν∂νu

)
− 2

σ∂µug
µσ

Hv = 1√
g∂µ

(√
ggµν∂νv

)
− 2

σ∂µvg
µσ

, (34)

where, with some abuse of notation, gµσ denotes the column
ν of the inverse of the metric tensor gµν corresponding to the
scale σ.

VI. WHAT CHOICE OF WEIGHTING FUNCTION FOR THE
REGISTRATION PROBLEM?

The purpose of the weighting function f is to drive the
deformation field toward minimal surfaces that bring the two
images into registration. As such, the flow should stop when
the deformed image perfectly matches the target image. Hence,
the weighting function is naturally chosen to be an image
distance metric, which approaches zero when the two images
match.

A. Deformation model

The weighting function is the place, where the deformation
field actually gets to act on the images. Therefore, it is crucial
to define the particular deformation model we want to use.
First, we work with Euler coordinates. That is, for any pixel
in the fixed imaged, the corresponding pixel is looked up in the
moving image using a coordinate mapping. The corresponding
location in the moving image will almost never fall on an exact
pixel location and interpolation will be required.

Here, we use a very simple scheme, where the look-up is
based on a shift by addition. The transform operator T is thus
defined as:

T0 : T0x = x + u(x), (35)

where addition is implicitly understood only along the p ≤ n
dimensions of the image that are deformed. Also, for simplic-
ity we shall ignore any boundary issues and finite support.

This very basic deformation model embodies only a re-
stricted set of properties. By definition, the displacement needs
to be at least twice differentiable, otherwise the Riemannian
manifold cannot be constructed and mean curvature cannot
be computed. Other than that, no further guarantees exist: the
deformation is not necessarily invertible as nothing explicitly
prevents the Jacobian to become negative. Further, it is not
enforced to be surjective (onto), and homeomorphism or even
diffeomorphism are not guaranteed properties. It is important
to realize, however, that this is a restriction of the employed
deformation model and not of the GAF framework as a whole.
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More sophisticated deformation models can be used to obtain
these properties.

Very recently, Vercauteren et al. introduced exponential map
diffeomorphisms in the Demons framework [37]. There, at
each iteration one looks for an infinitesimally small update ds
to s = 0, that is applied through composition of its exponential
map with the existing diffeomorphic deformation.

We have integrated this more complicated deformation field
model into our GAF framework as well. However, diffeomor-
phisms are beyond the scope of this article and the details of
this specific GAF version will be published separately. In the
mean time, the reader may refer to [38].

Once the deformation model has been defined, correspond-
ing fixed an moving image locations can be mapped, and
the matching quality can be quantified using one of several
distance metrics, of which we present some in the following
paragraphs.

B. Squared error

If the images have been acquired using similar sensors, one
can generally assume that the same entities are pictured at the
same feature intensity in both images. An intuitive and simple
choice for monomodal image registration subject to additive
Gaussian noise is the squared error metric [39]:

f (1)T0(x,u) = (M(T0x)− F (x))2 = (M(x + u(x))− F (x))2
,

(36)
where F and M refer to the fix and moving images respec-
tively. The evolution equation (15) includes the partial deriva-
tives of the weighting function with respect to all components
of the embedding. For the function given in (36), these are
obtained as follows:{

f
(1)T0
x = 2 · (M(T0x)− F (x)) ·

(
JT∇M(T0x)−∇F (x)

)
f

(1)T0
u = 2 · (M(T0x)− F (x)) · ∇M(T0x)

(37)
where ∇F and ∇M refer to the gradients of the fix and mov-
ing images, respectively, and where JT denotes the transpose
of the Jacobian of the deformed field:

Jij = δij +
∂ui
∂xj

. (38)

C. Local joint entropy

If images of different modality are to be registered, the
above squared error metric is not a suitable distance metric
anymore. Instead, mutual information is a commonly accepted
similarity criterion in this case [40]–[42].

