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Abstract

Ranking queries, which return only a subset of results matching a user query,
have been studied extensively in the past decade due to their importance in a
wide range of applications. In this thesis, we study ranking queries in novel
environments and settings where they have not been considered so far.

With the advancements in sensor technologies, these small devices are today
present in all corners of human life. Millions of them are deployed in various
places and are sending data on a continuous basis. These sensors which before
mainly monitored environmental phenomena or production chains, have now
found their way into our daily lives as well; health monitoring being a plausible
example of how much we rely on continuous observation of measurements. As
the Web technology evolves and facilitates data stream transmissions, sensors
do not remain the sole producers of data in form of streams. The Web 2.0 has
escalated the production of user-generated content which appear in form of an-
notated posts in a Weblog (blog), pictures and videos, or small textual snippets
reflecting the current activity or status of users and can be regarded as natural
items of a temporal stream. A major part of this thesis is devoted to developing
novel methods which assist in keeping track of this ever increasing flow of infor-
mation with continuous monitoring of ranking queries over them, particularly
when traditional approaches fail to meet the newly raised requirements.

We consider the ranking problem when the information flow is not synchro-
nized among its sources. This is a recurring situation, since sensors are run
by different organizations, measure moving entities, or are simply represented
by users which are inherently not synchronizable. Our methods are in par-
ticular designed for handling unsynchronized streams, calculating an object’s
score based on both its currently observed contribution to the registered queries
as well as the contribution it might have in future. While this uncertainty in
score calculation causes linear growth in the space necessary for providing ex-
act results, we are able to define criteria which allows for evicting unpromising
objects as early as possible. We also leverage statistical properties that reflect
the correlation between multiple streams to predict the future to provide better
bounds for the best possible contribution of an object, consequently limiting the
necessary storage dramatically. To achieve this, we make use of small statistical
synopses that are periodically refreshed during runtime.

Furthermore, we consider user generated queries in the context of Web 2.0
applications which aim at filtering data streams in forms of textual documents,
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based on personal interests. In this case, the dimensionality of the data, the
large cardinality of the subscribed queries, as well as the desire for consuming
recent information, raise new challenges. We develop new approaches which
efficiently filter the information and provide real-time updates to the user sub-
scribed queries. Our methods rely on a novel ordering of user queries in tradi-
tional inverted lists which allows the system to effectively prune those queries
for which a new piece of information is of no interest.

Finally, we investigate high quality search in user generated content in Web
2.0 applications in form of images or videos. These resources are inherently dis-
persed all over the globe, therefore can be best managed in a purely distributed
peer-to-peer network which eliminates single points of failure. Search in such a
huge repository of high dimensional data involves evaluating ranking queries in
form of nearest neighbor queries. Therefore, we study ranking queries in high
dimensional spaces, where the index of the objects is maintained in a purely
distributed fashion. Our solution meets the two major requirements of a viable
solution in distributing the index and evaluating ranking queries: the underly-
ing peer-to-peer network remains load balanced, and efficient query evaluation
is feasible as similar objects are assigned to nearby peers.

Keywords: ranking queries, top-k, nearest neighbor, data streams, P2P,
load shedding, query indexing, filtering, locality sensitive hashing



Zusammenfassung

Anfragen an Informationssysteme, welche nur einen kleinen und sorgfältig ausge-
wählten Teil an Informationen an die Benutzer wiedergeben, waren ein fester Be-
standteil der Forschung in den letzten Jahren. Die sogenannten Top-k-Anfragen,
die nur die besten k Objekte an den Benutzer weitergeben, erfordern auf erster
Linie ein ausgeklügeltes System an Funktionen, die die Wichtigkeit von Resulta-
ten gemäß Ihrer Informationen wiederspiegeln, als auch effiziente Algorithmen,
welche die Informationsverarbeitung auf ein Minimum an Kosten beschränkt. In
dieser Arbeit betrachten wir die Informationsverarbeitung von Top-k-Anfragen
in Umgebungen und Szenarien die bislang nicht Teil der Forschung waren. Millio-
nen von Sensoren sind in den verschiedensten Bereichen im Einsatz und senden
kontinuierlich Daten. Waren Sensoren vormals hauptsächlich in Bereichen wie
der Überwachung von Produktionsanlagen und dem Messen von Charakteristi-
ken der Umwelt im Einsatz, so kommen sie mehr und mehr auch im täglichen
Leben von Millionen von Menschen zum Einsatz. Die kontinuierliche Überwa-
chung von Gesundheitsdaten ist ein gutes Beispiel dafür. Datenströme werden
allerdings nicht nur von Sensoren erzeugt, sondern auch, gerade mit der wach-
senden Popularität des Web 2.0, durch von Menschen erzeugten Informationen
in Form von Blog-Einträgen, hochgeladenen Fotos und Videos oder auch kurzen
Textnachrichten, die den gegenwärtigen Status eines Benutzers wiederspiegeln.
Ein Teil dieser Dissertation beschäftigt sich mit der Entwicklung neuer Metho-
den, die eine effiziente Verarbeitung dieser Datenströme ermöglicht. Zu Beginn
betrachten wir bestehende Ansätze zur Top-k-Anfrageverarbeitung in Daten-
strömen und wie gut diese auf unsere neuen Szenarien anwendbar sind. Wir
sehen, dass bestehende Ansätze nur schwer mit Daten umgehen können, die von
autonomen Sensoren oder von Benutzern erzeugt werden.

Im ersten Teil dieser Arbeit beschäftigen wir uns folglich mit dem Problem
von Top-k-Anfragen im Fall von nicht synchronisierten Datenströmen, wo In-
formationen über zu observierende Entitäten nicht zeitgleich in allen Strömen
zur Verfügung steht. Dieses Verhalten lässt sich in einer Vielzahl von Szena-
rien beobachten, wie zum Beispiel in Sensornetzwerken, die von verschiedenen
Organisationen betrieben werden, Sensoren die verteilt über ein Straßennetz vor-
beifahrende Autos beobachten oder ganz einfach Benutzer von Web 2.0 Anwen-
dungen, in denen Daten ohne jegliche Synchronisation erzeugt werden. Unsere
Methoden sind für eben diese Szenarien konzipiert. Um Top-k-Anfragen über
Datenströme ausführen zu können, wird die Güte eines Objekts basierend auf
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den aktuell, in einem Zeitfenster, observierten Eigenschaften berechnet, aber
auch unter Berücksichtigung des Beitrags von Eigenschaften, welche in naher
Zukunft im System eintreffen. Dieses Vorgehen erzeugt allerdings eine gewisse
Unsicherheit in der Berechnung der tatsächlichen Güte, was einen Speicherplatz-
bedarf linear in der Anzahl der eintreffenden Objekte bedeutet. Die im Rahmen
dieser Arbeit entwickelnden Methoden erlauben es dennoch Objekte so früh
wie möglich aus dem Speicher zu entfernen. Wir benutzen darüberhinaus sta-
tistische Eigenschaften der beteiligten Datenströme, um die Unsicherheit der
Qualitätsberechnung zu minimieren.

Im zweiten Teil dieser Arbeit beschäftigen wir uns explizit mit der Verar-
beitung von Benutzeranfragen im Kontext von Web 2.0 Anwendungen, welche
Ströme von Dokumenten anhand von registrierten Anfragen filtern und nur die
besten Resultate an die Anwender weiterleiten. Dies erzeugt aufgrund der ho-
hen Dimensionalität der Daten, der großen Anzahl von registrierten Anfragen
zusammen mit der Anforderung aktuelle Informationen zu erhalten, neue Her-
ausforderungen. Die von uns entwickelnden Methoden erlauben eine effiziente
Filterung der Informationen und eine Benachrichtigung der Benutzer in Echt-
zeit. Wir erreichen dies durch eine neuartige Organisation der Benutzeranfragen
in traditionellen invertierten Listen, welche dem System erlauben Anfragen die
nichts oder nur sehr wenig mit dem eintreffenden Dokument zu tun haben, so
bald als möglich zu eliminieren.

Im letzten Teil dieser Dissertation betrachten wir von Benutzern generierte
Inhalte in Form von Fotos und Videos. Diese Daten habe zwei Dinge gemeinsam:
ihre große Anzahl von Attributen, die bei der Suche in Betracht gezogen werden
müssen und ihre große Anzahl an sich, da es immer einfacher wird Fotos und
Videos zu erzeugen und diese per Mausklick in das Internet zu übertragen. Wir
betrachten Anfragen in diesen hochdimensionalen Räumen, wobei der Suchin-
dex, welcher die Objekte beschreibt, verteilt über viele Rechner gehalten wird.
Der von uns entwickelnde Ansatz erlaubt nicht nur eine effiziente Anfrageaus-
führung, sondern auch eine gleichmäßige Verteilung des Suchindexes über die
beteiligten Rechner.

Stichworte: Top-k-Anfragen, Nächste-Nachbar-Suche, Datenströme, P2P,
Lastabschaltung, Anfrageindexierung, Filter, Locality Sensitive Hashing
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Chapter 1

Introduction

Ranking queries [IBS08, BBK01] constitute an important technique for focal-
izing attention to the most essential results of a query. In order to deal with
massive quantities of data, such as in multimedia search, Web search, and dis-
tributed systems, data from the underlying database are scored according to an
application-dependant scoring function and then ranked based on their scores.
The ranking query returns the tuples with the highest rank among others. A
ranking query can therefore involve evaluating a predicate on the database, ex-
ecuting joins to combine tuples from different tables, or performing grouping
based on similar attributes and finally scoring and ranking the output. This
class of queries have enormous applications in a variety of problems and are
nearly ubiquitous in all data related operations. Consider the following exam-
ple:

Example 1 In image databases (e.g., [BEF+09]), hundreds of millions of im-
ages are processed and stored inside a database, producing massive amounts of
data. Content based image retrieval in such databases is traditionally carried
out using high dimensional indexes built over single image features. Given a
similarity function which aggregates different features’ similarity scores into an
overall score, the relevance of each image in the database, to a query image,
can be measured. Suppose the user is interested in the top-10 images which
are most similar to a given image based on color and texture features. Let the
query image be represented by q and let i represent an image in the database.
The function sim(q, i) = colorSim(q, i) + textSim(q, i) could be regarded as an
aggregation function which combines the similarity scores based on color and
texture features. The ranking query returns 10 images with the highest overall
similarity score to the query image.

The efficiency and effectiveness of search in the above example depends
highly on the ranking algorithm. Similar applications exist in the context of
Web search (e.g., meta-search), information retrieval, and data mining. Pro-
cessing ranking queries connects to many traditional database research areas,
such as query optimization, query languages, and indexing methods, where it
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2 1. Introduction

Characteristic Impact

(C1) Dynamic data
push-based data access

continuous queries

(C2) Massive data volumes
impossible to store all data locally

impossible to check all local data

(C3) Communication
data unavailability

data incompleteness

Table 1.1: Major characteristics of novel environments and their impacts

has been extensively studied previously.
Nevertheless, the sweeping changes brought about by the digital revolution

in the computing and communication technology in the last decade, has given
rise to the need for different kinds of data management systems [Sel08]. Tra-
ditional databases which were built in controlled environments under certain
assumptions, and stored almost static data, are ill-equipped for some of to-
day’s applications. Consequently, new measures have to be taken in to account
to assure high performance and availability in all data-centric operations, in-
cluding ranking queries. As an instance of a ranking query application in a
non-conventional database setting let us consider the following example:

Example 2 Digital photography and its widespread use have changed the
photo industry dramatically. With the rapid availability of high tech cheap
digital cameras, photo shooting and sharing has become a popular activity.
Today, several Web 2.0 portals devoted to photo sharing exist, in which, space
is dedicated to users for storing their photos and making it possible for others
to view them. Uploading and commenting on photos are almost effortless with
the provided user friendly interfaces. Many users subscribe to such a system to
follow images of their favorite events or people. Keeping a user updated, usu-
ally involves continuously executing ranking queries over the stream of newly
uploaded photos to retrieve the top most similar images to the user’s pivot
images.

The image database of the portal described above bears fundamental differ-
ences to the traditional database of Example 1. While queries in a traditional
database operate on persistently stored tables, queries of Example 2 act upon
a real-time stream of data values. Human-generated data, like in the exam-
ple above, constitutes only a very small portion of the multitude of real-time
information produced nowadays, a credible example being the reported measure-
ments of sensor networks deployed in various places. The spontaneous nature
of these information sources has opened a trend towards push-based data access
which is in contrast with the often pull-based accesses in traditional databases.
In traditional databases queries are considered as one-shot and terminate as
soon as they produces the results while given dynamic data, queries are run
continuously.

Massively growing data volumes, as another consequence of the digital rev-
olution, pose new challenges in storage and management of data. In many
data-centric applications, it is not possible anymore to store all data on a sin-



1.1 Challenges and Contributions 3

gle machine. Distributed databases and peer-to-peer systems have emerged as
remedies to this problem. Distributed databases are suited for well-controlled
environments, while peer-to-peer overlays are usually formed on a self-organizing
network of computers, which potentially offer more flexibility and higher capac-
ity. Measures which define and affect system performance in these systems are
different from traditional centralized databases: network delay dominates local
CPU computation time, and load balance is a new metric affecting availability.
Furthermore, even if all data could be stored on a single machine, in applications
requiring real-time responses, often all data which could contribute to the final
query results can not be checked. As a result of the above mentioned issues,
data partitioning and load shedding algorithms are required.

Distributed sources of information along with distributed storage and com-
puting devices highlight the impact of communication in today’s new applica-
tions. Smart phones, highly mobile tablet and laptop devices now offer powerful
platforms for acquiring and delivery of new services whose availability depend
on reliable communication. In the data stream model, sources of information
may deliver out of order data to the processing unit, causing data incomplete-
ness. On the other hand, in distributed systems unavailability is usually due to
some storage or computing nodes becoming inaccessible. Data incompleteness
and unavailability is therefore another issue requiring special care in novel data
management systems.

The motivations behind this thesis are rooted in the limitations of traditional
database systems in evaluating ranking queries in novel data management sys-
tems, more specifically in data streams and peer-to-peer networks. Table 1.1
summarizes some major characteristics of these novel systems and their impact
which drives them different from traditional databases.

1.1 Challenges and Contributions

We have identified settings in new environments in which ranking queries are
of great importance, but traditional techniques fail to ensure high performance
and availability. This failure is due to one or a combination of the characteristics
listed in Table 1.1. Measures of interest and sources of complication are different
in each setting, so we have developed several novel techniques to enable efficient
processing of ranking queries in each. Table 1.2 provides a short summary of
the main sources of complications we have considered, showing which measure
of interest they influence and our proposed solution for each. In the following
we discuss in more details the specific problems which have been considered in
this thesis and our contributions towards each.

Top-k Queries Over Data Streams

In general, the data stream model applies to any dynamic system which re-
quires to be monitored continuously. Communication and network monitoring
[GKMS01, SH98], environmental monitoring [MSL+09], and financial data anal-



4 1. Introduction

characteristic influencing measure solution

C2+C3 memory semantic load shedding

C1+C2
CPU time query indexing, data filtering

memory result maintanance

C2+C3 network delay locality preserving mappings

Table 1.2: Characteristics which are sources of complications, their influencing
measure and our proposed solution

ysis [CDTW00] are instances of such systems. Ranking queries naturally arise
in such settings and have been previously studied [MBP06, PZA08] with regard
to different criteria, such as space considerations or performance in terms of
CPU time for evaluating the queries. However, all existing approaches assume
that exact score calculations are possible for objects as they arrive in the sys-
tem. Nevertheless, in many streaming scenarios this is infeasible. A prior join
over multiple non-synchronized streams may be necessary before the score of
an object can be calculated. Our first main contribution in this thesis is the
introduction of a semantic load shedding algorithm under such a setting, which
aims at limiting the necessary space, while maintaining the precision of the
top-k evaluation. More specifically:

• We consider continuous monitoring of aggregation queries over multiple
non-synchronized data streams in a sliding window model which has not
been, to our knowledge, considered previously.

• We define the notion of dominance under incomplete information such that
the two necessary properties of it, namely persistency and transitivity are
attained. With this, we enable retaining only those objects which are
necessary for providing exact results to the registered top-k query.

• We theoretically show that the necessary memory usage increases from
previously logarithmic (in window size) to linear, compared to the case
where data is received completely and exact score calculations are possible.

• Leveraging statistics collected from the data streams and their correla-
tions, we propose an approximate algorithm which allows for early-drops
of objects with little loss in the accuracy of the returned results.

While the data stream model has been successfully used in modeling appli-
cations involving data operations over communication and networking systems,
financial feeds, or sensor data, Web 2.0 related problems, mainly due to their
recency, have been left out. With the advent of Web 2.0, yesterday’s end users
are now content generators themselves and actively contribute to the Web. Each
user action, for example uploading a picture, tagging a video, or commenting
on a blog, can be interpreted as an event in a corresponding stream. Given
the immense volume of this data and its vast diversity, there is a vital need
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for effective filtering methods which allow users to efficiently follow personally
interesting information and stay tuned. Ranking queries, which correspond to
user defined profiles, act as filters which should be continuously updated, in
order to fulfill the universal tendency for newly published information. We
envision a scalable filtering system which relies on subscription of hundreds of
thousands of profiles as top-k queries, and real-time monitoring of each. Our
contributions to this problem include the following:

• We design an efficient profile filtering algorithm, which refrains from pro-
cessing all profiles with every incoming document. We show that our
method is exact and all profiles which a new incoming document has a
chance of being their top-k result are identified.

• We use a skyline based method for result maintenance, but in order to
avoid inserting all incoming documents to the result set, which is the
case for in-order streams, we restrict the insertion criteria such that the
size of the maintained result set remains small. We derive the necessary
conditions to insure exact results.

Nearest Neighbor Queries Over P2P Networks

A P2P network is an overlay network, built on top of a native or physical topol-
ogy, which provides a platform for distributing various tasks among numerous
linked devices. Top-k query processing has been previously studied in the P2P
setting [MTW05a] where the inverted lists are distributed among peers. Effi-
cient algorithms which guarantee exact results for a top-k query in a limited
number of phases [CW04] exist. On the other hand, similarity search over high
dimensional data, as another kind of a ranking query studied extensively in
centralized settings previously [BGRS99, GIM99, YOTJ01, BBK98, DIIM04],
has proven to be more difficult. Existing approaches to the similarity search
problem in high dimensional data either focus on centralized settings, as cited
above, rely on preprocessing data centrally, assume data ownership by peers in
a hierarchical P2P setting or fail at providing both high quality search results
and a fair load balance in the network [FGZ05, SEAA04, DVKV07]. In this
thesis we address this problem and provide solutions which satisfy the necessary
conditions for efficient similarity search in a P2P setting. Our contributions in-
clude the following:

• We discuss the difficulties of distributing existing Locality Sensitive Hash-
ing (LSH) [GIM99] schemes and derive requirements to distribute them in
a way that assures fair load balance and efficient and accurate similarity
search processing.

• We present two novel mapping schemes which satisfy the mentioned re-
quirements.
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• We present a top-k like algorithm which leverages the locality preserving
property of our mapping schemes to efficiently process distributed kNN
queries.

• We show, relying on our mapping schemes, how otherwise-difficult-to-
process range queries can be efficiently processed in our setting by pre-
senting a novel sampling-based method which utilizes our estimated range
of peers necessary to contact.

1.2 Publications

This thesis is based on the following publications.

In the area of continuous top-k processing over data streams in a
sliding window model:

In [HMA09b], we have addressed the problem of evaluating top-k queries over
multiple non-synchronized data streams. We have developed an exact algo-
rithm which retains only the necessary objects to provide exact results and
drops the rest in order to save on space. We have shown that even only retain-
ing necessary objects incurs linear space in size of the sliding window. Based
on the observation that the final scores of not completely seen objects could
be better estimated based on the inter stream correlations, we have developed
an approximate algorithm which rigorously decreases the space overhead, while
maintaining high accuracy in results. This paper is described in Chapter 4.

• Parisa Haghani, Sebastian Michel, Karl Aberer: Evaluating top-k queries
over incomplete data streams. 18th ACM Conference on Information and
Knowledge Management (CIKM2009), HongKong, China, November 2-6
2009.

In [HMA10], we consider the problem of continuous evaluation of large
number of top-k queries over a stream of textual data under a sliding window
model. The motivation behind this work is the design of an information filtering
system which can serve hundreds of thousands of users and keep them updated
on newly published data on the web based on their personalized profiles. In
order to avoid comparing each incoming object to all registered queries, we
index the queries in a way that allows for early stopping. We further introduce
a relaxed version of our previously proposed sorted list indexes which maintains
the accuracy of results, while incurring much less update cost. This paper is
described in Chapter 5.

• Parisa Haghani, Sebastian Michel, Karl Aberer: The Gist of Everything
New: Personalized Top-k Processing over Web 2.0 Streams. to appear in
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CIKM2010, Toronto, Canada, October 26-30 2010.

In the area of k nearest neighbor queries over P2P networks:

In [HMA09a, HMCMA08] we have considered the problem of k nearest neigh-
bor search over high dimensional data over a P2P network. To escape from the
curse of dimensionality, we proposed to use the well known Locality Sensitive
Hashing [GIM99] scheme and distribute it over the peers of a network. Our
solution satisfies the two necessary requirements for efficiency and robustness:
similar objects are likely to be placed on the same peer or neighboring peers,
which assures efficient k nearest neighbor search, furthermore data is assigned
to peers in such a way that ensures a fair load balance over the network. These
two papers are described in Chapter 6.

• Parisa Haghani, Sebastian Michel, Karl Aberer: Distributed Similarity
Search in High Dimensions Using Locality Sensitive Hashing. 12th Inter-
national Conference on Extending Database Technology (EDBT 2009),
Saint-Petersburg, Russia, March 23-26 2009.

• Parisa Haghani, Sebastian Michel, Philippe Cudre-Mauroux, Karl Aberer:
LSH At Large - Distributed KNN Search in High Dimensions. 11th In-
ternational Workshop on Web and Databases (WebDB 2008), Vancouver,
Canada, June 13, 2008.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we introduce the fundamental
concepts used throughout this thesis. We start by giving an overview of the
data stream model and briefly discussing important problems in this domain.
Next, we introduce the peer-to-peer computational model and give a summary
of such existing networks. Then we move to ranking queries where we divide
this class of queries into top-k and k nearest neighbor queries, and review some
classical techniques in each. In Chapter 3, we give an overview of state of
the art techniques, related to our specific problems. In Chapter 4, we discuss
continuous top-k processing over multiple non-synchronized data streams in
a sliding window model. We show that the space consumption necessary for
providing exact top-k results grows linearly in the size of the sliding window.
We introduce a probabilistic algorithm which further limits the space needed
while maintaining the precision. In Chapter 5, we consider another application
which involves monitoring large number of continuous queries over a stream of
text data. The main concern in this setting is performance and indexes are
designed such that each incoming document does not need to be compared with
all registered top-k queries. We introduce the POL-filter which is a relaxation
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of our completely sorted index previously introduced as the first solution to the
problem at hand. In Chapter 6, we consider one-shot k nearest neighbor queries
over high dimensional data in a peer-to-peer setting. Finally in Chapter 7, we
conclude the thesis and give directions for future work.



Chapter 2

Background

In this Chapter we will first give an overview of the data stream and peer-to-peer
computational models which are our underlying environments. We later discuss
top-k and kNN queries which are the type of queries we consider in this thesis.

2.1 Emergent Novel Environments

Traditional DataBase Management Systems (DBMS) have served the main in-
formation technological needs of our community for more than three decades.
Utilizing a DBMS, it is easy to store large amounts of data and manipulate it
as desired, by performing various queries on the data. In recent years however,
new classes of applications have emerged which call for functionalities beyond
the primitives of a traditional DBMS.

One prominent and well addressed member of these unconventional infor-
mation management systems are Data Stream Management Systems. While
conventional DBM systems are designed to handle static data and to process
one-time queries over such data, many of today’s applications deal with data
which is generated in an unbounded fashion and require continuous monitoring.
The Data Stream model has emerged as an alternative for dealing with such data
and providing solutions to specific challenges raised in such an environment.

On the other hand, with the growing number of interconnected computers
which is mainly due to the increasing popularity of the Internet, the peer-to-
peer (P2P) computational model has emerged as a platform for various tasks
spread over numerous devices. As one of the most prominent examples, the
SETI@home approach leverages the computing power of thousands of standard
computers when they are idle – running a screen saver. In general, P2P is often
a synonym for file-sharing applications (e.g., Napster1, Gnutella 2), where users
exchange content without any central control instance. Another phenomena
which gives rise to such a model is the scatteration of content generators in

1http://en.wikipedia.org/wiki/Napster
2http://en.wikipedia.org/wiki/Gnutella

9



10 2. Background

geographically distant locations. While traditional DBMS are suited for well-
controlled and known environments, they lack the required characteristics of
managing data in a highly dynamic and potentially diverse setting.

In the following we will give an overview of these two emerging non-
conventional environments which are the underlying environments we consider
in the future chapters.

2.1.1 Data Streams

Research on data streams has gained a lot of interest in the past few years
[BBD+02, Mut05, CKT08, MBP06, KOT04, BOPY07]. The foundations
and applications of this research topic are found in many domains, including
databases, data mining, algorithms, networking, theory, and statistics. Many
data and query characteristics of modern applications are best captured by this
computational model, where data streams in continuously at high rates and
each tuple has the chance of being observed only once, unless explicitly stored
for later accesses. Some applications are for instance:

Communication and network monitoring: Internet traffic analysis
[GKMS01, SH98] has been a primary application of data streams. An Internet
Service provider monitors the traffic at various points in the network to provide
better resource allocations or thwart possible security attacks. According to the
specific application, incoming data can have different granulation and schema,
for example the data can consist of detailed logs on a per flow granularity.

Environmental monitoring: Deployment of low-cost sensors in hard-to-
reach but critical places has given rise to various environmental monitoring
applications [Swi, MSL+09]. These sensors usually report on different aspects
of the environment such as temperature, luminosity and humidity. Each obser-
vation is tagged with a time-stamp which indicates the time of observation and
is sent to a central processing unit for further analysis. The online analysis of
data usually includes searching for indications of natural hazards and distribut-
ing them in a timely manner. The data is archived for usage in forecasting or
validating existing models.

