
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. E. Telatar, président du jury
Prof. T. Henzinger, directeur de thèse

Prof. D. T. Beyer, rapporteur
Prof. V. Kuncak, rapporteur

Prof. R. Majumbar, rapporteur

Software Verifi cation by Combining Program Analyses of
Adjustable Precision

THÈSE NO 4781 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 24 SEPTEMBRE 2010

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE MODÈLES ET THÉORIE DE CALCULS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Grégory THÉODULOZ

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147960082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

A mes grands-parents...

iv

ABSTRACT

In automatic software verification, we have observed a theoretical convergence
of model checking and program analysis. In practice, however, model checkers,
on one hand, are still mostly concerned with precision, e.g., the removal of
spurious counterexamples. Lattice-based program analyzers, on the other hand,
are primarily concerned with efficiency. To achieve their respective goal, the
former builds and refine reachability tress while the latter annotates location
with abstract states and rely on overapproximation to accelerate convergence.
In this thesis we focus on capturing within a framework existing approaches
as well as new solutions with the objective of enabling a better understanding
of the fundamental similitudes and differences between approaches and with a
strong accent on implementability.

In a first step, we designed and implemented a framework and a correspond-
ing algorithm for software verification called configurable program analysis. The
algorithm can be configured to perform not only a purely tree-based or a purely
lattice-based analysis, but offers many intermediate settings that have not been
evaluated before. An instance of an analysis in the framework consists of one
or more program analyses, such as a predicate abstraction or a shape analysis,
and their execution and interaction is controlled using several parameters of our
generic verification algorithm. Our experiments consider different configurations
of combinations of symbolic analyses. By varying the value of parameters we
were able to explore a continuous precision-efficiency spectrum and we showed
that it can lead to dramatic improvements in efficiency.

In a second step, we improved our framework and algorithm to enable the
program analysis to dynamically (on-line) adjust its precision depending on the
accumulated results. The framework of configurable program analysis offers
flexible, but static, composition of program analyses. Our extension enables
composite analyses to adjust the precision of each of their component analyses
independently and dynamically. To illustrate, we can allow the explicit tracking

v

vi

of the values of a variable to be switched off in favor of a predicate abstraction
when and where the number of different variable values that have been encoun-
tered has exceeded a specified threshold. We evaluated the dynamic precision
adjustment mechanism by considering combinations of symbolic and explicit
analyses. We analyzed code taken from an SSH client/server software as well
as hand-crafted examples. We showed that the new approach offers significant
gains compared with a purely symbolic, predicate-abstraction-based approach.

In a third step, we consider the problem of refinement in addition to the
dynamic adjustment of the precision. In contrast to precision adjustment, re-
finement only increases the precision of the analysis. Moreover, when a refine-
ment occurs, states with a lower precision are discarded and replaced by states
with a higher precision. Based on our framework, we present a novel refinement
approach for shape analysis, a promising technique to prove program properties
about recursive data structures. The challenge is to automatically determine
the data-structure type, and to supply the shape analysis with the necessary
information about the data structure. We present a stepwise approach to the
selection of instrumentation predicates for a TVLA-based shape analysis, which
takes us a step closer towards the fully automatic verification of data structure
implementations. The approach uses two techniques to guide the refinement of
shape abstractions. First, during program exploration, an explicit heap anal-
ysis collects sample instances of the heap structures. The samples are used
to identify the data structures that are manipulated by the program. Second,
during abstraction refinement along an infeasible error path, we consider differ-
ent possible heap abstractions and choose the coarsest one that eliminates the
infeasible path. We were able to successfully verify example programs from a
data-structure library that manipulate doubly-linked lists and trees.

The techniques presented in this thesis have been implemented as an exten-
sion to the BLAST model checker.

Keywords: software verification; model checking; program analysis framework;
composition of program analyses; abstraction refinement; shape analysis.

RÉSUMÉ

Une convergence théorique a été observée dans le domaine de la vérification au-
tomatique de logiciels entre l’analyse statique de programme et le model check-
ing. Néanmoins, en pratique, d’un côté, les outils basés sur le model checking se
concentrent principalement sur l’augmentation de la précision, par exemple en
diminuant le nombre de fausses alarmes, alors que d’un autre côté, les analyseurs
statiques basés sur un treillis d’états abstraits se concentrent sur l’efficacité de
l’analyse. Pour atteindre leur objectif, les premiers construisent à cette fin des
arbres abstraits représentant les états atteignables et les raffinent quand néces-
saire, alors que les seconds annotent chaque positions du programme avec un
état du treillis et utilise des approximations conservatives pour converger rapi-
dement. Dans cette thèse, nous tentons de regrouper dans un cadre général ces
deux familles d’approches aussi bien que de nouvelles approches. Notre objectif
est de mettre en évidence les similitudes et différences fondamentales de ces
techniques, en mettant un fort accent sur la capacité d’implémenter aisément
notre nouveau cadre général.

Premièrement, nous avons conçu et implémenté un cadre général, dénommé
analyse configurable de programmes avec son algorithme d’analyse permettant
la vérification automatique de logiciels. L’algorithme peut être configuré non
seulement pour se comporter comme une analyse basée sur un arbre d’états
abstraits atteignables (comme utilisé dans un model checker) ou une anal-
yse basée sur un treillis (comme utilisé dans une analyse statique du flot de
donnée) mais également pour définir des analyses intermédiaires qui n’avaient
auparavant pas été considérées. Une instance d’analyse configurable de pro-
grammes se compose d’une ou plusieurs analyses de programme (par exemple
une analyse basée sur des prédicats et une analyse de structures de données
dynamiques. La manière dont les analyses s’exécutent et interagissent est con-
trôlée par plusieurs paramètres de notre algorithme générique de vérification.
Pour notre évaluer notre approche, nous avons comparé expérimentalement des

vii

viii

combinaisons d’analyses symboliques sous diverses configurations. En variant
la valeur des paramètres de notre algorithme, nous pouvons explorer un spectre
d’analyse correspondant à différents compromis précision-coût, et nous avons
réussi à mettre en évidence que certains choix de paramètres conduisent à des
augmentations significatives de l’efficacité de l’analyse.

Deuxièmement, nous avons amélioré notre cadre général et son algorithme
de vérification de manière à permettre l’ajustement dynamique de la précision
de l’analyse en fonction des résultats accumulés. Dans la version originale
de notre cadre général, les analyses peuvent être combinées de manière flex-
ible mais uniquement tous les choix sont statiques alors que l’extension que
nous proposons permet d’obtenir des combinaisons de plusieurs analyses où la
précision de chacune des analyses peut être ajustée indépendamment. A titre
d’illustration, nous arrêter de considérer la valeur exacte d’une variable (analyse
explicite) au profit d’une analyse de prédicats relatifs à cette variable (analyse
symbolique) au moment et à l’endroit où le nombre de valeurs différentes qui
ont été rencontrées pour cette variable dépasse un certain seuil. Nous avons
évalué expérimentalement notre mécanisme d’ajustement dynamique de la pré-
cision en considérant des combinaisons d’une analyse explicite avec une analyse
symbolique. Nous avons analysé des fragments de code provenant d’un client
et d’un serveur SSH ainsi que sur des exemples artificiels. Nous obtenons avec
notre nouvelle approche des temps de vérification significativement inférieurs à
une approche purement symbolique.

Troisièmement, nous ajoutons à notre cadre général le raffinement de l’ab-
straction, en plus de l’ajustement dynamique de la précision. Un raffinement ne
peut qu’augmenter la précision de l’analyse alors que l’ajustement dynamique de
la précision peut à la fois augmenter et diminuer la précision. De plus, lorsque
qu’un raffinement a lieu, les états avec une précision trop basse sont écartés
pour être remplacés par des états avec une précision plus élevée, alors qu’avec
l’ajustement dynamique de la précision, aucun état n’est écarté lorsque la préci-
sion est changée. Nous utilisons notre cadre général pour présenter une nouvelle
approche pour le raffinement d’une analyse de structures de données dynamiques
(shape analysis). Le défi principal de ce type d’analyse est la découverte des
informations dont l’analyse a besoin pour analyser la structure de donnée, ce qui
inclut l’identification automatique du type de structure de donnée manipulée.
Nous présentons une approche qui raffine par étape la précision de l’analyse
(basée sur l’outil TVLA) et qui nous rapproche d’une solution complètement
automatique à la vérification des implémentations de structures de données.
Notre solution utilise deux techniques pour guide le raffinement. Première-

ix

ment, durant l’exploration des états, une analyse explicite du tas collecte des
instances de structures de données. Ces instances sont utilisées pour identifier
le type de structure de données manipulées par le programme. Deuxièmement,
lorsque d’une fausse alarme est découverte, nous choisissons l’abstraction la plus
imprécise permettant d’éliminer la fausse alarme parmi toutes les abstractions
que l’algorithme considère comme possible. Nous avons vérifié avec succès des
programmes provenant d’une librairie de structures de données manipulant des
listes doublement chaînées et des arbres binaires.

Toutes les techniques présentées dans cette thèse ont été implémentée en
tant qu’extension à l’outil de vérification BLAST.

Mots-clés: vérification logicielle; model checking; analyse statique; composi-
tion d’analyses statiques; raffinement d’abstractions; analyse de structures de
donnée.

x

ACKNOWLEDGMENTS

First and foremost I would like to acknowledge the unconditional support of
my parents and my family. They have constantly encouraged me to do what
I liked and never questioned my choices. I would not embarrass them with
a lengthy, emotional acknowledgement of all they gave to me, as outrageous
display of emotions is not in my genes. It suffices to say that without their love
and support, I would not be the person that I am and I cannot be thankful
enough.

Two persons have had a crucial role in shaping me as a researcher: Tom and
Dirk. The support of Tom, my thesis supervisor, has been a reassuring presence
throughout the four years of my thesis. I met Tom when I took the first class he
gave at EPFL in 2005. He made me discover the world of automatic verification,
and convinced me that it was an area in which interesting research could be
conducted. I can only applaud his skills as a teacher and as a researcher. Seldom
can one hope to encounter a person as insightful and understanding as Tom.
I started my collaboration with Dirk when he was a postdoctoral researcher
in our lab at EPFL, and have not stopped collaborating with him ever since.
Dirk helped me focusing my thoughts, by his attention to details, restraining
my natural tendency of thinking quickly and carelessly. It has been a great
pleasure to work with him even after he had left EPFL.

I would also like to acknowledge all the people that have been at some
point member of our lab, including, in no particular order, Barbara, Jasmin,
Laura, Verena, Andrey, Damien, Dejan, Dietmar, Laurent, Nir, Simon, Tatjana,
Thomas, and Vasu. I would also like to thank Rupak who hosted me for three
months in Los Angeles. A special note must be made about my officemate
and friend Maria. I was lucky to meet Maria when she joined our lab and we
have shared an office ever since. Somehow, we succeeded in spending four years
together without any tension of any kind. We shared our moments of joy and

xi

xii

doubts. Chatting with her has always been a pleasure, and it is unarguable that
we succeeded in creating the most pleasant work environment.

I cannot stress enough how important my friends have been throughout my
thesis. I would particularly mention, in alphabetical order, Corinne, Frédéric,
Grégory, Marc, Samuel, and Thierry, and all my friends inside and outside of
EPFL.

Life at EPFL would not be quite the same without dedicated administrative
staff. In our lab, Sylvie helped me through all administrative duties and Fabien
provided an impeccable IT infrastructure, both in a particularly friendly man-
ner. I would also like to thank the administration of the school of computer and
communication sciences and of the doctoral program in computer, communica-
tion and information sciences. Collectively they provided excellent information
and support throughout my life at EPFL. I would like to acknowledge in par-
ticular the excellent work of Sylviane and Cecilia. Both are dedicated to the
well-being of the school and the student body.

I would like to thank for their time the member of my thesis jury, Emre,
Tom, Dirk, Rupak and Viktor. The comments of the examiners on the draft of
the thesis helped shaping its final form.

Finally, I would like to thank the sponsors that have generously funded my
research: Microsoft Research through its European PhD Scholarship Program
and the Swiss National Science Foundation.

CONTENTS

Abstract v

Résumé vii

Acknowledgments xi

Contents xiii

List of Figures xvii

List of Tables xix

List of Algorithms xxi

Previous Publications xxiii

1 Introduction 1

1.1 A Unified and Flexible Analysis Framework 2

1.2 Combination of Analyses . 8

1.3 Dynamically Adjustable Precision 9

1.4 Combination of Analyses for Refinement 11

1.5 Structure of the Thesis . 12

2 Preliminaries 15

2.1 Programs . 15

2.1.1 Control-Flow Automata and Types 15

2.1.2 Concrete Semantics . 19

2.2 Verification Problem . 21

xiii

xiv CONTENTS

2.3 Shape Analysis . 23

2.3.1 Shape Classes . 23

2.3.2 Two-valued Shape Graphs 24

2.3.3 Three-valued Shape Graphs, Abstraction and Embedding 26

2.3.4 Abstract Program Semantics 28

2.3.5 Shape Abstraction and Shape Regions 32

2.3.6 Tracking Definitions and Shape-Class Generators 33

3 Configurable Program Analysis 35

3.1 Motivation . 35

3.2 Formalism and Algorithm . 37

3.2.1 Preliminaries . 37

3.2.2 Configurable Program Analysis (CPA) 39

3.2.3 Reachability Algorithm for CPA 43

3.2.4 CPA for Location Analysis 49

3.2.5 CPA for Predicate Analysis 50

3.2.6 CPA for Shape Analysis 51

3.2.7 Composite Program Analysis 52

3.3 Comparison with Data-flow Analysis and Abstract Interpretation 57

3.3.1 Encoding a Traditional Program Analysis as a CPA . . . 58

3.3.2 Encoding a CPA as a Join-Based Analysis 61

3.4 Application: Configuring Compositions of Analyses 62

3.4.1 Configuring Predicate Abstraction + Shape Analysis . . . 63

3.4.2 Configuring Predicate Abstraction + Pointer Analysis . . 71

3.5 Related Work . 72

3.6 Conclusion . 74

4 Dynamic Precision Adjustment 75

4.1 Motivation . 75

4.2 Related Work . 78

4.3 Program-Analysis Framework . 79

4.3.1 CPA with Dynamic Precision Adjustment (CPA+) 79

4.3.2 Reachability Algorithm for CPA+ 82

CONTENTS xv

4.3.3 Composition for CPA+ 86

4.4 Application: Combining Explicit and Symbolic Program Analyses 87

4.4.1 CPA+ for Location Analysis 88

4.4.2 CPA+ for Predicate Analysis 89

4.4.3 CPA+ for Shape Analysis 91

4.4.4 CPA+ for Explicit Value and Heap Analysis 91

4.4.5 Composition of Explicit, Predicate, and Location Analysis 96

4.4.6 Composition of Explicit, Shape, and Location Analysis . . 97

4.5 Experimental Evaluation . 100

4.5.1 Explicit Value Analysis and Predicate Analysis 100

4.5.2 Explicit Heap Analysis and Shape Analysis 103

4.6 Conclusion . 104

5 Shape Abstraction Refinement 107

5.1 Motivation . 107

5.2 Related Work . 111

5.3 Preliminaries . 113

5.3.1 Path Formulas . 113

5.3.2 Interpolation . 121

5.4 Shape Analysis with Abstraction and Refinement 123

5.4.1 Interruptible CPA+ and Reachability Algorithm 124

5.4.2 Interruptible CPA+ for Path Analysis 126

5.4.3 Interruptible CPA+ for Explicit Heap Analysis 127

5.4.4 Composite Interruptible CPA+ for Path, Shape, and
Explicit Heap Analysis . 128

5.4.5 Model-Checking Algorithm (ModelCheck) 130

5.4.6 Algorithm for Abstraction from Explicit Heaps (Abstract) 131

5.4.7 Algorithm for Shape Refinement (Refine) 134

5.5 Implementation . 137

5.5.1 Library of Shape-Class Generators 138

5.5.2 Manual Annotations of Data Types 141

5.6 Experimental Evaluation . 142

5.6.1 Example Programs . 142

xvi CONTENTS

5.6.2 Results . 144

5.7 Conclusion . 146

6 Conclusion 147

Bibliography 151

Curriculum Vitae 159

LIST OF FIGURES

1.1 A CPA allows to explore the entire precision-efficiency spectrum 6

2.1 Grammar of program operations. 16

2.2 Example C Program . 17

2.3 Control-flow automaton of the program in Figure 2.2 18

2.4 Strongest postcondition of program operations 20

2.5 Example two-valued shape graph 25

2.6 Lattice of logical values in three-valued logic with respect to in-
formation order . 26

2.7 Example three-valued shape graph 26

2.8 Example three-valued shape graph for a shape class with fewer
instrumentation predicates . 27

2.9 Result of applying focus on the shape graph of Figure 2.7 30

2.10 Result of applying coerce on the shape graphs of Figure 2.9 . . . 32

3.1 Example lattice for constant propagation with two variables . . 38

3.2 Example program and corresponding CFA 41

(a) C program . 41

(b) CFA . 41

3.3 Example C program . 64

3.4 Example of shape graphs computed during the analysis of the
program in Figure 3.3 . 65

4.1 Example program . 77

4.2 Sample explicit-analysis state . 91

xvii

xviii LIST OF FIGURES

4.3 Shape graph that is an abstraction of the sample explicit heap
depicted in Figure 4.2 . 97

5.1 Example C program . 109

5.2 Sample abstract states . 110

(a) Sample explicit heap . 110

(b) Sample shape graph . 110

5.3 Definition of Con for each program operation 115

5.4 Path formula and its interpolant for an infeasible path of the
program in Figure 2.3 . 118

5.5 Hierarchy of data structures . 138

LIST OF TABLES

3.1 Configurations of predicate and shape analysis 67

3.2 Verification time for different configurations 68

(a) Time for predicate abstraction and shape analysis 68

(b) Time for predicate abstraction and pointer analysis 68

4.1 Performance evaluation of dynamic precision adjustment of pred-
icate analysis and explicit value analysis 101

(a) Extreme examples . 101

(b) SSH client/server software 101

4.2 Performance evaluation of dynamic precision adjustment of shape
analysis and explicit heap analysis 103

5.1 Library of SCG used in the experiments 140

5.2 Verification time without and with shape refinement 143

xix

xx LIST OF TABLES

LIST OF ALGORITHMS

3.1 CPA(D, P, e0) . 44

4.1 CPA+(D+, P, e0, π0) . 82

5.1 ExtractInterpolants(t,Γ) . 122

5.2 PartialCPA+(D+, P,R0, F0) . 125

5.3 ModelCheck(P, lerr ,M) . 130

5.4 Abstract(R,F,M,E) . 132

5.5 Refine(t, R, F,M,E) . 135

xxi

xxii LIST OF ALGORITHMS

PREVIOUS PUBLICATIONS

The research presented in Chapter 3 appeared as Dirk Beyer, Thomas A. Hen-
zinger, and Grégory Théoduloz, “Configurable Software Verification: Concretiz-
ing the convergence of Model Checking and Program Analysis” in the Proceed-
ings of the 19th International Conference on Computer Aided Verification (CAV
2007), Lecture Notes in Computer Science 4590, pages 504–518. Springer, 2007.