Mutual information is a global measure on the joint (pfm)
and marginal (pf and pm) histograms of the fixed and moving
images:

MI =
∑
i1,i2

pfm ln(pfm)−
∑
i1

pf ln(pf )−
∑
i2

pm ln(pm),

(39)
where pfm = pfm(i1, i2) etc. Let us assume, that the marginal
entropies remain constant throughout the whole registration
process, as they only depend on the fix and moving image

separately. Maximizing mutual information is thus equal to
minimizing the joint entropy.

The same joint entropy, i.e., the expectation of the negative
logarithm of the joint probability, can also be computed in the
image domain, instead of using the above histograms [43]:

Hfm = −
∑
i1,i2

pfm ln(pfm) =
1
|Ω|
∑
x

− ln(pfm), (40)

where pfm = pfm(F (x),M(x + u)). The negative logarithm
denotes the local joint entropy. This local joint entropy has a
minimum value of 0 (if the joint probability matches 1), and
is unbound positive. This provides us with a local measure
that corresponds well to the weighting function criteria stated
above.

Consequently, we define the following information theory
based weighting function for multi-modal image registration:

f (2)T0(x,u) = − ln(pfm(F (x),M(T0x))). (41)

Using this weighting function, the goodness of a local align-
ment is measured by the frequency of similar intensity pairs
in the rest of the image.

The partial derivatives along spatial components f (2)
x are

easily estimated numerically. The partial derivatives along
deformation field components are obtained using the chain
rule:

f (2)T0
u = −p

fm
m (F (x),M(T0x))
pfm(F (x),M(T0x))

· ∇M(T0x), (42)

where pfmm (i1, i2) is the partial derivative of the histogram
along the dimension corresponding to the moving image.

D. Absolute error

For non-smooth deformation fields, e.g., observed in opti-
cal flow-based image registration, the L1-norm may perform
better as data term [44]. The L1-norm measures the absolute
error between the two images,

f (3)T0(x,u) = |M(T0x)− F (x)| , (43)

and it can be approximated by a differentiable function:

f (3)T0(x,u) =
√

(M(T0x)− F (x))2 + ε2, (44)

where 1� ε > 0. The partial derivatives of the approximated
function are obtained easily:{

f
(3)T0
x = (M(T0x)−F (x))

f(3)T0 (x,u)
·
(
JT∇M(T0x)−∇F (x)

)
,

f
(3)T0
u = (M(T0x)−F (x))

f(3)T0 (x,u)
· ∇M(T0x).

(45)

E. Data term and regularization balancing

In practice, we found useful to extend the weighting func-
tion by a positive constant, to convey a minimal weight to
regularization. This is required in two cases: first, a pixel
pair might accidentally fit well and locally produce zero
discrepancy. As a consequence without a minimal weight, reg-
ularization would not be able to release the trapped pixels from
their local minima. On the other hand, minimal regularization
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weight is required by the aperture problem, otherwise displace-
ment would not get propagated into matched, homogeneous
regions [45], [46]. The general form of the weighting function
is thus

f = 1 + αf (i), (46)

where f (i) is one of the image distance metrics specified
above, and α is the balancing parameter, that scales the image
discrepancy w.r.t. the constant minimal weight. This form
represents a Polyakov energy functional, where the image
distance metric corresponds to an additional penalty weighting.
A big α will favor high data-fidelity, whereas a small value
limits the modulating impact of the image discrepancy and
increases overall regularization. Note that choosing 1 as the
minimum weight renders the weighting function in some way
symmetric to the square root of the metric tensor determinant,
which shares the same lower bound.

VII. RESULTS

We have implemented the geodesic active fields and ran it on
several test problems. Here, the results are presented in order
of task complexity. As for all forward schemes, the step length,
and thus the speed of the registration, is heavily limited by the
stability of the integration. The implementation was done using
Matlab®(R2009a) on a standard 2.4GHz Intel®Core™2 Duo
desktop machine, running a 64bit Fedora Core 11.