Web 2.0 Streams: With the advent of Web 2.0, yesterday’s end users are
now content generators themselves and actively contribute to the Web. Each
user action, for example uploading a picture, tagging a video, or commenting
on a blog, can be interpreted as an event in a corresponding stream. Given
the immense volume of this data and its vast diversity, there is a vital need
for effective filtering methods which allow users to efficiently follow personally
interesting information and stay tuned.

Internet Advertising: Contrary to TV or Radio broadcast-based ad-
vertising, Internet advertisements target the appropriate customer on the fly.
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Therefore online decision making on which advertisements are suitable for a
user given his/her click stream structure is very important [MAA05]. On the
other hand, given the specifications of Internet advertisement, click fraud can
jeopardize this industry. Effective measures against this kind of fraud call for
efficient stream analysis which enable attack detection [MAAZ07].

Financial data analysis: In today’s financial market, fast decision mak-
ing on multitudes of financial feeds is necessary for successful trading actions.
Large number of users may subscribe their queries to a central unit [CDTW00]
which needs statistical monitoring of numerous financial data streams [ZS02] to
accurately provide results to the queries.

The main differences of the streaming model with traditional database mod-
els include the following:

• Unbounded Data: In traditional DBM systems, the data is stored on
disk usually in form of a relation and additional structures such as indices
on certain attributes are used to speed up the process of accessing specific
parts of the data. This data can be considered as static as changes to it
occur with low frequency and the main characteristics of the data distribu-
tion remain unchanged over a long period of time. In the streaming model
however, the data arrives continuously and the data stream manager does
not have any control on the rate or amount of received data. As a result
the usual database techniques for storing and indexing the data may not
be efficient in this setting. Due to the often immense rate of incoming
data, tailored approaches for memory management are required.

• Continuous Queries: The queries in traditional DBMS are usually re-
garded as one-time queries. They are run once over the data and termi-
nate with returning the results. On the other hand we face another type
of queries in the streaming model, in the sense that they are continuous.
In streaming applications, queries are posed on one or several unbounded
streams and require updates in the results as new data arrives or old data
times out according to an expiration model.

Algorithms and Systems

Early works on stream processing mostly consider one-pass algorithms in lim-
ited space over the whole stream where all tuples are considered valid at all
times. These algorithms can be divided into two main groups: sampling and
sketches. In sampling based methods, a sample of the whole stream is main-
tained to provide fast approximate answers to queries such as distinct value
estimation [Gib01] or keeping statistical summaries of the stream such as his-
tograms [GMP97]. FM sketches [FM85] which are among hashing sketches are
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used for distinct item counting over streams. AMS [AGMS02] sketches, based
on linear projections, are used to estimate the self-join size of one stream or join-
size of several streams. Reporting on quantiles or heavy hitters in streams is
another important problem studied in the literature: Solutions often apply tech-
niques such as the mentioned AMS sketches, sampling, or more recently group
testing, see for example [CCFC04, CM03] and the references within. The expo-
nential histogram technique [DGIM02] and deterministic waves [GT02] maintain
stream statistics such as bit counting or sum over a sliding window in streams.
In this model only tuples within a sliding window are considered valid. Dif-
ferent variations of the sliding window model are the counting and time-based
models, where in the first, statistics over a certain number of most recent tuples
is of interest and in the second these statistics are maintained for all tuples
which have arrived within a time frame. In a more general model, Cormode et
al. [TXB06, CKT08] consider time decaying aggregates in out-of-order streams.
There has also been some work on uncertain data streams where the tuples
arriving are associated with existential probability. [CG07] devises sketches for
estimating number of distinct elements and size of joins over this kind of streams,
while [AY08] proposes a framework for clustering them.

In recent years Data Stream Management Systems (DSMS) have been pro-
posed which address new challenges in data management and query processing
that arise in the context of stream processing. STREAM [ABB+03] is a DSMS
which supports a large class of declarative continuous queries over data streams.
CQL (Continuous Query Language), an expressive SQL-based declarative lan-
guage is supported by STREAM for registering continuous queries [ABW03].
Auorora [ACc+03] is another model and architecture for data stream manage-
ment. Unlike STREAM which supports CQL, Aurora assumes more direct,
workflow-style specification of queries. Aurora drives its resource management
decisions, such as scheduling, storage management, and load shedding, based
on various QoS specifications.

2.1.2 Peer-to-Peer Networks

The peer-to-peer (P2P) approach aims at utilizing the resources of numerous
linked computers with diverse processing or storage specifications in a dis-
tributed fashion. While most of today’s popular Web applications such as search
engines, sharing portals and email services are deployed over a large number of
servers to handle high workloads, they still rely on a centralized station. Any
centralized point is prone to error and its failure can cause a whole network of
services to go non-functional. The P2P paradigm however eliminates the central
point of failure and empowers every involved peer with a degree of autonomy,
i.e., peers act as both servers and clients. This approach offers significant ad-
vantages in terms of scalability, efficiency and resilience to failure and dynamics.
According to a recent study, P2P applications constitute the largest bandwidth
consumers of the Internet. File sharing applications (e.g., BitTorrent 3) and

3www.bittorent.com
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P2P telephony (e.g., Skype 4) are examples of widely used applications of the
P2P approach.

A P2P network is an overlay network, built on top of a native or physical
topology, for example, the Internet. Nodes in a P2P network are called peers
and in general act as both clients and servers. Any node in the network can
request a resource which is held by another peer in the network. Since the
number of peers in a P2P network is usually very high and they can be located
in geographically far positions from one another, efficient means of finding the
peer which is holding a required resource is key in the applicability of a P2P
network. Various indexing methods (e.g., a map from the resource to the peer
holding the resource) have been proposed for this problem. Central directory-
based P2P systems (e.g., Napster) use a central index to keep the index, while
resources are distributed among peers. This solution suffers from the single
point of failure problem and is not scalable. On the other hand, decentralized
P2P systems [SMK+01] use a distributed index, i.e., the index is also distributed
among the peers and if a peer fails only a fraction of index may be unaccessible.
Between these two indexing methods there also exists a hybrid alternative. In a
hybrid P2P network [Gnub], the network is divided to several subsets and each
subnetwork has a a super-peer which plays the role of a central index holder for
that subset of peers.

Several measures are used to assess the suitability, robustness, and efficiency
of a P2P network. The communication cost is an important measure which is
usually defined as the number of network messages exchanged in the network
until a resource is found. Another factor is the query response time, i.e., the
delay between a request and its response. The load balance in the network is
also an important factor which affect the robustness of the network and its goal
in avoiding single points of failure.

P2P networks can also be classified as structured [SMK+01] or unstructured
[Gnua] based on the level of knowledge each peer maintains regarding the other
peers and the network in general, as well as the structural properties of the
network. Unstructured P2P networks do not impose a specific structure on the
peers forming the network and the network is organized according to an arbi-
trary, usually random, topology. Searching in unstructured P2P networks incurs
high costs but the network is more robust as peers are keeping many links to
other peers. Searching methods in unstructured P2P networks are usually based
on random walks [CRB+03] or constraint broadcasts. In constraint broadcast-
ing, a request message is broadcasted from a peer to all its neighbors and all
neighbors repeat the same until the message expires. A Time-To-Live (TTL)
counter specifies the liveness of a message which can be time-based or depend
on the number of peers which have forwarded this message so far. Clearly this
method can flood the network with large number of messages. In order to avoid
this overhead, the search method based on random walks, transmits the request
message to one or more randomly selected neighbors until the resource is found
or the message expires. This method on the other hand can cause higher delay

4www.skype.com
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times.

In structured P2P networks a globally consistent protocol is employed to
ensure that any node can efficiently route a search to some peer that has the
desired resource. While such a protocol decreases the search cost significantly
compared to the unstructured methods, it necessitates a more structured pattern
of overlay links. For example peers joining and leaving the network trigger
actions by other nodes which should update their entries regarding the new
peers or the left ones. The distributed hash-table (DHT) is by far the most
common type of structured P2P network. In a DHT, a hashing method is used
to assign ownership of a resource to a particular peers.

In the following Section we describe the Distributed Hash Table structure
and then P-Grid [Abe01] and Chord [SMK+01], as examples of such a structure
are discussed.

Distributed Hash Table (DHT)

A Distributed Hash Table (DHT) is a distributed structure which provides a
lookup service similar to a traditional hash-table. In the P2P context, each
resource is mapped to a key using a given hash function and each peer also
carries a particular ID, which is usually in the same key-ID space. The routing
layer of the network takes care of determining for a given key the peer that is, so-
called, responsible for the key, e.g., its ID is numerically closest to the key. With
this routing, a storage of 〈key, value〉 pairs can be build by routing the pairs
using their keys to the responsible peer that then store these pairs. Similarly,
to retrieve a value for a given key, the key is used to route the get request to
the responsible peer which will in return send back the matching value. Each
peer in the DHT is responsible for a fraction of the overall key-space.

In order to facilitate efficient search, each peer maintains a routing table to
forward the search messages which can not be answered locally to its neighbors.
Routing tables are always constructed such that the completeness property is
guaranteed, i.e., they cover the whole key-space and the search for a resource
can be initiated by any peer in the network. The routing table of each peer
contains peer identifiers of those peers which are positioned in an exponentially
increasing distance from this peer in the key space. With this technique, a
targeted peer is found in the network after O(logN) peers have been contacted,
where N is the number of peers in the network. All variations of DHTs are
essentially based on this technique and vary in issues such as variable key space
partitioning versus fixed partitioning, the topology of the key space (interval,
ring, torus, etc.), how the routing information is kept updated with regard to
redundant entries and dealing with churn and network dynamics.

P-Grid [Abe01], Chord [SMK+01], CAN [FGZ05], and Pastry [RD01] are
popular implementations of the DHT structure. In the following we will describe
P-Grid and Chord.
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P-Grid

P-Grid [Abe01] is a tree-based structured P2P network. Peers and keys are
mapped to the same binary key-space represented by a tree, and each peer
is responsible for a partition of the overall tree. Note that the tree is just an
abstraction and does not represent the actual connectivity of the peers. A peer’s
position in the tree is determined by a binary bit string, called the path, which
also represents the subset of the keys that this peer is responsible for. In order
to have efficient key lookups, each peer stores pointers to other peers in the
following way: for each bit in its path, it stores references to at least one other
peer that is responsible for the other side of the binary tree at that level. At
lookup time, if a request can not be answered locally, the peer forwards the
request to a peer that has the closest path to the desired key, i.e., it has the
largest common prefix with the key. Since the peer paths are not determined a
priori and can be changed dynamically through negotiations with other peers,
P-Grid is robust with regard to skewed data distributions. It has been shown
that for a sufficiently random selection of links to other peers, the search cost
in terms of messages exchanged among peers remains logarithmic in number of
peers in the network.

Chord

In Chord [SMK+01], all peers and keys are mapped to the same one-dimensional
cyclic key-space. The key-space forms a ring, such that the first ID (i.e., 0)
follows the biggest ID. For simpler representation in the following we do not
show the hash function but treat peer IDs as if the hash function has been
applied to them. Let pi represent the ID (after hashing) of the i-th peer and
similarly let ki represent the i-th key. The keys are allocated to the peers in the
following way: The peer whose ID most closely follows a key k is responsible for
it and is called the successor of k. Therefore each peer is responsible for all keys
with identifiers between the ID of its predecessor peer and its own ID. Figure
2.1 shows an illustration of a Chord ring. Eight peers have been placed on the
ring and five resource allocations are shown as examples. Each peer knows its
immediate neighbor and in case of a lookup it contacts its immediate neighbor
if it cannot answer the search locally. For example a lookup for k56 at p2 is
forwarded to p15 where it is forwarded again until it reaches p64. The cost of
this greedy search, where the available routing information per peer is O(1), is
linear in the number of peers. However, as previously mentioned peers also hold
routing information to speed up search. The routing information in Chord are
saved in so-called finger tables. The m-th entry in the finger table of a node pi
points to a peer pj where pj is the smallest ID which proceeds pi by at least 2m

on the Chord ring. The finger table therefore contains information regarding
a limited number of other nodes. However, as each peer has finger entries at
power of two intervals around the Chord ring, the distance to the desired peer
is at least halved with each forward. An example of this is illustrated in Figure
2.2 where the finger tables are shown for p2 and p35. Since the search distance is
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Figure 2.1: The Chord ring

halved with each forward, every search can be answered by contacting at most
O(log(N)) other peers.

2.2 Ranking Queries

In many applications, the number of returned results are limited by calcu-
lating an aggregate over a subset of attributes and returning values above
a given threshold, or, returning only the highest values. For example, as-
sume that the underlying data resides in a table with the following schema:
Events(item,attribute1, attribute2,...,attributem). Given a thresh-
old T, the first kind of query which limits the results by T , is called an iceberg
query [FSGM+98] and has the following form:

SELECT item, Aggr(attribute1,...,attributem)

FROM Events

WHERE Aggr(attribute1,...,attributem)>T

This kind of queries arise in many applications including data warehousing,
market basket analysis in data mining, and copy detection. The other kind
of queries which bound the number of returned results are the so-called top-k
aggregation queries and can be expressing in the following form:

SELECT item, Aggr(attribute1,...,attributem)

FROM Events

ORDER BY Aggr(attribute1,...,attributem) DESC

LIMIT k
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Figure 2.2: Finger tables and logarithmic lookup.

Essentially, an iceberg query can be evaluated using a suitable top-k aggre-
gation query and vice versa. Given the threshold parameter T in an iceberg
query, in order to transform the query to a top-k aggregation query, the appro-
priate k should be chosen, such that all the returned results have aggregation
values higher than T and all those which satisfy this criteria are returned. If
the distribution of the aggregate value is known, a primary value for k can be
estimated and tuned by repeatedly evaluating the corresponding top-k query
and viewing the results.

Another kind of queries which also involves ranking database items based
on an aggregate of their attributes are the so-called query by example or nearest
neighbor (NN) queries. Assume items in a database are characterized by a
collection of their relative features (attributes) and presented as points in a
multi-dimensional space. Given a similarity (distance) measure between these
points and a query in form of the points in this space, the goal is to find the
most similar (smallest distance) items to the query. This problem is of major
importance to a variety of application, such as information retrieval, multimedia
search, and pattern recognition. Query by example also comes in two flavors,
first are the k nearest neighbor (kNN) queries which return the k closest objects
to the query point, and second are range queries, which return all objects in a
distance r of the query point. Figure 2.3 (a) illustrates a kNN search, where the
query point is shown in bold and k = 2. Figure 2.3 (b) shows an example of a
range query.
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(a) (b)

Figure 2.3: (a)kNN search with k=2 (b) range query

Similar to top-k and iceberg queries, a kNN query can be evaluated using a
suitable range query and vice versa. In all the four discussed types of queries, an
effective implementation avoids scanning the whole database when answering a
query. For simplicity, in the following we will mention kNN and top-k queries,
keeping in mind that range and iceberg queries can be evaluated similarly.

Although kNN and top-k queries bear many similarities, they have significant
differences which make techniques suitable for one, inapplicable for the other.
The first difference is that the aggregation function considered in a top-k query
is usually applied on a subset of all attributes, with usually a much smaller
cardinality compared to the whole set of attributes. In a kNN queries, the
query point is in the form of a point and the distance function usually considers
all attributes. Furthermore, structures maintained for effectively performing a
top-k query, usually consider the class of monotonic aggregation functions. In
kNN query however, the aggregation function changes each time the query point
changes and is not monotonic.

2.2.1 Top-k Aggregation Queries

Top-k query processing constitutes an important class of database queries and
has received great attention in recent years. Among the most successful ap-
proaches in terms of efficiency is the family of threshold algorithms (TA) [FLN03,
NR99, GBK00]. The TA algorithms are applicable for monotonic aggregation
functions.

Definition Monotonicity: Given a function f(x1, ..., xm), we say f is monotone
if f(x1, ..., xm) ≤ f(x′1, ..., x

′
m) whenever xi ≤ x′i for all i.

Most of the aggregation functions which are used in practice are monotone,
therefore the TA algorithms are applicable in many real world scenarios. The
TA algorithm is based on the existence of per attribute sorted lists. Variations
of the TA algorithm depend on whether random accesses to the lists are allowed
or prohibited. Several extensions to the TA algorithm exist in the literature:
approximate results are discussed in [TWS04] with probabilistic guarantees. As-
suming availability of statistics on the lists, [BMS+06] leverages this information
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to optimize the performance of the TA algorithm. Utilizing results of previous
queries or available combination lists are considered in [DGKT06, KPSV09]. In
the following subsection we describe the basic TA algorithm assuming random
accesses are allowed.

Threshold Algorithm

Given the schema EVENT(item,x1,....,xm) where item is a primary key, a
sorted list li is constructed for xi for all i. The entries of li have the following
format: 〈item, xi〉 and are sorted in decreasing order based on values of xi. We
assume random accesses are allowed: given the primary key item of a tuple,
the value of its i-th attribute can be known by a random access to li. Given a
monotonic aggregation function f(x1, ..., xm), the following steps are performed
in the TA algorithm:

1. Do sorted accesses in parallel on each of the lists li. For each observed
item e calculate its aggregation value by performing random accesses to
the other lists to retrieve its missing attribute values. Calculate the ag-
gregation function f over e. If f(e) is currently among the scores of the k
items with the highest scores, insert e to the set of top k items and discard
the (k + 1)-th item.

2. Let xi denote the value of the last observed item in li. Calculate τ as the
aggregated value of all last observed values in all lists: τ = f(x1, ..., xm).

3. Stop the above procedure if τ is smaller than the aggregated value of the
ranked k item.

The stopping condition in the TA algorithm guarantees that the returned
top-k items are the true top-k items: as if the algorithm would scan all the items
and return the top-k results. It is easy to see that since the lists are sorted in
decreasing order, the value τ calculated at each round is the upper bound for
aggregated values of items not seen so far. Therefore, if τ is smaller than the
ranked k aggregated value, no unseen item can have a better aggregated value.

2.2.2 Nearest Neighbor Queries

Query by example, similarity search, or nearest neighbor search has been a very
important problem in a variety of applications such as multimedia search, pat-
tern recognition, and machine learning. In this problem, the objects of interest
are represented by their features in a multi-dimensional space and the query is
of form of these objects. Given a similarity measure between the objects, the
goal is to retrieve the closest objects of the collection to the query point. In k

nearest neighbor (kNN) query the k closest objects are returned. While efficient
solutions for this problem exist in low dimensional data (2-4) [Gut84, Ben90],
the problem grows much more difficult with increasing dimensions.
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kNN Queries in High Dimensional Data

With increasing dimensionality, a broad variety of mathematical effects surface
up. These can severely affect the performance of the index structures built for
kNN queries and are coined as curse of dimensionality in the database commu-
nity. Many properties which appear in 2 or 3 dimensional space, where people
can visualize the space therefore tend to use it as an analogy of higher dimen-
sional space, do not hold in high enough dimensions. For better understanding,
let us consider the following example which was first presented in [BBK01].
Consider a cubic-shaped d-dimensional data space of extension [0, 1]d. Let c
denote the center point of the the data space defined as (0.5, ..., 0.5). Consider
the following lemma: Every d-dimensional sphere touching (or intersecting) the
(d − 1)-dimensional boundaries of the data space contains the center point c.
For d = 2 and d = 3 the lemma can be proved, however, it is definitely false
for d = 16, as a counter example for it can be presented. Consider a point
p = (0.3, ...0.3) and a sphere of radius 0.7 centered at p. This sphere touches
or intersects all 15 dimensional surfaces of the space but does not contain c.
The Euclidean distance of p and c is

√
16 · 0.22 = 0.8 which is larger than the

sphere’s radius. This example illustrates that some simple properties which
seem intuitive and are true for low dimensional data, do not hold as the data
dimensionality grows.

The most basic effect of dimensionality is the exponential growth in volume.
Consider a query consisting of a hypercube with selectivity 1% in the domain
space of [0, 1]d. In order to keep the volume constant, the hyper-edge should
increase exponentially. For example in the 2 dimensional space, the query width
along each dimension, i.e. the hyper edge is 2

√
0.01 = 0.1, which is one tenth

of the entire dimension. However with dimensionality as high as 40, the query
width covers almost the whole range: 40

√
0.01 = 0.84.

As a result of the curse of dimensionality Space partitioning methods con-
taining all tree-based approaches such as R-tree [Gut84] and K-D trees [Ben90],
which perform very well when data dimensionality is not high, degrade to lin-
ear search for high enough dimensions [BGRS99]. The Pyramid [BBK98] and
iDistance[YOTJ01] techniques map the high dimensional data to one dimension
and partition/cluster that space to answer queries by translating them to the
one dimensional space. An alternative to the space partitioning methods are the
family of hash-based approaches which trade accuracy for efficiency, by return-
ing approximate closest neighbors of a query point. In the following we describe
the well-known Locality Sensitive Hashing (LSH) approach which we will use
later to design efficient algorithms for the distributed version of this problem.

Locality Sensitive Hashing

The basic idea behind the LSH-based approaches is the application of locality
sensitive hashing functions [GIM99]. A family of hash functions H = {h : S →
U} is called (r1, r2, p1, p2)-sensitive if the following conditions are satisfied for
any two points q,v ∈ S:



2.2 Ranking Queries 21

p1

h1(p1) h2(p1)

h ( )hl(p1)

…

T1 T2 Tl1 2 l

Figure 2.4: To improve the quality of search, multiple hash-tables are used in
the LSH approach.

• if dist(q,v) ≤ r1 then PrH(h(q) = h(v)) ≥ p1

• if dist(q,v) > r2 then PrH(h(q) = h(v)) ≤ p2

where S specifies the domain of points and dist is the distance measure
defined in this domain.

If r1 < r2 and p1 > p2, the salient property of these functions results in
more similar objects being mapped to the same hash value than distant ones.
The actual indexing is done using LSH functions and by building several hash-
tables to increase the probability of collision (i.e., being mapped to the same
hash value) for close points. At query time, the kNN search is performed by
hashing the query point to one bucket per hash-table, scanning that bucket and
then ranking all discovered objects by their distance to the query point. The
closest k points are returned as the final result. Figure 2.4 illustrates the LSH
approach, where l hash-tables are used.

While this method is very efficient in terms of time, tuning such hash func-
tions depends on the distance of the query point to its closest neighbor. Several
follow-ups of this method exist which try to solve the problems associated with it
[BCG05, DIIM04, LJW+07, Pan06, AI06]. Very recently [APPK08] proposed a
method based on distance hashing which has the advantage of not depending on
any specific distance measure, but involves some off-line tuning of parameters.



Chapter 3

State of the Art

Ranking queries have been considered in a variety of environments in addition
to traditional centralized settings. In top-k query evaluation over data streams,
usually, a limited number of queries in form of monotonic aggregation functions
are subscribed to the system and are continuously updated with relevant results.
In this Chapter, we start first by describing different approaches for top-k query
evaluation over data streams. Then we move to larger number of queries and
higher dimensional data, by describing state of the art in information filtering.
Finally, we discuss kNN queries over P2P networks, with an emphasis on the
difficulty of kNN search over high dimensional data.

3.1 Top-k Evaluation and Join Processing Over

Data Streams

Top-k query evaluation over data streams in a sliding window model has been
a hot topic in the previous years. Mouratidis et al. [MBP06] maintain a skyline
[BKS01] which represents the possible top-k candidates, i.e., those items that
have, due to the sliding window (timeouts), still a chance to get in the top-k
result at some point. Their main focus is on the efficiency of the evaluations
and do not consider space limitations. They assume all attributes of a data
point are seen together which means exact score calculation is possible. We will
describe this approach in more detail in Section 3.1.1. In a more general setting,
[DGKS07] proposes indexing methods for answering ad hoc top-k queries utiliz-
ing arrangements. Complete information over object attributes is also assumed
here. Also related to this research are continuous k nearest neighbors (kNN)
queries on data streams, considered in [KOT04, BOPY07]. Koudas et al. present
Disc [KOT04] for indexing high dimensional points using space filling curves to
give approximate answers to kNN queries. On the other hand [BOPY07] con-
siders a fixed number of queries and indices queries instead of incoming tuples
in a structure similar to VA files [WSB98] to continuously provide exact an-
swers in a sliding window model. A skyline of the tuples in the score-time space

22
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is maintained to decide which tuples should be kept, therefore minimizing the
needed storage. They also assume complete knowledge of the score once a tu-
ple arrives in the stream. In [PZA08] the authors consider the top-k problem
in a publish/subscribe context. The goal is to return the top-k most relevant
publication to each subscriber. Similar to other approaches, they assume that
each publication contains the complete information to calculate its score and
rank against each subscription. In contrast, we consider a more general setting
where the different attributes of an object appear in multiple non-synchronized
streams, therefore the evaluation engine has partial information over the score
of objects.

Another related problem considered in data stream processing is load shed-
ding and approximate join processing. Das et al. [DGR03] consider approximate
join processing in a sliding window model with limited resources. They propose
an optimal off-line algorithm for evicting tuples when fixed amount of memory
is available and two online algorithms: PROB which leverages the probability
distribution of objects appearing in streams and LIFE which considers the life-
time of objects as well. [SW04] considers the same problem but also introduces
the age-based model in which objects do not repeat in streams, therefore PROB
is not applicable. [XYC05] generalizes the setting to stochastic streams. In
[BSW04] the authors introduce the notion of k-constraints and exploit that to
reduce the run-time state of continuous queries. Li et al. [LCKB06] exploit ref-
erence locality to reduce the cost of stream operators, such as joins. Processing
multi-joins in a sliding window is considered in [GÖ03] where adaptations of
nested loop and hash joins are proposed and evaluated.