The research presented in Chapter 4 appeared as Dirk Beyer, Thomas A.
Henzinger, and Grégory Théoduloz, “Program Analysis with Dynamic Precision
Adjustment” in the Proceedings of the 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2008), pages 29–38. IEEE,
2008.

The research presented in Chapter 5 appeared, using a different formaliza-
tion, as Dirk Beyer, Thomas A. Henzinger, Grégory Théoduloz, and Damien
Zufferey, “Shape Refinement through Explicit Heap Analysis” in the Proceed-
ing of the 13th International Conference on Fundamental Approaches to Soft-
ware Engineering (FASE 2010), Lecture Notes in Computer Science 6013, pages
263–277. Springer, 2010.

xxiii

xxiv LIST OF ALGORITHMS

CHAPTER 1

INTRODUCTION

Proving properties of software systems is a challenging problem that has inter-
ested mathematicians and computer scientists since the 1930s. Software systems
were initially used in niche applications, at a time where computers had little
memory, little processing power, and a prohibitive cost. Nowadays, software
systems are applied in an ever-growing number of applications. Software is
ever more pervasive, being used in a broad variety of embedded systems found
in cars, planes, phones, and other personal gadgets, upto large information
processing systems prevalent in the corporate world and on the Internet. As a
consequence of our increased dependency on software for our everyday tasks and
for business, software failures, generally referred to as bugs, have consequences
that range from a mere loss of productivity to more dramatic consequences,
from financial losses to endangerment of life. Over the last decade, the software
industry has started to realize that testing, even if done with state-of-the-art
technique, is not always sufficient to validate systems. The hardware industry,
where quality control is crucial due to the costs involved in fixing bugs after
chips have been shipped, pushed the development and the adoption of formal
methods for automated verification. The same movement can be observed today
in some part of the software industry, in particular for safety-critical code.

In this thesis, we attempt to build tools to provide an automatic answer
to a particular question about programs: can the program enter a given set of
bad states? The problem is know as the reachability problem. The set of bad
states contains the states that violate a partial-correctness specification. Prov-
ing any safety property can be reduced to reachability. For instance, one can use
reachability to check whether any assertion can be violated, or whether some
temporal property is violated (e.g., the program has made an invalid sequence

1

2 CHAPTER 1. INTRODUCTION

of calls to a programming interface). We focus on automated techniques that
do not require the verification engineer or the programmer to annotate the code
with preconditions, postconditions, or loop invariants. The reachability problem
cannot be solved by a naive, explicit exploration of all reachable states because
software systems are inherently infinite (unlike hardware systems). For instance,
a program may create lists on the heap of an unbounded length. In fact, the
reachability problem is well-known to be undecidable for Turing-complete pro-
gramming languages. As a consequence, no technique can hope to give a definite
answer within a finite amount of time for every program (i.e., no technique is
complete).

Static program analyses have been used to determine whether a given pro-
gram is free of bad behaviors, without actually running the program. The result
of a static analysis is generally conservative (i.e., the analysis is sound): a static
analysis is used to categorically prove that a program is free of bad behaviors,
but the analysis may fail, not terminate, or report false positives (i.e., the anal-
ysis may not be complete). In contrast, dynamic techniques (e.g., testing) rely
on running the program and as a consequence report only actual bugs. Never-
theless, in general, they are not able to prove the absence of bugs because they
can only cover a subset of all possible program executions.

There is a fundamental trade off between the precision and the computa-
tional complexity of a static analysis. The goal of our research is to build
theoretical frameworks and tools to explore the precision/efficiency spectrum of
program analyses. In the rest of this chapter, we present and put in context the
main contributions of this thesis. Our central contribution is a unified frame-
work for program analysis that can be configured to simulate many existing
techniques. We then build on this framework to explore three different features
that can improve the analysis. First, we provide a mechanism for flexible com-
bination of analyses. Second, we extend our framework to allow the precision of
the analysis to be changed while the analysis is running. Third, we show how
combinations of analyses can be used to improve a refinement strategy.

1.1 A Unified and Flexible Analysis Framework

Historically, the first static analyses were used in compilers [Aho et al. 1986]
to enable optimizations, mostly in the form of data-flow analysis. As a conse-
quence, those analyses have a strong focus on efficiency and they target rela-
tively simple properties. At the other end of the precision spectrum lies software

1.1. A UNIFIED AND FLEXIBLE ANALYSIS FRAMEWORK 3

model-checking, a technique that attempts to prove sophisticated properties
with as few false positives as possible at the expense of being computationally
expensive. While some data-flow analyses can routinely analyze programs with
millions of lines of code, software model-checking can only consider programs
that are orders of magnitude smaller.

In the following, we give a brief overview of the three families of techniques
for software verification that we mostly focus on: data-flow analysis, abstract
interpretation, and software model-checking. The research on automatic soft-
ware verification is not limited to those three techniques. For instance, type
systems can be seen as a verification tool: they prevent certain bad behavior
from occurring, but the type systems found in traditional programming lan-
guages provide very shallow analyses. More ambitious approaches include type-
states [Strom and Yemini 1986; Field et al. 2003]. Other techniques generate
verification conditions [Floyd 1967; Hoare 1969] and discharge them to theorem
provers and decision procedures [Nelson and Oppen 1979; Leino and Nelson
1998; Flanagan et al. 2002; Barnett et al. 2005; Lam et al. 2005]. Traditionally,
those techniques require the programmer or the verification engineer to provide
preconditions, postconditions, and sometimes loop invariants. Bounded-model
checking represents a subset of the paths in the program by a formula that a
SAT solver analyzes [Clarke et al. 2001; Clarke et al. 2004]. The method is not
sound in general because loops are unrolled only finitely many times. All those
techniques have been successful in their own right, but their are out of the scope
of our discussion.

Data-flow analysis Data-flow analysis has its root in traditional program
analyses found in compilers [Kildall 1973; Aho et al. 1986] and is histori-
cally the first family of static analyses that has been thoroughly studied.
As a consequence, data-flow analyses are generally focused on efficiently
establishing simple properties. The analysis annotates program locations
with facts that hold at the given location. For instance, an uninitial-
ized variable data-flow analysis annotates program locations with sets of
variables that might be uninitialized; a constant propagation analysis an-
notates program locations with a partial function from variables to con-
stants, representing the fact that a variable has a constant value at that
location; a shape analysis annotates program locations with shape graphs
representing the shape of data structure instances on the heap. The facts
are represented by elements of a semi-lattice [Davey and Priestley 1990]
and the problem consists in finding the solution of a set of data-flow equa-

4 CHAPTER 1. INTRODUCTION

tions. Transfer functions model the effect of program operations on lattice
elements (e.g., for an uninitialized variable analysis, the transfer function
for an operations that assign a value to variable x maps a set U of vari-
ables to U \ {x}). We briefly sketch in the following how a traditionnal
iterative algorithm [Kildall 1973] solves the data-flow equations. The join
operation of a semi-lattice yields the least upper-bound of a given set of
elements, according to the pre-order of the lattice. The data-flow equa-
tions can be solved by a fix-point algorithm that starts with an initial
state, iteratively applies transfer functions to elements according to pro-
gram operations and, for locations with more than one predecessor (join
points), merges information from all predecessors using the join opera-
tor of the lattice. Precision may be lost at join points because states are
combined using the (possibly overapproximating) join operator, which po-
tentially leads to path insensitivity. If the lattice does not have infinite
ascending chains, the data-flow analysis is guaranteed to terminate using
a number of lattice operations polynomial in the height of the lattice. Ex-
tensive research has been conducted in studying different iteration orders
and computation strategies to improve the efficiency (but not the preci-
sion) of the analysis [Hecht and Ullman 1973; Kennedy 1975; Hecht 1977;
Sharir 1980; Dhamdhere et al. 1992]. The crux to control the precision
of the data-flow analysis lies in the lattice of data-flow facts (i.e., its do-
main). Analyses such as uninitialized variables or constant propagation
result in efficient, polynomial-time analysis algorithms, whereas analyses
such as shape analysis result in exponential analysis algorithms because
of the complexity of the operations on lattice elements.

Abstract Interpretation Abstract interpretation provides a framework to
systematically design analyses, based on the relation between a concrete
domain and an abstract domain [Cousot and Cousot 1977]. When applied
to program analysis [Cousot and Cousot 1979], the concrete domain is
the set of program states (concrete states), and the concrete system cap-
tures precisely the semantics of the program. For example, if we assume
a program with only integer variables, a concrete state is a mapping from
variables to integers. The abstract domain contains abstract states repre-
senting (possibly infinite) sets of concrete program states. For example, an
abstract domain for interval analysis contains for each variable an interval
of values. The concrete and abstract domains are linked by an abstraction
function (mapping sets of concrete states to an abstract state) and a con-
cretization function (mapping an abstract state to the set of concrete states

1.1. A UNIFIED AND FLEXIBLE ANALYSIS FRAMEWORK 5

it represents). Abstract interpretation works by interpreting the behavior
on the abstract domain to conservatively deduce facts about the concrete
program. Abstract interpreters work by computing a fix-point solution
similarly to data-flow analyses. In fact data-flow analysis is a special case
of abstract interpretation. To accelerate (or allow) convergence, widening
operators can be used [Cousot and Cousot 1992; Bourdoncle 1993]. For
instance, a widening operator for an interval analysis may replace some
interval bounds by infinity. Similarly to data-flow analysis, the precision
and efficiency of an abstract interpreter depend on the domain, but also
on the widening operator. Abstract interpretation has been successfully
applied to large code bases, in particular in the aeronautical industry, to
prove numerical properties [Blanchet et al. 2003]

Software model-checking Software model-checking applies model checking
[Clarke et al. 1999], an exhaustive state-space exploration technique, to
software systems [Jhala and Majumdar 2009]. Because the state space of
software systems is generally infinite, software model-checking needs to
use symbolic representations of sets of states. Moreover, in order to make
the analysis practical, it is generally necessary to resort to abstraction: the
infinite-state concrete system is abstracted to a finite-state abstract sys-
tem amenable to model checking. For instance, predicate abstraction [Graf
and Saïdi 1997; Ball et al. 2001] can be used: given a set P of predicates
over program variables, a set C of program states is abstracted by the
strongest conjunction of predicates in P that holds for all states in C. For
a given abstraction, the model-checking algorithm exhaustively explores
the states of the finite abstract system. When an (abstract) path to the
error location is found, it does not necessarily correspond to a path of the
concrete program; it might be due to the abstraction being too coarse.
As a result, the abstraction is refined such that the error path is not
encountered in the refined abstract system (counterexample abstraction
refinement [Clarke et al. 2003]). For example, for a predicate abstraction,
the abstraction is refined by adding predicates to the set of tracked predi-
cates. The overall process forms an abstract-check-refine loop [Saidi 2000;
Ball and Rajamani 2001]. Software model checking has seen a tremendous
development over the last decade, with many tool implementations avail-
able [Godefroid 1997; Holzmann 1997; Corbett et al. 2000; Havelund and
Pressburger 2000; Ball and Rajamani 2002; Henzinger et al. 2002; Musu-
vathi et al. 2002; Andrews et al. 2004; Chaki et al. 2004; Clarke et al.
2005; Ivancic et al. 2005; Esparza et al. 2006]. Software model-checking

6 CHAPTER 1. INTRODUCTION

Data-flow analysis Model checkingCPA

Spectrum of analyses

Scalable
Imprecise

Expensive
Precise

Figure 1.1: A CPA allows to explore the entire precision-efficiency spectrum

is very precise because it is path sensitive and the abstraction can be
refined when necessary, but the analysis may not terminate because the
abstraction might get refined infinitely often. The strength of software
model checking is the verification of properties of control-intensive pro-
grams (by opposition to data-intesive programs) such as device drivers
where predicate abstraction is the most suitable abstraction [Ball et al.
2006].

Abstractly, all three techniques attempt to build an overapproximation of
the set of reachable states: in data-flow analyses and abstract interpreters, the
set is represented by locations annotated by a lattice element or an abstract
state; in model checkers, the set of reachable states can be represented by an
abstract reachability tree. If the overapproximation represents no bad state, we
can safely conclude that no bad state is reachable. All three techniques also rely
on an abstract domain used to symbolically represent sets of program states.
Nevertheless, different abstract domains are better suited to different analysis
approaches. For instance, predicate abstraction is well-suited to software-model
checking whereas the interval domain is not. The major point of divergence is
the algorithm used to compute the overapproximation. For instance, data-flow
analyses merge abstract states (with a possible precision loss) from different
branches, while software model checkers never merge. The similarities of all
approaches hint towards the creation of a unified framework that supersedes
the different algorithms. In fact, it is well known that those approaches are
theoretically equivalent in the sense that one can simulate the other [Steffen
1991; Schmidt 1998; Cousot and Cousot 1995]. Nevertheless, the corresponding
research communities tend to work mostly in isolation. As a consequence, it is
often hard to evaluate how the advances made by one of the communities apply
to other communities, because they rely on different frameworks.

In this thesis, we present a unified, flexible framework for program analysis:
configurable program analysis. The motivation of the framework goes beyond

1.1. A UNIFIED AND FLEXIBLE ANALYSIS FRAMEWORK 7

the intellectual attractiveness of theoretical unification: we intended the frame-
work to be practical, easily implementable, flexible, and compositional. Existing
analyses correspond to particular instances of the framework, and they can be
easily compared because they are expressed in a unified way. Not only can
our framework express existing analyses, but it allows to define intermediate
solutions that have not been considered in the past. As a consequence, we can
picture our approach as going from a set of points to a continuous spectrum of
analyses, as illustrated in Figure 1.1. A configurable program analysis (CPA)
specifies separately the abstract domain and how the reachability analysis works
via the definition of operators used in a generic reachability algorithm. We at-
tempt to hard-code as few algorithmic choices as possible. Orthogonal aspects
of the analysis are each represented by one operator that can be changed inde-
pendently and a wide variety of configurations can be explored without changing
the abstract domain. As a result, for a fixed abstract domain, we are able to
configure the analysis to mimic existing algorithms as well as new algorithms by
picking a particular set of operators. The operators of a CPA specifies (1) how
abstract successor states are computed (transfer relation), (2) how information
is merged among abstract states (merge operator), and (3) when an abstract
state is already represented by the set of abstract states (termination check). In
particular, the merge operator is useful to configure the algorithm to behave ei-
ther like a software model checker, where no merging occurs, or like a data-flow
analyzer, where all abstract states for a given location are merged together.

We adopted in our framework an operational view: operators control the
behavior of our generic algorithm. In contrast, existing analysis frameworks
tend to have a more declarative approach: the specification of the abstract
domain and the corresponding abstract transfer relation fully characterize the
analysis. For instance, a data-flow analysis is entirely defined by the lattice of
facts and the corresponding transfer functions, but it is not possible to change
the way states are combined without changing the domain. A consequence of
our operational approach is that the implementation of the framework can follow
precisely the theoretical concepts, and existing abstract domains can be more
easily reused. Moreover, the implementation enables easy experimentation with
different configurations. Automatic verification is often referred to as push-
button verification; in the same spirit CPA can be pictured as adding sliders in
addition to the one button, each controlling a particular aspect of the analysis.

8 CHAPTER 1. INTRODUCTION

1.2 Combination of Analyses

For the verification of realistic programs, it is generally not enough to use one
analysis in isolation. Abstract domains are good to capture only a part of the
concrete state precisely. As a consequence, if one needs to consider multiple
aspects of the state space simultaneously, it is not good enough to run analyses
separately: more precise results are obtained when analyses are combined. For
example, a predicate abstraction captures well the possible values of integer
variables, while a shape analysis [Jones and Muchnick 1982; Chase et al. 1990;
Sagiv et al. 2002] captures well the content of the heap. The combination of the
two analyses captures both the value of integer variables and the content of the
heap. The combined analysis can be more precise than running both analyses
separately: for instance, we may not merge states that have different predicate
valuations, resulting in a more precise analysis result for the shape analysis.

The idea of combining analyses is not new. It has been studied both in the
context of model checkers and abstract interpreters. In model checkers, the com-
bination of predicate abstraction with shape analysis or a pointer analysis has
been studied, both as a way to improve the precision and the efficiency [Beyer
et al. 2006; Fischer et al. 2005]. In abstract interpreters, analyses are combined
by building product domains. The weakest form of composition, known as the
direct product, consists of a Cartesian product of the domain and all operations
are performed independently on each component domains. It is well known that
the direct product is oftentimes too imprecise [Cousot and Cousot 1979] and as
a consequences other products have been defined such as the reduced product
or the logical product [Cousot and Cousot 1979; Codish et al. 1993; Gulwani
and Tiwari 2006].

We provide a mechanism to combine individual CPAs into a so-called com-
posite program analysis in the CPA framework. Similarly to CPA, the compo-
sition mechanism uses operators to control the precision of the composition. In
contrast, existing approaches modulate the precision of the analysis solely by
using different product domains. A composite analysis is defined with respect
to a finite set of component CPAs. The abstract domain of the composite anal-
ysis is the direct product of the domains of each component CPA. In addition to
component CPAs, the composite analysis contains operators: a composite trans-
fer relation, a composite merge operator, a composite termination check, and
strengthening operators between domains. The composite operators are used to
define the behavior of the composite analysis in the same way as operators of a
CPA define the behavior of the analysis. While the composite domain is a di-

1.3. DYNAMICALLY ADJUSTABLE PRECISION 9

rect product, more precise analysis results are obtained by selecting appropriate
operators. For example, the composite transfer relation can be an independent
computation of component transfers (as in a normal direct product), or it can
make use of strengthening operators to get a more precise result; and the com-
posite merge operator can allow merging only when component CPA’s elements
agree.