A. Mean curvature estimation

In (8), mean curvature is expressed as the anisotropic
divergence of the coordinate gradient. Except for the simple
stereo case, where an analytical expression of mean curvature
was given, explicit expressions are cumbersome. Instead, we
propose to estimate the mean curvature vector numerically, by
using central differences twice.

In the 2D case of flat and non-flat images, this amounts
to the same scheme as was already proposed by [13] and of
which numerical properties have been studied and discussed
in [47]. The numeric scheme for the mean curvature vector in
the multiscale case is obtained in the same manner.

B. A few words on β and regularization

It might be useful to illustrate the influence of the scaling
factor β on the deformation field smoothness. The analysis
is easiest in the stereo case. For higher co-dimensions the
analysis becomes more tedious and is beyond the scope of
the present paper. We refer the reader to similar studies
in the field of color and vector image denoising [22], and
optical flow regularization [13]. To begin with, a pair of
images is registered, where the one-directional deformation
field u is initialized with a single local impulse. To study
the impulse response of the regularization only, we wish
f = 1 being constant, and set α = 0. The so clutched GAF
energy now corresponds exactly to the Beltrami framework for
image denoising. Without surprise, after a few iterations, the
deformation field has diffused, as illustrated in Fig. 5(a). Next,
the deformation field is initialized with a unit step, disturbed
by uniformly distributed, additive random noise, as shown in

(a) (b) (c) β = 20

(d) β = 25 (e) β = 30 (f) β = 100
Fig. 5. (a) Mid-time response, i.e. after some 100 iterations, to a single
impulse in the deformation field under constant data term f = 1. (b)
Initial unit-step deformation field with uniform additive noise, and (c)–(f)
its smoothing by the regularizer at different β.

Fig. 5(b). In Fig. 5(c)-(e), the role of the parameter β becomes
clear: The regularizer changes from Gaussian filtering for
low β, to highly anisotropic, feature preserving TV-norm-like
filtering at higher values. The actual choice of the parameter
value depends on the available a priori knowledge on the
deformation field regularity for a specific registration task.
For computer vision applications such as motion detection and
stereo vision, where entire image regions move as individual
blocks (Gestalts), a higher β is preferable to allow for sharp
deformation boundaries. Also think of the skulls in Fig. 1,
where the rigid skull and mandible may be in a different
relative pose in the image pair, whereas other applications
would require more smooth transitions, thus motivating small
β.

C. Application to stereo vision

An example of stereo vision depth recovery was performed
as shown in Fig. 6. The image pair tsukuba is a well known
test image, taken from the middlebury benchmark set for stereo
vision. The registration was set up according to the embedding
and evolution equation described in section IV-B and using
the absolute error weighting function (44). In our current
implementation of which the goal is to illustrate the concept,
the depth recovery result is fair, but does not yet achieve
the quality of specifically tailored state-of-the-art stereo vision
tools.

D. Application to medical imaging

The third case deals with registration of a highly misaligned
monomodal medical image pair. Two roughly corresponding
axial slices through the T1-weighted MRI volume of different
subjects are to be registered. The images have a resolution of
256×256 pixels. Registration is set up with the squared error
weighting function. The slices are well aligned by registration,
as illustrated in Fig. 7. Note, that the subtle differences in
the folding pattern cannot effectively be compensated by the
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(a) F (b) M − F

(c) (d)
Fig. 6. (a)–(b) The tsukuba test image for stereo vision and the image
pair difference. (c) The recovered disparity map, (d) Ground truth.

(a) F (b) M (c) M ◦ T0

(d) T0 (e) M − F (f) M ◦ T0 − F
Fig. 7. (a)–(b) Fix and moving image. (c) The moving image warped by
the recovered deformation field. (d) The estimated deformation field. (e)–(f)
Intensity differences before and after registration.

dense deformation field, i.e., the global outline of the skull and
brain structures are aligned, but gyri and sulci remain largely
individual.