3.1.1 Continuous top-k monitoring over sliding window

data streams

Continuous top-k monitoring was first considered in [MBP06] and we will de-
scribe this approach in more details in the following. It is assumed that queries
in form of monotonic aggregation functions are registered at the system and
the goal is to keep them updated with their valid top-k results. Objects are
considered valid while they belong to a sliding window. Arriving tuples contain
all attributes of interest, such that as soon as an object arrives its score with
regard to an aggregation function could be calculated. Assuming the data is d
dimensional, a hyper-grid of d dimensions is used for storing the valid objects.
The extent of each cell on every dimension is δ. For example in a two dimen-
sional case, a cell cij contains all tuples with the first attribute in the range
[i · δ, (i + 1) · δ) and second attribute in the range [j · δ, (j + 1) · δ). Also, as
an efficient mechanism for evicting expired tuples, a time-sorted list is main-
tained where new tuples are inserted in the head and old data drop out of the
tail. Since the queries are monotonic, an influence region can be defined for
each. The influence region of each query, defined by its aggregation function
and ranked k result, contains all cells in the grid, where if a tuple falls in that
section it is a top-k result of this query. As an example consider the aggregation
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(a) (b)

Figure 3.1: (a) The influence region of a query (b) The skyline points

function f(x1, x2) = 2x1 + 3x2 for query q. Also let the attributes of the data
points to be normalized to [0, 1] and let pk be the object with the k highest
score for q. The line score(pk) = 2x1 + 3x2 divides the space into two parts.
As shown in Figure 3.1(a), the shaded area represents the influence region of q,
i.e., any update falling in the influence region affects the top-k results of q.

For each cell c in the grid, a list of queries whose influence region contains
c are also maintained. When a new tuple arrives, its position in the grid is
determined. Assume it falls in cell c. Then only the queries stored in cell c
need to be updated. Maintaining this information allows the system to avoid
processing all queries in the system when a new tuple arrives. On the other hand,
when an object which is in the top-k result set of a query expires, that query
should be re-evaluated. To avoid re-evaluation each time an object expires, the
concept of skylines [BKS01] is used. The skyline of a set with regard to a given
aggregation function contains those objects which have a chance of becoming
a top result, as other objects expire. Each point in the dataset is considered
in the score-time space, where score corresponds to its aggregated value with
regard to the query aggregation function and time denotes its expiration time.
We say a point dominates another one, if it has both a better score and a longer
life time. The skyline of a set consists of points which are not dominated by any
other point. Figure 3.1(b) illustrates the points in the skyline as shaded circles.

With the above mentioned computational and maintainable modules, con-
tinuous monitoring of queries, where data points arrive completely in the stream
and are of low dimensionality, can be done very efficiently. However, as we will
see in Chapter 4, the above solution is not applicable to the case where multiple
non-synchronized streams report different attributes of an object.

3.2 Information Filtering

In information filtering, a stream of incoming text documents, from different
sources, is considered and users subscribe to a system with their favorite pro-
files and receive notification whenever a relevant document arrives at the sys-
tem. Traditionally, relevance is defined by a fixed threshold or a boolean model
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is used, therefore the queries could essentially be considered as iceberg queries
over a data stream. Two main features differentiate information filtering from
top-k processing over streams as described in the previous Section. First, the
number of queries considered in an information filtering system is usually much
larger, and second, since the incoming data is in form of text, it has high di-
mensionality as compared to usually low dimensional data considered in other
scenarios. When the number of queries which should be constantly monitored
is large, query indexing is a more appropriate approach compared to the usual
data indexing. Information filtering or selective dissemination of information is
considered dual to classical information retrieval. Information filtering has been
considered in vector space [BM96, YGM94a], boolean [YGM94b], and more
recently AWP [TKD09] models. In [YGM94a], a profile filtering scheme is pro-
posed which is based on distinguishing the significant and insignificant terms of
a profile based on the given threshold. In [BM96] the previous method, which
reduces the cost of disk I/O at the expense of larger indices, is combined with a
document batching process which takes advantage of the sparsity of the profile
and document matrices and writes the partial similarity matrix to disk, improv-
ing the efficiency. Callan [Cal96] describes a statical document filtering system
based on the inference network model of information retrieval.

Information filtering is essentially similar to bichromatic reverse nearest
neighbor search (RNN). Given a database of points P , a set of query points
Q, and a similarity measure between the members of P and Q, in bichromatic
RNN search, with a query q ∈ Q the goal is to find p ∈ P which is closer to q
than any other point of Q. Most proposed methods for this problem consider
two dimensions. In [KM00] two separate R-trees are used as the index struc-
ture for RNN search. [SAA00] considers the monochromatic version of RNN
in two dimensions and is based on the geometric observation that the maxi-
mum number of RNN’s in two dimensions for a query point is 6. Singh et al.
[SFT03] propose an approximate method for RNN search in high dimensional
data which first finds the NN’s of a query point with the hope that its RNN is
actually among them.

In the following we describe the approach in [YGM94a] and [MP09] which
are the closest to our problem considered in Chapter 5.

3.2.1 Threshold-based Information Filtering

In [YGM94a], motivated by the wealth of information generators and in order
to assist users in being informed of interesting content, an information filtering
mechanism is introduced. Large number of users subscribe their interests as pro-
files to the system and get continuously updated with new relevant documents.
The documents and profiles are assumed to follow the vector space model, i.e.,
each document or profile is described by a set of weighted terms. The degree
of similarity between a document and a profile is measured by the well known
cosine measure.

Given a threshold value T , when a new document d arrives, all profiles



26 3. State of the Art

a b c d e

P1,0.46 P1,0.14 P1,0.17 P1,0.62 P1,0.59

f

P3,0.17

g

P3,0.42

h

P3,0.11

i

P3,0.10

P2,0.95 P2,0.30 P3,0.14 P3,0.49

Figure 3.2: An example of the PI indexing method

which have a larger similarity degree than T to this document are informed of
d. The brute force approach, compares each existing profile to a new document
and updates the affected profiles. However, such a scheme is not scalable to
large number of users and high input rates. Therefore a Profile Indexing (PI)
method is described in [YGM94a]. Similar to traditional IR, inverted lists are
constructed for each term, but this time the lists contain the profiles registered
at the system. For each term t, all profiles which have a non-zero weight for
t are collected. The inverted list for a term t is made of postings, where each
posting consists of a profile identifier and the weight of t in that profile. Figure
3.2 shows an example where there are nine terms and three profiles. When a
new document arrives, only those lists corresponding to a non-zero weighted
term in the document are processed against this document. Lists are processed
one by one and a score value is kept for each profile seen in a list and updated
when observed in subsequently processed lists. Those profiles whose score is
larger than T are then updated with d.

In the PI method, a profile is indexed by all its terms. As an alternative, the
authors introduce the Selective Profile Indexing (SPI) approach, which indexes
each profile by a selected number of its terms. This selectivity is based on
the definitions of significant and insignificant terms. An insignificant subset of
terms for a profile p , is a subset of p’s terms which if are the intersection of p
and a document, do not conclude in a similarity score larger than T between
that document and p. The most insignificant terms of a profile with regard to
a given threshold can be identified with a simple greedy algorithm. At index
time, a profile is indexed by its significant terms only and the insignificant terms
are repeated as an extension each time a profile appears in the inverted list of a
term. This ensures that the exact score of a profile with regard to a document
can still be calculated. Figure 3.3 illustrates the SPI approach where T = 0.20.
The SPI method has larger space overhead compared to the PI approach, as
the insignificant terms are repeated with every significant term being indexed.
However the SPI method results in better processing time, as the number of
profile comparisons per document is less than PI.

In Chapter 5, we study a similar problem. However, we argue that setting
the threshold to a fixed value does not perform well in a highly dynamic setting.
As we do not consider the threshold values to be fixed, the above solution is not
applicable to our problem.
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Figure 3.3: An example of the SPI indexing method where T=0.20

3.2.2 Information Filtering With Continuous Monitoring

of Large Cardinality Top-k Queries

The closest work in the literature to the problem we consider in Chapter 5 is the
recent work by Mouratidis et al. [MP09] which considers processing continuous
text search queries. Queries in this setting are assumed to consist of weighted
terms. The incoming documents are also processed to be represented similarly
and a monotonic aggregation function is used to measure the similarity of each
document to a query. Valid documents are maintained in an inverted list which
allows for a threshold algorithm to be executed as needed. The main goal is
to avoid the brute-force method of comparing each incoming document with all
queries registered in the system. While this is similar to our setup in Chapter 5,
the key idea in this approach is to keep the state of the TA algorithm, for each
query, in a per-term index organized as a tree. Upon arrival of new documents,
the tree is scanned for all potentially affected profiles and in case of a change
in the score of the document at rank k, the thresholds are updated upwards.
In the case of the removal of old documents the index lists’ scan lines will be
adapted downwards. The rationale behind this continuous adaptation of the
scan lines is that tight bounds cause fewer documents having to be evaluated
against the registered queries. However, these scan lines are too often not a
good (tight) description of the actually more interesting score at rank k, leading
to the problem that many profiles have to be checked for modification with
almost every incoming document. An additional effect of the the scan line based
indexing is the large number of potential candidates held in the resultset. We
address both problems (profile indexing and result maintenance) in this work
and have implemented the approach by Mouratidis et al. [MP09] and include it
in our experimental evaluation.

3.3 Distributed Nearest Neighbor Search

In kNN search (c.f., Section 2.2.2), given a query in form of the points in a
set and a similarity measure, the goal is to return the k closest points to the
query point. With the emergence of the P2P paradigm [SMK+01, RFH+01]
and distributed large data sets, there has been a tendency to leverage the power
of distributed computing by sharing the cost incurred by kNN search over a set
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of machines. A number of P2P approaches, such as [CLM+07, BAS04, BB05]
have been proposed for similarity search, but they are either dedicated to one di-
mensional data or do not consider very high dimensional data. MCAN [FGZ05]
uses a pivot-based technique to map the high dimensional metric data to an
N-dimensional vector space, and then uses CAN [RFH+01] as its underlying
structured P2P system. The pivots are chosen based on the data, which is pre-
processed in a centralized fashion and then distributed over the peers. SWAM
[BKS04] is a family of Small World Access Methods, which aims at building
a network topology that groups together peers with similar content. In this
structure peers can hold a single data item each, which is not well-suited for
large data sets. SkipIndex [ZKW04] and VBI-tree [JOV+06] both rely on tree-
based approaches which do not scale well when data dimensions are high. In
pSearch [TXD03], the well known information retrieval techniques Vector Space
Model(VSM) and Latent Semantic Indexing (LSI) are used to generate a seman-
tic space. This Cartesian space is then directly mapped to a multi-dimensional
CAN which basically has the same dimensionality of the Cartesian space (as
high as 300 dimensions). Since the dimensionality of the underlying peer-to-
peer network depends on the dimensionality of the data (or the number of
reduced dimensions), different overlays are needed for various data sets with
different dimensionality. This dependency and centralized computation of LSI
make approach less practical in real applications. In [SEAA04] the authors
follow pSearch by employing VSM and LSI, but map the resulting high dimen-
sional Cartesian space to a one dimensional Chord ring. Unlike pSearch, this
method is independent of the corpus size and dimensionality. This is the closest
work in state of the art to our considered problem, since it considers high di-
mensional data over a structured P2P system, for a more detailed description of
this work see Section 3.3.1. Recently, SimPeer [DVKV07] was proposed, which
uses the principle of iDistance [JOT+05] to provide range search capabilities
in a hierarchical unstructured P2P network for high dimensional data. In this
work also, the peers are assumed to hold and maintain their own data. On the
contrary, we consider efficient similarity search over structured P2P networks,
which guarantees logarithmic lookup time in terms of network size, and leverage
on LSH-based approaches to provide approximate results to KNN search effi-
ciently, even in very high dimensional data. Our approach also enables efficient
range search which is difficult in LSH-based approaches.

3.3.1 The Approach by Sahin et al.

In [SEAA04] the authors consider kNN search over high dimensional data in
a structured P2P network. Given a set of high dimensional points, the goal
is to distribute the data in the P2P network, such that efficient kNN search is
possible and a fair load balance ensures the robustness of the network. A globally
known list R = r1, r2, ..., rv of reference data points is considered. These are
either randomly chosen from the data set or are the cluster representatives of a
clustered sample set. In order to index a data point v, it is compared against
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all reference points and a sorted list of references in increasing distance to v is
constructed. The first j references, which are the reference points closest to v are
used to make the Chord key for it: the binary representations of the ID’s of these
j references are concatenated, with the highest relevant reference as the high
order bits. If there are any remaining bits in the Chord bit representation, they
are filled with zeros. The intuition behind this approach is that points which are
close to each other, share common top references and will therefore be stored
at the same peer. In order to increase the probability of this event, multiple
Chord keys are made for each data point, choosing j different reference points,
or different permutations of them. At query time, the query point is similarly
mapped to the Chord ring and the corresponding peers are scanned with the
k closest points returned and merged at the peer issuing the query. Figure 3.4
shows an example of indexing a data point. The number of references is 7, the
Chord range is (0, 210), j is 2 and each data point is replicated three times.

Sorted reference list (v) = {r6,r4,r0,r5,r2,r1,r3,r7}
R = {r0,r1,r2,r3,r4,r5,r6,r7}

Reference points
to create Chord keys

Corresponding 
Chord keys

(1st,2nd)

(1st,3rd)

(2nd,3rd)

(r6,r4)

(r6,r0)

 (r4,r0)

1101000000

1100000000

1000000000

Figure 3.4: Illustration of mapping a point to the Chord peer space by Sahin et
al.

This approach of mapping data points to the Chord ring focuses on placing
close points on the same peer and does not exploit nearby peers. For example
a data point q close to v might have (r6, r4) as its two first closest references,
corresponding to the Chord key 1001100000, resulting in placing it on a far peer
from where v is placed (i.e. 1101000000). In our approach we aim at placing
close points on the same peer or neighboring peers to exploit the linear order
of peers in Chord style DHTs and avoid high number of DHT lookups.



Chapter 4

Evaluating Top-k Queries

over Incomplete Data

Streams

4.1 Introduction

Research on data streams has gained a lot of interest in the past few years
[BBD+02, Mut05, CKT08, MBP06, KOT04, BOPY07]. Many data and query
characteristics of modern applications are best captured by this computational
model, where data streams in continuously at high rates and each tuple has
the chance of being observed only once. Memory constraints usually force the
eviction of old tuples to let new tuples arrive and be processed. In this Chapter,
we consider tracking top-k items over multiple data streams in a sliding window.
Each stream represents one particular dimension of interest, for instance, a
particular attribute of the observed item w.r.t. a sensor location. We address a
broad area of application scenarios, like network monitoring and sensor network
data processing such as observing local natural phenomena, a common task in
environmental sciences.

While top-k processing over sliding window data streams has been the focus
of several recent papers, [BOPY07, MBP06, JY+08, DGKS07] (c.f., Section
3.1), all these works assume complete information over the arriving object’s
attributes or desired scores. In this model tuples arrive in one stream where
all attributes of the object have been measured and projected in this tuple, or,
different attributes arrive in several streams but with an unlikely assumption
that all attributes of an object arrive at the same time in all streams. Therefore,
in this model it is possible to calculate the exact score of each object with regard
to a desired query instantly as the object arrives. On the contrary, we observe
that in many streaming scenarios this is not the case.

For example, consider an Internet Service Provider that monitors traffic at
different routers in a network. Each router sends detailed traffic logs of different

30
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flows to a central server. These logs can consist of the source and destination
IP addresses, the number and size of packets corresponding to them, and a
time-stamp. The central server receives this information from different routers
(i.e., in multiple streams) and can process various queries to better estimate
and control traffic over the network or prevent security attacks. Top-k queries
are commonly used in these applications, e.g., to continuously report the top-20
flows with largest total size. Since each flow can appear in several routers at
different time-stamps, the exact score of each flow (in this example sum of sizes
measured in all routers) can not be computed unless a tuple representing this
flow arrives in all of the streams.

As another example, imagine a network of cameras on highways with detec-
tors of the number plates, each reporting the observed vehicles in a stream to
a central unit. A query would involve certain camera streams in a given area
and the goal is to report based on (time-stamp, plate-number, speed)-triples the
fastest drivers. Naturally, a vehicle is captured by different cameras at different
times, so its attributes (i.e., speed at various points) arrive at the central unit
with some delay. Not all vehicles are observed by all cameras, as there are var-
ious alternative paths. In similar scenarios where moving objects are tracked
by stationed sensors, for example in supply chain management, the objects are
incomplete by nature as they do not necessarily pass through all sensors, there-
fore do not explicitly possess values for all attributes. Unless all attributes of an
object have been observed, or sufficient time has passed since its last observed
attribute, it is not certain that the object’s score will not change. Additionally,
this incomplete view can be due to measurement noises, lossy transmissions, or
delayed arrivals as a result of network characteristics, as opposed to the nature
of attributes and monitored objects. Environmental monitoring scenarios can
serve as an example to this.

The sliding window model adds up to this uncertainty as different attributes
of the same object may be valid for different amounts of time. As a result, a
system favoring exact results should maintain several aggregation scores, with
regard to different expiration times of its attributes. This, significantly changes
the properties of the system, especially with regard to the necessary storage.

Motivated by these scenarios, where complete observations are rare, we
choose incomplete streams as our underlying streaming model. We show that
extensions of existing approaches to the uncertain score scenario do not perform
well in practice, particularly with regard to storage which poses fundamental
restrictions in stream processing engines.

4.1.1 Problem Statement and System Model

Let O = {p, q, ...} be the set of objects we are monitoring. We consider d in-
coming streams s1, s2, ..., sd, each corresponding to one attribute of the objects.
Note that we can similarly consider merging all streams to one incoming stream
and supplement each tuple with the attribute it is describing. However, for the
sake of simple presentation we will use the multi stream notation through out
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this Chapter. Each stream si contains tuples of the form 〈p.id, p.value(i), p.ti〉,
where p.id uniquely identifies p, p.value(i) is the value of attribute i of p and
p.ti is the arrival time of this tuple. We assume all attribute values p.value(i)
are normalized to [0, 1]. Objects do not necessarily appear in all streams and
can arrive in different streams at different time-stamps. Tuples continuously
stream in and they are considered valid while they belong to a sliding window
W . Sliding windows can be either count or time based. Our algorithms can
naturally handle both kinds of sliding windows. For simplicity, we assume each
object appears in each stream at most once. We later show how our methods
are extendable to the case where this assumption is not valid.

At each instant of time, we can calculate the scores of valid objects given a
monotonically increasing aggregation function:
score(p) = f(p.value(1), ..., p.value(d)). An object is considered valid if it has
at least one valid attribute. In calculating score(p), the value of an unseen or
expired attribute is considered to be the smallest possible; in our case where
values are normalized to [0, 1] this is 0. The score of an object can increase over
time as some of its unseen attributes arrive or it can decrease as some of its
attributes expire.

Given the above, we are interested in continuously monitoring the top-k
valid objects with regard to their scores. We consider the tradeoff of minimizing
storage consumption and result accuracy. Our goal is to sum-up two contra-
dictory conditions: keep less than necessary, but maintain the accuracy of the
top-k results.

Figure 4.1 shows an example of our model in the network monitoring sce-
nario. In this case, objects are flows, therefore id can be the concatenation of
the source and destination IP addresses. Attribute i of each flow is its size mea-
sured at router i. Objects do not arrive in the same order in different streams.
The aggregation function is sum and a time based window of size 100 is as-
sumed. As can be seen, the score of objects increase and decrease over time as
new attributes arrive or old ones expire.

This Chapter is based on our work in [HMA09b] and is organized as follows.
Section 4.2 presents two exact algorithms and discusses the new notion of domi-
nance in order to enable retaining only the necessary objects for providing exact
results. The increase in memory consumption is also discussed in this Section
which motivates our approximate algorithm. Section 4.3 presents our approxi-
mate approach to deal with partial knowledge imposed by the incomplete data
streams. Section 4.4 shows how our proposed algorithms can be extended to the
case where each object may appear several times in each stream. Section 4.5
discusses this problem when a fixed amount of memory is available and presents
an optimum off-line solution. Section 4.6 presents the experimental evaluation.
Section 4.7 concludes this Chapter.
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router 1: 

<t,0.9,111>   <o,0.5,110>   <r,0.5,109>  …  <q,0.2,11>   <p,0.3,10>...
router 2: 
<s,0.2,111>   <w,0.6,110>   <q,0.7,109>  …  <p,0.1,11>   <r,0.6,10>...

<t,0.1,111>   <s,0.4,110>   <o,0.5,109>  …  <r,0.1,11>   <q,0.6,10>...
router d: 

...

Current window

at time=10:

score(p)=0.3
score(r)=0.6
score(q)=0.6

at time=111:

score(p)=0.1
score(r)=0.6
score(q)=0.9
score(o)=1.0
score(w)=0.6
score(s)=0.6
score(t)=1.0

at time=110:

score(p)=0.4
score(r)=1.2
score(q)=1.5
score(o)=1.0
score(w)=0.6
score(s)=0.4

at time=109:

score(p)=0.4
score(r)=1.2
score(q)=1.5
score(o)=0.5

at time=11:

score(p)=0.4
score(r)=0.7
score(q)=0.8

new 
incoming 

tuple

Figure 4.1: An example: streams are generated at various routers and flows are
the monitored objects

4.2 Exact Algorithms

We describe two exact algorithms for evaluating top-k queries over incomplete
data streams. The first algorithm is an adaptation of the threshold sorted list
mechanism used in traditional databases. The idea is to store the tuples of
each stream in a sorted list and use the Threshold Algorithm (TA) [FLN03],
as described in Section 2.2.1, in order to evaluate top-k queries. The second
algorithm builds on early aggregation of tuples as they stream in. It enables
pruning of tuples which do not have a chance of becoming a top-k result and
can be safely dropped.

4.2.1 Sorted List Algorithm (SLA)

We assume all valid tuples are sorted in a first-in-first-out list. This provides an
efficient mechanism for evicting expired tuples. Newly arriving tuples in each
stream are placed at the head of this list and old tuples are dropped from the
tail. Note that this is applicable to both count-based and time-based sliding
windows. In addition to this list we maintain d sorted lists, one per stream (i.e.,
for each attribute). Upon receiving 〈p.id, p.value(i), p.t〉 from the ith stream,
(p.id, p.value(i)) is inserted in the ith list which is sorted based on the value
field. When a tuple expires, it is also removed from the sorted list it belongs to.

In order to evaluate a top-k query, the TA algorithm is used. Similar to
[MBP06] we use the technique of [YYY+03] for efficient maintenance of the
top-k results in face of frequent insertions/deletions: we maintain kmax > k

entries for a top-k query in order to reduce re-computations. When a new tuple
〈p.id, p.value(i), p.t〉 arrives, p’s new score is computed by random access to
all other attribute lists. The result list is updated accordingly: if p’s score is
higher than the least score in this list, p is inserted to the result view. Similarly
whenever a tuple expires, the score of its corresponding object decreases. If this
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object was part of the result view, the result view is updated. Once the size of
the result view falls below k the TA algorithm is called to recompute the top-k
results.

4.2.2 Early Aggregation Algorithm (EAA)

In monitoring scenarios where tuples stream in with very high rate, it is often
impossible to save all incoming data as in the previous approach. Most of the
tuples are not interesting and can be dropped. Therefore with limited resources,
only objects which have a chance of becoming a top-k result should be saved.
These include those objects which at their time of arrival are not among the
top-k results of the query, but over time as some objects expire qualify as top-
k results. This idea is used in [BOPY07, MBP06, MP07] to devise efficient
methods for processing fixed kNN and top-k queries. In the following we first
describe how such objects are identified when instant score evaluation is possible
and then show how this can be extended to our model.

If the data arrives in a way that allows for a full evaluation instantly, i.e., all
attributes of an object arrive at the same time, the score of each object can be
calculated with regard to a fixed query (i.e., a given aggregation function), and
this score does not change during the object’s life time. Now each object p can
be regarded as a point in the score/time space represented by two attributes,
its score: p.score, and time of arrival: p.time. A point p is said to dominate
another point q if and only if p is preferable to q in all attributes. For our
problem this translates to p.score > q.score and p.time > q.time. A point is in
the k-skyband of the dataset if it is dominated by less than k other points in the
dataset. Skyline constitutes the case for k = 1. It is easy to observe, and has
been formally proven in [BOPY07, MBP06, MP07], that it is sufficient to save
only points in the k-skyband over these two attributes of the dataset to answer
top-k or kNN queries. This is also the minimum number of points required to
answer the top-k query accurately.

It should be noted that although the objects are originally d dimensional, the
skyband is calculated over only two attributes (score, which is an aggregation
of the initial d attributes, and time of arrival).

The shortcoming of these approaches is that they assume the data to arrive
in a way that allows for a full evaluation instantly. In case of multiple non-
synchronized data streams, the score of an object may change over time as more
of its attributes are observed or some expire. As a result, the classic dominance
check can not be used to drop objects. However, since we are assuming a
monotone aggregation function we can calculate the highest score an object can
acquire. This is a standard concept in top-k query processing [FLN03] that
allows for pruning items based on their upper bound score. This upper bound
can be used in performing a conservative dominance check, which considers
possible increases in the score of an object. Nevertheless, as some attributes
of an object expire before the rest, its score can also decrease over time, which
means the dominance relation between two objects may change over time. We
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solve this problem by creating several instances of the same object with different
expiring times in such a way that the score of these instances can only increase
over time. In the following we first explain how these aggregated instances are
created and then show how the dominance check condition should be changed
in this case such that all objects having a chance of being among the top-k are
still in the k-skyband.