We evaluated the CPA framework by considering and implementing several
CPAs including one based on predicate abstraction, and one based on shape
abstraction. We are able to compare experimentally different ways of combin-
ing analyses by evaluating different choices for the parameters of our generic
algorithm rather than having to design a new implementation for every config-
uration. We formalized previously defined analyses [Beyer et al. 2006; Fischer
et al. 2005] in the framework, and studied new configurations that were not
studied previously. As a result we were able to explore different combinations
of operators resulting in different precision and efficiency. We could identify in
each case a different configuration that represented the best compromise between
precision and efficiency. As a consequence, we can conclude that the flexibility
that our framework enables is needed as no universally best configuration exists.

1.3 Dynamically Adjustable Precision

There exists cases where it is valuable to adjust the precision of the analysis
while it is running, both for a single analysis and for a composite analysis.

For a single analysis, modulating the precision can be used to accelerate
convergence. Consider for example an interval analysis. An abstract state is
a set of constraints of the form c ≤ x or x ≥ c for variable x and integer
constant c. Consider that the analysis is applied to a program with a loop
in which variable i is incremented. An interval analysis of the program might
not terminate: it might generate abstract states with constraints i ≤ b for ever
increasing values of b. In such a case, termination could be achieved by replacing
constraints of the form i ≤ b by i ≤ ∞. The decision to set the bound to infinity
is triggered by observing a sequence of increasing upper bounds for i. In abstract
interpretation, widening operators have precisely that role and are crucial to the
efficiency of the analysis [Cousot and Cousot 1977]: widening is applied after
a certain number of steps to ensure convergence by locally loosing precision.
Refinement in software model checkers can also be seen as an adjustment of
the precision, but a refinement is only triggered when a false positive is hit. In

10 CHAPTER 1. INTRODUCTION

contrast, we are interested here in a more general precision adjustment approach
where the precision can be adjusted at any time, based on previous results.

For a composite analysis where abstract domains differ in precision, we would
like to switch between different analyses depending on the results obtained so
far. For instance, a predicate abstraction analysis and an explicit value analysis
both capture values of integer variables. A predicate abstraction can express
arbitrary relations among variables such as x + 3y ≤ 10, but predicates are
taken from a finite set of predicates; and an explicit value analysis can capture
precisely the value of variables but can only remember facts of the form x = c.
We might want to start the analysis using only the explicit analysis. Then, if a
variable has a number of different values in the reached set that exceeds a given
threshold, we want to disable the (precise) explicit analysis for the variable, and
enable the tracking of predicates symbolically representing the values. In other
words, we want to decrease the precision of the explicit analysis (by tracking less
variables) and increase the precision of the predicate analysis (by tracking more
predicates). Such combinations are in the same spirit as attempts to combine
static analysis with results obtained from testing [Yorsh et al. 2006; Gulavani
et al. 2006]: testing is used to accelerate the construction of the proof.

CPAs and composite program analyses can define program analyses flexibly,
but they are restricted to a pre-defined, fixed-precision analyses. To allow the
kind of dynamic changes of the precision presented above, we extend the CPA
framework. A configurable program analysis with dynamic precision adjustment
(CPA+) is a CPA with an additional operator that adjusts the precision of the
analysis. The precision adjustment function changes the precision of the analy-
sis dynamically based on the set of reachable states computed so far. Similarly,
a composite program analysis with dynamic precision adjustment is a compos-
ite program analysis built from CPA+’s with an additional composite precision
adjustment function. The composite precision adjustment function can adjust
the precision of the component analyses individually. All other operators of a
CPA+ are parametric in the precision. The precision adjustment mechanism
is not restricted to always increasing the precision (like refinement) or always
decreasing the precision (like widening). It supports arbitrary change of preci-
sion, and in the case of composite analyses, it can decrease the precision of one
analysis while increasing the precision of an other analysis.

We evaluated CPA+ by considering combinations of explicit and symbolic
analyses: we considered the combination of an explicit value analysis and a
predicate abstraction, and the combination of an explicit heap analysis and a
shape analysis. In both cases, we start by using the explicit analysis until a

1.4. COMBINATION OF ANALYSES FOR REFINEMENT 11

certain metric on the set of reached explicit elements exceeds a threshold (for
an explicit value analysis, the metric is the number of different values; for an
explicit heap analysis, the metric is the depth of the explicit heap). When the
threshold is hit, the precision of the explicit (value or heap) analysis is decreased,
the precision of the symbolic (predicate or shape) analysis is increased, and
explicit values computed so far are abstracted to an appropriate symbolic state.
Compared to a purely symbolic analysis, we observed a significant speed up
in most cases. Compared to a purely explicit analysis, we could prove more
programs safe because the symbolic analysis allows the proof to be completed.

1.4 Combination of Analyses for Refinement

In software model checkers counterexample-guided abstraction refinement [Clarke
et al. 2003] is used to discover predicates on demand. As a result, the analy-
sis only uses the predicates that are needed for a particular problem instance.
Such an approach is required when the analysis would be prohibitively expen-
sive if we were to always use the highest precision. Shape analysis is a analysis
that is used to represent the content of the heap, for programs manipulating un-
bounded, recursive data structures. Because of its high accuracy, shape analysis
can become very expensive and this advocates for the use of a refinement-based
algorithm. The shape analysis defined by Sagiv et al. [Sagiv et al. 2002] uses
three-valued logical structures (also referred to as shape graphs) to represent
the content of the heap. The advantage of this approach compared to earlier
approaches [Jones and Muchnick 1982; Chase et al. 1990] is that the analysis
is parametric: the precision of the analysis is defined by a set of unary and
binary predicates over nodes of a shape graph. The analysis relies on two types
of predicates: core predicates derive from which pointers and fields the analysis
intends to track, and instrumentation predicates are derived facts (e.g. reacha-
bility, cyclicity) that are crucial to control the precision of the analysis. Different
kinds of data structures require different instrumentation predicates. The lit-
erature contains many instrumentation predicates that are known to be useful
to prove properties of certain data structures [Sagiv et al. 2002]. As a conse-
quence, it is possible to consider a lazy refinement algorithm where the analysis
starts with a trivial precision, and where core and instrumentation predicates
are added only when needed. Our previous work showed how core predicates
can be discovered from spurious counterexample by pointers that play a role
in the spuriousness proof [Beyer et al. 2006]. The counterexample analysis is
based on interpolants [Craig 1957; McMillan 2003] of unsatisfiable path for-

12 CHAPTER 1. INTRODUCTION

mulas similarly to predicate-abstraction based model checkers [Henzinger et al.
2004]. Instrumentation predicates, on the other hand, are more delicate to
discover. A few approaches attempt to automatically create good instrumen-
tation predicates but they are limited by the fact that they require decision
procedures that support transitive closure [Yorsh et al. 2007]. For instance,
Loginov et al. attempted to use inductive learning to discover instrumentation
predicates [Loginov et al. 2005].

Considering the successful combination of explicit and symbolic analyses
when the precision is adjusted automatically, we show that a similar approach
can be used to improve a refinement procedure for a shape analysis. We ad-
dress the refinement of core predicates in the same as in the lazy shape-analysis
algorithm (i.e., based on interpolants of unsatisfiable path formulas) and we
contribute a new approach for the refinement of instrumentation predicates.
Rather than generating arbitrary instrumentation predicates, we decided to
rely on the rich set of well-studied instrumentation predicates presented in the
literature: the algorithm chooses good instrumentation predicates from a rich,
user-configurable library of instrumentation predicates.

An explicit heap analysis is combined with the shape analysis to guide the
refinement. The explicit heaps produced by the explicit heap analysis represent
precisely a fragment of the heap. We use explicit heaps to evaluate invariants of
data structures in order to consider only relevant instrumentation predicates in
future refinement steps. Moreover, we abstract explicit heaps to shape graphs at
the end of the explicit analysis in order to speed up the shape analysis. When an
infeasible error path that can only be ruled out by using more instrumentation
predicates is encountered, we simulate the analysis on the path to identify the
smallest set of predicates that is needed to rule out the infeasible error path.

We applied our refinement strategy to functions implementing low-level lists
and trees manipulations, using a rich library of shape abstractions supporting
lists and trees, based on instrumentation predicates found in the literature. The
explicit analysis was able to provide useful hints to our refinement strategy, with
a low overhead.

1.5 Structure of the Thesis

Chapter 2 covers notions that are used throughout the thesis: we define the
programs that we consider in our exposition, we define precisely the reachability

1.5. STRUCTURE OF THE THESIS 13

problem, and we present a particular abstract domain (shape analysis) that
represents symbolically the content of the heap.

Chapter 3 introduces the framework of configurable program analysis (CPA)
and composite program analysis. We present an application of the framework
where we evaluate experimentally various combinations of predicate abstraction
with shape or pointer analysis.

Chapter 4 extends the CPA framework to support dynamic precision ad-
justment, both for single analyses and for composite analyses. We present an
application of the framework to the combination of explicit and symbolic anal-
yses.

Chapter 5 discusses a counterexample-based refinement strategy for a shape
analysis, where the result of an explicit-heap analysis as well as the analysis of
infeasible error paths are used to guide the refinement. To support refinement,
we propose a modification of the CPA framework that allows a CPA to interrupt
the analysis when a refinement is required.

Chapter 6 concludes the thesis with potential future lines of research.

14 CHAPTER 1. INTRODUCTION

CHAPTER 2

PRELIMINARIES

In this chapter, we cover the notions that are used throughout the rest of this
thesis. In particular, we define the set of programs we are considering and
the verification problem we are solving. In addition, we present an existing
abstraction of the content of the heap (shape analysis) that we use throughout
the thesis when considering applications of our frameworks.

2.1 Programs

For presentation purposes, we consider flat programs (i.e., programs without
function calls) in a simple imperative programming language that supports in-
teger variables and heap-stored data structures. Program statements are ex-
pressed using a subset of C. All techniques presented in this thesis can be ex-
tended to support conservatively the entire C language, including interproce-
dural analysis using context-free reachability [Reps et al. 1995; Henzinger et al.
2004; Rinetzky et al. 2004]. Instead of using control-flow graphs to represent
programs, we formalize programs using control-flow automata.

2.1.1 Control-Flow Automata and Types

A control-flow automaton (CFA) is a directed, labeled graph (L,E), where the
set L of nodes represents the control locations of the program (program-counter
values), and the set E ⊆ L×Ops×L of edges represents the program transfers,
i.e., an edge (l, op, l ′) ∈ E represents the fact that the program can go from
location l to location l ′ by executing operation op. Each edge is labeled with a
program operation that can be either an assignment (basic block) or an assume

15

16 CHAPTER 2. PRELIMINARIES

operation ::= var = expression
| var = var
| var = var->field
| var->field = var
| var = malloc()
| assume(predicate)

expression ::= arithmetic expression over
var and integer constants

predicate ::= var ∼ expression
| var == var
| var != var
| predicate bop predicate
| !predicate

∼ ::= < | <= | > | >= | != | ==
bop ::= && | ||

Figure 2.1: Grammar of program operations.

predicate (condition that must hold for control to proceed across the edge). The
language Ops of program operations is defined by the grammar in Figure 2.1
(the starting meta-symbol is operation). The program operations are based
on a set X of identifiers (denoted by var in the grammar), to identify program
variables, and a set F of identifiers (denoted by field in the grammar), to identify
fields. Variable identifiers and field identifiers can be either of type integer or
of type pointer to a (possibly recursive) structure. Each structure is a set of
field identifiers. Without loss of generality, we assume that all structures of
a program are pairwise disjoint (i.e., each field identifier occurs in only one
structure). The left-hand side of an assignment operation is called lvalue. The
lvalues occurring in a program operation are restricted to var and var->field. The
latter denotes the field field of the structure pointed to by pointer variable var.
The expressions that can occur in program operations are side-effect free C
expressions of arithmetic over variable identifiers and integer constants, without
pointer dereferences. The right-hand side of an assignment to a variable can be
an expression or a dereferenced pointer; the right-hand side of an assignment to a
dereferenced pointer can only be a single variable. Moreover, pointer arithmetic
is not allowed. Memory allocation for structures is modeled by the operation
var = malloc(). Unlike the malloc function from the standard C library, the
size of allocation is not specified (it is assumed to be one data structure element
of the type pointed to by the identifier) and the allocation always succeeds.

The type of an identifier is given by function T : (X ∪ F) → 2F which
maps an identifier i to its type with the following meaning: if we have T (i) = ∅

2.1. PROGRAMS 17

1 typedef struct node {
2 int data;
3 struct node *next;
4 } *List;
5
6 void foo () {
7 List a, t, p; int x;
8 List a = (List) malloc (sizeof (struct node));
9 if (a == NULL) exit (1);

10 p = a;
11 while (*) {
12 p->data = 1;
13 t = (List) malloc (sizeof (struct node));
14 if (t == NULL) exit (1);
15 p->next = t;
16 p = p->next;
17 }
18 p->data = 0;
19
20 p = a;
21 x = p->data;
22 while (x == 1) {
23 p = p->next;
24 x = p->data;
25 }
26 assert (x == 0);
27 }

Figure 2.2: Example C Program

then the type of i is integer, otherwise we have T (i) = Y and the type of i is
pointer to structure Y ⊆ F . An operation op ∈ Ops is well-typed if the following
conditions hold:

op = i1 = expression implies T (i1) = ∅ ∧ T (i) = ∅
for all identifiers i that occur in expression,

op = i1 = i2 implies T (i1) = T (i2),
op = i1 = i2->i3 implies T (i1) = T (i3) ∧ i3 ∈ T (i2),
op = i1->i2 = i3 implies T (i2) = T (i3) ∧ i2 ∈ T (i1),
op = i1 = malloc() implies T (i1) 6= ∅, and
op = assume(predicate) implies predicate is well-typed.

18 CHAPTER 2. PRELIMINARIES

0

1

2

3

4

5

6

7

8

9

10

11

13

12

a = malloc()

p = a

p->data = 1

t = malloc()

p->next = t

p->data = 0

p = p->next

p = a

x = p->data

assume(x == 1)

p = p->next

x = p->data

assume(x != 1)
assume(x != 0)

assume(x == 0)

Figure 2.3: Control-flow automaton of the program in Figure 2.2

2.1. PROGRAMS 19

A predicate p is well-typed if the following conditions hold:

p = i1 ∼ expression implies T (i1) = ∅ ∧ T (i) = ∅
for all identifiers i that occur in expression,

p = i1 == i2 implies T (i1) = T (i2),
p = i1 != i2 implies T (i1) = T (i2),
p = !p1 implies p1 is well-typed, and
p = p1 bop p2 implies p1 and p2 are well-typed.

A program (G,T, l0) consists of a CFA G = (L,E), a type function T , and
an initial control location l0 ∈ L. A program is well-typed if all its operations
are type-safe. For a well-typed program we denote the set of integer variables by
Xint = {x ∈ X | T (x) = ∅}, and the set of pointer variables by Xptr = {x ∈ X |
T (x) 6= ∅}. In the reminder of the thesis, when we consider a program, we always
assume implicitly that the program is well-typed. A program path t of length n
is a sequence (op1 : l1); . . . ; (opn : ln) of operations, such that (li−1, opi, li) ∈ E
for all 1 ≤ i ≤ n.

Example. We represent the example C program in Figure 2.2 by the well-
typed program P = (G,T, l0), where G is the CFA given in Figure 2.3, l0 is
location 0, and the typing function T is defined as follows: T (a) = T (p) =
T (t) = T (next) = {data, next} and T (x) = T (data) = ∅. Note that that the
CFA does not contain the tests for valid reference after allocation that the C
program has because our simple programming language assumes that allocation
never fails. The sequence (a=malloc() : 1); (p=a : 2) (p->data=0 : 6); (p=a : 7);
(x=p->data : 8); (assume(x!=1) : 11); (assume(x!=0) : 13); is a program path
of P .

2.1.2 Concrete Semantics

A concrete state (l, v, h) of a program (G,T, l0) consists of the following three
components. (1) The value l ∈ L represents the current control location (po-
sition of the program counter). (2) The variable assignment v : X → Z is a
total function that maps every variable identifier to an integer number: integer
variables are mapped to integer values, and pointer variables are mapped to
structure addresses. (3) The heap assignment h : Z ⇀ (F ⇀ Z) is a partial
function that maps every ‘known’ structure address to a field assignment, also
called structure cell (memory content). A field assignment maps each field iden-
tifier of the structure to an integer number. The domain of the field assignment

20 CHAPTER 2. PRELIMINARIES

Prog. operation op Strongest postcondition SP(ϕ, op)

s = e ∃ŝ : ϕ[s7→ŝ] ∧ s = e

s1 = s2 ∃ŝ1 : ϕ[s1 7→ŝ1] ∧ s1 = s2

s1 = s2->f ∃ŝ1 : ϕ[s1 7→ŝ1] ∧ s1 = sel(h, s2, f)

s1->f = s2 ∃ĥ : ϕ[h7→ĥ] ∧ h = upd(ĥ, s1, f, s2)

s = malloc() ∃ĥ,∃ŝ :

 ϕ[h 7→ĥ,s 7→ŝ]
∧
(
∀t : alloc(h, t)↔ (alloc(ĥ, t) ∨ t = s)

)
∧
(
∀t : alloc(ĥ, t)→ s 6= t

)

assume(p) ϕ ∧ p

Figure 2.4: Strongest postcondition SP(ϕ, op) for a formula ϕ and each kind of
program operation op.

is the structure. We denote the set of all concrete states by C. A set r ⊆ C of
concrete states is called region.

Example. Consider the program path of the previous example. At con-
trol location 8, the following concrete state could occur: (8, v, h) with v =
{a 7→ 326873, p 7→ 326873, t 7→ 326873, x 7→ 0} and h = {326873 7→ {next 7→
0, data 7→ 0}}.