Another case aims at registering a pair of multimodal
medical images at resolution 317 × 317. The first image is
the same T1 brain slice as above. The second image now is a
deformed slice in T2 weighting. For multimodal registration,
we use the information theory based joint local entropy as
weighting function (41), again in the diffeomorphic setting
using exponential map compositions. At the fine resolution,
the resampling of an entire image takes considerable time, as
well as the computation of the joint histogram. Accordingly,
the whole registration process takes around 3 minutes. Reg-
istration is widely successful, as is indicated by the before
and after checkerboard and overlay images provided in Fig. 8.
Compared to the robust squared error weighting function, the
local joint entropy is much more delicate with respect to the
initial condition, but allows to register images of different

(a) F (b) M (c) F |M

(d) F |M ◦ T0 (e) pfm (f) pf{m◦T0}

Fig. 8. (a) The fix T1 image. (b) The artificially deformed T2 weighted
image. (c)–(d) Checkerboard overlay of T1 and T2 images prior to and
after registration. (e)–(f) The joint intensity histograms prior to and after
registration. While initially, the histogram is widely spread, registration results
in important histogram focalization.

modalities.

E. Registration on non-flat manifolds

To illustrate the model on a non-flat manifold, we have
implemented the spherical patch described in (29). First, the
purpose of the pullback relation is nicely illustrated in Fig. 9.
We picture the impulse response that corresponds to the
diffusion of a local non-zero spot in the deformation field
without data term, i.e., α is simply set to 0, thus f = 1. On
the spherical patch, the impulse response is isotropic and equal
both close to the North pole and close to the equator. Isotropy
on the spherical manifold requires a high degree of anisotropy
in the rectangular parameter domain, as low-θ regions map
denser on the sphere. This required anisotropy is directly
obtained thanks to the pullback relation between the metrics
hij on the patch and gµν in the parameter space. Further, the
registration has been tested on an artificially deformed pair of
topological maps of the Earth, see Fig. 10. The patch spans a
good part of the northern hemisphere and some of the southern
hemisphere of a globe, hence covering parts of both Americas,
entire Europe, Africa, the Atlantic Ocean and of western Asia.
Thus, the registration framework is shown to work on non-flat
manifolds, such as the sphere.

F. Multiscale image registration

Finally, the multiscale registration case is tested on a pair of
artificially deformed T1 brain images. Images are repeatedly
lowpass filtered with a Gaussian to generate a linear diffusion
scale-space. The multiscale image stacks prior to and after
registration are shown in Fig. 11, as well as the corresponding
intensity residues. Registration succeeds quite well, as illus-
trated by the almost entirely removed intensity errors.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have presented a novel, purely geometric
method, called geodesic active fields, to register images. The
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(a) (b)

Fig. 9. (a) Diffusion takes place in parameter domain (θ, φ), governed by
the metric tensor gµν . At low θ, diffusion is highly anisotropic. (b) Diffusion
as seen on the embedded spherical patch. Both impulse responses look the
same and are isotropic. This is obtained through the pullback relation that
links the respective metrics hij on the patch and gµν in the parameter space.

(a) F (b) M (c) M ◦ T0

(d) F (e) F |M (f) F |M ◦ T0

Fig. 10. (a) The fixed map with its approximate coastlines highlighted
as white contours. (b) The moving image, with the coastlines of the fixed
image superimposed. (c) The warped moving image after registration. The
map fits well with the superimposed fixed coastlines, except at a few loca-
tions where small misregistration is observed (e.g. Red Sea). The colormap
indicates height in meters above (below) sea level. (d) The fixed image in
rectangular, flat parameter domain. (e)–(f) The red-green overlay before and
after registration.

fundamental idea is to embed deformation fields in a weighted
minimal surface energy and evolve the deformation field to-
ward minimal surfaces, while being attracted by configurations
that bring the images into registration. The process amounts to
looking for an optimal hyper-contour in the space of all possi-
ble deformations in terms of image mismatch and deformation
field regularity. This point of view reveals the close analogy
to geodesic active contours in image segmentation [1], that
can be derived from a weighted Polyakov energy as well [24],
hence the name geodesic active fields (GAF).