Instance Creation

Assume the attributes of an object p have been observed in a subset I =
{i1, i2, ..ir} ⊆ {1, .., d} of streams and w.l.o.g. p.ti1 < p.ti2 < ... < p.tir . We
create r aggregated instances of p in the following way:

pj = 〈p.id, pj .currentscore, pj .bestscore, pj .t〉

where pj .currentscore = f(vw(1), ..., vw(d)) and

vw(x) =
{
p.value(x) x ∈ I ∧ p.tx ≥ p.tij
0 otherwise

pj .bestscore represents the highest score this object can get during its life
time and is calculated as pj .bestscore = f(vb(1), ..., vb(d)) and

vb(x) =


p.value(x) x ∈ I ∧ p.tx ≥ p.tij
0 x ∈ I ∧ p.tx < p.tij
1 otherwise

where the second condition is based on the fact that each object is observed
once per stream. The arrival time of this instance is set to pj .t = p.tij , which is
the earliest time among all observed attributes which are considered for calcu-
lating its currentscore. This ensure that currentscore can only increase during
this instance’s life time. If a new attribute ir+1 of p is observed, the above
instances are updated accordingly: vw(ir+1) = vb(ir+1) = p.value(ir+1), which
results in a larger value for currentscore and a smaller one for bestscore. As a
result, the interval of [currentscore, bestscore] can only shrink over time for each
aggregated instance. Also a new instance pr+1 is created accordingly. Figure
4.2 shows an example of object instances and their score intervals in case of
W = 100. p’s second attribute is observed earliest at t = 1, where p1 is created.
When p’s third attribute arrives in stream 3, p1’s scores are updated accordingly
and p2 is created. As can be seen the score interval decreases: p1.currentscore

increases while p1.bestscore decreases. Upon observing the first attribute, the
evaluation engine has full information over the score of this object. p1 and p2’s
scores are updated and p3 is created.

The introduction of currentscore and bestscore follows the scoring introduced
by Fagin et. al. [FLN03] in their NRA algorithm that uses only sequential scans
of the input data. However, in NRA the best possible score to be considered
when calculating the upper bound score (bestscore) decreases with ongoing se-
quential scan, as the input data per attribute is considered to decrease in score,
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Figure 4.2: An example of object instance creation

which would be an unrealistic assumption in the streaming data scenario we
consider.

Interval Dominance

Given a set S of such object instances we are interested in keeping only those
which have a chance of becoming a top-k in future. We define the interval
dominance as follows.

Definition 1 [Interval Dominance] Given two object instances pi and qj we say
pi dominates qj and denote this by pi < qj iff pi.t > qj .t and pi.currentscore >
qj .bestscore.

The k dominance set of S, denoted as Sk, consists of all instances which
are dominated by less than k other distinct object instances. Two object in-
stances are said to be distinct if they possess non equal ids. Interval Dominance
has the following desirable properties:

P1-Persistence: Dominance is persistent during an instance’s life time: if
pi < qj at time τ , pi < qj for all times t > τ . This is because pi.currentscoreτ >
qj .bestscoreτ and currentscore can only increase over time while bestscore can
only decrease, so pi.currentscoret > qj .bestscoret for t > τ , where pi.bestscoret
denotes pi’s bestscore at time t. Also the time attribute t of instance objects
does not change over time.

P2-Transitivity: If pi < qj and qj < rk then pi < rk. The definition of
interval dominance directly results in this property. As a result, if pi < qj and
pi /∈ Sk then also qj /∈ Sk.

Theorem 1 Assume S is the set of all valid instances. It is necessary and
sufficient to retain the object instances in Sk to provide exact top-k results.

For the proof see the appendix.
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Structure and Maintenance

Our Early Aggregation Algorithm (EAA) is based on maintaining the k domi-
nance set of valid instances as new tuples arrive and old ones expire. We keep the
list of valid objects in a hash-table based on their ids. As described previously
in the Instance Creation Section, for each valid object we have r aggregated
instances where r is the number of valid attributes with distinct arrival times.
We keep a sorted list of these instances based on their time attribute and keep
pointers to them from the corresponding hash-table entry. Upon arrival of a
new tuple 〈p.id, p.value(i), p.t〉 from the ith stream, we first look up p.id in the
validity hash-table. If p.id exists in the hash-table, a number of other attributes
of p have been observed before. Assume r distinct attributes were observed for
p before the new tuple. We have created r instances of p as described previ-
ously. These instances are updated by taking p.value(i) into account instead
of 0 in calculating currentscore or 1 in calculating bestscore. We also create a
new instance pr+1 as described in Section 4.2.2 and insert it in the time sorted
list. A pointer to this new object is also kept in the validity hash-table in the
corresponding entry.

So far we described the insertion of new tuples and creation/modification
of object instances. In order to prune unnecessary instances, we maintain the
number of objects which dominate each instance. We keep a dominance counter
dc for each instance, which shows the number of distinct instances that domi-
nate this instance, and maintain this value during the instance’s updates. To
facilitate maintaining dc and avoid scanning all instances each time an update
occurs, we keep also two sorted lists of score values: one for bestscores de-
noted by bsorted and one for currentscores shown by csorted. For an object
instance pi, we create two entries of the form 〈id, v〉 with the following values:
〈pi.id, pi.currentscore〉 and 〈pi.id, pi.bestscore〉 and insert them in the csorted
and bsorted lists respectively. Figure 4.3 illustrates the data structures we use.

The dominance counter of each instance can be calculated utilizing the three
described lists. When p1 is created, it has the last expiration time, as its time
attribute t is set to the arrival time of the last received tuple. So it can not
be dominated by any other instances. However, it dominates those instances
whose bestscore is less than p1.currentscore. These instances are easily accessed
by first identifying the position of pi.currentscore in bsorted, which is possible
by a binary search in that list, and from that point scanning all entries in a
descending order and increasing their dc values. The steps necessary for this
operation are shown in Algorithm 1. For each instance object we also keep a list
of ids of instances which dominate this one: dcids and use it to avoid recounting
non-distinct dominating instances.

Whenever an object instance pi is modified (due to the observation of a new
attribute of its corresponding object) it may dominate more instances, as its
currentscore increases, at the same time it may be dominated by more instances,
since its bestscore has decreased. The two score sorted lists are utilized to
identify and update these involved instances. We only need to check an instance
qj , if qj .bestscore is larger than pi’s old currentscore and is smaller than its new
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Figure 4.3: Structures for maintaining k-skyband

value. Such instances are easily identified by looking up pi’s old currentscore in
bsorted and performing a scan from the found position in an ascending order
until the value of the entry is larger than pi.currentscore. We perform similarly
for pi’s bestscore, looking its old value up in csorted and scanning in descending
order until the value of the entry is smaller than pi.bestscore. Algorithm 2
shows the details.

The object instances whose dominance counter dc hits k can be safely dis-
carded. They are removed from the three sorted lists and their corresponding
pointer is also eliminated from the validity hash-table. Note that removal of
such instances does not effect the dominance counters of other instances. This
is due to the transitivity property of dominance: all those instance which were
dominated by pi are also dominated by instances which dominate pi. As a re-
sult if pi is removed because it is dominated by k distinct instances, all other
instances which were dominated by pi have been removed before (because they
were dominated by k instances earlier). Also objects which expire fall off the
tail of the time sorted list and are also removed from the two score sorted lists
and the validity hash-table. Their removal also does not effect other instances,
as all instances which they could have dominated have expired before.

The top-k elements are identified by scanning the csorted list in a descending
fashion until currentscores of k distinct instances are identified. Similar to the
Sorted List Algorithm (SLA) we can materialize kmax instances to avoid a high
frequency of evaluations, though due to the availability of the score sorted list
they are much faster than the evaluations done in the SLA algorithm.
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Input: p.id,p.value(i),p.t,tsorted,csorted,bsorted
r=1;
if validityhashtable.contains(p.id) then

forall E=validityhashtable.entry do
update(E,p.value(i),tsorted,csorted,bsorted) ;
r++;

end
end
pr=createInstance(p.id,p.value(i),p.t,r); tsorted.append(pr,0,null);
csorted.insert(p.id,pr.currentscore); bsorted.insert(p.id,pr.bestscore);
foreach object instance q in bsorted do

if q.bestscore < pr.currentscore and pr.id /∈ q.dcids then
q.dc++;
q.dcids.add(p.id);

end
end

Algorithm 1: EAA steps for inserting a new tuple

On Skies and Linear Growth

It has been shown in [BKST78] that for a set of d dimensional objects of
size n, under uniform and independent attribute selection, the skyline size is
O((ln n)d−1). As a result, in case of synchronous streams when exact score
computation is possible, the number of objects which should be stored to pro-
vide exact top-k evaluation, is O((ln n)), as the skyline is computed over two
attributes: score and time. In the following we show that with the interval
dominance check, the size of the dominance set grows linearly in the size of the
original set. As a result, although the expected storage consumption of EAA
is less than SLA, still, it is linear in size of W . As we will see later, this gives
the basis for our proposed approximate algorithm which aims at minimizing the
memory consumption.

Lemma 1 [Linear Growth] Given a set S consisting of n elements of the form
〈currentscorei, bestscorei, timei〉, where currentscorei are chosen uniformly at
random from [0, 1] and bestscorei = min(currentscorei+ ε, 1) . The expected
size of the dominance set S∗ is in Ω(n) where the constant depends on ε.

For the proof see the appendix. Figures 4.4 and 4.5 report on the results
an experiment to analyze the behavior of the skyline size with changing dataset
size and changing the distance between best and current scores (i.e., the inter-
val size). We run the experiments for uniform and skewed data. For skewed
data we use an exponential distribution with parameter 1.5 and place the skew
once on smaller values (minimum) and once on larger values (maximum). In
exponentially distributed data when the skew is more towards smaller values
we observe that the skyline size is similar to the standard skyline size, where
only the current scores are taken to account (logarithmic in the dataset size).
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Input: E,p.value(i),tsorted,csorted,bsorted
pr=E.getInstance;
oldcurrentscore= pr.currentscore;
oldbestscore = pr.bestscore;
pr.updateCurrentscore(p.value(i));
pr.updateBestscore(p.value(i));
foreach object instance qj in bsorted do

if oldcurrentscore < qj .bestscore < pr.currentscore then
if pr.t > q.t and pr.id /∈ qj .dcids then

qj .dc++;
qj .dcids.add(pr.id);

end
end

end
foreach object instance qj in csorted do

if pr.bestscore < qj .currentscore < oldbestscore then
if qj .t > pr.t and qj .id /∈ pr.dcids then

pr.dc++;
pr.dcids.add(qj .id);

end
end

end

Algorithm 2: EAA steps for updating an existing instance object

However, data is skewed towards larger values, we observe a linear trend sim-
ilar to uniformly distributed data. Figure 4.5 shows the effect of interval size
on the skyline size when keeping the dataset size constant. We observe linear
growth while increasing the interval size for uniform data as well as for expo-
nentially distributed data with a skew towards larger values. The experiment
were conducted 50 times and we report on the average size values.

4.3 Score Estimation Based on Appearance

Correlation

As seen in the previous Section, the number of objects which should be retained
in order to provide exact answers to a top-k query in our streaming model is
linear in the size of the sliding window. Such storage may not be available,
especially when objects are stored in main memory to enable fast and online
evaluation of the top-k query. Returning approximate query answers instead of
exact answers is a graceful way of dealing with limited resources and has been
applied in many streaming problems before [DGR03, XYC05, SW04]. In this
Section we describe an algorithm which uses smaller storage at the expense of
providing approximate results as opposed to exact ones. Our algorithm can be
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seen as a semantic load shedding algorithm which aims at maximizing the quality
of the reported top-k. As in other classical work concerning top-k evaluation
our measure of quality is the average precision obtained during all evaluations.

As shown in the proof of Lemma 1 and observed in Figure 4.5, the size of
the dominance set is directly influenced by the score interval size: (bestscore−
currentscore). Our approximate scheme leverages this fact to provide better
space efficiency. bestscore for each object instance gives an upper bound of the
score this instance can acquire during its life time. Previously, we considered
the maximum value for unseen attributes in calculating bestscore. However, in
most streaming scenarios that are best captured under our non-synchronized
multiple stream model such as network or vehicle monitoring, not all attributes
of an object are observed. This conceptually means that the value considered for
such attributes in evaluating the object’s bestscore can be set as the minimum
value an attribute can get. Pairs of streams usually have different correlations
among them. For example in a vehicle monitoring scenario, cars which are
observed in path i maybe more likely to be observed in path j than path k.
We utilize the correlation of appearance between different streams in order to
better estimate bestscore.

Given an object p we define the random variable Xi ∈ {0, 1} such that
Xi = 1 if p has been observed in stream si in the current window. Similarly
Xi = 0 if p has not been seen in stream si. We are interested in calculating the
conditional probability of observing p in si if p has been already seen in stream
sj : Pr(Xi = 1|Xj = 1). In the following we first show how this information is
utilized and then present how it can be computed efficiently.

Given I = {i1, i2, ..ir} ⊆ {1, .., d} for an object p which indicates the streams
where p has been observed in, for each j /∈ I assume we know the conditional
probability of observing p in sj : Pr(Xj = 1|Xk = 1; k ∈ I). As before,
pl. ˜bestscore = f(ṽb(1), ..., ṽb(d)) where ṽb(y) is estimated as follows:

ṽb(y) =


p.value(y) y ∈ I ∧ p.ty > p.tij
0 y ∈ I ∧ p.ty < p.tij
Pr(Xy = 1|Xk = 1; k ∈ I) otherwise

ṽb(y) is naturally smaller than or equal to vb(y). Since the aggregation
function f is monotonically increasing pl. ˜bestscore in a lot of cases will be much
smaller than pl.bestscore. As a result of this, the interval size would be smaller.
Decreasing the interval size results in a smaller dominance set. At the same
time, since we are estimating bestscore realistically the quality of results should
remain high.

We now describe how the required correlation statistics can be computed.
Since Pr(Xi = 1|Xj = 1) = Pr(Xi=1∧Xj=1)

Pr(Xj=1) , Pr(Xi = 1|Xj = 1) can be statis-
tically estimated as the join size of si and sj , |si 1 sj | weighted by 1/|sj | where
|sj | is the number of distinct elements observed in a window in stream sj . This
is because each object appears in each stream at most once during an active
window. This can be generalized to the case where an object is seen in several
streams and we are interested to know with what probability it will appear in
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the rest of the streams.
We use the FM sketches to estimate these probabilities. FM sketches were

first proposed in [FM85] to probabilistically estimate the cardinality of a multi-
set M . These hash sketches use a pseudo-uniform hash function h() : M →
[0, 1, . . . , 2L). In [DF03], Durand and Flajolet presented a similar algorithm
(super-LogLog counting) which reduces the space complexity and relaxes the
required statistical properties of the hash function.

Briefly, hash sketches work as follows. Let ρ(y) : [0, 2L) → [0, L) be the
position of the least significant (leftmost) 1-bit in the binary representation of
y; that is,

ρ(y) = min
k≥0

bit(y, k) 6= 0, y > 0

and ρ(0) = L. bit(y, k) denotes the k-th bit in the binary representation of y
(bit-position 0 corresponds to the least significant bit). In order to estimate the
number n of distinct elements in a multi-set S we apply ρ(h(d)) to all d ∈ S and
record the least-significant 1-bits in a bitmap vector B[0 . . . L − 1]. Since h()
distributes values uniformly over [0, 2L), it follows that P (ρ(h(d)) = k) = 2−k−1.

Thus, when counting elements in an n-item multi-set, B[0] will be set to 1
approximately n

2 times, B[1] approximately n
4 times, etc. Hence, the quantity

R(S) = maxd∈Sρ(d) provides an estimation of the value of log2 n. Techniques
which provably reduce the statistical estimation error typically rely on employ-
ing multiple bitmaps for each hash sketch, instead of only one. The overall
estimation then is an averaging over the individual estimations produced using
each bitmap.

In our case we are interested in the cardinality of the intersection of two
streams si and sj in a window. Since we know that the number of valid distinct
elements in si is equal to the number of elements arriving in a window, we can
use the fact that |si 1 sj | = |si ∪ sj | − (|si| + |sj |) to estimate |si 1 sj |. If we
keep an FM sketch for each of si and sj , the union of these two sketches can
be used to estimate |si ∪ sj |. Since (|si| + |sj |) is known, it is then possible to
estimate |si 1 sj |. Note that we can similarly estimate |si 1 sj 1 sk| or the
cardinality of higher number of joins by only keeping FM sketches per stream.

We still need to take care of the sliding window factor: if an object o is
seen in si at time ti and in sj at time tj and ti and tj do not belong to the
same window, o shouldn’t appear in si 1 sj . As mentioned in [DGIM02], the
FM sketches can be adapted to estimate the number of distinct elements in a
sliding window by associating a bitmap of size O(logW ) with each of the bits in
the sketch. Whenever a bit is (re)set by an object in the stream, its associated
time-stamp is updated to that of the object. In this way when evaluating the
number of distinct elements in the current window, only those bits which could
have been set in the current window are considered. This increases the storage
requirement of the FM sketch with a logarithmic factor.

We note that estimating bestscore can be further tuned to provide more
accurate results at the expense of consuming more space. In the above compu-
tations, we use the probability of appearance for estimating bestscores, however,
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this can be refined to using different probabilities based on the specific values
observed. Depending on the application and the desired level of accuracy, such
refinements can be applied to our algorithm which come with the cost of main-
taining the necessary statistics, but result in more accurate results.

4.4 Multiple Occurrences

So far, in all our described algorithms we assumed that each object is observed
in each stream at most once. In some real world scenarios, such as the flow
example, this assumption may not hold. Here, we shortly describe how each
algorithm is extendable to the case where re-occurrences happen. In SLA, if
an object reoccurs in a stream, its previously observed values are updated with
aggregating the old seen value with the new one, and the newly seen value is also
inserted in the corresponding sorted list. When performing the TA algorithm, a
lookup in each list may return several instances, in such a case the largest value
is used. When a tuple expires, its corresponding item in the sorted list is also
removes. Assume the maximum number of re-occurrences in a stream is n. The
currentscore and bestscore of an instance object are updated with regard to the
number of times this object has been observed in a stream as well as in which
streams it has been observed. In particular we use n − ni as the maximum
value if an object has been observed ni times in stream i (assuming sum for
aggregating multiple occurrences). Also, similar to SLA, the values of existing
observations are updated by aggregating a newly seen value and a new instance
object is produced. All calculations are straight forward by keeping the number
of times an object has been observed. In our approximate algorithm, instead
of using n, we estimate the maximum number of re-occurrences of an object
by measuring the self join size of a stream using one of the existing approaches
such as AMS sketches [AGMS02].

4.5 Fixed Memory

While the previous approximate algorithm prunes more objects and consumes
less memory, it can not be directly used in scenarios where the amount of mem-
ory is strictly fixed. In this Section we consider top-k monitoring over multiple
non-synchronized streams when the amount of available memory is fixed. This
problem is similar to the famous paging problem, where it is decided which
cache entry is replaced by a new incoming item. We propose an optimum of-
fline algorithm for this problem. The offline algorithm (OPT) is designed under
the assumption that all future tuples are known in advance to the algorithm.
Therefore it gives the best achievable precision under fixed memory.

Consider a fixed memory size of m. For the sake of analysis, assume we
have streams of finite known length. A new tuple arrives in each stream at
each timestamp and we report the top-k items every timestamp. Without loss
of generality we assume that first, the top-k evaluation is performed and then
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the new incoming tuple is processed. We use the same instance creation as
explained in Section 4.2.2.

If the memory is not full when a tuple arrives, we update the corresponding
existing object instances (if any), create a new instance and place it directly in
the memory. Otherwise the newly created object instance should be dropped
or it should replace an existing instance in the memory. This is similar to the
paging problem, however the cost of our problem is different. In paging, the cost
is defined by the number of page faults. In our problem however, the cost is
defined by the reported set of top-k objects against the true top-k results, every
timestamps. Each time we drop an instance which in the ideal case of unlimited
memory would have been reported as a top-k item later, our algorithm incurs a
cost. Since we are now focusing on precision, the cost is equal to the number of
times this tuple would appear in the true top-k set in future. Note that unlike
paging, in our case once an instance is evicted it is never placed in the memory
again.

OPT is assumed to know the future tuples in advance. Therefore it knows the
set of future true top-k objects and based on this information it decided which
object should be evicted from the memory among the m+ 1 valid instances.

The above optimization problem can be formulated as a network flow prob-
lem. We describe how such a flow graph should be constructed. Our ideas are
similar to the k-server problem (generalization of the paging problem) and also
solutions for approximate join processing [DGR03].

The source node s has a supply m (size of our memory) and the sink node
t has demand m. The rest of the nodes do not have any supply or demand.
Apart from the source and sink nodes, each node in the graph corresponds
to an instance residing in the memory at a certain time. We assume at each
timestamp only one tuple arrives, so at each timestamp one new instance is
created. For simplicity we denote an instance which was created at time i with
νi. Note that this is regardless of the object this instance presents, νi and νj are
two different instances created at time i and j which may represent the same
object or don’t. A node with label νi : j means that instance νi which was
created at time i is in memory at time j. Clearly i ≤ j, since an instance can
not be place in memory before it is created. Edges among nodes model possible
combinations of keeping or replacing an instance. All edges have capacity 1,
which means they can transmit any value in [0, 1]. Edges are placed between
nodes with consecutive times: we connect any two nodes νi : j and νi : j + 1.
A flow on such an edge shows that νi is still in memory at time j and was not
evicted before. We also place edges between νi : j + 1 and νj+1 : j + 1. Such
edges represent replacing tuple νi with νj+1 at time j + 1. Finally we connect
the first m incoming tuples to the source and connect all nodes which have a
time component larger than |S| −m to the sink.

Costs are assigned to edges in such a way that an optimal flow corresponds
to maximizing recall. We show the set of true top-k objects instances at time
j with Rj . We assign cost factor -1 to νi : j − 1 → νi : j if νi ∈ Rj . All other
edges are assigned a cost factor of 0.
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Solving a min-cost linear flow problem corresponds to the optimal solution
for our problem. With the above construction each node will receive at most
a flow one. The edges do not allow a flow more than m in the graph which
corresponds to our memory constraint. Also the edges are placed in such a
way that if an instance is replaced by some other instance it does not have a
chance of being back in the memory later. Costs are assigned such that only
instances in the true top-k can contribute to minimizing the cost flow. Also
we should ensure that all flows are either 0 or 1 : if we have flow 0.4 on edge
νi : j → νi : j + 1 and flow 0.6 on νi : j → νj + 1 : j + 1 this means that 40%
of tuple νi and 60% of tuple νj+1 where in memory at time j + 1 which is not
acceptable. This is ensured by a theorem from network flows: if all costs and
flows of the graph are integral an optimal integral solution also exists [Roc98].

To emphasize the hardness of this problem, we show that for arbitrary
streams, the competitive ratio of any online algorithm is proportional to the
window size W which can be arbitrarily large.

Theorem 2 For a fixed memory of size m and a sliding window of size W , the
competitive ratio of any online algorithm is larger than W −m.

For the proof see the appendix. We do not discuss possible online solutions to
this problem. Similar to the case for approximate joins over streams [SW04], for
different stream models different online algorithms may be appropriate. More
discussion on this is beyond the scope of this thesis.

4.6 Experiments

We have implemented a light-weight stream processing engine in Java 1.6 provid-
ing standard operators (project, select, join), data source wrappers that replay
existing benchmark data, and data generators for synthetic data. The real world
dataset is stored in an Oracle 11g database, the synthetic data is created on the
fly.

4.6.1 Setup

Datasets

Synthetic Dataset: To obtain a better understanding of the impact of data char-
acteristics on the performance and accuracy behavior of the algorithms under
comparison, we first start by employing a data generator to produce streams
with tunable inter-stream correlation. We use the following methodology: to
generate n streams of each distinct items but with controlled correlation, the
data generator keeps track of each item sent in one of the n streams separately.
In addition, it keeps a sliding window of the last C values for each stream. To
produce a new item to be inserted in a stream, the generator picks with prob-
ability ξ a value that is currently in the sliding windows of the other streams,
and with probability (1 − ξ) draws a fresh item from a random number gen-
erator, ignoring those items that have already been sent. The stream is not
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materialized in a database (or file); it is created on demand.

Real World Dataset: We use the WorldCup98 1 dataset as our real dataset.
This dataset consists of requests made to the 1998 World Cup Web site between
April 30 and July 26, 1998. During this period the site received 1,352,804,107
requests. Each tuple consists of several fields. Each tuple has a clientID field
which uniquely identifies the client which issued the request. The server field
indicates which server handled the request and specifies the stream ID for us.
Size shows the number of bytes in the response. The query asks for the clients
who have downloaded the highest number of bytes in a given time frame. The
data is stored in an Oracle database with a B+ tree index on (server, time ASC,
client, bytes). The stream per server consists of multiple requests for each user
(e.g., each HTTP request). We have implemented a stream operator that pre-
aggregates these fine grained events in the following way. As is commonly done
in this scenario, the preprocessing operator pre-aggregates chunks of a certain
time period (δt) and sends the pre-aggregated values to the consuming stream
operator. For each stream, client ids occurring in the same pre-aggregated
stream (streams of pre-aggregated chunks) multiple times will be broken in
different clients. This reflects in particular changes of IP addresses. These
chunked streams are then processed by our top-k operators.

Algorithms under Comparison

We evaluate the following proposed algorithms:

SLA: This is the algorithm based on multiple sorted lists as explained in
Section 4.2.1. It provides the baseline for assessing the quality of results as
explained later.

EAA: Our proposed algorithm as described in Section 4.2.2. It uses the
interval dominance check to discard instances which are not part of the k dom-
inance set. Similar to SLA, EAA provides exact results and retains the least
number of objects which can guarantee this.

approxAlgo: This is the approximate algorithm as proposed in Section 4.3.
It estimates the best possible score of each instance more realistically based on
stream inter correlations.

Measures of Interest

Memory Consumption: The number of retained objects is the dominant
factor in storage. FM sketches generally consume very little space which is
constant for each stream and negligible compared to the number of data points
which should be stored. We report on the number of items retained for each
of the algorithms under comparison as a measure of storage. Items are tuples

1http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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Figure 4.6: synthetic dataset: Memory consumption when varying the window
size W

in case of SLA, as we keep tuples separately without aggregating them. We
ignore the kmax materialized aggregated results, as kmax << W . For EAA and
approxAlgo, an item is an aggregated object instance.

Precision: We report on the precision, i.e., the number of relevant data
points among returned top-k results as the effectiveness metric. The relevance
is defined by the SLA method which keeps all valid tuples. Assume SLA reports
A as the set of top-k results, this set is the ground truth. So if set B is returned
as the top-k in another algorithm, this algorithm’s precision is calculated as:
precision = |A∩B|

k .