The concrete semantics of a program path is defined in terms of the strongest-
postcondition operator SP. For a set of concrete states represented by the for-
mula ϕ and a program operation op, the formula SP(ϕ, op) represents the set of
concrete successor states. We extend the operator SP from program operations
to program paths in the natural way: SP(ϕ, t) = SP(ϕ, op) if t = (op : l), and
SP(ϕ, t) = SP(SP(ϕ, op), t′) if t = (op : l); t′. The definition of the strongest-
postcondition operator for a formula ϕ and a program operation op is given
in Figure 2.4. For a formula ϕ and two variable identifiers x and y, the for-
mula ϕ[x 7→y] (renaming) is obtained from ϕ by replacing every free occurrence
of x by y. We define the SP of formulas using a modified theory of arrays
with equality, in order to represent field access and field updates (in the heap
part of the concrete state). For a heap assignment h, a structure address a,
a field identifier f , and a value c, the function sel returns the value stored by
field identifier f of the structure at address a in h, i.e., sel(h, a, f) = h(a)(f);
the function upd returns the updated heap assignment h′ such that h′ is the
same as h except that the field identifier f of the structure at address a in h′

2.2. VERIFICATION PROBLEM 21

has value c, i.e., upd(h, a, f, c) =
(
h(a) \ {(f, ·) ∈ h(a)}

)
∪ {(f, c)}1; finally,

the predicate alloc holds if there is a mapping for a in h, i.e., h(a) is defined.
The theory includes two families of axioms to allow reasoning about our new
constructs. The first family of axioms are congruence rules for upd, sel, and
alloc. The second family of axioms expresses the relation between array up-
dates (upd) and array reads (sel): if we read from an updated array, we get as
a result either the updated value, or the value from the original array, based on
whether or not the value at the structure address and field identifier that we
are accessing have or have not been modified. Formally, we have the two axiom
schemas sel(upd(h, a, f, c), a, f) = c and sel(upd(h, a, f, c), b, g) = sel(h, b, g) if
a 6= b or f 6= g. We refer to these axioms of the second family later in the text
as read-over-write axioms.

A program path t is called infeasible if the formula SP(true, t) is unsatisfiable,
and feasible if the formula SP(true, t) is satisfiable. A state c is reachable in P
if c |= SP(true, t) for some program path t, i.e. the state c is a model for the
formula SP(true, t). Similarly, a program location l is reachable if there exists
some reachable program state whose location is l.

Example. The program path in the previous example is infeasible

A concrete transition relation is induced by the strongest post conditions.
For a program state c, let ϕc be the formula is true only in c. Given a pro-
gram P = (G,T, l0), the concrete transition relation → ⊆ C × G × C is de-
fined as follows. For an edge g = (l, op, l ′) of G, we have (l, v, h) g→(l ′, v′, h′)
if (l ′, v′, h′) |= SP(ϕ(l,v,h), op). Given a set S ⊆ C of concrete states, we de-
note by Succ(P, S) the set of successors of S: Succ(P, S) = {c′ | there is c ∈
S and an edge g of P s.t. c g→c′}. Reachability can also be formulated in terms
of the transition relation. A concrete state cn is reachable from a region r in
program P , denoted by cn ∈ Reach(P, r), if there exists a sequence of concrete
states 〈c0, c1, . . . , cn〉 such that c0 ∈ r and for all 1 ≤ i ≤ n, we have ci−1

g→ci
for some CFA edge g of program P . Note that a state c is reachable (according
to the definition in the previous paragraph) iff c ∈ Reach(P, {(l0 , ·, ·) ∈ C}).

2.2 Verification Problem

We focus on proving safety properties of programs. More specifically we are
interested in proving or disproving that a given set of program states —the

1We denote by {(f, ·) ∈ h(a)} the set {(f, x) | x ∈ Z and (f, x) ∈ h(a)}. We use similar
notations in the rest of the thesis.

22 CHAPTER 2. PRELIMINARIES

error states— is reachable. Formally, the reachability problem is defined as
follows.

Problem 2.1. Given a program P and a computable set B of states of P , is
some state in B reachable?

For the class of programs we consider, the reachability problem is well-known
to be undecidable, i.e., there is exists no algorithm that can decide the problem,
in a finite amount of time, for any arbitrary program. The undecidability of
this problem is a fundamental result in the theory of computations that dates
back to the foundational work of Alan Turing in the early 1930s. Despite its
undecidability, the problem is recursively enumerable. Therefore, we aim at
creating semi-algorithms for the problem that succeeds in answering the reach-
ability problem for a rich class of programs. Nevertheless, there will always exist
instances of the problem on which the algorithm does not terminate or stops
with no conclusive answer.

In practice, we often consider a particular case of the reachability problem
where we are interested in knowing whether a particular program location —the
error location— is reachable. The problem is formalized as follows.

Problem 2.2. Given a program P and a location lerr of P , is lerr reachable?

The location-reachability problem is important because other safety proper-
ties of programs can be reduced to a location-reachability question on a modified
program. As an example, consider an extension of our simple programming lan-
guage that supports assertions, i.e., programs can contain operations of the
form assert(predicate). An assertion is violated if predicate evaluates to false for
the pre-state of the operation. The assertion-violation-freedom problem can be
formulated as follows.

Problem 2.3. Given a program P with assertions, can any assertion of P be
violated?

Problem 2.3 can be reduced to a location reachability problem on a program
without assertions. Given a program with assertions Passert , we construct a
program P by modifying Passert as follows. First we insert a new location lerr

in the CFA. Second, we replace every CFA edge (l, assert(predicate), l ′) by two
CFA edges (l, assume(predicate), l ′) and (l, assume(!predicate), lerr). It can eas-
ily be seen that an assertion of Passert is violated iff location lerr is reachable
in P . More complex safety properties such as those expressible as temporal
logic formula or automata can also be reduced to reachability by composing the
program with a monitor automaton [Henzinger et al. 2002].

2.3. SHAPE ANALYSIS 23

2.3 Shape Analysis

In this thesis, we have a particular focus on programs that manipulates un-
bounded, heap-stored data structures, such as lists or trees. Shape analysis
provides a powerful symbolic representation of the heap. In this section, we
give a brief introduction to a particular type of shape abstraction that is based
on three-valued logical structures [Sagiv et al. 2002]. We reuse the terminol-
ogy introduced for the lazy shape-analysis algorithm [Beyer et al. 2006] to talk
about the shape abstraction (in particular, we reuse the notions of shape type,
tracking definition, and shape-class generator)

2.3.1 Shape Classes

Shape abstraction symbolically represents instances of data structures by sets
of shape graphs. We model the memory content by a set V of heap nodes.
Each heap node represents one or more structure cells. Properties of the heap
are encoded by predicates over nodes. The number of nodes that a predicate
constrains is called the arity of the predicate, e.g., a predicate over one heap node
is called unary predicate and a predicate over two heap nodes is called binary
predicate. Nullary predicates constrain only variable identifiers, not structure
cells. The predicates used in an instance of the analysis are structured in a shape
class. A shape class S = (Pcore, Pinstr , Pabs) consists of three sets of predicates
over heap nodes:

1. a set Pcore of core predicates,

2. a set Pinstr of instrumentation predicates with Pcore ∩ Pinstr = ∅, where
each instrumentation predicate p ∈ Pinstr has an associated defining for-
mula ϕp over core predicates, and

3. a set Pabs ⊆ Pcore ∪ Pinstr of abstraction predicates.

We denote the set of shape classes by S. A shape class S refines a shape class S′,
written S 4 S′, if (1) P ′core ⊆ Pcore, (2) P ′instr ⊆ Pinstr , and (3) P ′abs ⊆ Pabs. The
partial order 4 induces a lattice of shape classes. We require the set Pcore of core
predicates to contain the (special) binary predicate eq. The predicate eq(u, v)
evaluates to true iff u = v.

Core predicates that are used to analyze data-structures include the following
families of predicates. A points-to predicate ptx(v) is a unary predicate that has
value 1 if pointer variable x points to a structure cell that is represented by v,

24 CHAPTER 2. PRELIMINARIES

and value 0 otherwise. A field predicate fdφ(v) is a unary predicate that has
value 1 if field assertion φ holds for all structure cells that are represented by v,
and value 0 otherwise. A field assertion is a predicate over the field identifiers of
a structure. Therefore, field predicates represent the data content of a structure,
rather than the shape of the structure. In addition, a binary predicate f(u, v) is
used to track pointers stored in fields: f(u, v) has value 1 if field f of a structure
cell represented by u points to a structure cell represented by v, and value 0
otherwise.

Example. Consider that we want to represent singly-linked lists by shape
graphs. Each cell of the singly-linked list is composed of two fields: a pointer
field next pointing to the next list element, and an integer field data storing
some data associated with the list element. Moreover, we are interested in
knowing the sign of the value stored in field data. For the analysis of such
linked lists we can use a shape class Ssll composed of the following predicates.
The set of core predicates of the shape class is composed of the special binary
predicate eq; a binary predicate next such that next(u, v) holds if the field next
of node u points to node v; unary points-to predicates pta and ptp; and unary
field predicates fddata=0 and fddata>0, where data is the field for the data stored
in a list element. The set of instrumentation predicates of the shape class is
composed of unary reachability predicates ra,next and rp,next , where rx,next(v)
holds if node v is reachable from the node pointed to by pointer x following zero
or more next-field. The defining formula of instrumentation predicate rx,next is
rx,next(v) = ∃u : ptx(u) ∧ next∗(u, v), where next∗ is the reflexive, transitive
closure of next.

2.3.2 Two-valued Shape Graphs

Given a shape class S, we define the notion of a two-valued shape graph, i.e.,
a shape graph whose nodes represent exactly one structure cell and whose
predicates have valuations 0 or 1. A two-valued shape graph2 sc = (V, val)
shape class S = (Pcore, Pinstr , Pabs) consists of a set V of heap nodes and
a valuation val in standard, two-valued logic of the predicates of S: for a
predicate p ∈ Pcore ∪ Pinstr of arity n, val(p) : V n → {0, 1}. The valuation
of instrumentation predicates must satisfy the defining formula of the predi-
cate: given an instrumentation predicate p of arity n with defining formula ϕp,

2In the terminology of Sagiv et al. two-valued shape graphs are called concrete shape
graphs. We decided against using ‘concrete’ because in our setting a two-valued shape graph
is an abstraction of sets of concrete states.

2.3. SHAPE ANALYSIS 25

v0 v1 v2 v3 v4
next next next nextpta

fddata>0
ra,next

fddata>0
ra,next

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

Figure 2.5: Example two-valued shape graph

val(p)(v1, . . . , vn) = ϕp(v1, . . . , vk). The valuation of the special, core predi-
cate eq is such that val(eq)(v, v) = 1 and val(eq)(v1, v2) = 0 if v1 6= v2.

Example. Figure 2.5 shows the graphical representation of a two-valued shape
graph for the shape class Ssll . Valuations of binary predicates are represented
by edges between nodes; valuations of unary predicates are represented by an
edge from the predicate to a node. A solid edge indicates a value of 1, and
the absence of edge indicates a value of 0. The shape graph represents lists of
length 5 where the data field of all elements are strictly positive except for the
last node whose value is null. Pointer a points to the first node, and pointer p
points to the last node.

A two-valued shape graph gc = (V, val) represents the same set of concrete
states as the following state formula ϕ: for every node v in V , ϕ contains a
variable xv to represent the node; the (conjunctive) formula ϕ consists of the
following conjuncts; for every node v in V , ϕ has the conjunct alloc(h, xv); for
every point-to predicate ptp and node n in V , if ptp(n) evaluates to 0 then ϕ has
the conjunct xv 6= p, and if ptp(n) evaluates to 1 then ϕ has the conjunct xv = p;
for every field predicate fdφ and node v in V , if fdφ(v) evaluates to 0 then ϕ has
the conjunct ¬φ[f 7→ sel(h, xv, f)], and if fdφ(v) evaluates to 1 then ϕ has the
conjunct φ[f 7→ sel(h, xv, f)], where f denotes a field identifier occurring in the
field assertion φ; for every pair of nodes v and v′ in V , if eq(v, v′) evaluates to 0
then ϕ has the conjunct xv 6= xv′ , and if eq(v, v′) evaluates to 1 then ϕ has the
conjunct xv = xv′ ; for every binary predicates f and for every pair of nodes v
and v′ in V , if f(v, v′) evaluates to 0 then ϕ has the conjunct sel(h, xv, f) 6= xv′ ,
and if f(v, v′) evaluates to 1 then ϕ has the conjunct sel(h, xv, f) = xv′ . We
denote by [[gc]]c the set of concrete states represented by gc. Note that the
instrumentation predicates do not influence the set of concrete states represented
by a two-valued shape graph because the valuation of instrumentation predicates
is directly determined by the valuation of core predicates.

26 CHAPTER 2. PRELIMINARIES

1/2

0 1

Figure 2.6: Lattice of logical values in three-valued logic with respect to infor-
mation order

n0 ns n4
next next

next

pta

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

Figure 2.7: Example three-valued shape graph

2.3.3 Three-valued Shape Graphs, Abstraction and Embedding

Two-valued shape graphs can only constrain a fixed, finite number of nodes
of the heap because every node represents exactly one structure cell. In this
section, we introduce shape graphs that are expressed over Kleene’s three-valued
logic [Kleene 1987] rather than a two-valued logic, and can have summary nodes
(representing an unbounded number of structure elements).

Three-valued logic. In addition to 1 (true) and 0 (false), Kleene’s three-valued
logic has a third truth value: 1/2. Truth value 1/2 means that the predicate has
an ‘unknown’ value, i.e., the predicate may be either 0 or 1. Values 1 and 1/2
corresponds to possible truth. To represent the information content of truth
values, we define a partial order v such that l1 v l2 denotes that l1 has less
information than l2. The information order v on truth values is defined as
follows: for truth values l1 and l2, l1 v l2 iff l1 = l2 or l2 = 1/2. Figure 2.6
depicts the semi-lattice of three-valued logic spanned by the information order.

Three-valued shape graphs. A three-valued shape graph s = (V, val) for a shape
class S = (Pcore, Pinstr , Pabs) consists of a set V of heap nodes and a valuation val
in three-valued logic of the predicates of S: for a predicate p ∈ Pcore ∪ Pinstr of
arity n, val(p) : V n → {0, 1/2, 1}. Note that a two-valued shape graph is also a
three-valued shape-graph. In the rest of the presentation we shall use the term
shape graph for three-valued shape graph.

Example. Figure 2.7 shows the graphical representation of a three-valued shape
graph for the shape class Ssll . Summary nodes are indicated by double circles.
Valuations of predicates are represented as for two-valued shape graphs, except

2.3. SHAPE ANALYSIS 27

v0 v′s
next

next

pta

fddata>0
ra,next

ra,next

ptp
fddata>0
fddata=0
ra,next
rp,next

Figure 2.8: Example three-valued shape graph for a shape class with fewer
instrumentation predicates

that an unknown value 1/2 is represented by a dotted edge. The shape graph
represents lists of length 3 or more, where the data field of all elements is strictly
positive except for the last node whose value is null. Pointer a points to the
first node, and pointer p points to the last node.

Abstraction. A two-valued shape graph can be abstracted to a three-valued
shape graph with respect to a given shape class as follows [Sagiv et al. 2002].
Given a shape class S = (Pcore, Pinstr , Pabs) and a two-valued shape graph gc =
(V c, valc), the S-abstraction of gc, denoted αS(gc), is a three-valued shape
graph g = (V, val) obtained as follows. The set V of nodes is the set of
equivalence classes of nodes V c, when we consider that two nodes are equiv-
alent if they agree on the valuations of all predicates in Pabs. For every pred-
icate p ∈ Pcore ∪ Pinstr , the valuation val(p) is obtained by taking the join,
according to the information order, of the valuation valc(p) for all nodes in the
equivalence class. A node n in V that corresponds to a non-singleton equivalence
class is called a summary node. The predicate eq is used to identify summary
nodes: val(eq)(n, n) = 1/2 iff v is a summary node. The resulting three-valued
shape graph has definite valuations for all predicates in the set Pabs. The val-
uation of non-abstraction predicates for a summary node vs is 1/2 if the nodes
from V c represented by vs have different valuations.

Example. The three-valued shape graph in Figure 2.7 is the abstraction of the
two-valued shape graph in Figure 2.5, if the abstraction predicates of the shape
class are pta, ptp, ra,next , and rp,next . Summary node vs represents nodes v1,
v2 and v3 of the two-valued shape graph. Figure 2.8 depicts a three-valued
shape graph that is the abstraction of the two-valued shape graph in Figure 2.5,
for a coarser shape class, where only pta and ra,next are abstraction predicates.
Summary node v′s represents nodes v1, v2, v3 and v4 of the two-valued shape
graph.

28 CHAPTER 2. PRELIMINARIES

Embedding order of three-valued shape graphs. Given two three-valued shape
graphs g = (V, val) and g′ = (V ′, val ′) of a shape class S = (Pcore, Pinstr , Pabs),
and given a surjective function f : V → V ′, we say that f embeds S in S′, de-
noted by S vf S′, if for every predicate p of arity n in Pcore∪Pinstr and every n-
tuple of nodes (v1, . . . , vn), we have val(p)(v1, . . . , vn) v val ′(p)(f(v1), . . . , f(vn)).
A shape graph g can be embedded in a shape graph g′ if there exists a function f
such that g vf g′. Relation v is a partial order modulo graph isomorphism.
Note that a two-valued shape graph can be embedded in its S-abstraction αS(gc).

Example. The two-valued shape graph of Figure 2.7 can be embedded in the
three-valued shape graph in Figure 2.7 by the surjective function f = {v0 7→
v0, v1 7→ vs, v2 7→ vs, v3 7→ vs, v4 7→ v4}. Similarly, the three-valued shape graph
in Figure 2.7 can be embedded in the three-valued shape graph in Figure 2.8 by
surjective function f = {v0 7→ v0, vs 7→ v′s, v4 7→ v′s}

Concretization. We use embedding in order to define the set of concrete states
that a three-valued shape graph represents. Given a three-valued shape graph g,
the set of concrete states represented by g, denoted by [[g]], is defined as the union
of all sets of concrete states represented by some two-valued shape graph that
can be embedded in g, i.e.,

[[g]] =
⋃
{[[g′]]c | g′ is a two-valued shape graph and g′ v g}

The Embedding Theorem. The embedding theorem states that if a property
is possibly true in a shape graph g, then it is also possibly true in a shape
graph g′ in which g can be embedded (i.e., g v g′). A proof of the embedding
theorem can be found in [Sagiv et al. 2002]. Dually, we have that if a property
is definitely true (respectively false) in a shape graph g′ then it is also definitely
true (respectively false) in a shape graph g that embeds g′ (i.e., g v g′). As
a consequence, we can soundly use three-valued shape graph as abstractions of
two-valued shape graphs.