In contrast to classic approaches in variational methods,
which make use of purely additive competition between data
and regularization term, our method combines the two energy
contributions in a multiplicative way. In fact, the data term is
represented by a local image distance function, that acts as
multiplicative weighting on the geometric regularization term,
resulting in a weighted surface energy. We recall the main
contributions of the proposed framework:

1. Registration of non-flat and multiscale images. We have
derived the minimizing flow of this weighted minimal sur-

face for different image registration configurations. First, the
framework applies to standard Euclidean images, defined on
Cartesian planes and volumes. Further, our proposed method
also directly generalizes to images on Riemannian manifolds,
such as non-flat image domains and various scale-spaces, and
ultimately the combination of both. In true multiscale registra-
tion and in contrast to hierarchic multiresolution approaches,
image pairs are registered at all scales simultaneously. Com-
munication between different scales is bidirectionally achieved
by the regularization term, smoothing the deformation field
across scales. In this context, we contribute a framework which
has the advantage over classical approaches of automatically
taking the relation between space and scale into account.
Useful applications of non-flat image registration can easily
be found in computer vision, e.g. motion detection or scene
reconstruction from omnidirectional images.

2. Parametrization invariance. The second contribution of
the proposed framework is the invariance of the registration
result with respect to the parametrization chosen to describe
the image domain. This result is also very intuitive, as by
construction the employed energy measures the weighted hy-
perarea of the embedded deformation field, which is inherently
independent of the parametrization that is used to describe this
manifold.

3. Data-dependent, spatially-adaptive regularization. The
multiplicative coupling of data-term and regularization intrin-
sically produces a data-dependent local modulation of the
regularization strength. Naturally, one selects the one image
discrepancy measure to be minimized that is the best estimate
of alignment quality one can get. It is thus intuitive to let this
same reliability estimate tune the local amount of regulariza-
tion required. In practice, this might be particularly useful in
medical image pairs that violate the premier assumption of
actual existence of a one-to-one mapping between them, like
a pair of images with and without lesions. In these instances,
the adaptive regularization might help filling-in “the blanks”
with a more regular deformation field than in the surrounding
tissues that can be well aligned. It is also useful in images
with regions of different noise levels. We thus require a
smaller amount of global regularization, compared to classical
additive schemes, where the non-adaptive regularization force
always causes a bias off the optimal data position in the end
result. Also, thanks to the multiplicative coupling, data-term
and regularity compete very locally, in contrast to additive
methods, where image distance metric and deformation field
regularity compete as global measures on the whole image
domain. Note, that the data-dependency of the regularization
in GAF, based on the current local alignment of images, is
different from [18], where regularization strength depends on
individual image (gradient) intensities.

4. Geometric regularization. In a similar context, the
geometric nature of the regularization, in particular its freedom
to choose the amount of anisotropy through the parameter
β, can allow for sharper deformation field transitions than
classical Gaussian regularization. This is needed in cases,
where individual objects move or deform independently, and
where deformation cues from separate objects should not
overly interact. Also, TV-like regularization reduces the impact
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of deformation field outliers, as diffusion of the error is
limited. Such outliers can occur at locations of actual image
dissent, which can be observed for example with occlusions
in stereo vision.

We would like to end this paper with some concluding
remarks:

1. Weighting functions. We have provided three instances of
weighting function, namely squared error (36), absolute error
(44) and local joint entropy (41). On the one hand, the absolute
and squared error weighting functions minimize the global
L2 and L1-norm between the two images, and are suitable
for monomodal image registration. The local joint entropy, on
the other hand, maximizes the mutual information between
images, and lends itself to multimodal image registration.