Relative Error: Since one of our proposed algorithms provides approx-
imate results, we are interested in measuring the quality of the approximate
results: how far from the true result is a returned element. Assume A is the
ground truth set and B is the set of top-k results returned. The rank i element in
set X is denoted by xi. Then the relative error is calculated as: 1

k

∑k
i=1 |ai−bi|.

All reported measurements are averaged over 50 evaluations.

4.6.2 Experimental Results

Synthetic Dataset

In this Section we describe the experimental results for the synthetic dataset. In
the first set of experiments we investigate the effect of the sliding window size
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Figure 4.7: synthetic dataset: Precision when varying the window size W

on memory consumption and precision. SLA keeps all valid tuples, therefore
has a memory consumption equal to size of the sliding window. EAA decreases
this by dropping objects which will never be part of the top-k. EAA’s mem-
ory consumption is therefore the minimum required to guarantee exact results.
Figure 4.6 shows the results of this experiment. As expected, EAA has smaller
memory consumption compared to SLA. approxAlgo reduces the memory sig-
nificantly and shows very little increase as opposed to EAA which has a linear
growth with the window size. Figure 4.7 presents the achieved precision in this
case. EAA has precision 1 as it returns exact results. approxAlgo shows very
small variations in precision (between 0.80 and 0.84) as the window size changes,
indicating its robustness.

In Figures 4.8 and 4.9 we observe the effect of varying the correlation param-
eter between streams. The number of streams is fixed to 2 in this case and we
show the results for different algorithms for window sizes 500 and 1000. SLA has
memory consumption equal to the sliding window. As the correlation between
streams increases (which is the result of increasing ξ) the memory consumption
for EAA decreases. This is in accordance with our results from Lemma 1: by
increasing ξ the average score interval decreases, as more objects are seen in all
streams. approxAlgo’s memory consumption shows small decrease (from 130 to
84 for W=1000 and from 115 to 75 for W=500). Figure 4.9 reports the precision
when changing ξ. EAA and SLA have precision 1. For approxAlgo, precision
values increase as ξ increases, which is due to decreasing the uncertainty. How-
ever, the variations between precision values are small for both window sizes
indicating the good quality of our correlation estimation technique.

We present the results of changing the number of streams, which corresponds
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Figure 4.8: synthetic dataset: Memory consumption when varying the proba-
bility to pick recent

streams sizeEAA sizeApprox precApprox errorApprox

3 345 69 0.80 0.0174

4 450 92 0.81 0.0242

6 495 115 0.76 0.0408

Table 4.1: Results when changing number of streams for the synthetic dataset.
Windowsize =1000, k=10 and ξ =0.5

to dimensionality of the objects monitored in Table 4.1. We do not show the
results for SLA, as its memory consumption is fixed (1000 which is equal to the
window size). The memory consumption increases with increasing dimensional-
ity for both EAA and approxAlgo. Again this is due to the increase in interval
size. Precision and relative error are shown for approxAlgo. Note that these
values are respectively 1 and 0 for EAA.

Table 4.2 reports the effect of parameter k. Increasing k clearly increases
the storage as the number of elements which are not dominated by more than
k elements naturally increases. This is apparent for both EAA and approxAlgo.
We observe better precision for bigger values of k for approxAlgo: equal number
of missing objects from the top-k results has less effect for larger values of k.
Relative error shows the same trend (decreases as k increases).

Worldcup Dataset

Table 4.3 reports on the average performance for the worldcup dataset when
varying the number of streams which represents the number of servers in this
scenario. Similar to the synthetic dataset described above, our approximate al-
gorithm (algoApprox ) causes drastic performance gains in memory consumption



4.6 Experiments 51

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

pr
ec

is
io

n

probability to pick recent

num streams=2, k=10

EAA-windowsize=500
approxAlgo-windowsize=500

SLA-windowsize=1000
EAA-windowsize=1000

approxAlgo-windowsize=1000

Figure 4.9: synthetic dataset: Precision when varying the probability to pick
recent

k sizeEAA sizeApprox precApprox errorApprox

10 345.3 69.26 0.80 0.01743

20 396.3 105.6 0.86 0.0103

50 450.0 198.7 0.96 0.0027

100 481.7 315.1 0.99 0.0009

Table 4.2: Results when changing k for the synthetic dataset. Windowsize
=1000, numstr=3 and ξ=0.5

with only minor losses in result accuracy, yielding a precision between 0.92 and
0.95.

Similarly, Table 4.4 reports on the performance and accuracy numbers when
changing the window size W , showing major decrease in memory consumption
with minor losses in accuracy.

Given the above results, we observe the effectiveness of the proposed algo-
rithms. The pruning of dominated items in our EAA algorithm successfully de-
creases the memory consumption while still guaranteeing exactness of the result
set. It gives the basis for the optimization steps introduced by our approximate
algorithm, that further decreases memory consumption. The penalties in re-
sult quality is almost negligible given the achieved reduction of items to keep
in memory. The insights learned, in particular from running experiments using
the more controllable synthetic dataset, is that the smaller the correlation of
the involved streams the higher the impact of our approximate method.
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streams sizeEAA sizeApprox precApprox errorApprox

2 217.46 80.1 0.92 0.0113

3 250.0 110.9 0.93 0.0136

4 250.0 139.8 0.95 0.0097

Table 4.3: Results when changing number of streams for the Worldcup dataset.
Window = 500 and δt=5000ms and k=20

W sizeEAA sizeApprox precApprox errorApprox

500 217.46 80.1 0.923 0.0113

750 310.66 80.9 0.959 0.0082

1000 407.09 80.86 0.974 0.0084

Table 4.4: Results when changing the window size W for the Worldcup dataset.
number of streams = 2 and δt=5000ms and k=20

4.7 Conclusion

We address the problem of processing continuous top-k queries over multiple
non-synchronized data streams where exact score computation is seldom possi-
ble. To the best of our knowledge, this problem has not been addressed before in
the literature. We start by a describing a solution which is a direct adaptation
of the TA algorithm, called SLA which serves as our baseline method. Given
that SLA requires all incoming tuples to be stored and this is infeasible in many
streaming scenarios with limited resources, we aim at storing only those tuples
which are necessary for providing exact results. We extend the notion of domi-
nance, proposing an early aggregation scheme which enables efficient pruning of
objects. However, we theoretically show and experimentally confirm, that the
necessary number of elements which have to be kept to guarantee exact results,
grows linearly with the window size. Our approximate approach is based on the
observation that the size of dominance set is a direct factor of the difference be-
tween best and current scores. We leverage the correlation appearance between
different streams, which is usual in real world scenarios, to estimate bestscore
in a less optimistic way than considering the best possible scores for unseen
attributes. As seen in the experiments, this method provides highly accurate
results while reducing the number of retained objects dramatically.



Chapter 5

Information Filtering in

Web 2.0 Streams

5.1 Introduction

The world has turned into one large-scale interconnected information system
with millions of users. With the advent of Web 2.0, yesterday’s end users are
now content generators themselves and actively contribute to the Web. Each
user action, for example uploading a picture, tagging a video, or commenting
on a blog, can be interpreted as an event in a corresponding stream. Given
the immense volume of this data and its vast diversity, there is a vital need
for effective filtering methods which allow users to efficiently follow personally
interesting information and stay tuned.

Currently popular methods place the filter on the data sources: mechanisms
such as RSS and atom are used to notify users of newly published data on their
favored weblogs or news portals. However, with the currently available function-
alities, users can only decide to be notified of new posts on certain blogs or follow
certain other users as in Twitter 1. This limits the number of subscriptions users
make, as otherwise the amount of received information will be overwhelming for
human processing. On the other hand, traditional information filtering systems
[BM96, YGM94a], aggregate all available information sources and allow users to
specify their interests as profiles. Given a similarity measure between the data
and the profiles, only data which passes a certain quality-based threshold is re-
turned to the user. Although this diversifies the returned results as opposed to
the previous method, it can easily result in flooding the user with returning too
many data. Choosing a suitable threshold to avoid overwhelming the user or re-
turning very few results is very hard due to the ever changing nature of incoming
data. This calls for a system which deems relevance as relative to the existing
pool of information [MP09], as opposed to absolute relevance. Furthermore, to
account for the desire of consuming new information and to prohibit repeatedly

1http://www.twitter.com
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returning highly relevant, but old information, data is considered valid for only
a certain time interval, controlled by a sliding window. Note that in the context
of Web 2.0, all information come with explicit temporal annotations e.g., written
at, uploaded at, which makes them natural items of a temporal stream; therefore
the definition of a sliding window is meaningful. The dynamism introduced as
a result of considering relevance relative in a frequently changing information
pool, as well as the scale of our envisioned system in handling huge number of
users, poses fundamental new challenges which were nonexisting previously.

As an illustration, emphasizing the importance of the addressed problem,
consider a small scale case where 100, 000 profiles are maintained at a single
server. The naive approach consists of evaluating every profile against the in-
coming documents and re-evaluating the profiles upon result expiration from
scratch. According to our experiments, these operations, disregarding the cost
for indexing the documents, i.e., removing stopwords, calculating TF/IDF val-
ues take on average, orders of tens of milliseconds per document on a quad-core
Intel Xeon CPU E5530 @2.4GHz machine. This means that the maximum sup-
ported rate of incoming documents would be in order of hundred documents per
second which is relatively small, given that today only in Twitter, around 600
messages are produced per second 2.

5.1.1 Problem Statement

We consider a stream S of documents where each document is uniquely identified
and consists of a weight vector, as in classical Vector Space Model, as well as its
arrival time: d = 〈id, time, d〉. Assuming m distinct terms available for content
identification, d is an m-dimensional vector d = (w1, ..., wm), where wi is the
weight assigned to the i-th term. Terms which do not appear in the document
have a zero weight. Any of the usual scoring schemes such as the TF/IDF
methodology can be used for assigning the weights. We further assume in-
order streams; items arrive in the same order that they are generated. In most
streaming scenarios, as well as ours, recent items are of more interest than old
ones. This is captured by the sliding window model. A sliding window (W ) is
assumed over the stream and items are considered valid while they belong to
this window. Sliding windows can be either count or time based, i.e., bounding
the number of items either by count or focusing only on those that occurred in
a particular time interval. Our solution can be applied to both types.

Similar to web search, we assume user interests, called profiles, are ex-
pressed as sets of terms with corresponding weights: We denote a profile by
p = (u1, ..., um), where ui specifies the importance of the i-th term to the user.
The relevance of a document to a profile is determined by a scoring function:
sim(d, p) = g(fw1(u1), ...fwm(um)). We make the following assumptions regard-
ing g and f :

• Monotonicity: We assume g and fi’s are monotone. g(x1, ..., xm) is

2http://blog.twitter.com/2010/02/measuring-tweets.html
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monotone if g(x1, ..., xm) ≤ g(x′1, ..., x
′
m) whenever xi ≤ x′i for all i and

similarly for fis.

• Homogeneity: We assume g and fi’s are homogeneous, i.e., they preserve
the scalar multiplication operation: g(ax1, ..., axm) = arg(x1, ..., xm). For
simplicity we assume that the homogeneity degree is 1: r = 1. However,
our solution can be applied for higher degrees of homogeneity as well.

Note that taking the f functions as multiplication and g as summation, we
arrive at the widely used cosine measure as the scoring function for normalized
vectors.

We consider a main memory model and treat each profile as a top-k query.
All queries should be continuously monitored to keep the users up-to-date while
the valid pool of information changes due to arrival of new documents or expira-
tion of old ones. This goal involves two main tasks: first is efficient and scalable
profile filtering in order to avoid comparing an incoming document against the
large set of all existing profiles. Second is maintaining the top-k results of each
profile as the window slides and some documents become invalid. In both tasks
we focus on efficiency which is a necessary step towards ensuring scalability.

This Chapter is based on our work in [HMA10] and is organized as follows:
Section 5.2 briefly describes the general structure that we consider together with
a baseline algorithm. Section 5.3 describes an efficient algorithm for profile fil-
tering. Section 5.4 discusses the skyline-based algorithm for result maintenance
which aims at avoiding re-evaluations to high extent. Section 5.5 presents the
experimental evaluation and Section 5.6 concludes this Chapter.

5.2 System Model and Structure

In this section we briefly describe the general structure that we consider. As
mentioned in Section 5.1.1 we consider one data stream as the input to our
system. We aim at providing real-time continuous exact results to the users,
therefore results returned as the top-k most relevant documents for each profile
should consist of the top-k results over all valid documents in the system at
each instance of time. With small number of queries (profiles) or infrequent
updates in the result set of each profile, all queries could be re-evaluated at
certain times to this end. However, given large number of profiles, this solution
does not scale to provide real-time monitoring of all profiles’ results. Instead,
we index the profiles and assess the suitability of a new document for each
profile as the document arrives in the system. We avoid evaluating all profiles
against a new incoming documents, by a profile filtering component. The profile
filtering component receives a newly arrived document as input and returns a
set of profiles which should be updated with regard to this document. As the
baseline, we maintain an inverted list structure in the profile filtering: For each
term t we keep a list of profiles which contain this term, i.e., weight of t is
larger than zero for those profiles. We also maintain a hashtable of profiles,
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where profiles with a pointer to their current result set are stored. When a new
document d arrives, we evaluate all entries of all inverted lists corresponding to
a non-zero weighted term in d. Evaluating an entry corresponding to a profile
p consists of calculating sim(d, p) and comparing this with the current rank k

result of p which can be known by accessing the profile hashtable. If the new
document has a better similarity score, p’s result set is updated with it.

As the window slides, some documents expire and the set of valid documents
changes. Some profiles may need to be re-evaluated as the expired documents
were part of their result set. The result maintenance component is concerned
with efficiently performing this task. We keep a simple time-sorted list for
tracking valid documents: newly arrived documents are inserted at the head
and those which expire drop out from the tail. For each document we maintain
the set of profiles to which this document is a top-k result. Therefore, when
a document expires, the set of profiles which should be re-evaluated is known.
The actual method for performing the re-evaluation is not a main concern of
this Chapter. However, we assume sorted inverted lists are maintained such that
the usual threshold algorithm (TA) [Fag02] is employed for query evaluation.
Figure 5.1 presents the general components and structures we consider.

5.3 Efficient Profile Filtering

Similar to the baseline described in Section 5.2, we use an inverted index of
profiles to avoid examining all the existing profiles against the newly arriving
documents. In contrast to the former approach, we utilize sorted versions of
these lists. As we will describe in this Section, processing these sorted lists will
enable early stopping to further reduce the number of examined profiles. Our
method is similar to the well-known TA (threshold algorithm) [Fag02] which is
widely used in information retrieval.

As previously mentioned, we consider each profile as a continuous top-k
query over the stream of incoming documents. Let p.s denote the similarity
score of the ranked k document with regard to profile p. Let T = {t1, t2, ..., tm}
be the set of distinct terms considered for content identification of both profiles
and documents. p.ui represents the corresponding weight assigned to term ti
in p. For each term ti, we build a list li containing 〈p.id, p.vi〉 pairs where
p.vi = p.ui/p.s and the list is sorted in decreasing order based on vi values. p.id
denotes the unique identifier of profile p. A profile with l terms will only appear
in l of such posting lists.

Assume a document d with the feature vector d = (w1, ...wm) arrives in the
system. We do sorted accesses in a round robin fashion to all posting lists li
where wi > 0. When a profile p is seen under one of these lists, we access the
profile hash table for its complete weight vector and consequently calculate the
similarity score between d and p. The result set of profile p is updated if

sim(d, p) > p.s

where as mentioned before sim(d, p) satisfies the two conditions described in
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Section 5.1.1.
While accessing the sorted lists in a round robin fashion, we also check the

following stopping condition. For a list li let vi be the last observed value under
sorted access. We stop the above procedure when g(fw1(v1), ...fwm(vm)) < 1.

We call the above procedure COL-filter (Completely Ordered Lists) and
show that it is complete: all profiles for which a new incoming document serves
as a top-k result are identified before the stopping condition.

Theorem 3 COL-filter identifies all profiles for which a new incoming docu-
ment d is a top-k result.

As g is monotone and the lists are sorted, reaching the stopping condition means
that for any non processed profile p, sim(p, d) < p.s. For a detailed proof please
see the appendix.

Since the number of lists which are processed could be much larger than
the number of terms a profile has, we take into account the maximum number
of terms a profile can have in calculating the stopping condition. Assume the
maximum number of terms per profile is m′. The stopping condition could be
checked per list, i.e., the procedure can stop processing one list while the other
lists should still undergo the procedure. Let I be a subset of size m′ of the lists
under process. We define the following:

f Iwi(vi) =
{
fwi(vi) if li ∈ I
0 otherwise

Also, let Ij be the set of all subsets I, where I includes lj . The algorithm
stops processing lj if

maxI∈Ijg(f Iw1
(v1), ...f Iwm(vm)) < 1

If g is symmetric, i.e., its value at any m-tuple of arguments is the same as its
value at any permutation of that m-tuple, it is enough to do the test for one
set Imax which contains the (m′ − 1) lists with the largest fwi(vi) values along
with lj . The general steps are shown in Algorithm 3.

While COL-filter enables early stopping and avoids accessing and assessing
all profiles which appear in an inverted list of a term in an incoming document,
it incurs high costs for maintaining the inverted lists. Contrary to standard
information retrieval inverted lists, where the lists are static and change rarely,
the sorted lists in COL-filter change frequently. This is because the values we use
for sorting depend on the similarity scores of profiles which change with time, as
new documents arrive or old ones expire and are removed from the system. Note
that each time a profile p is updated, i.e., a new incoming document qualifies
as its top-k result, p.s changes. As a result p.vi = p.ui/p.s changes, therefore
p’s corresponding tuples in all lists which p appeared in should be updated.
As a consequence of the high dynamism inherent in the system, which is due
to the high rate of incoming documents and their expiration, the number of
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ProfileFilter Input: d = (w1, ..., wm)
toProcess = ∅;
toUpdate = ∅;
if wi > 0 then

toProcess.add(li);
end
while toProcess 6= ∅ do

foreach list li ∈ toProcess do
p = li.getNext().getProfile();
vi = p.vi;
p.s = p.getScore(k);
if sim(p, d) > p.s then

toUpdate.add(p);
end

end
foreach list lj ∈ toProcess do

if maxI∈Ijg(f Iw1
(v1), ...f Iwm(vm)) < 1 then

toProcess.remove(lj);
end
if !lj.hasNext() then

toProcess.remove(lj);
end

end
end
return toUpdate;

Algorithm 3: The COL filtering algorithm

necessary updates can be very high. The cost of maintaining the lists sorted can
therefore overshadow the benefits of early stops. In the following, we propose
a relaxation to completely sorting the lists, which requires significantly fewer
number of updates and is cheaper to maintain.

5.3.1 Partially Ordered Lists

We aim at decreasing the cost of maintaining the sorted lists by grouping entries
and ordering the entries only based on a fixed number of predefined boundaries
instead of maintaining full order. These boundaries are then used to test the
stopping condition. Our Partially Ordered List method, POL-filter, is described
below.

Similar to COL-filter, we maintain inverted lists for each term ti, denoted
by li with entries 〈p.id, p.vi〉 as defined above. For each list li we consider r
groups which we identify by their boundaries: bi1 > ... > bir. The entries in
li are grouped based on these boundaries. An entry 〈p.id, p.vi〉 belongs to the
group bij if p.vi ≥ bij and p.vi < bi(j−1), where the second condition is assessed
only for j > 1. The entries inside one group are not kept sorted. To process an
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incoming document d = (w1, ...wm), we start with the first group bi0 in all lists
li where wi > 0 and calculate the similarity scores of profiles in these groups
with regard to d. The complete weight vector of a profile can be known, when
necessary, by accessing the profile hash table in constant time. A profile’s result
set is updated with d when sim(d, p) > p.s. We continue to assess the profiles
in the next group in each list only if the following stopping condition is not
satisfied:

g(fw1(b10), ...fwm(bm0)) < 1

In the following rounds, the algorithm reads all profiles which appear in group
bj(t+1) where j identifies the list with the largest wjbj(t) value and t is the last
group assessed in list j. The stopping condition, replacing bj(t) with bj(t+1) in
the above equation, is assessed each time a new group bj(t+1) is processed. It is
easy to see, similar to the proof of Theorem 3, that this procedure is complete.
Note that similar to COL-filter we can use the fact that the number of terms
per profile is much smaller than the number of lists which are under process and
improve the stopping condition.

The update cost in POL-filter is limited to maintaining the groups in each
list. Since the entries in a group are not sorted, a hash table which provides
constant insert and removal costs could be used to add or remove entries to
groups. We move a profile p from a group when p.s changes and the group
membership does not hold anymore for the current group. In this case, the
algorithm identifies the newly qualified group and the two affected groups are
updated. Note that p.s can change due to arrival of a new document which
qualifies as p’s top-k result or expiration of a previously top-k document.

5.3.2 Boundary Selection

While POL-filter decreases the maintenance cost, its effectiveness on early stop-
ping depends on the selected group boundaries. If the bi values are chosen to be
too big, the stopping condition is not satisfied and the algorithm processes all
the profiles in a list. On the other hand if they are chosen to be too small, the
algorithm may process too many unnecessary profiles before it stops. Fixing the
number of groups to r, we measure the extra cost POL-filter incurs by processing
unnecessary profiles and aim at minimizing it. To calculate this extra cost, we
assume that the lists are sorted also inside the groups, and calculate the number
of extra profiles processed in a group. For simplicity let us assume we have a
single term t and its corresponding list l. We later show how our discussion
is extended to multiple lists. We denote the weight of t in an incoming docu-
ment with w and the entries in l by p.v. We consider r groups with boundaries
b1 > ... > br. In case of a single list, if group bi’s profiles have been assessed,
the POL-filter’s stopping condition is g(fw(bi)) < 1. Let W and V denote the
random variables corresponding to w, weight of t, and v values. Assume fW (x)
and fV (x) respectively show the probability distribution functions of W and V .
Also assume the size of list l is q and the number of documents with term t is
n. The following is the cost which POL-filter incurs:
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r∑
i=1

n

∫ bi−1

bi

fV (x)
∫ 1

0

fW (z/x)qPr(bi < V < x)δzδx

where b0 is the largest value V can have and br the smallest value. Since we
have assumed the profiles are sorted also in the groups, n

∫ bi−1

bi
fV (x)

∫ 1

∞ fW (z/x)δz
counts the number of times the stopping condition is satisfied for a profile in
group bi−1 and qPr(bi < V < x) counts the number of extra profiles POL-filter
reads in this case. Since POL-filter checks the stopping condition each time a
new group is assessed, it reads at most “size of a group” extra profiles compared
to COL-filter. The above simplifies to:

∫ br

b0

nqxfV (x)Pr(W < 1/x)Pr(x)δx

−
r−1∑
i=1

Pr(bi)
∫ bi−1

bi

xfV (x)Pr(W < 1/x)δx

b0 and br are fixed values (maximum and minimum values of V ). So to
minimize the cost, the negative part should be maximized. While this is easy
for some distributions like the uniform distribution, it is not straight forward
for others. In our experiments we estimate the distributions of interest by
histograms and solve the above optimization problem numerically.

In deriving the previous optimization equations, we assumed that only one
list is under process. However, in a real scenario often several lists are be-
ing processed and the stopping condition depends on all of them. Therefore
g(fwj (bji)) < 1 is not a good estimate of the stopping condition. We treat the
lists independently and use the maximum number of terms a profile can have
(m′) to estimate the stopping condition by g(fwj (bji)) < 1/m′ instead. To ac-
count for this change in the above equations, Pr(W < 1/x) should be replaced
with Pr(W < 1/xm′).

5.4 Result Maintenance

So far we have considered the problem of efficient profile filtering when a new
document arrives. Another important aspect of our streaming scenario is the
sliding window which specifies the valid documents. In this section we first
describe the challenges caused by this temporal factor and then describe our
solution.

When a document which is part of the top-k results of a profile expires as
the window slides, another document from the existing valid documents should
replace it. The process of re-evaluating a top-k query usually incurs high cost on
the system. Given the fact that we aim at supporting a large number of profiles,
this cost can slow down the system and prevent it from timely and correct
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responses to the users. This problem is closely related to view maintenance
discussed in the database community [YYY+03].

In the following, we consider a given profile p and when we mention the score
of a document or the top-k results, it is with regard to this specific profile. Let us
assume a set p.R of documents is maintained for p. To avoid ever re-evaluating
p over the set of all valid documents, p.R should contain all documents which
have a chance of becoming a top-k result in their life time. This set consists
of the top-k current results as well as documents which have a smaller score
or shorter life time compared to at most k − 1 other documents. This concept
has been previously exploited in the context of continuous top-k processing in
[MBP06] and in kNN queries in [BOPY07]. For a given profile p, we consider
the documents in the time/score space where score corresponds to the similarity
degree of a document and p, and time presents its arrival time. A document
d1 dominates d2 if d1.time > d2.time and d1.score > d2.score. The k-skyband
[MBP06] of a set of points is a subset of these points where each is dominated
by at most k − 1 other points. Clearly if a document is not in the k-skyband it
can never be a top-k result of p, as at least k documents with higher similarity
grades and longer life times exist.

While many new documents do not qualify as relevant results to a profile
due to their low similarity degrees, they are part of the k-skyband as a result of
their time dimension: since we are considering in order streams, all incoming
documents are part of the k-skyband of all profiles at the time they arrive.
Such documents remain in a profile’s k-skyband only for a short amount of time
until they are dominated by fresher, more relevant documents. Inserting each
incoming document to all profiles’ k-skybands, incurs a large space overhead as
well as unnecessary CPU cost to actually maintain the k-skyband.

To circumvent these costs, we restrict the documents which are inserted to
p.R to those which have scores larger than a threshold τ and maintain the k-
skyband over them. We call this part of the k-skyband the horizon . With
suitable values of τ , the horizon is expected to be more stable, i.e. its members
do not disqualify frequently, and more promising, i.e. its members are more
likely to actually become a top-k result. In the following we first describe our
horizon result maintenance method and then discuss suitable values of τ .