2.3.4 Abstract Program Semantics

For a given shape class S = (Pcore, Pinstr , Pabs), the S-abstract semantics of a
program operation is described as a set of predicate-update formula, one for
each predicate in Pcore∪Pinstr : for every program operation op and predicate p,
the predicate-update formula ϕop

p defines the new valuation of the predicate
after the execution of operation opo. The predicate update formula that apply

2.3. SHAPE ANALYSIS 29

to two-valued shape graphs can be used as well to update the predicate of three-
valued shape graphs, interpreting the formula in the three-valued logic. Note
that the valuation of instrumentation predicates might be derived using their
defining formula after having applied the update formula, but this is less precise
than using more precise update formula for the instrumentation predicates.
While in principle its possible to derivate automatically the update formula, it
requires the use of sophisticated theorem provers as the defining formula may
contain transitive closure; in practice, we assume that update formula for every
instrumentation predicate and operation are given. Given a shape graph g =
(V, val) and a control-flow edge (l, op, l′), we denote by postS′(g, (l, op, l′)) the
shape graph g′ = (V, val ′) of shape class S, where predicate valuations val ′ are
computed by applying on predicate valuations val the predicate-update formula
corresponding to op. The abstract semantics is monotonic with respect to shape
class refinement.

Improving the precision. To have more precise shape computations, the analysis
needs a mechanism to materialize summary nodes, i.e., a mechanism to split a
summary node into several nodes. In the framework of Sagiv et al., material-
ization is supported via two operations that are used to increase the precision
of the abstract post computation: focus and coerce. In the following, we give a
brief description of the two operations. Details about the implementation of the
two operations can be found in [Sagiv et al. 2002]. Neither operation changes
the set of states represented by a shape graph. The focus operation returns a
set of shape graphs representing the same states as a shape graph but where a
given formula has a definite value in each shape graph of the produced set (sim-
ilar to a case split). The coerce, conversely, removes inconsistent shape graphs
(representing no concrete states) and attempts to replace indefinite values (1/2)
by definite values (0 or 1), wherever possible.

Given a shape graph g = (V, val) and a formula ϕ(n), the focus of g with
respect to ϕ(v) is the smallest set G′ = focusϕ(g) of shape graphs such that
(1) [[G′]] = g, and (2) for every shape graph g′ = (V ′, val ′) in G′ and for every
node v′ in V ′, ϕ(v′) evaluates to a definite value (0 or 1). The focus operation
is extended to set of shape graphs in the natural way.

Example. Consider the shape class Ssll used in previous example. In order
to increase the precision of the abstract post for operation p = a->next, we
would like to materialize the node pointed to by a->next. We can use a focus
operation with respect to the formula ϕ(v) = ∃v′.pta(v′)∧next(v, v′). Figure 2.9
gives the set of shape graphs that results from focusing the shape graph given

30 CHAPTER 2. PRELIMINARIES

v0 v0
s

v4
next

next

pta

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

v0 v1
s

v4
next next

next

pta

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

v0 v1
s v0

s
v4

next
next

next

next

next next
next

pta

fddata>0
ra,next

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

Figure 2.9: Result of applying focus for formula ϕ(v) = ∃v′.pta(v′)∧ next(v, v′)
on the shape graph of Figure 2.7. In every shape graph, we have ϕ(v0

s) = 0 and
ϕ(v1

s) = 1.

2.3. SHAPE ANALYSIS 31

in Figure 2.7. In the shape graph in Figure 2.7, the formula ϕ evaluates to 1/2
on the summary node vs. In the result of the focus, three cases are considered:
(1) ϕ evaluates to 0 for all nodes represented by vs, (2) ϕ evaluates to 1 for all
nodes represented by vs, and (3) ϕ evaluates to 1 for some nodes represented
by vs and evalutes to 0 for the rest of the nodes represented by vs. Each of the
three cases corresponds to one of the shape graph in the result of the operation.

Given a set G of shape graphs, the coerce operation attempts to eliminate
shape graphs that represents no concrete states and to sharpen predicate valu-
ations without changing the set of concrete states that are represented. Coerce
is applied with respect to a set of constraints. Constraints are derived from
(1) the semantics of the programming language (e.g. ∀v, v1, v2 : next(v, v1) ∧
next(v, v2) ⇒ v1 = v2 or ∀v : fddata=0(v) ⇒ ¬fddata>0(v)), and (2) the defi-
nition of instrumentation predicates (e.g. ∀v1, v2 : ra,next(v1) ∧ next(v1, v2) ⇒
ra,next(v2)). The second category of constraints are automatically derived from
the defining formula of instrumentation predicates. If a shape graph violates
a constraint it represents no concrete state. If a predicate evaluates to 1/2 on
some node and if the shape graph obtained by setting the valuation to 0 (resp.
1) violates a constraint, then the shape graph obtained by setting the valua-
tion to 1 (resp. 0) represents the same set of concrete states. As for the focus
operation, we have [[G]] = [[coerce(G)]].

Example. Figure 2.10 represents the result of applying the coerce opera-
tion to the set of shape graphs in Figure 2.9. The first shape graphs vio-
lates the constraint ∀v : ra,next(v) ⇒ ∃v′ : (pta(v) ∧ next∗(v′, v)), which is
derived from the defining formula of the reachability instrumentation predi-
cates (we have ra,next(n0

s) = 1, but next∗(n0, n
0
s) = 0). In the second shape

graph, node n1
s becomes a single node because of the constraint ∀v, v1, v2 :

next(v, v1)∧next(v, v2)⇒ v1 = v2 (we have next(v0, v
1
s) = 1; therefore, v1

s = v1
s ,

i.e., eq(v1
s , v

1
s) = 1).

Using focus and coerce, we can compute a more precise post by first applying
focus (with respect to a focus formula that depends on the operation), then
apply the predicate-update formulas, and finally, apply coerce. In the following,
the abstract semantics postS refers to the improved semantics that yields for a
shape graph the set of shape graphs resulting from the sequence of operation
described above.

32 CHAPTER 2. PRELIMINARIES

∅
(constraint for instrumentation
predicate ra,next violated)

v0 v1
s

v4
next nextpta

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

v0 v1
s v0

s
v4

next next next

next

pta

fddata>0
ra,next

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

Figure 2.10: Result of applying coerce on the shape graphs of Figure 2.9

2.3.5 Shape Abstraction and Shape Regions

We have presented in the previous sections how shape graphs can be used to
represent sets of program states. In this section we present the way in which we
use shape graphs and classes as abstract states. To allow the simultaneous rep-
resentation of different parts of the heap using different predicates, we abstract
concrete states using sets of shape classes (rather than a single shape class).

The shape abstraction Ψ ⊆ S is a set of shape classes (different shape
classes can be used to simultaneously track different data structures). The
Ψ-abstraction, i.e., the result of applying a shape abstraction Ψ, is an abstract
state, called shape region. A shape region G = {(S1, S1), . . . , (Sn, Sn)} con-
sists of a set of pairs (Si, Si) where Si is a shape class and Si is a set of shape
graphs for Si. A set of shape graphs represents the union of all states rep-
resented by some shape graph in the set, and a shape region represents the
intersection of the states represented by each of the set of shape graphs it con-
tains, i.e., [[{(S1, S1), . . . , (Sn, Sn)}]] =

⋂
1≤i≤n

⋃
g∈Gi

[[g]]. Given a two-valued
shape graph gc and a shape abstraction Ψ = {S1, . . . ,Sn}, we call the shape
region {(S1, {αS1(gc)}), . . . , (Sn, {αSn

(gc)})}) the Ψ-abstraction of gc.

Let S and S′ be two shape classes such that S 4 S′. A shape graph g′ for
S′ can be adjusted to a shape graph g = ES′.S(g′) for S by a shape-graph ad-
justment function E, which leaves the set of nodes unchanged (i.e., V = V ′),

2.3. SHAPE ANALYSIS 33

and adjusts the predicates such that for each predicate p in (Pcore ∪ Pinstr) \
(P ′core ∪ P ′instr), the valuation of p is always 1/2, and all other predicates are
unchanged. The set of concrete states represented by a shape graph is not
changed by a shape-graph adjustment function, i.e., [[g]] = [[ES.S′(g)]]. We ex-
tend the operator E to sets of shape graphs in the natural way. A shape re-
gion {(S1, S1), . . . , (Sn, Sn)} is covered by a shape region {(S′1, S′1), . . . , (S′n, S′n)},
denoted by {(S1, S1), . . . , (Sn, Sn)} v {(S′1, S′1), . . . , (S′n, S′n)}, if for every 1 ≤
i ≤ n, (1) Si 4 S′i, and (2) for each shape graph g in Si, there exists a shape
graph g′ in S′i such that g v ES′

i
.Si

(g′). The relation v on shape regions is a
partial order. We denote by G the set of all shape regions, and by GΨ the set of
all shape regions of the form {(S1, ·), . . . , (Sn, ·)} where Ψ = {S1, . . . ,Sn}. For
any shape abstraction Ψ, (GΨ,v) is a lattice. The top element >Ψ of the lat-
tice is {(S1, {g>S1

}), . . . , (Sn, {g>Sn
})}, where g>S = ({v}, val) such that val maps

every predicate of the shape class S to a constant valuation of 1/2. The bottom
element ⊥Ψ of the lattice is {(S1, ∅), . . . , (Sn, ∅))}. Abstract post operations are
extended from shape graphs to shape regions in the natural way:

postΨ ({(S1, S1), . . . , (Sn, Sn)} , g)
=
{(

S1,
⋃
s∈S1

postS1(s, g)
)
, . . . ,

(
Sn,
⋃
s∈Sn

postSn
(s, g)

)}
where g denotes an edge of the CFA.

2.3.6 Tracking Definitions and Shape-Class Generators

Instead of directly considering shape classes, we separate two aspects of shape
classes. First, a tracking definition provides information about which pointers
and which field predicates need to be tracked on a syntactic level. Second, given
a tracking definition, a shape-class generator determines which predicates are
actually added to the shape class.

A tracking definitionD = (T, Ts,Φ) consists of (1) a set T of tracked pointers,
which is the set of variable identifiers that may be pointing to some node in
a shape graph; (2) a set Ts ⊆ T of separating pointers, which is the set of
variable identifiers for which we want the corresponding predicates (e.g., points-
to, reachability) to be abstraction predicates (i.e., precisely tracked, no value
1/2 allowed); and (3) a set Φ of field assertions. A tracking definition D =
(T, Ts,Φ) refines a tracking definition D′ = (T ′, T ′s,Φ′), if T ′ ⊆ T , T ′s ⊆ Ts

and Φ′ ⊆ Φ. We denote the set of all tracking definitions by D. The coarsest
tracking definition (∅, ∅, ∅) is denoted by D0.

34 CHAPTER 2. PRELIMINARIES

A shape-class generator (SCG) is a function m : D → S that takes as input
a tracking definition and returns a shape class, which consists of core pred-
icates, instrumentation predicates, and abstraction predicates. While useful
SCGs contain points-to and field predicates for pointers and field assertions
from the tracking definition, and the predicate eq, other predicates need to be
added by appropriate SCGs.An SCGm refines an SCGm′ (denoted bym v m′)
if m(D) 4 m′(D) for every tracking definition D. We require that the set of
SCGs contains at least the coarsest element m0, which is a constant function
that generates for each tracking definition the shape class (∅, ∅, ∅). Further-
more, we require each SCG to be monotonic: given an SCG m and two tracking
definitions D and D′, if D 4 D′, then m(D) 4 m(D′).

A shape type T = (σ,m,D) consists of a structure type σ, an SCG m, and
a tracking definition D. For example, consider the type σ = {data, succ} (cor-
responding to the C type struct node {int data; struct node *succ;})
and the tracking definition D = ({l1, l2}, {l1}, {data = 0}). To form a shape
type for a singly-linked list, we can choose an SCG that takes a tracking defi-
nition D = (T, Ts,Φ) and produces a shape class S = (Pcore, Pinstr , Pabs) with
the following components: the set Pcore of core predicates contains the default
binary predicate eq (for distinguishing summary nodes), a binary predicate succ
for representing links between nodes in the list, a unary points-to predicate for
each variable identifier in T , and a unary field predicate for each assertion in Φ.
The set Pinstr of instrumentation predicates contains for each variable identifier
in T a reachability predicate. The set Pabs of abstraction predicates contains all
core and instrumentation predicates about separating pointers from Ts. More
precise shape types for singly-linked lists can be defined by providing an SCG
that adds more instrumentation predicates (e.g., cyclicity).

A shape-abstraction specification is a set of shape types. The specification Ψ̂
defines a shape abstraction Ψ in the following way: a shape type T ∈ Ψ̂ yields a
shape class S ∈ Ψ with S = T.m(T.D). (We use the notation X.y to denote the
component y of a structureX.) Given a program P , the initial shape-abstraction
specification Ψ̂0 is defined as the set {(σ,m0, D0) | σ is a structure type of P};
the initial shape region G0 corresponds to >Ψ where Ψ is the shape abstraction
corresponding to Ψ̂. Region G0 does not constrain the state space; it represents
all program states.

CHAPTER 3

CONFIGURABLE PROGRAM
ANALYSIS

3.1 Motivation

Automatic program verification requires a choice between precision and effi-
ciency. The more precise a method, the fewer false alarms it will produce, but
also the more expensive it is, and thus applicable to fewer programs. Histori-
cally, this trade-off was reflected in two major approaches to static verification:
program analysis and model checking. While in principle, each of the two ap-
proaches can be (and has been) viewed as a subcase of the other [Schmidt 1998;
Steffen 1991; Cousot and Cousot 1995], such theoretical relationships have had
little impact on the practice of verification. Program analyzers, by and large,
still target the efficient computation of few simple facts about large programs;
model checkers, by contrast, focus still on the removal of false alarms through
ever more refined analyses of relatively small programs. Emphasizing efficiency,
static program analyzers are usually path-insensitive, because the most efficient
abstract domains lose precision at the join points of program paths. Empha-
sizing precision, software model checkers, on the other hand, usually never join
abstract domain elements (such as predicates), but explore an abstract reacha-
bility tree that keeps different program paths separate.

In order to experiment with the trade-offs, and in order to be able to set
the dial between the two extreme points, we have developed and implemented
a new framework that permits customized program analyses. Traditionally,
customization has meant to choose a particular abstract interpreter (abstract
domain and transfer functions, perhaps a widening operator) [Lev-Ami and Sa-

35

36 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

giv 2000; Dwyer and Clarke 1996; Martin 1998; Tjiangan and Hennessy 1992],
or a combination of abstract interpreters [Gulwani and Tiwari 2006; Cousot
and Cousot 1979; Codish et al. 1993; Lerner et al. 2002]. Here, we go a step
further in that we also configure the execution engine of the chosen abstract
interpreters. At one extreme (typical for program analyzers), the execution en-
gine propagates abstract domain elements along the edges of the control-flow
graph of a program until a fixpoint is reached [Cousot and Cousot 1977]. At
the other extreme (typical for model checkers), the execution engine unrolls the
control-flow graph into a reachability tree and decorates the tree nodes with
abstract domain elements, until each node is ‘covered’ by some other node that
has already been explored [Beyer et al. 2007]. In order to customize the execu-
tion of a program analysis, we define and implement a meta engine that needs
to be configured by providing, in addition to one or more abstract interpreters,
a merge operator and a termination check.

The merge operator indicates when two nodes of a reachability tree are
merged, and when they are explored separately: in classical program analysis,
two nodes are merged if they refer to the same control location of the program; in
classical model checking, no nodes are merged. The termination check indicates
when the exploration of a path in the reachability tree is stopped at a node:
in classical program analysis, when the corresponding abstract state does not
represent new (unexplored) concrete states (i.e., a fixpoint has been reached);
in classical model checking, when the corresponding abstract state represents
a subset of the concrete states represented by another node. Our motivation
is practical, not purely theoretical: while it is theoretically possible to redefine
the abstract interpreter to capture different merge operators and termination
checks within a single execution engine, we wish to reuse abstract interpreters
as building blocks, while still experimenting with different merge operators and
termination checks. This is particularly useful when several abstract interpreters
are combined. In this case, our meta engine can be configured by defining
a composite merge operator from the component merge operators; a composite
termination check from the component termination checks; but also a composite
transfer function from the component transfer functions.

Combining the advantages of different execution engines for different ab-
stract interpreters can yield dramatic results, as was shown by predicated lat-
tices [Fischer et al. 2005]. That work combined predicate abstraction with
a data-flow domain: the data-flow analysis becomes more precise by distin-
guishing different paths through predicates; at the same time, the efficiency
of a lattice-based analysis is preserved for facts that are difficult to track by

3.2. FORMALISM AND ALGORITHM 37

predicates. However, the configuration of predicated lattices is just one pos-
sibility, combining abstract reachability trees for the predicate domain with
a join-based analysis for the data-flow domain. Another example is lazy shape
analysis [Beyer et al. 2006], where we combined predicate abstraction and shape
analysis. Again, we ‘hard-wired’ one particular such combination: no merging
of nodes; termination by checking coverage between individual nodes; Cartesian
product of transfer functions. Our new, configurable implementation permits
the systematic experimentation with many variations. We show that differ-
ent configurations can lead to large, example-dependent differences in precision
and performance. In particular, it is often useful to use non-Cartesian transfer
functions, where information flows between multiple abstract interpreters, e.g.,
from the predicate state to the shape state (or lattice state), and vice versa. By
choosing suitable abstract interpreters and configuring the meta engine, we can
also compare the effectiveness and efficiency of symbolic versus explicit repre-
sentations of values, and the use of different pointer alias analyses in software
model checking.

In recent years we have observed a convergence of historically distinct pro-
gram verification techniques. It is indeed difficult to say whether our config-
urable verifier is a model checker (as it is based on Blast) or a program an-
alyzer (as it is configured by choosing a set of abstract interpreters and some
parameters for executing and combining them). We believe that the distinction
is no longer practically meaningful (it has not been theoretically meaningful for
some time), and that this signals a new phase in automatic software-verification
tools.

3.2 Formalism and Algorithm

3.2.1 Preliminaries

We consider programs, represented as control-flow automata (CFA), as defined
in Section 2.1.

A partial order v ⊆ E×E is a binary relation that is reflexive (e v e for all
e ∈ E), antisymmetric (if e v e′ and e′ v e then e = e′), and transitive (if e v e′

and e′ v e′′ then e v e′′). The least upper bound for a subsetM ⊆ E of elements
is the smallest element e such that e′ v e for all e′ ∈ M . The partial order v
induces a complete lattice if any subset M ⊆ E has a least upper bound e ∈ E
(cf. [Davey and Priestley 1990; Nielson et al. 1999] for more details). We denote
a complete lattice that is induced by a set E and a partial oder v using the

38 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

(>V ,>V)> =

(1,>V)(0,>V) (>V , 0) (>V , 0)

(0, 0) (0, 1) (1, 0) (1, 1)

(0,⊥V) (1,⊥V) (⊥V , 0) (⊥V , 0)

(⊥V ,⊥V)⊥ =

Figure 3.1: Example lattice for constant propagation with two variables

signature (E,>,⊥,v,t), in order to assign symbols to special components: the
join operator t : E×E → E yields the least upper bound for two elements (we
use the set notation t{e1, e2, . . .} to denote e1 t e2 t . . .), the top element > is
the least upper bound of the set E (> = tE), and the bottom element ⊥ is the
greatest lower bound of the set E (⊥ = t∅).