2. The parameters α and β. It is important to emphasize
the role of the parameters α and β. First, β tunes the aspect
ratio between the deformation field dimensions and the spatial
dimensions in the embedding. In the simplest case of stereo
matching, it has been shown that this allows interpolating be-
tween L2 and L1-norm minimization of the deformation field
gradient magnitudes, whereas interpretation is more difficult in
the general case. Second, note that β only changes the nature
of the regularization, but not its relative weight with respect
to the data term, which is precisely the role of the balancing
parameter α.

3. Preliminary results, limitations and future work. In this
paper, we have only shown preliminary results, based on very
simple discretized forward Euler schemes. These are results
for illustrative purposes only, that cannot compete with tightly
tailored, and specifically tuned state-of-the-art solutions to
practical applications. As we focus on the theoretical and
methodological aspects of our image registration framework,
we did not develop efficient and accurate numerical schemes to
challenge established state-of-the-art methods. Consequently
we do not compare quantitatively with other registration
methods.

The most stringent limitations of the current GAF im-
plementations are numerical stability (mean curvature esti-
mation) and computational complexity (small time steps).
Consequently, our next efforts will, therefore, focus on bring-
ing the GAF energy in a suitable form for more efficient
numerical implementations, both in terms of speed, accuracy,
and stability. On another note, we continue working on the
integration of more sophisticated, diffeomorphic deformation
models, that have become very popular in medical image
registration.

As mentioned, the embedding we propose for GAF corre-
sponds to the flow-driven geometric regularizer proposed in
[13]. The second, combined flow-intensity driven regularizer
of that article is not exploited in the proposed GAF formula-
tion, but inclusion is straightforward. We propose to go even
one step further by embedding textural features rather than
intensities, to address cases where Gestalts are defined by
regions of homogeneous texture rather than flat intensity.
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[45] P. Stumpf, “Über die Abhängigkeit der visuellen Bewegungsempfind-
ung und ihres negativen Nachbildes von den Reizvorgängen auf der
Netzhaut,” Zeitschrift fur Psychologie, 1911.

[46] D. Todorovic, “A gem from the past: Pleikart Stumpf’s (1911) anticipa-
tion of the aperture problem, Reichardt detectors, and perceived motion
loss at equiluminance,” Perception, vol. 25, no. 10, pp. 1235–1242, 1996.

[47] L. Dascal and N. A. Sochen, “A maximum principle for Beltrami color
flow,” SIAM Journal on Applied Mathematics, vol. 65, no. 5, pp. 1615–
1632, 2005.

Dominique Zosso (S’06) was born in Berne,
Switzerland, in 1983, and received the MSc. degree
in electrical and electronics engineering from Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lau-
sanne, Switzerland, in 2006.

He has previously worked as Researcher with the
Structural Bioinformatics Group at the Swiss Insti-
tute of Bioinformatics and Biozentrum, University
of Basel. Since 2007, he is Research and Teaching
Assistant at the Signal Processing Laboratory at
EPFL, Lausanne, Switzerland, and enrolled in the

EPFL Electrical Engineering Doctoral School. His current research interests
include PDE and variational models for inverse problems in image processing
and computer vision, in particular image registration.

Xavier Bresson received a B.A. degree in theoretical
physics in 1998, a M.Sc. degree in electrical engi-
neering from Ecole Supérieure d’Electricité, Paris,
and a M.Sc. degree in signal processing from Uni-
versity of Paris XI in 2000. In 2005, he completed
a PhD degree in the field of computer vision at
Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland.

In 2006-2010, he was a Postdoc scholar in the
Department of Mathematics at University of Cali-
fornia, Los Angeles (UCLA) with Tony Chan and

Stanley Osher. In 2010, he joined the Department of Computer Science at City
University of Hong Kong as assistant professor. His current research works are
focused on continuous convex relaxation techniques to find global solutions
of non-convex problems in image processing and graph-based problems in
machine learning, and a unified geometric framework for energy minimization
models in image processing.

Dr. Bresson has published 35 papers in international journals and confer-
ences.

Jean-Philippe Thiran (S’91–M’98–SM’03) re-
ceived the Elect. Eng. and Ph.D. degrees from the
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