Consider a profile p and its corresponding set of documents p.R. A re-
evaluation over the set of all valid documents is invoked when |p.R| < k and
in this case p.R is set equal to the obtained top-k results. A newly arrived
document d is inserted to p.R if sim(d, p) ≥ τ . When a new document is
inserted in p.R the dominance values (i.e., a counter) of existing documents are
updated accordingly and those documents whose dominance value hits k are
eliminated from p.R. Note that removing a document from p.R, either due to
expiration or as a result of dominance by k other documents, does not affect
the dominance values of other existing documents: all documents dominated by
this document should have been removed before.

Fixing τ to a predefined static value is not suitable for our dynamic setting as
an appropriate value currently may be too small or big in future with regard to
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Input: newdocs,expireddocs
foreach document d ∈ expireddocs do

D.remove(d);
foreach profile p ∈ d.profiles do

p.R.remove(d);
if |p.R| < k then

re-evaluate(p);
p.updateTopK(p.R.topK);

end
end

end
tobeUpdated = ∅;
foreach document d ∈ newdocs do

D.insert(d);
tobeUpdated = ProfileFilter(d);
foreach profile p ∈ tobeUpdated do

p.R.insert(d);
p.R.updateDominance();
if p.R.topK has changed then

p.updateTopK(p.R.topK);
end

end
end

Algorithm 4: The overall Algorithm for removing expired documents and
inserting new documents

the corresponding window of valid documents. A too small value would result
in all documents qualifying for insertion to p.R and ultimately maintaining
the complete k-skyband. On the other hand, a too large value causes p.R to
frequently contain less than k documents and firing numerous re-evaluations. A
dynamic value for τ which adapts to the relevance of current documents is the
remedy.

Let p.R.score denote the score of the ranked last document in p.R. We
show that for any value of τ smaller than or equal to p.R.score, p.R contains
the correct top-k results: the top-k results in p.R are the same as the result of
evaluating p over all valid documents. We also show, by a contradicting example
that this is the largest value which still guarantees the correctness of the horizon.
Note that the correctness concern raises due to dynamically changing τ .

Theorem 4 Let p.R.score denote the similarity score of the ranked last docu-
ment in p.R. If τ is changing dynamically, the necessary and sufficient condition
for p.R to contain the correct top-k results is that τ ≤ p.R.score.

For the proof please see the appendix.
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5.4.1 Integration with Profile Filtering

To integrate the above described horizon maintenance scheme with the proposed
profile filtering algorithm, the p.s values used in calculating p.v in Section 5.3
should be replaced with τ . This will ensure that the profile filtering algorithm
will not miss any profiles p where a new document should be inserted to p.R,
although the document may not qualify as a top-k result of p currently. The
overall steps for inserting documents and updating profiles are shown in Algo-
rithm 4. D denotes the set of valid documents. First, expired documents are
removed from D. d.profiles denotes the affected profiles by d: all profiles p
where d ∈ p.R. An affected profile p of an expired document is re-evaluated
if |p.R| < k. Then, for each of the incoming new documents the profile filter
returns the profiles which should be updated with this document. Note that if
document d is inserted in p.R it is not necessarily a top-k result of p, but it is
part of p’s horizon.

5.5 Experiments

We have implemented a simulation of the envisioned system in Java 1.6. The
dataset is stored in an Oracle 11g database and replayed according to the times-
tamps attached to the entries.

Dataset and Profiles

We have obtained the ICWSM 2009 Spinn3r Blog Dataset3. It consists of 44
million blog posts between the time period of August 1st and October 1st,
2008. Each blog entry (post) consists of plain text, a timestamp, a set of tags,
and other meta information such as the blog’s homepage URL. The data is
formatted in XML and is further arranged into tiers approximating to some
degree search engine ranking. We have parsed the blog posts for the highest
tier levels resulting in 2, 444, 780 distinct posts. After stemming and stopword
removal, we have inserted the content of each blog as 〈term, score〉 pairs in the
database where the TF/IDF methodology is used for assigning weights.

Profiles are generated by looking at frequently used topic descriptions of the
blog entries, such as “US election”. Each profile has between 3 and 5 out of 657
distinct terms and their corresponding weights are chosen uniformly at random.
We did not use one of the standard search engine query logs as subscription
queries are of a more general nature. We use the well-accepted cosine measure
to calculate the similarity degree between a document and profile. Note that as
mentioned in Section 5.1.1 the cosine measure has the two necessary properties
of monotonicity and homogeneity. We assume that the document and profile
vectors are normalized by their lengths: |p| = |d| = 1, so sim(d, p) =

∑m
i=1 wiui.

3http://www.icwsm.org/2009/data/
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Parameter Default Range

number of profiles 50K 30,40,50,60,70,80

result cardinality (k) 10 5,10,15,20

window size 4500(s) 2700,3600,4500,5400,6300

number of groups 10 2,4,6,8,10,12,14

Table 5.1: Variations of the parameters as used in the experiments.

Algorithms and Measures of Interest

We consider the following three algorithms for profile filtering.

• naive: As a baseline we have implemented a profile filtering algorithm
that keeps non-sorted inverted lists of profiles and reads, for an incoming
document, all entries from all inverted lists that correspond to a term in
the document.

• col: This is our algorithm as described in Section 5.3 which keeps all
profiles in term-based index lists, sorted by score. The exact ordering is
kept at all times, which has benefits for the profile filtering process but
comes with the cost of placing or re-placing entries to the exact position
w.r.t. their scores.

• pol: This algorithm as described in Section 5.3.1 divides the inverted lists
to groups, maintaining the group membership criteria for the entries but
not the order among entries of a particular group. We expect a larger
percentage of profiles read during the profile filtering but a significantly
lower maintenance cost.

For all the above we have two alternatives for result maintenance: (i) using
a simple top-k list and re-evaluating whenever one of the top-k results expires
or (ii) maintaining each profile’s horizon, as explained in Section 5.4.
We have also implemented the approach by Mouratidis et al. in [MP09],
described in Section 3.2.2, which we will refer to it as incr.-thresh.

We report on CPU time as our main measure of performance. Note that
we do not report on accuracy measures as all algorithms report the exact top-k
results. To better understand the effects of our proposed algorithms we have
measured CPU time for different parts of the algorithms, in addition to the
overall time. Also for the result maintenance algorithm we are interested in the
space overhead imposed by retaining more than k documents per profile.

Depending on the sliding window size, the number of documents inserted in
the system, ordered on their timestamps, is such that at least 5 non-overlapping
sliding windows have completed. All measurements are averaged over all pro-
cessed documents after a warm-up phase of 500 documents. The parameters,
their default values and range of variations are shown in Table 5.1. All algo-
rithms are run on a quad-core Intel Xeon CPU E5530 @2.4 GHz, 48 GB main
memory, 4 TB of hard drive and Microsoft Windows Server 2008 R2 x64 as
operating system.
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Algorithms total profile fil. update re-eval insert

naive-k 23.12 7.45 0.00 14.73 0.67

col-k 23.87 2.36 3.12 17.39 0.74

pol-k 21.14 3.48 0.52 16.17 0.71

naive-horizon 11.01 7.18 0.00 1.71 1.80

col-horizon 9.64 3.47 1.30 2.71 1.83

pol-horizon 8.84 4.60 0.28 1.78 1.85

incr.-thresh 13.86 - - - -

Table 5.2: Average time measurements (ms).
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Figure 5.2: The effect of number of groups on average total time.

Results

Table 5.2 shows the time measurements for the default system parameters for
naive, col, pol and, incr.-thresh. Total time includes the time spent for removing
old documents, updating the affected profiles by re-evaluating them, profile fil-
tering for a new incoming algorithm and inserting it to the result sets of selected
profiles. To have a better understanding of the effect of different approaches,
Table 5.2 shows the time spent for each of these parts separately. Note that
we do not show the time which is the same for all algorithms, like the time to
insert a document in the term-document inverted list, but this is included in the
total time. Furthermore, for incr.-thresh we only show the total time, as this
algorithm does not have same separated modules for the above mentioned tasks.
The first observation is that a significant portion of time (31%) is spent in the
profile filtering component in the naive-k algorithm. The col-k algorithm de-
creases this time by almost 68% at the expense of large update time for keeping
its necessary structures up-to-date. Our proposed pol-k algorithm is successful
in decreasing the time spent for profile filtering as well as limiting the update
cost. Note that col-k has a bigger re-evaluation time, as re-evaluating a profile
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Figure 5.3: The effect of number of groups on average profile-filtering time.

causes its p.s value to change, causing updates in the inverted lists which should
be kept sorted for col-k. While col-k incurs a larger total time due to its huge
update cost, pol-k achieves in total 8% improvement compared to naive-k. The
next three rows of this table show the measurements for the horizon variation
of the algorithms. The re-evaluation cost decreases for all algorithms by almost
84% at the expense of a relatively small increase in the result insertion time.
In the horizon variations, result insertion is more costly as it involves updating
the dominance counters and k-skyband maintenance. Since with the horizon
method more profiles get qualified to have a document in their result set, we
observe an increase in the profile filtering time for col-horizon and pol-horizon
compared to their top-k counterparts. However, since the ranked last document
in the result set, which defines the values of interest for keeping the lists or-
dered, changes less frequently than in the top-k method, the update cost for
these algorithm decreases significantly. In total, we observe 60% decrease in
the total time, from naive-k to pol-horizon which achieves the smallest total
time among all algorithms. incr.-thresh inserts all documents that are in any
index list above the scan line of that profile which causes the result set to grow
very large. This has the benefit of eliminating the re-evaluations, but on the
downside large space is consumed and a large result set should be kept sorted
which incurs extra cost. Overall, pol-horizon has a decrease in total time of 36%
together with significant decrease in the resultset size it maintains compared to
incr.-thresh.

As seen previously, the pol algorithm is successful in maintaining the de-
crease in profile filtering time as well as limiting the time spent for updating
the required structures. The calculations necessary for choosing the boundary
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Figure 5.4: The effect of number of groups on average update time.

values mentioned in Section 5.3.2 are performed only once after the warm-up
phase. Figures 5.2,5.3, and 5.4 present the effect of number of groups. Figure
5.2 shows the total time for pol and col with the top-k and horizon variations.
We observe that with as small as 10 groups, pol achieves very good decrease
in the total time. In Figures 5.3 and 5.4 we observer the profile filtering and
update times for different number of groups. pol-k incurs almost 6 times less
update cost compared to col-k, at the expense of small increase in its profile
filtering time. As mentioned in the previous paragraph, the horizon variations
have smaller update cost and slightly larger profile filtering time.

The effect of number of profiles on total time is shown in Figure 5.5. The
total time for all algorithms increases with increasing the number of profiles,
as the profile filtering and re-evaluation parts become more costly. However,
the effect of our profile filtering algorithms are more visible for larger number
of profiles. Also note that pol does not show any significant drop in decreasing
the total time compared to col, although the number of groups are fixed for all
profile cardinalities to 10. This is because by using the horizon maintenance
module, the update cost in col decreases significantly, as shown in Figure 5.4.
incr.-thresh has much larger total time, since similar to col-k it spends a lot of
time updating the index lists’ scan lines. The pol-horizon algorithm achieves
the minimum total time, decreasing it by up to 40% from incr.-thresh

We report on the effect of sliding window size on average total time in Figure
5.6. The average total time decreases with increasing size of the sliding window
for all algorithms. This is mainly due to the decrease in number of necessary
re-evaluations on average. With a bigger window size, high quality documents
live longer and a larger time span allows for high quality documents to arrive
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Figure 5.5: The effect of the number of profiles on average total time.

k #reeval top-k size top-k #reevals horizon size horizon

5 73.18 4.99 11.49 7.93

10 141.03 9.99 6.56 17.84

15 209.00 14.97 3.55 28.75

20 278.51 19.94 2.62 40.11

Table 5.3: Number of re-evaluations and result set sizes when changing k.
w=4500(ms) and #profiles = 20000.

before others expire and fire a re-evaluation. As seen in the Figure, with large
enough window sizes pol-horizon and col-horizon have similar total time which
is the result of fewer updates.

Table 5.3 reports on the average number of re-evaluations and result set size
for the top-k and horizon variations. Note that the profile filtering algorithm
does not have an effect on these values so we have not repeated the results
by separately reporting on them. First, note that the necessary number of
re-evaluations drops from 7 to almost 100 times less for the horizon method
compared to top-k based maintenance. The very interesting observation is that
with increasing the k value, the number of re-evaluations has an increasing trend
for the top-k method but a decreasing one for the horizon algorithm. This is
because for larger values of k the horizon grows much larger than k, significantly
decreasing the chance of the result set containing less than k results to fire
a re-evaluation. However, the horizon method comes with the extra cost of
maintaining the horizon.

In summary we observe that the pol-horizon combination offers significant
performance gains compared to the rest of algorithms. The horizon result main-
tenance algorithm causes small decrease in the improvement pol can offer in
decreasing the profile filtering time. However, it drastically decreases the nec-
essary update cost and number of re-evaluations while incurring only a small
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Figure 5.6: The effect of sliding window size on average total time.

space over head over the system. A decrease of between 25% to 30% in overall
processing time, allows our envisioned system to scale better to larger number
of profiles and higher data rates.

5.6 Conclusion

Motivated by the tremendous popularity of blogs, micro-blogging services like
Twitter, or online newspapers, we address the problem of continuously pro-
cessing a massive amount of user defined subscription queries (profiles) over a
stream of documents. The challenge in processing these queries in real-time lies
not only in the fact that there are many queries, but also, and foremost, in the
observation that data streams in at high rates. Both properties combined call
for a careful profile filtering process, that omits evaluating too many profiles.
Our approach reduces the number of necessary profiles which have to be evalu-
ated at data arrival time, by organizing the user profiles in a so called inverted
index, where, for each term we store a sorted list of profiles that contain this
term. The key idea is to sort profiles not only on their weight w.r.t. a term but
also according to the quality of the currently alive documents which are ranked
high for the particular profile. This sorting criteria allows for an effective stop-
ping condition for the profile filtering algorithm. Furthermore, we observe that
keeping the entire lists completely sorted is infeasible, due to the high data ar-
rival rates, profiles move up and down in the lists as time evolves, requiring
permanent updates to the lists. We address this by using group sorted lists,
i.e., lists consisting of different groups which are sorted relatively to each other,
but without order inside groups. As the definition of the group boundaries is
crucial for the overall performance gain, we present a method to select these
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bounds by leveraging score distribution information derived from histograms.
We combine our proposed filtering algorithm with an effective skyline-based re-
sult maintenance algorithm. Since we are considering Web data, the stream of
incoming data can be considered to be in-order. This property of the incoming
stream causes many low scored documents to be unnecessarily considered as
part of the result set, only due to their freshness. Our horizon result mainte-
nance module constraints the documents which can enter the result set without
trading the accuracy of results. The horizon algorithm does not depend on the
order of incoming data and similar to the skyline approach, can tolerate any
degree of being out-of-order. Combining our proposed filtering algorithm the
horizon result maintenance algorithm, which cuts drastically on the number of
necessary re-evaluations caused by expiring documents, we observe a further
decrease in the update costs of the access structures. We evaluate our approach
using a real world blog dataset demonstrating the performance gains compared
the state-of-the-art.



Chapter 6

Distributed KNN Search

Over High Dimensional

Data

6.1 Introduction

The rapid growth of online information, triggered by the popularity of the Inter-
net and the huge amounts of user-generated content from Web 2.0 applications,
calls for efficient management of this data to improve usability and enable ef-
ficient and accurate access to the data. User-generated data today range from
simple text snippets to (semi-) structured documents and multimedia content.
To enable rich representation and avoid loss of information, the number of fea-
tures extracted to represent the data is very often high. Furthermore, as the
data sources are naturally distributed in large-scale networks, traditional cen-
tralized indexing techniques become impractical. To address the demanding
needs caused by this rapidly growing, large-scale, and naturally distributed in-
formation ecology, we propose in the following an efficient, distributed, and scal-
able index for high-dimensional data enabling efficient and accurate similarity
search.

Peer-to-Peer (P2P) overlay networks are well-known to facilitate the shar-
ing of large amounts of data in a decentralized and self-organizing way. These
networks offer enormous benefits for distributed applications in terms of ef-
ficiency, scalability, and resilience to node failures. Distributed Hash Tables
(DHTs) [SMK+01, RFH+01] (c.f., Chapter 2.1.2), for example, allow efficient
key lookups in logarithmic number of routing hops but are typically limited to
exact or range queries. Similarity search in high dimensional data has been a
popular research topic in the last years [BGRS99, GIM99, YOTJ01, BBK98,
DIIM04]. Distributed processing of such queries is even more complicated, but
is unavoidable due to the inherently distributed way data is generated in the
Web. Existing approaches to the similarity search problem in high dimensional

72
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data either focus on centralized settings, as cited above, rely on preprocessing
data centrally, assume data ownership by peers in a hierarchical P2P setting or
fail at providing both high quality search results and a fair load balance in the
network [FGZ05, SEAA04, DVKV07].

In this Chapter we consider similarity search over high dimensional data in
structured overlay networks. Inspired by the idea of Locality Sensitive Hashing
(LSH) technique [GIM99, DIIM04] which probabilistically assigns similar data
to the same bucket in a hash-table, we first investigate the difficulties of di-
rectly applying this method to a distributed environment and then devise two
locality preserving mappings which satisfy the identified requirements of bucket
placement on peers of a P2P network. The first requirement, placing buckets
which are likely to hold similar data on the same peer or its neighboring peers,
aims at minimizing the number of network hops necessary to retrieve the search
results, causing a decrease in both network traffic and the overall response time.
The second requirement considers load balancing and is satisfied by harnessing
estimates of the distribution of resulting data (bucket) mapping.

6.1.1 Problem Statement and System Overview

In similarity search objects are characterized by a collection of relevant features
and are represented as points in a high dimensional space. In some applications
the objects are considered in a metric space where only a distance function is
defined among them and the features of the objects are unknown. However, with
the advances in metric space embedding (cf.[ABN06]) a vector space assumption
is valid and realistic. Given a collection of such points and a distance function
between them, similarity search can be performed in the following two forms:

• K-Nearest Neighbor (KNN) query: Given a query point q the goal is to
find the K closest (in terms of the distance function) points to it.

• range query: Given a query point q and a range r the goal is to find all
points within a distance r of q.

In many applications returning the approximate KNN of a point, instead of
the exact ones, suffices. The approximate version is even more desirable when
the data dimensionality is high, as similarity search is very expensive in such
domains. Here, the goal is to find K objects whose distances are within a small
factor (1+ε) of the true K nearest neighbors’ distances. The quality of similarity
search is measured by the number of returned results, as well as the distances
to the query for the K points returned compared to the corresponding distances
of the true K nearest objects for KNN queries.

We consider similarity search in structured peer-to-peer networks, where
N peers P1, ..., PN are connected by a DHT that is organized in a cyclic ID
space, such as in Chord [SMK+01]. Every node is responsible for all keys with
identifiers between the ID of its predecessor node and its own ID. Our underlying
similarity search method is probabilistic and relies on building several indices
of data to achieve highly accurate query results. We assume each of these data
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indices is maintained by a subset of size n of all peers where n is an order of
magnitude smaller than N . Each of these subsets form a local DHT among
themselves. For each replica of the data we deterministically select a subset
of peers to hold the corresponding index, i.e., not all peers hold a share of the
index from the beginning. These initially selected peers are gateway peers to
the corresponding local DHTs. The number of peers/nodes inside each local
DHT might grow/shrink over time depending on the load of the system. The
locations (IDs) of the gateway peers is global knowledge based on a deterministic
sampling process with fixed seed value. However, not the peers are known but
only their IDs in the underlying network. We explain this process in more detail
in Section 6.3. If a gateway peer is not accessible, the peer currently holding the
gateway peer ID is asked to join the local DHT using one of the other gateway
peers. These dynamics are handled by the underlying network which we do not
address in this thesis.

Our goal is to map the high dimensional data to the peers in a way that
assures fair load balancing in the local DHTs and at the same time enables
efficient and accurate KNN and range query processing.

This Chapter is based on work presented in [HMCMA08, HMA09a] and is
organized as follows. Section 6.2.1 presents the requirements of distributing
LSH indices to the linear peer domain and puts forward two mappings which
satisfy those requirements. Section 6.3 concentrates on the creation of the local
DHTs. Section 6.4 presents the KNN query processing algorithms. Section 6.5
addresses the challenges in processing range queries and presents an approach
based on range sampling to overcome these constraints. Section 6.6 presents the
experimental evaluation of our approach. Section 6.7 concludes this Chapter.

6.2 Mapping LSH to the peer identifier space

6.2.1 Revisiting LSH

The basic idea behind the LSH-based approaches is the application of locality
sensitive hashing functions. A family of hash functions H = {h : S → U} is
called (r1, r2, p1, p2)-sensitive if the following conditions are satisfied for any two
points q,v ∈ S:

• if dist(q,v) ≤ r1 then PrH(h(q) = h(v)) ≥ p1

• if dist(q,v) > r2 then PrH(h(q) = h(v)) ≤ p2

where S specifies the domain of points and dist is the distance measure
defined in this domain.

If r1 < r2 and p1 > p2, the salient property of these functions results in more
similar objects being mapped to the same hash value than distant ones. The
actual indexing is done using LSH functions and by building several hash-tables
to increase the probability of collision (i.e. being mapped to the same hash
value) for close points. At query time, the KNN search is performed by hashing
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the query point to one bucket per hash-table, scanning that bucket and then
ranking all discovered objects by their distance to the query point. The closest
K points are returned as the final result.

In the last few years, the development of locality sensitive hash functions
has been well addressed in the literature. In this work, we consider the family
of LSH functions based on p-stable distributions [DIIM04]. This family of LSH
functions are most suitable when the distance measure between the points is the
lp norm. Given a point v = v1, . . . , v2 in the d-dimensional vector space, its lp
norm is defined as: ||v||p = (|v1|p + ...+ |vd|p)1/p.
Stable Distribution: A distribution D over IR is called p-stable, if there exists
p ≥ 0 such that for any n real numbers r1 . . . rn and i.i.d. variables X1 . . . Xn

with distribution D, the random variable
∑
i riXi has the same distribution as

the variable (
∑
i |ri|p)1/pX, where X is a random variable with distribution D.

p-stable distributions exist for p ∈ (0, 2]. The Cauchy and Normal distributions
are respectively 1-stable and 2-stable.

In the case of p-stable LSH, for each d-dimensional data point v the hashing
scheme considers k independent hash functions of the following form :

ha,B(v) = ba · v +B

W
c (6.1)

where a is a d -dimensional vector whose elements are chosen independently
from a p-stable distribution, W ∈ IR, and B is drawn uniformly from [0,W ].
Each hash function maps a d-dimensional data point to an integer. With k such
hash functions, the final result is an integer vector of dimension k of the the
following form:

g(v) = (ha1,B1(v), ..., hak,Bk(v)) (6.2)

In this work we assume the distance function is the widely used l2 norm (Eu-
clidean distance) and use the Normal distribution as our p-stable distribution.

In LSH-based schemes, in order to achieve high search accuracy, multiple
hash-tables need to be constructed. Experimental results [GIM99] show that
the number of hash-tables needed can reach up to over a hundred. In centralized
settings this causes space efficiency issues. While this constraint is less visible
in a P2P setting, a high number of hash-tables results in another serious issue
arising specifically in this environment. In order to visit all hash-tables (which
is needed to answer the KNN query with good accuracy) a large number of
peers may need to be contacted. Solutions to this shortcoming in centralized
settings [LJW+07, Pan06] suggest investigating more than one bucket in each
hash-table, instead of building many different hash-tables. The main idea is
that we can guess which buckets other than the bucket which the query hashes
to, are more likely to hold data that is similar to the query point. In our
envisioned P2P scenario, jumping from one bucket to another can potentially
cause jumping from one peer to another, which induces O(log n) network hops
in a network of n peers. In the following Section, we discuss and introduce
mapping schemes which allow us to significantly reduce the number of incurred
network hops during query time by grouping those buckets which are likely to
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hold similar data on the same peer, while effectively balancing the load in the
network.

Given the output of the p-stable LSH, which is a vector of integers, we
consider a mapping to the peer identifier space, denoted as ξ : Zk → IN.

Different instances of the mapping function ξ come with different character-
istics w.r.t. to load balancing and the ability to efficiently search the index. In
terms of network bandwidth consumption and number of network hops, clearly,
a mapping of all data to just one peer is optimal. Obviously, this mapping
suffers from a huge load imbalance. The other extreme is to assign each hash
bucket to a peer using a pseudo-uniform hash function that provides perfect
load balancing but steals any control on grouping similar buckets on the same
peer, therefore causing an excessive number of DHT lookups. More formally, ξ
should satisfy the following two conditions:

• Condition 1: assign buckets likely to hold similar data to the same peer.

• Condition 2: have a predictable output distribution which fosters fair load
balancing.

Figure 6.1 shows an illustration of the overall mapping from the d-dimensional
space, to the k-dimensional LSH buckets, to finally the peer identifier space us-
ing ξ.

d-dimensional
Data

k-dimensional
p-stable LSH bucket space

...

...

...

...

⎥⎦
⎥

⎢⎣
⎢ +⋅

W
Bva Peer identifier space

Figure 6.1: Illustration of the two level mapping from the d-dimensional space
to the peer identifier space.

We first try to capture the semantics of similar buckets: buckets likely to
hold close data. The first condition of the LSH definition states that close
points are more likely to be mapped to the same hash value. However, it is
not clear which hash buckets are more probable to hold similar data. This has
been discussed also in [LJW+07, Pan06] in a query-dependent way. However we
need a more general view, as mapping buckets to peers should be independent
of queries. We show that using hash functions of the form of Equation 6.1 close
points have a higher probability of being mapped to close integers, that is,
integers with small l1 distance. This is more general than the LSH definition,
i.e. being hashed to the same value. Since bucket labels are concatenations of
such integers, we argue that the l1 distance can capture the distance between
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buckets, buckets likely to hold close data have small l1 distance to each other.
We prove the following theorems following the above argument.

Theorem 5 For any three points v1,v2,q ∈ S where ||q − v1||2 = c1 and
||q− v2||2 = c2 and c1 < c2 the following inequality holds:

pr(|h(q)− h(v1)| ≤ δ) ≥ pr(|h(q)− h(v2)| ≤ δ)

For the proof see the appendix.