Example. Let us consider the lattice (V,>,⊥,v,t) that can be used for a
constant-propagation analysis over two Boolean variables. The set V of lattice
elements consists of variable assignments: V = {v : X → {⊥V , 0, 1,>V }}
where, for concreteness, assume that the set X = {x1, x2} of variables consists
of two variables. The partial order v is defined as v v v′ if for all x ∈ X,
v(x) = v′(x) or v(x) = ⊥V or v′(x) = >V . Figure 3.1 depicts this simple lattice
as a graph. The nodes represent lattice elements, where a pair (c1, c2) denotes
the variable assignment {x1 7→ c1, x2 7→ c2}. The edges represent the partial
order (if read in the upwards direction), where reflexive and transitive edges are
omitted. The top element > is the variable assignment with >(x) = >V for all
x ∈ X. If used as abstract state in a program analysis, the lattice element >
represents all concrete states. The bottom element ⊥ is the variable assignment
with ⊥(x) = ⊥V for all x ∈ X. Note that in a program analysis, not only
does the lattice element ⊥ represent the empty set of concrete states, but every
variable assignment (abstract state) that has one variable assigned to ⊥V cannot
represent any concrete state. 1

1This leads to the notion of ’smashed bottom’, where all variable assignments with at
least one variable assigned to ⊥V are subsumed by ⊥. We do not stress this notion in our
presentation, but our implementation supports it.

3.2. FORMALISM AND ALGORITHM 39

3.2.2 Configurable Program Analysis (CPA)

A configurable program analysis D = (D, ,merge, stop) consists of an abstract
domain D, a transfer relation , a merge operator merge, and a termination
check stop, which are explained in the following. These four components config-
ure our algorithm (Algorithm 3.1 discussed in the next subsection) and influence
the precision and cost of a program analysis.

1. The abstract domain D = (C, E , [[·]]) is defined by the set C of concrete
states, a complete lattice E , and a concretization function [[·]]. The com-
plete lattice E = (E,>,⊥,v,t) consists of a (possibly infinite) set E of
elements, a top element > ∈ E, a bottom element ⊥ ∈ E, a partial order
v ⊆ E × E (which defines the lattice structure), and a total function
t : E ×E → E (the join operator). The function t yields the least upper
bound for two lattice elements, and the symbols > and ⊥ denote the least
upper bound of the set E and ∅, respectively. The lattice elements from E

are the abstract states. Each abstract state represents a (possibly infinite)
set of concrete states. The concretization function [[·]] : E → 2C assigns to
each abstract state its meaning, i.e., the set of concrete states that it rep-
resents. The concretization function is extended to sets of abstract states
in the natural way: for S ⊆ E, [[S]] =

⋃
e∈S [[e]]. The abstract domain

determines the objective of the analysis. For soundness of the program
analysis, the abstract domain must fulfill the following requirements:

(a) [[>]] = C and [[⊥]] = ∅
The abstract state > represents all concrete states, and the abstract
state ⊥ represents no concrete state.

(b) ∀e, e′ ∈ E : e v e′ ⇒ [[e]] ⊆ [[e′]]
If the abstract state e′ is greater than (or equal to) abstract state e,
then e′ must represent a greater (or the same) set of concrete states.

(c) ∀e, e′ ∈ E : [[e t e′]] ⊇ [[e]] ∪ [[e′]]
The join operator is precise or over-approximates, i.e., the join of two
abstract states e and e′ must represent (at least) the concrete states
represented by e and the concrete states represented by e′.

Note that requirements (b) and (c) are equivalent because the join oper-
ator t is defined as the least upper bound.

2. The transfer relation ⊆ E × G × E assigns to each abstract state e
possible new abstract states e′ that are abstract successors of e, and each

40 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

transfer is labeled with a control-flow edge g. We write e g e′ if (e, g, e′) ∈
 , and e e′ if there exists a g with e

g
 e′. The transfer relation must

fulfill the following requirement:

(d) ∀e ∈ E, g ∈ G :
⋃
e

g
 e′

[[e′]] ⊇
⋃

c∈[[e]]
{c′ | c g→c′}

The transfer relation over-approximates operations, i.e., every con-
crete successor c′ of some concrete state c represented by e must be
represented by some abstract successor e′ of abstract state e.

3. The merge operator merge : E × E → E combines the information of two
abstract states. The operator weakens the second parameter depending on
the first parameter (the result of merge(e, e′) can be anything between e′

and >). The merge operator must fulfill the following requirement:

(e) ∀e, e′ ∈ E : e′ v merge(e, e′)
The result of merge can only be more abstract than the second pa-
rameter. The operator merge is used to (conditionally) combine two
abstract states e and e′ in such a way that either the new abstract
state subsumes both e and e′, or subsumes only e′ but uses informa-
tion of e in order to widen e′, or is the same as e′. In other words,
the merge operator can implement a join operator, or a widening
operator, or returns its second operand unchanged.

Note that the operator merge is not commutative, and is not the same
as the join operator t of the lattice, but merge can be based on t.
Later we will use the following merge operators: mergesep(e, e′) = e′

and mergejoin(e, e′) = e t e′.

4. The termination check stop : E × 2E → B checks if the abstract state
that is given as first parameter is covered by the set of abstract states
given as second parameter. The termination check can, for example, go
through the elements of the set R that is given as second parameter and
search for a single element that subsumes (v) the first parameter, or
—if D is a powerset domain2— can join the elements of R to check if
R subsumes the first parameter. The termination check must fulfill the
following requirement:

(f) ∀e ∈ E,∀R ⊆ E : stop(e,R) = true implies [[e]] ⊆
⋃
e′∈R

[[e′]]

If an abstract state e is considered as ‘covered’ by R, then every
2A powerset domain is an abstract domain such that [[e1 t e2]] = [[e1]] ∪ [[e2]].

3.2. FORMALISM AND ALGORITHM 41

1 void foo(int y) {
2 int x = 0;
3 int z = 0;
4 if (y == 1) {
5 x = 1;
6 } else {
7 z = 1;
8 }
9 result = 10 / (x - z);

10 }

(a) C program

0

1

2

3 4

5

6

x = 0

z = 0

assume(y == 1) assume(y != 1)

x = 1 z = 1

result = 10 / (x - z)

(b) CFA

Figure 3.2: Example program and corresponding CFA

concrete state represented by e is represented by some abstract state
from R.

Note that the termination check stop is not the same as the partial or-
der v of the lattice, but stop can be based on v. Later we will use the
following termination checks (the second requires a powerset domain):
stopsep(e,R) = (∃e′ ∈ R : e v e′) and stopjoin(e,R) = (e v

⊔
e′∈R e

′).

The abstract domain on its own does not determine the precision of the
analysis; each of the four configurable components (abstract domain, transfer
relation, merge operator, and termination check) independently influences both
precision and cost.

Requirements (a) to (f) imposed on a CPA are weak compared to other
analysis frameworks (including data-flow analysis and abstract interpretation).
For instance, we do not require that the transfer relation be the most precise
transfer relation, or we do not require that the termination check be the most
precise check. The additional flexibility is desired because we want to explore
trade-offs between accuracy and computational cost.

Example. Figure 3.2 shows an example program on the left and the corre-
sponding CFA on the right. The CFA has seven program locations (L =
{0, 1, 2, 3, 4, 5, 6}, l0 = 0) and three integer program variables (X = Xint =
{x, y, z}). The initial region r0 of this program is the set {(0, ·, ·) ∈ C}. The

42 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

concrete states at program location 3 that are reachable from the initial region,
are the following:

{(3, v, h) ∈ C | v(x) = 0 ∧ v(y) = 1 ∧ v(z) = 0}

The set of concrete states at program location 5 that are reachable from the
initial region are the following:

{(5, v, h) ∈ C | (v(y) = 1∧v(x) = 1∧v(z) = 0)∨(v(y) 6= 1∧v(x) = 0∧v(z) = 1)}

Suppose we want to construct a CPA for constant propagation. The configurable
program analysis CO = (DCO, CO,mergeCO, stopCO) that tries to determine,
for each program location, the value of each variable, consists of the following
components (we use the set L of program locations, the set Xint of integer
program variables, and the set Z of integer values):

1. The abstract domain DCO = (C, E , [[·]]) consists of the following three com-
ponents. The set C is the set of concrete states. The lattice E represents
the abstract states, which store for each program location an abstract
integer-variable assignment. Formally, the lattice:

E = ((L ∪ {>L,⊥L})× (Xint → Z), (>L, v>), (⊥L, v⊥),v,t)

with Z = Z∪ {>Z ,⊥Z}, is induced by the partial order v that is defined
as (l, v) v (l′, v′) if (l = l′ or l = ⊥L or l′ = >L) and for all x in Xint :
v(x) = v′(x) or v(x) = ⊥Z or v′(x) = >Z . (The join operator t
yields the least upper bound, v> is the abstract variable assignment with
v>(x) = >Z for every x ∈ Xint , and v⊥ is the abstract variable assign-
ment with v⊥(x) = ⊥Z for every x ∈ Xint .) A concrete state (lc, vc, hc)
matches an abstract program location l if lc = l 6= ⊥L, or l = >L. Sim-
ilarly, a concrete state (lc, vc, hc) is compatible with an abstract variable
assignment v if for all x ∈ Xint , vc(x) = v(x) 6= ⊥Z , or v(x) = >Z . The
concretization function [[·]] assigns to an abstract state (l, v) all concrete
states that match the program location l and are compatible with the
abstract variable assignment v.

2. The transfer relation CO has the transfer (l, v) g (l′, v′) if
(1) g = (l, assume(p), l′) and for all x ∈ Xint :

3.2. FORMALISM AND ALGORITHM 43

v′(x) =

⊥Z if v(x) = ⊥Z for some x ∈ Xint

or the formula φ(p, v) is unsatisfiable
c if the formula φ(p, v) is satisfiable and

c is the only satisfying assignment for variable x
v(x) otherwise

where, given a predicate p over variables in X, and an abstract variable
assignment v,
φ(p, v) := p ∧

∧
x∈Xint ,v(x)6=>Z ,v(x)6=⊥Z

x = v(x)

or
(2) g = (l, w := e, l′) and for all x ∈ Xint :

v′(x) =
{

eval(e, v) if x = w

v(x) otherwise
where, given an expression e over variables in X, and an abstract variable
assignment v,

eval(e, v) =

⊥Z if v(x) = ⊥Z for some x ∈ Xint

>Z if v(x) = >Z for some x ∈ Xint that occurs in e
>Z if e is of the form p->f or of the form malloc()
z otherwise, where expression e evaluates to z when

every variable x is replaced by v(x) in e
or
(3) l = l′ = >L and v′ = v>.

3. The merge operator is defined by

mergeCO((l, v), (l′, v′)) =
{

(l, v) t (l′, v′) if l = l′

(l′, v′) otherwise
(combine the two abstract variable assignments where the control flow
joins).

4. The termination check is defined by stopCO = stopsep.

The following lattice element is an example for an abstract state that is
reachable for the program in Figure 3.2: (2, {x 7→ 0, y 7→ >Z , z 7→ 0}).

3.2.3 Reachability Algorithm for CPA

The reachability algorithm CPA (Algorithm 3.1) computes, given a configurable
program analysis, a program and an initial abstract state, a set of reachable ab-
stract states, i.e., an overapproximation of the set of reachable concrete states.
The configurable program analysis is given by the abstract domain D, the trans-
fer relation for the input program, the merge operator merge, and the termi-

44 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

Algorithm 3.1 CPA(D, P, e0)
Input: a CPA D = (D, ,merge, stop), a program P , and

an initial abstract state e0 ∈ E,
where E denotes the set of elements of the lattice of D

Output: a set of reachable abstract states
Variables: a set reached of elements of E and a set frontier of elements of E
1: frontier := {e0}
2: reached := {e0}
3: while frontier 6= ∅ do
4: choose e from frontier
5: frontier := frontier \ {e}
6: for each e′ with e g

 e′ for some CFA edge g of P do
7: for each e′′ ∈ reached do
8: // combine with existing abstract state
9: enew := merge(e′, e′′)
10: if enew 6= e′′ then
11: frontier :=

(
frontier \ {e′′}

)
∪ {enew}

12: reached :=
(
reached \ {e′′}

)
∪ {enew}

13: if stop(e′, reached) = false then
14: frontier := frontier ∪ {e′}
15: reached := reached ∪ {e′}
16: return reached

nation check stop. The algorithm keeps updating two sets of abstract states, a
set reached to store all abstract states that are found to be reachable, and a set
frontier to store all abstract states that are not yet processed (work list). The
state exploration starts with the initial abstract state e0. In each iteration of the
while loop, a current abstract state e is chosen in the frontier and removed from
that list. The algorithm does not dictate the order in which the abstract states
are chosen from the wait list: it is left to the implementation of the choose oper-
ation. The algorithm considers each successor e′ of the current abstract state e,
obtained from the transfer relation. Now, using the operator merge, the abstract
successor state is combined with an existing abstract state from reached. If the
operator merge has added information to the new abstract state enew, such that
the old abstract state e′′ is strictly subsumed, then the old abstract state is
replaced by the new abstract state in the sets reached and frontier .3 If the re-
sulting new abstract state e′ is not covered by the set reached (according to the
termination check stop) after the merge step, then it is added to the set reached
and to the set frontier .4 Note that the algorithm does not necessarily termi-
nate. It is a consequence of the weak requirements imposed on the domain and

3Implementation remark: The operator merge can be implemented in a way that it operates
directly on the reached set. If the set reached is stored in a sorted data structure, there is no
need to iterate over the full set of reachable abstract states, but only over the abstract states
that need to be combined.

4Implementation remark: The termination check can be done additionally before the merge
process. This speeds up cases where the termination check is cheaper than the merge operator.

3.2. FORMALISM AND ALGORITHM 45

the operators of a CPA. For instance, the definition does not forbid infinite as-
cending chains in the lattice. While at first sight it might be considered as a
weakness, we make use of the additional flexibility to make possible to express
in our framework analyses that may not terminate. Such non-terminating anal-
yses can take part in combined analyses such that the result, combined program
analysis terminates. Nevertheless, the requirements are strong enough to prove
that Algorithm CPA produces an overapproximation of the reachable program
states when it terminates, as stated by the following theorem.

Theorem 3.1 (Soundness of CPA). Given configurable program analysis D, a
program P , and an initial abstract state e0, Algorithm CPA computes a set of
abstract states that over-approximates the set of reachable concrete states if it
terminates: [[CPA(D, P, e0)]] ⊇ Reach(P, [[e0]]).

Proof. To prove the theorem, we first prove that the loop of the CPA algorithm
has the following two loop invariants:

∀c ∈ [[e0]] : c ∈ [[reached]] (3.1)

∀c ∈ [[reached \ frontier]] : ∀c′ s.t. c→c′ : c′ ∈ [[reached]] (3.2)

Initially, both sets reached and frontier are the singleton set {e0}. Conse-
quently both invariants hold trivially.

We now prove that if the two invariants hold at the beginning of an iteration,
they still hold at the end.

We first show that no operation of an iteration removes concrete states
from the set [[reached]]. Let R and W denote the values of variables reached
and frontier , respectively, at the beginning of the iteration, and R′ and W ′

their value at the end of the iteration. We show that the following proposition
holds:

[[R]] ⊆ [[R′]] (3.3)

All operations except one either leave variable reached unchanged or add an ele-
ment to it; we only need to consider the operation reached :=

(
reached \{e′′}

)
∪

{enew}. Let Rpre be the value of the variable reached before the operation, and
Rpost its value after the operation. The operation is only executed if enew 6= e′′;
as a consequence, it is sufficient to show that [[e′′]] ⊆ [[enew]]. By construction of
the algorithm, we have enew = merge(e′, e′′). By requirement (e) on the merge
operator, we have e′′ v enew. By requirement (b) on the lattice order, it follows
that [[e′′]] ⊆ [[enew]].

46 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

The preservation of the first invariant immediately follows from (3.3).

To prove the preservation of the second invariant, we need to show that for
all c ∈ [[R′ \W ′]], and all c′ such that c→c′, we have c′ ∈ [[R′]]. Let epop be the
element removed from the set frontier in the first operation of the loop. We
observe that R′ \W ′ = (R \W) ∪ {epop}. From (3.3) it suffices to show that:

{c′ | ∃c ∈ [[epop]] : c→c′} ⊆ [[R′]] (3.4)

For all e′ such that epop e′, the algorithm adds e′ to the set reached (but not
to the set frontier) unless the termination check stop(e′, reached) succeeds. If
e′ is added to the set reached, trivially we have that [[e′]] ⊆ [[R′]]. Otherwise, by
requirement (f) on the termination check stop, we also have [[e′]] ⊆ [[R′]]. (Note
that the innermost for loop does not change the value of reached \ frontier .)
Consequently,

⋃
epop e′

[[e′]] ⊆ [[R′]] holds. From requirement (d) on the transfer
relation, we have {c′ | ∃c ∈ [[epop]] : c→c′} ⊆

⋃
epop e′

[[e′]]. Consequently, the
second invariant is also preserved.

Given loop invariants 3.1 and 3.2, if the algorithm terminates, we know that
the output value R̂ = CPA(D, P, e0) satisfies the following two conditions:

∀c ∈ [[e0]] : c ∈ [[R̂]] (3.5)

∀c ∈ [[R̂]] : ∀c′ s.t. c→c′ : c′ ∈ [[R̂]] (3.6)

From (3.5) and (3.6) it follows that [[e0]] ⊆ [[R̂]], and that [[R̂]] is transitively
closed under the concrete transition relation→. Consequently, by the definition
of Reach(P, [[e0]]), the theorem holds.

A consequence of Theorem 3.1 is that we can use Algorithm CPA to give
definite negative answers to the location reachability problem, i.e., if CPA re-
turns no abstract state representing states with the error location, then we can
conclude that the error location is unreachable. The following corollary is a
direct consequence of Theorem 3.1 and the definition of the reachability of a
location.

Corollary 3.2. Given configurable program analysis D, program P with initial
location l0, and the error location lerr , let the error region rerr = {(lerr , ·, ·)}.
Given abstract state e0 such that [[e0]] contains all concrete states with location l0,
if there are no e ∈ CPA(D, P, e0) such that [[e]] ∩ rerr 6= ∅, then location lerr is
unreachable.

3.2. FORMALISM AND ALGORITHM 47

Note that we cannot conclude that a state is reachable if it is represented
by some state returned by Algorithm CPA: the analysis might not be precise
enough, resulting in a too coarse overapproximation.

Example. In the previous example we defined a CPA for constant propagation.
Now we want to use such an analysis to determine that the program in Figure 3.2
can never encounter a ‘division-by-zero’ failure, i.e., x 6= z at location 5. We
can observe that such an error cannot occur in the program because variable x
is either strictly greater or strictly smaller than variable z, depending on the
value of variable y, but never equal.

We apply Algorithm CPA to the configurable program analysis CO and
the program in Figure 3.2. We start the algorithm with the initial abstract
state (0, {x 7→ >, y 7→ >, z 7→ >}). After a few iterations, we have added to
the set reached the abstract state (5, {x 7→ 1, y 7→ 1, z 7→ 0}) (when taking the
edge from program location 3 to 5). Later, the algorithm examines the edge
from program location 4 to 5, and the variable e′ in the algorithm is assigned
the abstract state (5, {x 7→ 0, y 7→ >, z 7→ 1}). One of the states e′′ (that is
already in the set of reached abstract states) will be the aforementioned abstract
state e′′ = (5, {x 7→ 1, y 7→ 1, z 7→ 0}). Since the program locations are identical
in both abstract states, the algorithm replaces e′′ in the set reached with the
abstract state (5, {x 7→ >, y 7→ >, z 7→ >}), since the merge operator joins the
abstract states.

Algorithm CPA terminates after a number of iterations that is polynomial
in the size of the program, and returns the following set of abstract states:

(1, {x 7→ >, y 7→ >, z 7→>}), (2, {x 7→ 0, y 7→ >, z 7→ 0}),
(3, {x 7→ 0, y 7→ 1, z 7→ 0}), (4, {x 7→ 0, y 7→ >, z 7→ 0}),
(5, {x 7→ >, y 7→ >, z 7→ >}), (6, {x 7→ >, y 7→ >, z 7→ >})

Therefore, the analysis conclude that the program is potentially unsafe because
program variables x and z can have the same value at location 5 and thus,
a division-by-zero can occur. However, in the concrete program this is not
possible, and the false alarm is due to the over-approximation of the merge
operator (which in this case simulates a classical data-flow analysis): when
control flow meets at location 5, the two variable assignments are combined,
and the information from the two different branches is lost.

If the reachability algorithm had been hardwired to always behave as the
analysis described above, we would have had to change the domain to increase
the precision of the analysis. In contrast, our configurable program analysis

48 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

allows us to parameterize the algorithm, using the same abstract domain but
a different merge operator: suppose we replace mergeCO by mergesep. Now,
whenever the locations are equal, the assignments are not combined, instead,
the two different abstract states are kept separately. Using this configuration of
the program analysis, we obtain a more accurate result: the set reached contains
both abstract states (5, {x 7→ 1, y 7→ 1, z 7→ 0}) and (5, {x 7→ 0, y 7→ >, z 7→
1}), from which we can conclude that variables x and z can never have the
same value. We get the correct answer because the variable assignments from
the different branches are not interchangeable. Therefore, no ‘division-by-zero’
failure can occur in this program.

While the latter analysis is more precise, it comes with a high cost: if there
are n ‘if’ branches in the control flow, then there are potentially 2n abstract
states, and the algorithm may not terminate in the presence of loops, because
the abstract states for the same program location are never combined. Thus,
the choice of the merge operator depends on the intended precision and cost of
the analysis.

The reachability algorithm for CPA can be configured to behave similarly
to data-flow analysis or model checking.

Data-Flow Analysis. Data-flow analysis is the problem of assigning to each
program location a lattice element that over-approximates the set of possible
concrete states at that program location. The least solution (smallest over-
approximation) can be found by computing the least fixpoint, by iteratively
applying the transfer relation to abstract states and joining the resulting ab-
stract state with the abstract state that was assigned to the program location
in a previous iteration. The decision whether the fixpoint is reached is usually
based on a working list of data-flow facts that were newly added. In our config-
urable program analysis, the data-flow setting can be realized by choosing the
merge operator mergejoin and the termination check stopsep. Note that a con-
figurable program analysis can model improvements (in precision or efficiency)
for an existing data-flow analysis without redesigning the abstract domain of
the existing data-flow analysis. For example, a new data-flow analysis that uses
the powerset domain 2D, instead of D itself, can be represented by a config-
urable program analysis reusing the domain D and its operators, but using an
appropriate the merge operator mergesep instead of mergejoin. Other domains
based on a subset of the powerset domain 2D can also be considered by choosing
new merge operators different from mergesep and mergejoin. A more detailed

3.2. FORMALISM AND ALGORITHM 49

comparison of CPA with the traditional frameworks of data-flow analysis and
abstract interpretation can be found in Section 3.3.

Model Checking. A typical model-checking algorithm explores the abstract
reachable state space of the program by unfolding the CFA, which results in
an abstract reachability tree. For a given abstract state, the abstract successor
state is computed and added as successor node to the tree. Branches in the CFA
have their corresponding branches in the abstract reachability tree, but since
two paths never meet, a join operator is never applied. This tree data struc-
ture supports the required path analysis in counterexample-guided abstraction
refinement (CEGAR), as well as reporting a counterexample if a bug is found.
The decision whether the fixpoint is reached is usually implemented by a cov-
erage check, i.e., the algorithm checks each time a new node is added to the
tree if the abstract state of that node is already subsumed by some other node.
Blast’s model-checking algorithm can be instantiated as a configurable pro-
gram analysis by choosing the merge operator mergesep and the termination
check stopsep.

Combinations of Model Checking and Program Analysis. Due to the fact that
the model-checking algorithm never uses a join operator, the analysis is au-
tomatically path-sensitive. In contrast, path-sensitivity in data-flow analysis
requires the use of a more precise data-flow lattice that distinguishes abstract
states on different paths. On the other hand, due to the join operations, the
data-flow analysis can reach the fixpoint much faster in many cases. In contrast,
in our approach the path-sensitivity is determined by the merge operator. Dif-
ferent abstract interpreters exhibit significant differences in precision and cost,
depending on the choice for the transfer relation, the merge operator and the ter-
mination check. Therefore, we need a mechanism to combine the best choices
of operators for different abstract interpreters when composing the resulting
program analyses.

In the following three subsections, we present three configurable program
analyses that we have used in our experiments.

3.2.4 CPA for Location Analysis

A configurable program analysis L = (DL, L,mergeL, stopL) that tracks the
reachability of program locations consists of the following components:

1. The domain DL is based on the flat lattice for the set L of program loca-
tions: DL = (C,L, [[·]]), with L = (L ∪ {>,⊥},>,⊥,v,t), ⊥ v l v > and

50 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

l 6= l′ ⇒ l 6v l′ for all elements l, l′ ∈ L (this implies ⊥ t l = l,> t l =
>, l t l′ = > for all elements l, l′ ∈ L, l 6= l′), and [[>]] = C, [[⊥]] = ∅, and
for all l in L, [[l]] = {(l, ·, ·) ∈ C}.

The element > represents the fact that the program location is not known,
and the element ⊥ represents non-reachability.

2. The transfer relation L has the transfer l g Ll
′ if g = (l, op, l′), and the

transfer > g
 L> for all g ∈ G.

The transfer determines the syntactical successor in the CFA without con-
sidering the semantics of the operation op.

3. The merge operator does not combine elements when control flow meets:
mergeL = mergesep.

4. The termination check considers abstract states individually:
stopL = stopsep.

This (very limited) abstract domain can be used to perform a syntactical
reachability analysis, for example to eliminate control-flow that can never be
executed. We shall see in Section 3.2.7 how the CPA for location analysis can
be used to track the program location when combined with other CPAs, in order
to separate the concern of location tracking from the other analyses.

3.2.5 CPA for Predicate Analysis

A program analysis based on Cartesian predicate abstraction was defined by Ball
et al. [2001]. We show in this section how to build a CPA that expresses their
analysis, given a fixed, finite set P of predicates, with false ∈ P , that are tracked
by the analysis. The configurable program analysis P = (DP, P,mergeP, stopP)
for predicate analysis, consists of the following components: (for a set of pred-
icates r ⊆ P , we write ϕr to denote the conjunction of all predicates in r, in
particular ϕ∅ = true):

1. The domain DP = (C,P, [[·]]) is based on predicates that represent regions,
with P = (2P , ∅, P,v,t), where the partial order v is defined as r v r′

if r ⊇ r′ (note that if r v r′ then ϕr implies ϕr′). The least upper
bound rtr′ is given by r∩r′ (note that ϕrtr′ is implied by ϕr∨ϕr′). The
element > = ∅ leaves the abstract state unconstrained (true), i.e., every
concrete state is represented. The element ⊥ = P represents the empty
set of concrete states (because false ∈ P). The concretization function [[·]]
is defined by [[r]] = {c ∈ C | c |= ϕr}.

3.2. FORMALISM AND ALGORITHM 51

2. The transfer relation P has the transfer r g Pr
′, if post(ϕr, g) is satisfi-

able and r′ is the largest set of predicates such that ϕr implies pre(p, g) for
each p ∈ r′, where post(ϕ, g) and pre(ϕ, g) denote the strongest postcon-
dition and the weakest precondition, respectively, for a formula ϕ and a
control-flow edge g. The two operators post and pre are defined such that
[[post(ϕ, g)]] = {c′ ∈ C | ∃c ∈ C : c g→c′ ∧ c |= ϕ} and [[pre(ϕ, g)]] = {c ∈
C | ∃c′ ∈ C : c g→c′ ∧ c′ |= ϕ}. The Cartesian abstraction of the successor
state is obtained by considering every predicate in P separately, which is
usually implemented by |P | calls to a theorem prover.

3. The merge operator does not combine elements when control flow meets:
mergeP = mergesep.

4. The termination check considers abstract states individually:
stopP = stopsep.

3.2.6 CPA for Shape Analysis

In Section 2.3 we presented shape analysis, a static analysis that uses finite
structures (shape graphs) to represent instances of heap-stored data structures.
In this section, we show how we can build a configurable program analysis S for
shape analysis that uses shape regions of a fixed shape abstraction Ψ as abstract
states. The configurable program analysis S = (DS, S,mergeS, stopS) for shape
analysis, consists of the following components:

1. The domain DS = (C,D, [[·]]) is based on shape regions, where the abstract
domain is the lattice D of shape regions for the shape abstraction Ψ using
the pre-order on shape regions defined in Section 2: D = (GΨ,⊥Ψ,>Ψ,v
,t). The concretization function is defined in Section 2.

2. The transfer relation S has the transfer G g
 SG

′ if G′ = postΨ(G, g)
(abstract post successor as described in Section 2.3.4 and).

3. The merge operator combines elements when control flow meets:
mergeS = mergejoin.

4. The termination check considers abstract states individually:
stopS = stopsep.

52 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

3.2.7 Composite Program Analysis

A configurable program analysis can be composed of several configurable pro-
gram analyses. A composite program analysis C = (D1,D2, ×,merge×, stop×)5

consists of two configurable program analyses D1 and D2 sharing the same set
of concrete states and E1 and E2 being their respective sets of abstract states,
a composite transfer relation × ⊆ (E1 × E2) × G × (E1 × E2), a composite
merge operator merge× : (E1 × E2) × (E1 × E2) → (E1 × E2), and a com-
posite termination check stop× : (E1 × E2) × 2E1×E2 → B. The three com-
posites ×, merge×, and stop× are expressions over the components of D1

and D2 (i,mergei, stopi, [[·]]i, Ei,>i,⊥i,vi,ti), as well as the operators ↓ and
� (defined below). The composite operators can manipulate lattice elements
only through those components, never directly (e.g., if D1 is already a result
of a composition, then we cannot access the tuple elements of abstract states
from E1, nor redefine merge1). The only way of using additional information is
through the operators ↓ and �. The strengthening operator ↓ : E1 × E2 → E1

computes a stronger element from the lattice set E1 by using the information
of a lattice element from E2; it must fulfill the requirement ↓(e, e′) v e. The
strengthening operator can be used to define a composite transfer relation ×
that is stronger than a pure product relation. For example, if we combine
predicate abstraction and shape analysis, the strengthening operator ↓S,P can
‘sharpen’ the field predicates of the shape graphs by considering the predicate
region. Furthermore, we allow the definitions of composite operators to use the
compare relation � ⊆ E1 × E2, to compare elements of different lattices. For
example, the compare relation can be used to accelerate the convergence of the
algorithm, for example in the transfer relation: suppose we have just computed
an element (e1, e2) and we have e1 � e2, then we can replace (e1, e2) by (e1,>2)
without changing the set of concrete states that are represented.

To guarantee that a configurable program analysis can be built from the
composite program analysis, we impose the following requirements on the three
composite operators:

(d) ∀e1 ∈ E1, e2 ∈ E2, g ∈ G :⋃
(e1,e2) g

 ×(e′1,e′2)
(
[[e′1]] ∩ [[e′2]]

)
⊇
⋃
c∈[[e1]]∩[[e2]]{c′ | c

g→c′}
(the composite transfer relation over-approximates operations)

(e) ∀e1, e
′
1 ∈ E1, e2, e

′
2 ∈ E2 :

(ê1, ê2) = merge×((e1, e2), (e′1, e′2)) implies e′1 v1 ê1 ∧ e′2 v2 ê2

5We extend this notation to any finite number of Di.

3.2. FORMALISM AND ALGORITHM 53

(each component of the result of the composite merge operator is more
abstract than the respective component of the second parameter)

(f) ∀e1 ∈ E1, e2 ∈ E2,∀R ⊆ E1 × E2 :
stop×((e1, e2), R) = true implies [[e1]] ∩ [[e2]] ⊆

⋃
(e′1,e′2)∈R

([[e′1]] ∩ [[e′2]])

(if a pair of abstract states is considered as ‘covered’ by R, then the con-
crete states represented by the pair are also represented by some pair of
abstract states from R)

For a given composite program analysis C = (D1,D2, ×,merge×, stop×), we
can construct the configurable program analysis D× = (D×, ×,merge×, stop×),
where the product domain D× is defined as the direct product of D1 and D2:
D× = D1 × D2 = (C, E×, [[·]]×). The product lattice is E× = E1 × E2 =
(E1 × E2, (>1,>2), (⊥1,⊥2),v×,t×) with (e1, e2) v× (e′1, e′2) if e1 v1 e

′
1 and

e2 v2 e
′
2 (and for the join operation the following holds (e1, e2) t× (e′1, e′2) =

(e1 t1 e
′
1, e2 t2 e

′
2)). The product concretization function [[·]]× is such that

[[(d1, d2)]]× = [[d1]]1 ∩ [[d2]]2.

Theorem 3.3 (Composition of CPAs). Given a composite program analysis C,
the result of the composition D× is a configurable program analysis.

Proof. The requirements (a), (b), and (c) for abstract domains of CPAs follow
from the construction of D× as product domain (abstract domains are closed
under product). The operators of the composition D× fulfill the requirements
(d), (e), and (f) of CPAs, by applying the definitions of product lattice and
product concretization function.

Note that the product lattice is a direct product of the component lattices.
The literature agrees that this direct product itself is often not sharp enough
[Cousot and Cousot 1979; Codish et al. 1993]. Even improvements over the
direct product (e.g., the reduced product [Cousot and Cousot 1979] or the log-
ical product [Gulwani and Tiwari 2006]) do not solve the problem completely.
However, in a configurable program analysis, we can specify the desired degree
of ‘sharpness’ in the composite operators ×, merge×, and stop×. For a given
product domain, the definitions of the three composite operators determine the
precision of the resulting configurable program analysis. In particular analyses
equivalent to more precise domain products can be defined by choosing appro-
priate operators. In previous approaches, a redefinition of basic operations was
necessary, but using configurable program analysis, we can reuse the existing
abstract interpreters.

54 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

Example. We now revisit the problem of constant propagation that we used in
previous examples (cf. Section 3.2.2, 3.2.3), and define a configurable program
analysis for this problem in a more convenient and flexible way: as a composite
program analysis. The composite program analysis C consists of the configurable
program analysis L for locations and a new configurable program analysis CO′

that is similar to CO, except that locations are omitted from abstract elements
because they can be handled by the location CPA.
The CPA CO′ = (DCO′ , CO′ ,mergeCO′ , stopCO′) consists of the following com-
ponents:

1. The abstract domain DCO′ = (C, E , [[·]]) consists of the following three
components. The set C is the set of concrete states. The complete lat-
tice E = (Xint → Z, v>, v⊥,v,t) represents the abstract states, which
are abstract integer variable assignments, with Z = Z ∪ {>,⊥}; the par-
tial order v is defined as v v v′ if ∀x ∈ Xint : (v(x) = v′(x) or v(x) = ⊥
or v′(x) = >). The concretization function [[·]] assigns to an abstract
state v all concrete states that are compatible with the abstract variable
assignment v.

2. The transfer relation CO′ has the transfer v g v′ if
(1) g = (l, assume(p), l′) and for all x ∈ Xint :

v′(x) =

⊥ if v(x) = ⊥Z for some x ∈ Xint

or the formula φ(p, v) is unsatisfiable
c if the formula φ(p, v) is satisfiable and

c is the only satisfying assignment for variable x
v(x) otherwise

or
(2) g = (l, w := e, l′) and for all x ∈ Xint :

v′(x) =
{

eval(e, v) if x = w

v(x) otherwise
where functions φ and eval are defined as in the example of Section 3.2.2.

3. The merge operator is defined by mergeCO′ = mergejoin.

4. The termination check is defined by stopCO′ = stopsep.

We can now build a composite program analysis C = (L,CO′, ×,merge×, stop×)
with the following composite operators:

1. The composite transfer relation × has the transfer (e1, e2) g ×(e′1, e′2)
if e1

g
 Le

′
1 and e2

g
 CO′e

′
2.

3.2. FORMALISM AND ALGORITHM 55

2. The composite merge operator merge× is defined by:

merge×((e1, e2), (e′1, e′2)) =
{

(e1,mergeCO′(e2, e
′
2)) if e1 = e′1

(e′1, e′2) otherwise

3. The composite termination check is defined by stop× = stopsep.

Note that the CPA resulting from this composite program analysis is equivalent
to the CPA CO, which we had previously defined.