Theorem 6 For any two points q,v ∈ S, pr(|h(q) − h(v)| = δ) is monotoni-
cally decreasing in terms of δ.

For the proof see the appendix. The above two theorems indicates that l1
can capture the distance between buckets in terms of probability of holding close
data: Given bucket labels b1,b2 and b3 which are integer vectors of dimension
k, if ||b1 − b2)||1 < ||b1 − b3||1, then b1 and b2 have a higher probability to
hold similar data than b1 and b3.

Having a better understanding of the semantics of similar buckets, we now
discuss two mappings which satisfy the two conditions mentioned above.

6.2.2 Linear Mapping based on Sum

We propose ξsum(b) =
∑k
i=1 bi as an appropriate placement function which can

be used to map the k-dimensional vector of integer b, as the output of p-stable
LSH, to the one dimensional peer identifier space. The intuition is that the
sum treats all bucket label parts bi equally and that minor differences in the bi
values are smoothed out by the sum leading to close ξsum() values for “close”
bucket labels. In the following, we show how relying on p-stable LSH and its
characteristics, it satisfies both conditions above.

We first investigate condition 1. As discussed in the previous Section, buckets
which are likely to hold similar data have small l1 distance to each other. Given
ξsum as our mapping function we have: |ξsum(b1) − ξsum(b2)|=|(b11 − b21) +
· · ·+ (b1k − b2k)| ≤ ||b1 −b2||1. Which means if buckets with labels b1 and b2

are likely to hold similar data, ξsum(b1) and ξsum(b2) will also be close. Given
the assignment of data to peers in Chord-style overlays, this results in assigning
the two buckets to the same or neighboring peers in the Chord ring with high
probability.

As for the second condition, assume d -dimensional points, a and v1. If el-
ements of a are chosen from a Normal distribution with mean 0 and standard
deviation 1, denoted as N(0,1), a · v1 is distributed according to the Normal
distribution N(0, ||v1||2). For not too large W , ha,B(v1) is distributed accord-
ing to the Normal distribution N( W2W , ||v1||2

W ) where h is function of the form
Eq. 6.1. Therefore g(v1) will be a k -dimensional vector, whose elements follow
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the above distribution. We can now benefit from a nice property of the Nor-
mal distributions under summation: ξsum(g(v1)) is distributed according to the
Normal distribution

N(
k

2
,

√
k||v1||2
W

)

The global picture consisting of all data points v1, . . . ,vM first projected
using p-stable LSH and then mapped to Z by ξsum, following the Normal dis-
tribution

N(
k

2
,

√
k
∑
i ||vi||22√
MW

)

We can therefore predict the distribution of the output of ξsum, having an
estimate of the mean of data points’ l2 norm. We assume that we know the
mean norm of available data, but as we will later see, this assumption is only
relevant for the start-up of the system where gateway peers are inserted into
the hash-tables. Calculating statistics, like in our case the mean, over data
distributed in large-scale systems has been well addressed in the literature (cf.,
e.g., [JMB05]). In Section 6.3 we show how this can be used to balance the load
in the network.

6.2.3 Linear Mapping based on Cauchy LSH

As another instance of ξ we propose the LSH function based on Cauchy dis-
tribution (1-stable) which offers a probabilistic placement of similar buckets on
the same peer. More formally, for a bucket label b,

ξlsha′,B′ (b) = ba
′ · b +B′

W2
c

where elements of a′ are chosen independently from a standard Cauchy dis-
tribution with probability distribution function

cr(x;x0, γ) =
1
πγ

1
1 + (x−x0

γ )2

where the location parameter x0 = 0, scale parameter γ = 1, W2 ∈ IR, and
B′ is chosen uniformly from [0,W2]. Note that b denotes a bucket label and is
a k dimensional vector of integers which is itself the output of an LSH function
applied on a d-dimensional data point. Given that this LSH function is most
suitable for the l1 norm and that l1 captures the dissimilarity among buckets,
ξlsha′,B′ probabilistically satisfies condition 1.

The output distribution of this function is similarly predictable. Assume
a bucket label b1. Given the characteristics of p-stable distributions, a′ · b1

follows the distribution ||b1||1X where X is a Cauchy distribution. For not too
large W2, ha′,B′(b1) is distributed with the probability distribution function

cr(x;
W2

2W2
,
||b1||1
W2

)
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a Cauchy distribution with location parameter 1
2 and scale parameter ||b1||1

W2
.

Now, considering all bucket labels, b1, . . . ,bP mapped to Z by ξlsha′,B′ , the
output follows the Cauchy distribution with location parameter 1

2 and scale
parameter

∑
||bi||1
PW2

. In this case, to be able to predict the distribution of the
output, we need the mean of l1 norms of all possible bucket labels. Since the
initial hash functions ha,B are known to all peers, this again boils down to the
problem of distributed statistics calculation [JMB05].

6.3 Local DHT Creation

To map a particular domain of integer values to a (subset of) peers, it is impor-
tant to know the size and distribution of the domain. As discussed in Sections
6.2.2 and 6.2.3 the values generated by ξsum and ξlsh follow known distribu-
tions. Here we describe how this information can be utilized to create local
DHTs which as described in Section 6.1.1 maintain the data index.

Consider a linear bucket space of M buckets in which we want to distribute
the values generated by the ξsum mapping. The case for ξlsh follows similarly.
Let µsum, σsum be the mean and the standard deviation of the values generated
by ξsum (cf. Section 6.2.1). We choose the first bucket (at position 1) to
be responsible for µsum − 2 ∗ σsum and the last bucket (at position M) to
be responsible for µsum + 2 ∗ σsum. We restrict ourselves to the span of two
standard deviation to avoid overly broad domains and map the remaining data
to the considered range via a simple modulo operation:

ψ(value) := (
value− (µsum − 2 ∗ σsum)

4 ∗ σsum
∗M)modM (6.3)

As mentioned in Section 6.1.1 we want to maintain each particular LSH
hash-table (which is an index of the whole data points) by a subset of peers
that is usually some orders of magnitude smaller than the global set of peers.
To limit the responsibility of maintaining one hash table to a subset of peers,
we dynamically form separate local DHTs for each hash-table as follows: At
system startup, we place γ peers at predefined positions (known by all peers)
based on the normal distribution N(µsum, σsum) by sampling γ values from
N(µsum, σsum) and mapping them to buckets in the range of {1, ..,M} using
ψ.

For a particular number of initial peers and the sampled values, we consider

ρ(value, l) := (ψ(value) + hash(l))mod |G|

as the mapping of a (value, l)-pair to the global set of peers G, where l is a hash-
table id. ρ consists of two components, the previously described ψ function and
hash(l) as an offset for global load balancing. The peers responsible for these ρ
values are invited to join (create) the particular DHTs.

Algorithm 5 shows the initial algorithm to build up the distributed LSH
index. The most important property is the usage of so-called gateway peers
(similar to the ones used in [MTW05b]) that are initially placed in each of the
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Input: Global DHT G, number of gateways γ
init(N(µsum, σsum));
for (tableId=0; tableId<l;tableId++) do

sampleSet = ∅;
for i=0; i<γ; i++ do

sample = N(µsum, σsum).nextRandom();
sampleSet.add(sample);
P = G.lookup(ρ(sample, tableId));
if tableId==0 then

P.createDHT();
else

P ′ = G.lookup(ρ(sampleSet.getRandom(), tableId));
P.join(P ′);

end
end

end

Algorithm 5: Initial Algorithm to build up the l hash-tables that contain
the gateway peers, drawn from the global peer population

LSH hash-tables. These peers can be determined using the lookup method of
the global DHT. If a lookup on one of the predefined positions fails, i.e., leads
to a peer that is not currently in the LSH hash-table, that peer issues a lookup
on one of the other entry points and joins the particular hash-table it belongs
to. In case of a successful access to one of the gateway peers, the query initiator
(or data indexing peer) gains access to the LSH hash-table.

The case for ξlsh is similar, except we use the location and scale parameters
of the predicted Cauchy distribution in Equation 6.3, since mean or standard
deviation are not defined for Cauchy distributions. Also at start up, peers are
sampled from the predicted Cauchy distribution.

The number of peers dynamically grows inside each local DHT by overloaded
peers issuing requests on the global DHT to find peers to join the local DHT on a
particular position (bucket). In case of access load problems, the gateway peers
can call for a global increment of the number of gateway peers, i.e., increase
the number of possible gateway peers that will subsequently be hit by requests
and hence invited to join the local DHTs maintaining the LSH hash-tables. We
can benefit from the rich related work on load balancing techniques over DHT,
such as the work by Pitoura et al [PNT06], that replicates “hot” ranges inside
a Chord style DHT and then lets peers randomly choose among the replicated
arcs.

6.3.1 Handling Churn

We will now discuss possible ways to handle churn, in particular, peers leaving
the system without prior notice, but leave any detailed analysis and in particular
the impact of the low level (DHT based) churn handling mechanisms to the
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overall performance as future work.
To handle churn it is common practise to introduce a certain degree of repli-

cation to the system. One such replication based mechanisms has been already
introduced above when presenting the concept of multiple gateway peers per
local DHT which solves the following problem: If a peer lookup on one of the
predefined positions leads to a peer that is not currently in the local DHT as
a gateway peer, that peer issues a lookup on one of the other entry points and
joins the particular hash-table it belongs to. We can furthermore add two more
ways of replication: (i) replication of complete local DHTs and/or (ii) replica-
tion within particular local DHTs. While approach (i) is straight forward to
implement it is extremely coarse and more suitable for handling access load
problems (hot peers) rather than handling churn in an efficient way. Approach
(ii) seems to be more suitable for handling churn: neighboring peers within each
local DHT could maintain also the index of their immediate neighbors and in
case of a peer failure transmit the replicas to the new peer joining the free spot.
Both approaches certainly cause higher load on the system not only in terms
of storage but in particular in terms of message exchanges to keep the replicas
in sync. We will investigate the impact of replicated local DHTs in our future
work and for this paper concentrate on the actual indexing mechanisms. Note
that in addition to the replication mechanisms presented above, the underlying
global DHT might use replication of routing indices as well, which is treated by
us as a black box.

6.4 KNN Query Processing

Given l LSH hash-tables, a query point q = (q1, ..., qd) is first mapped to buckets
g1(q) . . . gl(q) using the p-stable LSH method. The query initiator then uses
one randomly selected gateway peer per local DHT as an entry to that local
DHT. Subsequently, the responsible peer P for maintaining the share of the
global index that contains gi(q) is determined by mapping gi(q) to the peer
identifier space using ξ(gi(q)), as defined above. The query is passed on to P
that executes the KNN query locally using a full scan and passes the query
on. We restrict the local query execution to a simple full-scan query processing
since we do not want to intermingle local performance with global performance.
The local query execution strategy is orthogonal to our work. For the query
forwarding (i.e., routing), we consider two possible options: (i) incremental
forwarding to neighboring peers or (ii) forwarding based on the multi probe
technique [LJW+07]. The results return by all l hash-tables are aggregated at
the query initiator and the K closest points to q are returned.

6.4.1 Linear Forwarding

We will now define a stopping condition for the linear forwarding method. Let
τ denote the distance of the Kth object w.r.t. the query object q, obtained
by a local full scan KNN search. Peer P will pass the query and the current
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rank-K distance τ to its neighboring peers Ppred and Psucc, causing each one
single network hop. Upon receiving the query, Ppred and Psucc will issue a local
full scan KNN search and compare their best result to τ (cf. Algorithm 6). If
the distance dbest of the best document is bigger than τ , the peer will not return
any results and will stop forwarding the query to its neighbor (depending on
the direction, successor or predecessor). The stopping condition can be relaxed
by introducing a parameter α and stop forwarding if dbest > τ/α. α allows for
either a more aggressive querying (α > 1) of neighboring peers or for an early
stopping (α < 1).

Input: query q, threshold τ , Pinit, direction
result[] = localIndex.executeLocalKnn(q);
if result[0].distance>τ/α then

done;
else

resultSet = ∅;
for (index=0; index<K; index++) do

if results[index].distance<τ/α then
resultSet.add(results[index]);

else
τ ′ = resultSet.rankKDistance();
sendResults(resultSet, Pinit);
forwardQuery(this.predecessor() or/and this.successor(), τ ′, q,
Pinit, pred or/and succ);

end
end

end

Algorithm 6: Top-K Style Query Execution based on the locality sensi-
tive mapping to the linear peer space by passing the query on to succeeding
or preceding peers.

6.4.2 Multi-Probe Based Forwarding

The multi-probe LSH method [LJW+07] slightly varies the integers in g(q) and
produces bucket ID’s which are likely to hold close elements to q. For each of
these modifications, the method then probes the resulting bucket for new an-
swerers. We adapt this technique as an alternative to the successor/predecessor
based forwarding as follows: after the full scan, the peer generates a list of
buckets to probe next, considering the maximum number of extra buckets. It
is very likely that some of these buckets have already been visited, thus they
are removed from the list. For a generated bucket g(q) with ξsum(g(q)) /∈
]P.pred().id, P.id], the peer issues a lookup in the local DHT and forwards the
query and bucket list to the peer responsible for ξ(g(q)). The peer that receives
the query, issues a full scan, removes visited buckets from the list and forwards
the query (cf. Algorithm 7).
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Input: Local DHT L, query q, bucketlist, Pinit
result[] = localIndex.executeLocalKnn(q);
while (bucketlist.hasElement() do

b =bucketlist.removeBucket();
bucketId =ξ(b);
if bucketId ∈ ]P.pred().id, P.id] then

nothing to do;
else

Pnew = L.lookup(bucketId);
sendResults(Pinit, results);
forwardQuery(Pnew, ,bucketlist, Pinit);
break;

end
end

Algorithm 7: Multi Probe based Variant of the KNN query processing.

The multi probe algorithm relies on the parameter that specifies the max-
imum number of probes, whereas the linear forwarding algorithm has a clear
defined stopping condition. The relaxation parameter α is optional.

6.5 Range Query

While LSH provides a nice solution to KNN query processing in high dimensional
data, unlike other methods, it is difficult to extend it to range queries. This is
because specific LSH functions are designed to map points with certain distance
from each other to the same hash value. The parameter r1 in the definition
of LSH functions indicates this distance (cf., Section 6.2.1). Therefore different
indices should be made for different parameters r1 to satisfy range search for
different values of the range radius. However it is impractical to construct a
different index for each possible range.

With mapping similar buckets to the same peer or to neighboring peers, we
can support also range queries. Several buckets, which are likely to hold similar
data to the query are investigated.

6.5.1 Range Query Processing

Range query processing over the linearly mapped data is different to the KNN
queries as the overall objective is to return all items within a particular range,
i.e., the stopping condition of the linear forwarding algorithm needs to be
adapted. The startup phase of the query processing is the same as described in
Section 6.4 for the KNN query algorithms: for a given query we determine the
peer responsible for the bucket to which this point is mapped.

Once the starting peer is known and receives the query, it will first execute
the query locally using a full scan and return all matching items to the query
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initiating peer, i.e., send all items within range< r. Subsequently, it will forward
the query to its neighboring peers. The forwarding stops at a peer that does
not have a single matching item.

While this processing seems to be intuitive it has the following serious draw-
back caused by an observation illustrated in Figure 6.2. The range of the query
is indicated by the long arrow, the spot in the middle represents the query point.
Now, the three circles indicate the responsibility of peers for the data items. Ob-
viously, the data in the inner circle can be processed since it is maintained by
the initial peer hosting also the query point. Then, however, due to the often
naturally clustered data, the following up peer does not maintain any items in
the desired range hence causing the algorithm to stop when having covered the
range to the second inner circle, thus missing relevant items.

To overcome this problem of “empty” ranges inside the query range, we
opt for sampling the range, i.e., starting separate range queries at predefined
position.

Unfortunately, the data distribution inside this range is not known a priori.
Furthermore, it depends on the query point and on the range itself, which
makes it not tractable to pre-compute. This in particular means that even
though the actual data distribution inside the hash-tables is known (to the
peers maintaining it) it cannot be used to predict the query dependent range of
peers to visit.

In absence of any knowledge of data distributions, we employ a simple sam-
pling method that divides the range in equally sized sub-ranges. For each sub-
range, the query is forwarded to one responsible peer. Subsequently, each peer
starts the range query processing and as described above, each processing thread
stops when (i) an already queried peer is met or (ii) a peer does not have any
single item within the specified range. We will now describe the process of range
estimations.

Figure 6.2: Illustration of the problem we face when processing range queries
over the linearly mapped data. The “empty” ranges cause the algorithm to stop
before the full range has been explored.
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6.5.2 Range Prediction

We will now try to derive query dependent lower and upper bounds for the
values generated by ξ. As we will later see, these estimates can be used to
enable efficient parallelized in-hash-table query processing.

Recall from Section 6.2.1 that the output of the considered LSH hash func-
tion is a k-dimensional vector of integer values where each value corresponds to
one of the k hash functions of the form of Equation 6.1.

Assume a query point q = (q1, ..., qd) and a range r. Let furthermore be
a(+) = argmaxj{aij} and a(−) = argminj{aij} the positions of the largest and
smallest values of elements of one of the k vectors ai. The idea is to select
samples from the d dimensional space that are in distance r of q and produce a
bucket label with maximum l1 difference from ga,b(q) from Equation 6.2. These
samples will be mapped into the linear space using ha,b and ξ.

To construct these samples, we repeat the following for all k vectors of ai.
We add to the query vector at the maximal and minimal value positions of
vector ai the query range r. More formally, we generate the upper range point
as qi

(+) := q + j
a
(+)
i
∗ r and the lower range point as qi

(−) := q− j
a
(−)
i
∗ r where

ji is the ith unit vector.
Using these generated samples of points in distance r we apply the standard

techniques using LSH hashing and mapping through ξ to determine the upper
and lower bound ξ values

upper(q, r) := argmaxi{ξ(g(q(+)))}
lower(q, r) := argmini{ξ(g(q(−)))}

Assume peeru and peerl to be the two peers responsible for the above two
values. According to condition 1 of an appropriate ξ function, peers which fall
between these two peers in the Chord style ring, are most likely to hold data
in range r of the query point q. Since the output distribution of ξ is known
the above values can be used to estimate the number of peers which should be
contacted to answer a query with range r.

6.6 Experiments

6.6.1 Experimental Setup

We have implemented a simulation of the proposed system and algorithms using
Java 1.6. The simulation runs on a 2x2.33 GHz Quad-Core Intel Xeon CPU with
8GB RAM. The data is stored in an Oracle 11g database.

Data Sets and Overlay setup

Flickr: We used part of a crawl of Flickr obtained from the Cophir project
[BEF+09] consisting of 1, 000, 000 images represented by their MPEG7 visual



86 6. Distributed KNN Search Over High Dimensional Data

Flickr Corel

#data points 1,000,000 60,000

#dimensions 282 89

#peers in Global DHT (N) 1,000,000 100,000

#peers per Local DHT (n) 1000 100

Table 6.1: Data Sets and Overlay setup

descriptors. The total number of dimensions per image is 282 and contains
descriptors such as Edge Histogram Type and Homogeneous Texture Type. For
the global DHT we considered a population of 1, 000, 000 peers and each replica
of the data set is maintained by a local DHT of 1000 peers.

Corel: For the second data set we experimented on 60, 000 photo images
from the Corel data set as previously used in, e.g. [ORC+98] 1. Each image
has 89 dimensions in this data set. In this case we assumed a global DHT of
100, 000 peers and 100 peers per local DHT.

For both datasets, we use the Euclidean distance to measure the distances
between points, treating all dimensions equally and without preprocessing the
data. As query points we chose 100 points randomly from each of the datasets.
All performance measures are averaged over 100 queries. K = 20 in all KNN
experiments. Table 6.1 summarizes the data set and overlay setup parameters.

Methods under Comparison

To evaluate our data placement methods, we distribute the data among peers
once with ξsum and once with ξlsh. We experimented with different values of
LSH parameters: k, W and W2 and here report the best performances achieved.
In the results, unless otherwise stated, the default values are k = 20, W = 5
and W2 = 3 for the Flickr data set and k = 20, W = 50 and W2 = 1.25 for the
Corel data set. For each of these mapping functions we consider the following
query processing methods:

Simple: This is the baseline query processing algorithm. At query time, the
whole local index of the peer which is responsible for the mapped LSH bucket
using ξ is scanned without further forwarding. This is used both for KNN and
range queries.

MProbe: At KNN query time we use the multi-probing based algorithm
as described in Section 6.4.2, fixing the number of probes to 100.

Linear: At query time the linear forwarding algorithm, Section 6.4.1, is
used with appropriate stopping conditions for KNN or range search.

Sample: This is the sampling-based method described in Section 6.5.1
which is dedicated to range query processing.

1available under:

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures
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Sahin: To compare with state of the art, we have implemented the method
described in Section 3.3.1 by Sahin et. el [SEAA04]. In order to fairly compare
against this method, we follow the same index creation of Section 6.3 where
replicas of the data are maintained by smaller rings. We have experimented with
different number of reference vector sizes and different number of references for
publishing indices. We report here the best performance results which achieve
a fair load balance as well. The reference vector size is set to 32 and reference
points are selected uniformly at random from the whole data set. To achieve
a fair load balance, we employed multi-level reference sets as described in the
initial work, however increasing the number of references used for publishing the
indices proved to be more effective. Therefore only one level of references is used
and the number of references used for publishing indices is set to 4. The initial
work of [SEAA04] employs the Simple query processing method as explained
in 3.3.1. In addition to that we also experimented processing queries with our
Linear method. The MProbe method is not applicable here, as it depends on
the LSH buckets. Processing range queries are not discussed in [SEAA04]; we
also experimented only the KNN queries with this method.
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Figure 6.3: Recall versus number of DHT lookups for different data placement
methods employing Simple query processing for the Flickr data set

Data set Sahin ξsum ξlsh
Flickr 0.42 0.52 0.41

Corel 0.40 0.46 0.57

Table 6.2: Gini Coefficient when distributing 2 replicas of the data sets
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Figure 6.4: Recall versus number of DHT lookups for different data placement
methods employing Simple query processing for the Corel data set

Measures of Interest

Gini Coefficient: As for a measure of load imbalances we consider the Gini
coefficient of the load distribution, that is defined as G = 1−2

∫ 1

0
L(x)dx where

L(x) is the Lorenz curve of the underlying distribution. Pitoura et al [PT07]
show that the Gini coefficient is the most appropriate statistical metric for
measuring load distribution fairness. The Gini coefficient, apart from the other
three measures, is query independent and measured once for each benchmark
to report on the storage load distribution.

Number of Network Hops: We count the number of network hops dur-
ing the query execution. Network hops are one of the most critical parameters
in making distributed algorithms applicable in large-scale wide-area networks.
Each DHT lookup causes logn/2 or logN/2 network hops (i.e., local or global
DHT). Hence, we count the number of local and global lookups and translate
this to the overall number of network hops. The cost for local query execution
is considered to be negligible in our scenario, as the network cost is clearly
the dominating factor: One single network hop in a wide-area costs in average
around 100ms, which overrules the I/O cost, induced by a standard hard disk,
with approximately 8ms for disk seek time plus rotation latency and 100MB/s

transfer rate for sequential accesses, in case of local disk access.

Relative Recall: For the effectiveness metric, we report on the relative
recall, i.e., the number of relevant data points among returned data points. The
relevance is defined by the full-scan run over the entire data set to determine
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Figure 6.5: Recall versus number of DHT lookups for the Flickr data set rep-
resenting Linear with the three different placement methods and MProbe with
ξsum and ξlsh

the K nearest points to a query point for KNN queries. For range queries,
all data points in range r of the query point are relevant. It should be noted
that since we are ranking all candidate objects and returning only the top K in
KNN queries and only the points within distance r of the query point in range
queries, precision is equal to relative recall and we do report it separately.

Error Ratio: Given that LSH is an approximate algorithm, we also mea-
sured the Error Ratio which measures the quality of approximate nearest neigh-
bor search as defined in [GIM99]. 1

K

∑K
i=1

dLSHi
dtruei

where dLSHi is the distance of
query point to its i -th nearest neighbor found by LSH and dtruei is its distance
to its true i -th nearest neighbor. Since this measure does not add new insight
over relative recall and due to space constraints we do not report it here.

6.6.2 Experimental Results

We first investigate the effect of employing ξsum and ξlsh on the load distribu-
tion and compare this against the Sahin data placement. As seen in Table 6.2
for both Flickr and Corel data sets, the Gini coefficients of all different load
distributions fall in the range of [0.4, 0.6] which is a strong indicator of a fair
load distribution [PNT06].

KNN query Results

We now show the results obtained for the KNN search. Figures 6.3 and 6.4
show the obtained recall when queries are processed by the Simple method. We
have varied the number of hash-tables (or respectively replicas for Sahin) from
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Figure 6.6: Recall versus number of DHT lookups for the Corel data set rep-
resenting Linear with the three different placement methods and MProbe with
ξsum and ξlsh

2 to 40 for the Flickr data set and from 2 to 10 for the Corel data set. For
the Corel dataset ξsum achieves better recall compared to Sahin and ξlsh. ξsum
and ξlsh obtain better recalls for number of replicas more than 24 for the Flickr
data set which has higher dimensionality . We observe that the obtained recall
for all three placement methods with the Simple query processing algorithm is
quite low even when increasing the number of hash-tables (replicas). It should
be noted that while employing the Simple method for processing queries, the
number of incurred network hops for answering each query is equal to number
of hash-tables (replicas) times logN/2, where N is the number of peers in the
global DHT. In this case, only one peer is visited in each local DHT maintaining
a hash-table (replica) of the data set.

Figures 6.5 and 6.6 show recall versus number of network hops for three
placement methods, this time using Linear and MProbe processing algorithms
respectively for the Flickr and Corel data sets. We see a big increase in recall
compared to when processing queries using Simple for both data sets and all
three placement methods. We have varied the number of hash-tables (replicas)
exactly like the previous experiment, from 2 to 40 for Flickr, and from 2 to 10
for Corel. We show on the x-axis the number of network hops incurred which
corresponds to the number of hash-tables (replicase) and number of times the
query is forwarded in each local DHT maintaining a hash-table (replica). As
can be seen for both data sets, the combination of ξsum and ξlsh with the
Linear processing algorithm achieves the best recall while incurring not many
network hops. This confirms that ξsum and ξlsh preserve the locality, i.e., they
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Relative Recall in % (#Network Hops)

placement l Simple MProbe Linear

Sahin 2 13.65% (19) - 17.00% (34)

ξsum 2 6.90%(19) 8.50%(27) 18.65%(19)

ξlsh 2 6.70% (19) 8.10% (43) 17.65% (36)

Sahin 10 17.60% (99) - 25.80% (185)

ξsum 10 12.45% (99) 21.40% (262) 38.90% (190)

ξlsh 10 8.95% (99) 14.95% (266) 30.60% (183)

Sahin 20 20.10% (199) - 34.95% (375)

ξsum 20 17.40% (199) 34.05% (522) 62.05% (384)

ξlsh 20 16.70% (199) 28.60% (471) 64.95% (378)

Sahin 30 21.85% (298) - 39.70% (559)

ξsum 30 24.20% (298) 46.60% (781) 78.30% (587)

ξlsh 30 29.25% (298) 43.95% (664) 90.10% (579)

Sahin 40 22.95% (398) - 41.65% (746)

ξsum 40 29.55% (398) 55.60% (1032) 87.35% (779)

ξlsh 40 30.50% (398) 48.05% (921) 91.95% (762)

Table 6.3: Measuring recall and number of network hops for different number
of hash-tables, for different placement and processing methods the Flickr data
set.

Relative Recall in % (#Network Hops)

placement l Simple MProbe Linear

Sahin 2 22.95% (16) - 37.85% (32)

ξsum 2 17.65% (16) 19.95% (19) 44.49% (26)

ξlsh 2 15.95% (16) 17.50% (21) 36.80% (26)

Sahin 10 34.80% (83) - 60.70% (163)

ξsum 10 60.79% (83) 65.35% (94) 94.55% (134)

ξlsh 10 34.85% (83) 45.60% (118) 77.84% (134)

Table 6.4: Measuring recall and number of network hops for different number
of hash-tables, for different placement and processing methods the Corel data
set.

group buckets with similar content to the same or neighboring peers. ξsum
and ξlsh achieve similar recall in both data sets, while Sahin’s quality of result
degrade drastically when processing the Flickr data set. This observation again
shows better scalability of our algorithm with respect to data dimensionality,
which is due to LSH characteristics. MProbe achieves better recall compared
to Simple, but does not perform as well as Linear : number of incurred network
hops is more, as each forward in a local DHT maintaining a hash-table results
in logn/2 hops, where n is the number of peers maintaining that ring. We have
also summarized these results in Tables 6.3 and 6.4 to better compare these
methods with respect to network load (number of times the data is replicated in
the network). For example let us consider the 13th and 15th rows of Table 6.3.
With Linear the ξlsh data placement achieves more than twice better recall at
the expense of only 0.01 more number of network hops while having the same
network load as Sahin. The best achieved recall is shown in bold in both tables.
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Figure 6.7: The effect of varying the range on recall. The results are shown for
#hash-tables=20 and ξsum as the placement function for the Corel data set

Range query Results

We now report the results obtained for range searches. For each data set the
radius of the range query is chosen such that the number of possible results are
reasonable, i.e. for Flickr this ranges from 27 to 562, while for Corel it ranges
from 17 to 194. Figure 6.7 shows a general view of the effect of varying the
range on recall. As discussed also in Section 6.5.1 recall in the Simple method
can fall when the radius of range increases. An example of this effect is shown in
Figure 6.7. However, our Sampling method proves to be effective at maintaining
high recall as the radius changes. Tables 6.5 and 6.7 show the results for ξsum,
while Tables 6.6 and 6.8 report on ξlsh for the two data sets. Clearly, Sample
performs very well at achieving good recall for different choices of the range in
both data sets. Our Linear method obtains smaller recall compared to Sample,
however the number of network hobs incurred by this method is considerably
less than Sample. The best achieved recalls are shown in bold.

6.7 Conclusions

We present a robust and scalable solution to the distributed similarity search
problem over high dimensional data. Having investigated the characteristics of
the existing centralized LSH based methods, we devise an algorithm to distribute
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Relative Recall in % (#Network Hops)

range l Simple Linear Sample

2000 2 60.98% (17) 77.55% (24) 80.09% (41)

2000 10 81.04% (83) 95.95% (119) 95.00% (200)

2150 2 49.48% (17) 70.17% (25) 75.26% (43)

2150 10 74.10% (83) 96.01% (124) 95.47% (211)

2300 2 42.68% (17) 72.10% (26) 78.02% (47)

2300 10 68.87% (83) 95.82% (130) 96.54% (224)

Table 6.5: Measuring recall and number of network hops for different range
radius’ and number of hash-tables, for different processing methods under com-
parison with ξsum as the placement function for the Corel data set.

Relative Recall in % (#Network Hops)

range l Simple Linear Sample

2000 2 51.88% (17) 63.22% (24) 70.73% (42)

2000 10 66.95% (83) 82.86% (116) 93.16% (210)

2150 2 40.05% (17) 54.03% (24) 61.52% (44)

2150 10 54.31% (83) 77.98% (120) 91.99% (222)

2300 2 33.23% (17) 50.39% (25) 61.40% (48)

2300 10 49.36% (83) 76.46% (124) 94.13% (239)

Table 6.6: Measuring recall and number of network hops for different range
radius’ and number of hash-tables, for different processing methods under com-
parison with ξlsh as the placement function for the Corel data set.

the p-stable LSH method considering the requirements that arise in distributed
settings. Our proposed locality preserving mapping, brings together two contra-
dictory conditions of efficient and high quality similarity search in distributed
se1ttings: Enabling probabilistic placement of similar data on the same peer or
neighboring peers, while achieving a fair load balancing. We describe the process
of creating the index, leveraging our proposed mapping and its characteristics.
We theoretically prove the locality preserving properties of our mapping and
devised efficient algorithms for both K-nearest neighbor and range queries. To
our knowledge this is the first work enabling similarity range queries over LSH
indices. Our experimental evaluation shows major performance gains compared
to state-of-the-art. We believe that our approach is thus well-positioned to be-
come a fundamental building block towards applying LSH based methods in
real world, distributed applications.
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Relative Recall in % (#Network Hops)

range l Simple Linear Sample

200 2 79.38% (20) 80.67% (26) 81.32% (53)

200 10 80.82% (100) 85.00% (138) 86.54% (264)

200 20 82.02% (199) 87.06% (275) 89.98% (530)

200 30 84.03% (299) 89.96% (414) 93.04% (795)

200 40 86.45% (399) 92.92% (553) 95.88% (1060)

225 2 61.82% (20) 63.14% (27) 64.02% (54)

225 10 64.85% (100) 70.44% (141) 72.75% (269)

225 20 67.82% (199) 75.42% (282) 79.09% (540)

225 30 70.66% (299) 80.70% (423) 85.63% (812)

225 40 74.29% (399) 84.85% (566) 89.99% (1086)

250 2 41.63% (20) 44.10% (29) 45.45% (56)

250 10 44.58% (100) 53.51% (149) 57.45% (282)

250 20 47.69% (199) 60.30% (296) 66.15% (567)

250 30 51.26% (299) 66.95% (449) 73.89% (857)

250 40 55.20% (399) 72.73% (600) 80.16% (1147)

275 2 22.00% (20) 26.36% (34) 28.70% (66)

275 10 25.59% (100) 40.21% (177) 43.99% (330)

275 20 29.81% (199) 49.33% (351) 55.87% (659)

275 30 33.77% (299) 58.03% (530) 67.12% (999)

275 40 37.47% (399) 64.36% (707) 74.62% (1335)

300 2 11.80% (20) 18.94% (46) 22.98% (89)

300 10 14.92% (100) 36.50% (234) 43.14% (434)

300 20 18.85% (199) 48.42% (466) 57.06% (870)

300 30 23.16% (299) 59.27% (707) 68.77% (1329)

300 40 27.55% (399) 66.62% (947) 76.55% (1784)

Table 6.7: Measuring recall and number of network hops for different range
radius’ and number of hash-tables, for different processing methods under com-
parison with ξsum as the placement function for the Flickr data set.
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Relative Recall in % (#Network Hops)

range l Simple Linear Sample

200 2 78.90% (20) 81.44% (27) 81.49% (51)

200 10 79.66% (100) 84.08% (134) 84.58% (256)

200 20 81.06% (199) 86.89% (270) 88.10% (518)

200 30 84.75% (299) 90.59% (409) 92.54% (780)

200 40 85.89% (399) 92.07% (542) 93.92% (1034)

225 2 61.31% (20) 64.55% (28) 65.34% (53)

225 10 61.94% (100) 67.05% (136) 68.82% (261)

225 20 64.63% (199) 73.50% (276) 76.44% (531)

225 30 69.53% (299) 80.54% (418) 84.36% (800)

225 40 70.41% (399) 82.75% (552) 86.98% (1058)

250 2 41.59% (20) 47.53% (31) 48.36% (57)

250 10 42.62% (100) 51.36% (144) 54.56% (272)

250 20 45.43% (199) 59.17% (294) 65.20% (558)

250 30 52.92% (299) 69.43% (448) 78.37% (845)

250 40 54.72% (399) 72.25% (586) 80.91% (1112)

275 2 22.45% (20) 29.58% (36) 31.82% (65)

275 10 24.26% (100) 35.38% (159) 40.07% (300)

275 20 27.09% (199) 45.42% (335) 51.63% (628)

275 30 35.82% (299) 62.10% (522) 71.02% (970)

275 40 37.76% (399) 64.63% (670) 73.61% (1256)

300 2 11.61% (20) 21.90% (46) 24.41% (80)

300 10 13.46% (100) 31.17% (194) 35.61% (364)

300 20 17.22% (199) 45.34% (420) 52.43% (791)

300 30 25.04% (299) 64.39% (671) 73.05% (1235)

300 40 27.22% (399) 67.00% (846) 76.10% (1574)

Table 6.8: Measuring recall and number of network hops for different range
radius’ and number of hash-tables, for different processing methods under com-
parison with ξlsh as the placement function for the Flickr data set.



Chapter 7

Conclusion

Ranking queries have received a lot of attention in the past few years. Pro-
cessing this kind of queries in recently emergent environments, however, poses
new challenges which were non existing previously. More specifically, the re-
quirements of an efficient ranking query operator in a data stream model or
a distributed P2P setting are different from those of a traditional, centralized,
fully under control database system. Throughout this thesis, we have developed
novel methods for evaluating ranking queries in these new settings, which have
not been considered before.

Due to its wide spread in today’s data-centric applications, we look into
the data stream model as our first non-conventional setting. We investigate
processing top-k queries over multiple non-synchronized streams in a sliding
window model. The exact score of an incoming object with regard to a top-k
query registered at the system, can not be calculated instantly, due to different
attributes of it arriving in different streams which are not in sync. In such
a setting where the data streams have very high incoming rate and in face
of limited available main memory, it is infeasible to store all incoming tuples.
Therefore, it is desirable to retain only the interesting ones, which are identified
according to the query aggregation function. We propose an exact scheme based
on multiple instance creations which enables the system to drop only those
objects which will never be a result of the top-k query during their life-time.
We further show that the memory usage is still growing linearly with the window
size. We propose an approximate method which leverages inter-stream statistics
to better estimate the score of incomplete objects. With this scheme we are
able to limit the storage dramatically with only minor losses in the accuracy of
results.

Following our work on top-k processing over data streams, we identify a
novel application which relies on processing large number of top-k queries in
real-time over a stream of textual data. With the popularity of Web 2.0 portals,
it is difficult for human users to keep up-to-date to the interesting events, such
as new weblog posts, or twitter status messages. In order to assist the user in
staying tuned to this ocean of new information, and not drowning by spending
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too much time and energy in finding what is of interest for them, we consider
a system where users can subscribe with their profiles (as set of keyword) and
will be updated with only the top-k related events of their interest periodically.
The main differences between this work and the previous problem are the di-
mensionality of the data, as well as the cardinality of the subscribed queries. In
such a setting, indexing the queries is beneficial, as otherwise all queries have to
be evaluated with an incoming document. We design a query index, similar to
the traditional inverted index, but different in the scores used to order the lists.
Our proposed scheme enables early stopping, which is crucial for the system to
keep up with the high rate of incoming data, without loosing the properties of
being real-time. As keeping the lists completely sorted incurs high costs, we
propose another scheme based on retaining the lists sorted only partially. Our
scheme proves to be effective when the boundaries of the lists are chosen with
regard to our defined cost model. Furthermore, we propose a scheme for result
maintenance of each query, to avoid the problem mentioned above when keep-
ing the dominant set over a large number of points. The combination of our
partially ordered list scheme with the result maintenance method proves to be
very effective in decreasing the overall processing time.

We move to ranking queries over a distributed P2P setting as our next non-
conventional setting. Here we consider the problem of k nearest neighbor query
processing over high dimensional data, where the data is distributed among
peers of a P2P overlay network. Our solution relies on the so-called family
of locality sensitive hashing functions and provides approximate results. Our
solution satisfies the two requirements of an appropriate mapping of data to
the peer space: it probabilistically keeps similar objects on the same peer or
neighboring peers and ensures a fair load balance over the network.

7.1 Impact and Future Work

In previous streaming models, the unit of data is usually one incoming data
tuple. Our model of processing objects, however, takes a broader view on the
entities under process, as a consequence of which incomplete objects come in to
the picture when several non-synchronized sources of information report on ob-
jects. We provide fundamental results on the space limitations of ranking queries
over incomplete data streams and propose an approximate solution which ex-
ploits inter-stream correlations. Our work on processing ranking queries under
this model is a first step in filling out the required blocks to better understand
and develop this model. It motivates many other questions to be considered in
this recurring, but novel model of incomplete data streams. Considering other
classes of queries, identifying the difficulties which surface up in processing them
and designing algorithms which address the challenges under this model are nec-
essary to produce a system for data streams complying with this model.

In this thesis we consider centralized processing of dynamic data, or, dis-
tributed processing in case of static data. Sources of dynamic data are dis-
tributed in many streaming scenarios, such as in sensor networks or in the
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context of Web 2.0 streams. Therefore, it is natural to consider pushing some
portions of the computations to the producing nodes to exploit the power of
distributed computing and also effectively reduce the rate of incoming data to
the centralized server. However, distributed processing of dynamic data can
bring about new challenges. Some data sources have very limited computa-
tional resources, (e.g., cheap sensors) which call for efficient algorithms that can
be run over resource limited machines. On the other hand, distributing holistic
aggregation functions, which require access to the whole data to provide results,
needs extra care. Problems such as these can be a subject of future work. Some
further refined problems are described below.

In the area of continuous top-k processing over data streams in a
sliding window model:
The solution described for continuous top-k processing in Chapter 4 uses straight
forward structures to maintain the dominance set of a dynamically changing
set of points. Designing tailored data structures for this problem which can
improve the performance of the system significantly is left as future work. Also,
as our work in Chapter 5 illustrates, maintaining the top part of the dominant
set, instead of maintaining the whole set, can have great performance gains.
Exploring these possibilities remain as part of our future work. Furthermore,
we did not present an online algorithm for when only fixed amount of memory
is available. To be able to design appropriate online solutions for the mentioned
problem, the streaming data should be modeled first. We refer the interested
reader to similar work in modeling streams for approximate join processing
under fixed memory assumptions in [SW04].

In the area of k nearest neighbor queries over P2P networks:
Although our solution is targeted for a distributed setting, we map the high di-
mensional data to the one dimensional peer space. This solution can be promis-
ing also in centralized search where the data is stored on local disk or in clustered
computers, where deriving statistics over the data is easier, therefore tuning the
parameters of the hash function is easier. Conventional indices, such as a B+
tree could be utilized to index the one dimensional buckets. Comparison with
the recent work in [TYSK09] which also maps the LSH output to one-dimension
is a good stating point.



Appendix A

Proofs

Proof of Theorem 1 We first show that if pi /∈ Sk then pi cannot be a top-k
result. If pi /∈ Sk then there are at least k distinct instances which dominate
pi. From the interval dominance definition it follows that at least k distinct
instances exist which have higher currentscore than the best score pi can ever
get and live longer than pi. Since dominance is persistence, pi cannot be part
of top-k anytime during its life time, as there are at least k preferred instances
all its life. For showing the necessity of keeping Sk, assume pi ∈ Sk. We de-
scribe a case where pi is part of top-k results. There are at most k − 1 other
distinct objects which live longer than pi and their currentscore is higher than
pi.bestscore. Let τ be the time when all instances which have better scores than
pi and are older, expire. Assume no new tuples arrive at any of the streams
until τ . pi will be a top-k result at τ . 2

Proof of Lemma 1 Let X1, X2, ..., Xn be iid random variables following
a probability distribution function f(x), denoting the n currentscore’s we are
considering. Note that the iid assumption is valid, since we are not considering
several instances of the same object, but objects with distinct ids. We can
re-order them

S1 ≤ S2 ≤ ... ≤ Sn

where Sκ is called the κ-th order statistic. We are interested in the maximum,
which is the Sn-th order statistic. Since the difference between currentscorei
and bestcorei is at most ε, points which are not dominated by any other point
are those whose bestscore is at least max1≤i≤ncurrentscorei which can be es-
timated by E[Sn]. Hence, we have the following lower bound for the expected
size of the dominance set:

E[|S∗|] ≥ n ∗
∫ E[Sn]

E[Sn]−ε
f(x)dx

This is a lower bound as some objects whose bestscore is smaller than Sn
are part of the dominance set due to their time attribute. In case of standard
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uniform distribution f(x) = 1 and E[|S∗|] ≥ n∗ε and is independent of E[Sn]. 2

Proof of Theorem 2 For simplicity, we give the proof for two streams and
k = 1. We present an input distribution which satisfies our bound W −m.

Let online denote any online strategy. Assume we have received m tuples
from stream s1 where all tuples have equal values v1. The memory is filled with
the distinct m instances which corresponds to these tuples, all having equal
scores f(v1, 0). Assume a new tuple, with the same value arrives at s1. The
memory is full so one of the instances should be evicted. Let p1 denote the
instance which is removed by online. Now a tuple, < p.id, v2, p.t2 > arrives in
stream s2 where v2 < v1. If we didn’t have fixed memory, instance p1 would
be the top-1 object, as score(p1) = f(v1, v2) which is larger than f(v1, 0) due
to monotonicity of f . From this point on, all objects arriving in s1 or s2 are
distinct and have values smaller than v1 and larger than v2. Therefore for
at least W − m timestamps the true top-1 object will be p1. However since
online had evicted p1, it will report some other object as the top-1 result.
Note that online does not report p2, which would have the same id as p1 since
score(p2) = f(0, v2) < f(v1, 0). OPT however, knows which tuples are arriving
so it would not have evicted p1. Therefore, for W − m timestamps OPT has
precision 1 while online has precision 0. 2

Proof of Theorem 3 We show that for any profile which has not been
updated before the stopping condition is reached, d does not serve as a top-k
result. In other words we show that for such profiles, sim(d, p) < p.s. If p has
been seen in one of the sorted lists before the stopping condition, according to
the algorithm its similarity score with d has been evaluated by looking up p in the
profile hash-table. Therefore if p has not been updated, clearly sim(d, p) < p.s.
Now assume p has not been observed in any of the sorted lists before the stopping
condition. For a list li let vi be the last observed value under sorted access. Since
the lists are sorted in descending values, p.vi < vi. As a result of this and due
to f and g’s monotonicity, g(fw1(v1), ...fwm(vm)) ≤ g(fw1(v1), ...fwm(vm)) < 1
where the last equality is the stopping criteria. Since p.vi = p.ui/p.s and due
to f and g’s homogeneity, we have

g(fw1(v1), ...fwm(vm)) = g(fw1(u1)/p.s, ...fwm(um)/p.s)

= g(fw1(u1), ...fwm(um))/p.s < 1

which is equivalent to sim(d, p) < p.s. 2

Proof of Theorem 4 We first show that if τ ≤ p.R.score, p.R contains
the true top-k. Let d be the valid document with the largest score which is
not in p.R at current time tcurrent and p.R.scorek be the score of the ranked
k document in p.R also at tcurrent . We show that sim(d, p) < R.scorek. We
should consider two cases: first d was inserted to p.R but then removed, or
d was never inserted to p.R. Since d is valid, it was removed from p.R as
a result of being dominated by k documents which means k documents with
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longer life times exist which have a higher score than d. These are indeed in
p.R, as we have assumed d has the largest score among all valid documents
not in p.R. So for the first case sim(d, p) < p.R.scoreke. In the second case,
d was never inserted to p.R. Let t1 denote the time when the most recent
re-evaluation was performed. If t1 > d.time, the most recent re-evaluation was
performed after d’s arrival. Since d was not inserted in p.R, at least k documents
with higher scores than d existed at time t1. Since |p.R| = k after each re-
evaluation, τ at after t1 and before a new re-evaluation is equal to or larger
than the score of the ranked k document at time t1. Since we have assumed
the most recent re-evaluation happened in t1, either those top-k documents
have not expired until tcurrent, or documents with score larger than τt1 have
arrived, otherwise the size of p.R would be less than k at some point after t1
which is in contradiction with our assumption that the most recent re-evaluation
was invoked at t1. In both cases R.scorek ≤ τt1 > sim(d, p). Now assume
t1 < d.time: the most recent re-evaluation happened before d’s arrival. In this
case, sim(d, p) < τd.time, otherwise d was inserted in p.R. If no re-evaluations
happens, τ can only increase, as only higher scored documents can be inserted
to p.R. Similar to the previous case, either documents in p.R at time d.time
have not expired yet or higher scored documents have arrived, otherwise a re-
evaluation would have been fired. In both cases, R.scorek ≥ τd.time > sim(d, p)
which completes the proof for correctness of results when τ ≤ R.score.

To show that this is also a necessary condition, we give an example of when
p.R does not contain top-k results if τ < R.score. For simplicity let k = 2,
examples for other k can be constructed similarly. Let τ = R.score + ε and
ε > 0. Assume R is empty and consider the following stream of documents (first
attribute shows time and the second is score with regard to the specific profile
we consider): d1(1, s1), d2(2, s2), d3(3, s3), d4(4, s4), where s1 > s2 , s1 > s3,
s3 > s2. Then when d4 arrives, τ = s2 + ε, because d2 is dominated only by d3

so it isn’t removed. Now if s4 = s2 + ε/2, d4 is not inserted to R. Assume no
new document arrives. When d1 expires, d2 and d3 are reported as the top-k
results although d4 has higher score than d2. 2

Proof of Theorem 5 Let s(c, δ) := pr(|h(q) − h(v)| ≤ δ) and t(c, δ) :=
pr(|h(q) − h(v)| = δ) where ||q − v||2 = c. Then s(c, δ) can be written as
s(c, δ) = t(c, 0) + · · · + t(c, δ). We want to show that for any fixed δ, s(c, δ) is
monotonically decreasing in terms of c. We first derive t(c, δ). Our argument is
similar to that of [DIIM04]. Since elements of the random vector a are chosen
from a standard Normal distribution, a.q − a.v is distributed according to cX
where X is a random variable drawn from a Normal distribution. Therefore the
probability distribution of |a.q−a.v| is 1

cf(xc ) where f(x) denotes the probability
density function of the absolute value of the standard Normal distribution (i.e.,
the mean is zero and the variance is one) :

f(x) =

{
0 if x < 0

2√
2π
e−x

2/2 if x ≥ 0
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For δ = 0, in order to have |h(q) − h(v1)| = δ, |a.q − a.v| has to be in
[0,W ). Depending on the exact value of |a.q− a.v| different range of values for
B can leave |h(q)−h(v1)| = 0 or change it to |h(q)−h(v1)| = 1. For example if
|a.q−a.v|=0, all values of B ∈ [0,W ) keep the desired values |h(q)−h(v1)| = 0.
The size of this range of values for B decreases linearly as |a.q− a.v| increases
inside [0,W ), until it reaches 0 for |h(q) − h(v1)| = W . Since B is drawn
uniformly at random from [0,W ], the following can be derived:

t(c, 0) =
∫ W

0

1
c
f(
u

c
)(1− u

W
)du

The case for δ > 0 is similar. However this time, a bigger range of values
([(δ − 1)W, (δ + 1)W )) for |a.q − a.v| can satisfy |h(q) − h(v1)| = δ . The
argument regarding B is similar to above. Therefore the following can be seen:

t(c, δ) =
∫ (δ)W

(δ−1)W

1
c
f(
u

c
)(
u

W
− (δ − 1))du

+
∫ (δ+1)W

(δ)W

1
c
f(
u

c
)((δ + 1)− u

W
)du (A.1)

Summing up all values of t(c, d) for d ≤ δ, we arrive at the following for
s(c, δ):

s(c, δ) =
∫ (δ+1)W

0

1
c
f(
u

c
)du+

∫ (δ+1)W

(δ)W

1
c
f(
u

c
)(δ − u

W
)du

With a change of variable v = u
c we can eliminate all occurrences of c

inside the integrals and take the derivative of s(c, δ) in terms of c. Given that∫
uf(u)du = −f(u), this will lead us to:

∂s(c, δ)
∂c

=
1
W

(f(
(δ + 1)W

c
)− f(

(δ)W
c

))

which is smaller than 0 for all values of c > 0, as f(x) is monotonically
decreasing. Therefore for any fixed δ, s(c, δ) is monotonically decreasing in
terms of c. 2

Proof of Theorem 6 Let ||q−v||2 = c. From Theorem 5, pr(|h(q)−h(v)| =
δ) is equal to Eq. A.1. It is easy to see that if we take the derivative from this
equation in terms of δ we arrive at the following:

∂t(c, δ)
∂δ

= −
∫ (δ)W

c

(δ−1)W
c

f(u)du+
∫ (δ+1)W

c

(δ)W
c

f(u)du

which is smaller than zero, as the range of the two integrals is equal, the
term under both is the same and is monotonically decreasing and non negative
for the values under comparison. 2
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