In the following subsections, we present composite program analyses that
have the same behavior as analyses found in the literature. We focus on
the Blast tool [Beyer et al. 2007] as an example of a predicate-abstraction-
based software model checker, and its extensions to support additional abstrac-
tions [Fischer et al. 2005; Beyer et al. 2006]. We use the same composition of
analyses in our experiments.

Blast’s Domain

The program analysis that is implemented in the tool Blast [Beyer et al. 2007]
can be expressed as the composite program analysis C = (L,P, ×,merge×, stop×),
where the components are the configurable program analysis L for program lo-
cations and the configurable program analysis P for predicate analysis. We
construct the composite transfer relation × such that we have the transfer
(l, r) g ×(l′, r′) if l

g
 Ll

′ and r
g
 Pr

′. We choose the composite merge opera-
tor merge× = mergesep and the composite termination check stop× = stopsep.

Blast’s Domain with Shape Analysis

The combination of predicate abstraction and shape analysis used in the lazy
shape-analysis algorithm [Beyer et al. 2006] can now be expressed as the com-
posite program analysis C = (L,P,S, ×,merge×, stop×) with the three com-
ponents location analysis L, predicate abstraction P, and shape analysis S. In
our previous work [Beyer et al. 2006] we used a configuration that corresponds
to the composite transfer relation × that has the transfer (l, r, s) g ×(l′, r′, s′)
if l

g
 Ll

′ and r
g
 Pr

′ and s
g
 Ss

′, the composite merge operator merge× =
mergesep, and the composite termination check stop× = stopsep. Our new tool
allows us to define the three composite operators ×, merge×, and stop× in
many different ways, and we report the results of our experiments in Section 3.4.

56 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

Blast’s Domain with Pointer Analysis

Fischer et al. presented a particular combination (called predicated lattices)
of predicate abstraction and a data-flow analysis for pointers [Fischer et al.
2005]. Their analysis can be expressed as the composite program analysis
C = (L,P,A, ×,merge×, stop×), where A is a configurable program analy-
sis for pointers, which tracks pointer aliases, memory allocations, and value
information. The transfer relation × has the transfer (l, r, d) g ×(l′, r′, d′) if
l
g
 Ll

′ and r g Pr
′ and d g Ad

′. We can mimic the algorithm of Fischer et al. by
choosing the composite termination check stop× = stopsep and the composite
merge operator that joins the third elements if the first two agree:

merge×((l, r, d), (l′, r′, d′)) =
{

(l′, r′,mergeA(d, d′)) if l = l′ and r = r′

(l′, r′, d′) otherwise

with mergeA(d, d′) = d tA d′.

Note that we can more easily compare related approaches once they have been
formalized in our general framework. In this particular instance, we observe
that the fundamental difference in the reachability algorithm used for predi-
cated lattices and for the approach used in lazy shape-analysis is how states are
merged: the two composite analyses use different composite merge operators.

Remark: Location Domain. Traditional data-flow analyses do not consider the
location domain as a separate abstract domain; they assume that the program
locations are always explicitly analyzed. In contrast, we leave this completely up
to the analysis designer. We find it interesting to consider the program counter
as just another program variable, and define a location domain that makes
the program counter explicit when composed with other domains. As a result,
the other abstract domains are released from defining the program location
handling, and only the parameters for the composite program analysis need to be
set. This keeps different concerns separate. Usually, only the program counter
is modeled explicitly, and all other variables are represented symbolically (e.g.,
by predicates or shapes). We have the freedom to treat any program variable
explicitly (c.f. Section 4.4), not only the program counter; this may be useful
for loop indices. Conversely, we can treat the program counter symbolically,
and let other variables ‘span’ the abstract reachability tree.

3.3. COMPARISON 57

3.3 Comparison with Data-flow Analysis and Abstract
Interpretation

In practice, both data-flow analysis and abstract interpretation are based on
similar fixpoint algorithms (the possible improvements that exist in abstract
interpreters such as widening operators are discussed later), and we refer in this
section to both approaches as traditional program analysis. Data-flow analysis
and abstract interpretation are often expressed as the solution of a set of equa-
tions. We discuss in this section the classical monotone framework for forward,
join data-flow analysis. Iterative algorithms are used to compute the least fix-
point of those equations (know as Maximum Fixed Point solution (MFP) in
the literature). For a program P = (L, G, l0 , T) and a lattice E = (E,v)
of an abstract domain D, the data-flow equations, which constraint a func-
tion Analysis : L → E representing abstract states associated with program
locations, are defined as follows:

Analysis(l0) w d0

∀l ∈ L : Analysis(l) =
⊔
{post(Analysis(l ′), g) | g = (l ′, op, l) ∈ G}

where post denotes the (monotonic) transfer function such that post(d, g) rep-
resents the successors of state d when edge g is taken. The transfer function
fulfills the following requirement: [[post(d, g)]] ⊇

⋃
c∈[[d]]{c′ | c

g→c′}. A solu-
tion A of the data-flow equations can be interpreted as the set of program
states

⋃
l∈L{c ∈ C | c = (l, ·, ·) and c ∈ [[A(l)]]}.

Traditional program analyses bear many similarities with our new CPA
framework. For instance, they both use abstract states to represent sets of
concrete states, and both perform a fix-point computation to build an over-
approximation of the reachable states. The major difference lies in the ‘shape’
of the overapproximation that the analysis computes, i.e., what are the possi-
ble set of abstract states that the analysis produces. In the case of CPA, the
framework does not impose any a-priori restriction on the set of abstract states.
Only the values of the operators (in particular the merge operator) influence
the shape of the result. For instance, when the merge operator is mergejoin,
then the result of the analysis will be a unique abstract state. In contrast,
traditional program analyses attempt to annotate every program location with
exactly one abstract state. In principle, the limitation imposed by traditional
program analyses can be circumvented by considering more precise abstract do-

58 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

mains, in particular power set domains. In this section, we explore in details
the link between CPA and traditional program analysis.

3.3.1 Encoding a Traditional Program Analysis as a CPA

We build a CPA that behaves as a traditional program analysis for a given
abstract domain D, i.e., the CPA computes the same set of abstract reach-
able states as the traditional program analysis. We need to capture with the
concepts provided by the CPA framework the fact that the analysis main-
tains one state per program location. A prerequisite is that abstract states
of the CPA need to contain both a location and an element from the ab-
stract domain. It translates most naturally as a composite program analysis
C = (L,D, ×,merge×, stop×) that combines the location CPA L presented in
Section 3.2.4 with a CPA D = (D, D,mergeD, stopD) based on the abstract do-
main D of the traditional program analysis. We denote the CPA corresponding
to the composite program analysis C by D×. To ensure that at most one state
exists for a given program location, we need to select appropriate operators for
CPA D and appropriate composite operators. The composite transfer relation
is Cartesian:

(l, d) g (l′, d′) if l g Ll
′ and d g Dd

′

The transfer relation of CPA D is based on transfer functions of the analysis:

d
g
 Dd

′ if d′ = post(d, g)

Note that D fulfills requirement (d) by definition of the transfer function post.
The composite merge operator joins states when they agree on their location:

merge×((l, d), (l′, d′)) =
{

(l′,mergeD(d, d′)) if l = l′

(l′, d′) otherwise

The merge operator of CPA D merges states using the join operator of the
lattice:

mergeD(d, d′) = d tD d′
(
= mergejoin(d, d′)

)
The termination checks compare (using the pre-order) the state with the state
in the reached set for the same location:

stop×((l, d), R) = stopD(d, {d′ | (l, d′) ∈ R})
stopD(d,R) = ∃d′ ∈ R : d vD d

′ = stopsep(d,R)

3.3. COMPARISON 59

This particular configuration of merge operators and termination checks ensures
that there is at most one abstract state for a given location. Moreover we can
build a solution of the data-flow equations from the set of reachable states
computed by the analysis.

Theorem 3.4. Given a program P = (G,E, l0 , T) and an initial abstract
state d0 of D, let R = CPA(D×, P, (l0 , d0)). The set of reached states R satisfies
the following:
(1) ∀l ∈ L : |{(l, ·) ∈ R}| ≤ 1
(2) R[l0] w d0

(3) ∀l ∈ L : R[l] =
⊔
{post(R[l ′], g) | g = (l ′, op, l) ∈ G}

where R[l] = d if (l, d) ∈ R and otherwise R[l] = ⊥

Proof. We prove (1) by showing that the main loop of Algorithm CPA has the
following invariant:

|{(l, ·) ∈ reached}| ≤ 1

Initially the invariant trivially holds because reached = {(l0 , d0)}. Assume the
invariant holds at the beginning of an iteration. Let (l, d) be the element that
was removed from frontier . For every (l′, d′) such that (l, d) ×(l′, d′), we study
how lines 7-15 change the set reached. The innermost for-loop (lines 7-12)
modifies reached only if merge× modifies its second argument. By definition of
the composite merge, this happens only when the location matches. Because the
invariant holds at this point, there is either zero or one element with location l′ in
reached. If there is no element with location l′ in reached, then the termination
check (line 13) returns false, (l′, d′) is added to reached, and the invariant is
preserved. If there is one element (l′, d′′) in reached, then the merge operator
returns the element (l′, d′ t d′′). If d′′ = d′ t d′′, then reached is not modified
in the innermost loop, else (l′, d′′ t d′) replaces (l′, d′′) in reached. (In both
cases the invariant is preserved.) The termination check returns true because
d′ v d′ t d′′ and therefore the invariant is preserved.

We can observe from the proof of (1) that lines 4-15 of the algorithm CPA
when called for CPA D× can be equivalently rewritten as:

4: choose (l, d) from frontier // reached[l] = d

5: frontier := frontier \ {(l, d)}
6: for each (l′, d′) with d′ = post(d, g) for CFA edge g = (l, op, l′) of P do
7: if there is (l′, d′′) ∈ reached then // reached[l′] = d′′

8: dnew := d′ t d′′

60 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

9: if dnew 6= d′′ then
10: frontier :=

(
frontier \ {(l′, e′′)}

)
∪ {(l′, dnew)}

11: reached :=
(
reached \ {(l′, e′′)}

)
∪ {(l′, dnew)}

12: // reached[l′] = d′ t d′′

13: else // reached[l′] = ⊥
14: frontier := frontier ∪ {(l′, d′)}
15: reached := reached ∪ {(l′, d′)} // reached[l′] = d′ = d′ t ⊥

The code is annotated with the valuation of reached[·] : L → E defined as
follows:

reached[l] =
{

d if (l, d) ∈ reached
⊥ if ¬∃d : (l, d) ∈ reached

At the beginning of Algorithm CPA, we have reached[l0] = d0 and reached[l] =
⊥ for l 6= l0 . For an element (l, d) in frontier and for every edge g = (l, op, l′),
the algorithm updates reached[l′] with its old value joined with post(d, g). Fi-
nally, (l′, reached[l′]) is added to frontier if it was changed. This algorithm
corresponds exactly to the traditional fix-point algorithm for data-flow analy-
sis [Kildall 1973], and therefore it is a solution to the data-flow equations (2)
and (3). For the details of a proof the reader can refer, for example, to Nielson
et al. [1999].

Note on widening. While the algorithm used in abstract interpreters is based on
a similar idea, it provides one additional feature to accelerate the convergence
towards a fixpoint: widening. A widening operator takes a set of abstract
states (representing previously computed abstract states for a given location)
and returns a new abstract state, larger (according to the pre-order) than all
elements in the set. Widening cannot be in general simulated by a CPA based
on the same domain. The reason is that the merge operator can only consider
one state at a time. To simulate the widening operator, we need access to global
information about the set of reached states, and the merge operator only provide
access to one state at a time. In the next chapter we present an extension of
the CPA framework where a new operator of the analysis (precision adjustment
function) takes as input the current set of reached states and can change an
abstract state accordingly. Consequently, our extended framework is able to
simulate widening (as discussed later in Section 4.3.1).

3.3. COMPARISON 61

3.3.2 Encoding a CPA as a Join-Based Analysis

It is not possible to encode an arbitrary CPA as a traditional program analy-
sis (data-flow analysis or abstract interpretation) because the requirements on
the operators of a CPA are too weak to guarantee that there is always a cor-
responding traditional program analysis. In the last subsection, we have seen
that a traditional program analysis is translated in a CPA that uses the merge
operator mergejoin. In this subsection, we show how an arbitrary CPA can be
converted to a CPA whose merge operator always produce a result larger than
both its arguments (a key property of a traditional program analysis). As a
consequence, the reached set will contain exactly one abstract state because the
termination check will always succeed. This setting corresponds to the behavior
of a traditional program analysis.

More specifically, given a CPA D = (D, D,mergeD, stopD), we build a
CPA Dj = (Dj , j ,mergej , stopj) such that the merge operator mergej sat-
isfies the (stronger) requirement:

∀e1, e2 : mergej(e1, e2) w e1 t e2

Wementioned in Section 3.2.3 on page 48 that an analysis based on mergesep (the
most precise merge operator) corresponds to an analysis based on mergejoin on
the powerset domain. The domain of Dj needs to be able to simulate arbitrary
CPAs including those based on mergesep; therefore, the domain of Dj needs to
be the powerset of the domain of D: let E be the set of abstract states on which
the domain D of CPA D is based; the domain Dj of CPA Dj is based on 2E . One
abstract state of the power set domain represents a set of abstract states. The
idea for the construction of the operators of Dj is to use one abstract state of Dj

to represent the set of reachable states produced by D. The transfer relation j

has the transfer S g
 jS

′ if S′ =
⋃
e∈S {e′ | e

g
 De

′}. The merge operator mergej
depends on the merge operator and the termination check of the CPA. Let us
first define the auxiliary function m : 2E × 2E → 2E as follows: m(S, S′) =⋃
e∈S,e′∈S′ mergeD(e, e′). The join function used by the abstract interpreter is

defined as follows: mergej(S, S′) = m(S, S′) ∪ {e ∈ S | ¬stopD(e,m(S, S′))}.
The termination check compare states individually: stopj = stopsep.

Discussion. We have established that in principle CPAs can be expressed in
a framework that always join states similarly to traditional program analyses.
The CPA framework does not attempt to encompass analyses that could not be
represented in other frameworks, including abstract interpretation; rather, we

62 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

claim that a CPA decomposes concepts, so that (1) understanding the behavior
and various parameters of the algorithm is easier, and (2) the framework is closer
to the actual implementation. Indeed, a CPA distinguishes the kind of data
that the analysis tracks (expressed as the domain) from the way abstract states
are computed (transfer function), combined (merge operator) and compared
(termination check). Thanks to a more operational approach, CPAs are closer
to implementations, and they avoid the use of more complex domains that
would be necessary to simulate a CPA. In particular, for a given domain, we
can modulate the precision of a CPA between a traditional program analysis on
the domain and a traditional program analysis on the powerset of the domain
only by changing the merge operator.

Moreover, CPAs are flexible with respect to the precision of their operators.
As a result, because the transfer relation and the termination check are explicit
operator of the CPA, one can explore the use of weaker (but more efficient
to implement) transfer relations or termination checks. This flexibility is not
readily expressible in the abstract interpretation framework, unless the abstract
domain is adapted accordingly.

One objective of the CPA framework is to allow for flexible composition of
analyses. Composite program analyses are easily constructed in our framework,
particularly for complex combinations. As an example, let us consider the com-
posite analysis given in the last section that combines Blast domain with a
pointer analysis. Because of the particular composite merge operator, the set of
computed states is such that there is only one pointer-analysis abstract state for
a given pair of location and set of predicates. As a result, an equivalent abstract
interpreters would use as domain partial functions from pairs of location and
set of predicates to pointer-analysis abstract states.

Overall we claim that CPA is a particular way of looking at computation of
reachable states via fixpoint computation, which is close to implementation and
allows rich and flexible compositions of analyses.

3.4 Application: Configuring Compositions of Analyses

We evaluated our new approach on several combinations of program analyses,
under several different configurations. In this section we present the different
combinations we have considered and present the result of our experimental
evaluation.

3.4. APPLICATION 63

Implementation. We implemented the framework of configurable program anal-
ysis as an extension of the model checker Blast, in order to be able to reuse
many components that are necessary for an analysis tool but out of our focus in
this work. Blast supports recursive function calls, as well as pointers and recur-
sive data structures on the heap. For representing the shape-analysis domain we
use parts of the three-valued logic analyzer (Tvla) implementation [Lev-Ami
and Sagiv 2000]. For pointer-alias analysis, we use the implementation that
comes with Cil [Necula et al. 2002]. We use the configuration of Fischer et al.
[2005] to compare with predicated lattices.

3.4.1 Configuring Predicate Abstraction + Shape Analysis

For our first set of experiments, we consider the combination of predicate ab-
straction and shape analysis. To demonstrate the impact of various configura-
tions on performance and precision, we ran our algorithm on the set of example
C programs used to evaluate the lazy shape-analysis algorithm [Beyer et al.
2006], extended by some programs to explore scalability. In all cases, refine-
ment is not used: the analyzer is given as input appropriate predicate and
shape abstractions. These examples can be divided into three categories: (1)
examples that require only unary and binary (shape) predicates to be proved
safe (list_i, simple, and simple_backw), (2) examples that require in addi-
tion nullary predicates (alternating and list_flag), and (3) an example that
requires that information from the nullary predicates is used to compute the
new value of unary and binary predicates (list_flag2). A summary of the op-
erators used in each configuration (A-F) is given in Table 3.1. The verification
times are given in Table 3.2(a) for the six different configurations. When Blast

fails to prove the program safe for a given configuration, a false alarm (fa) is
reported.

A: Predicated Lattice (merge-pred-join, stop-sep)

In our first configuration we use the traditional model-checking approach (no
join) for the predicate abstraction, and the predicated-join approach for the
shape analysis. We use the symbols and notions that were introduced in the
last section, for the location analysis, predicate abstraction, and shape analysis.
Configuration A corresponds to the following composite operators:

1. (l, r,G) g ×(l′, r′, G′) if l
g
 Ll

′ and r g Pr
′ and G g

 SG
′

64 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

1 typedef struct node {
2 int h;
3 struct node *n;
4 } *List;
5
6 void foo(int flag) {
7 List a = (List) malloc (sizeof (struct node));
8 if (a == NULL) return ;
9 List p = a;

10 while (random ()) {
11 if (flag) p->h = 1;
12 else p->h = 2;
13 p->n = (List) malloc (sizeof (struct node));
14 if (p->n == NULL) return ;
15 p = p->n;
16 }
17 p->h = 3;
18 }

Figure 3.3: Example C program

2. merge×((l, r, G), (l′, r′, G′)) =
{

(l′, r′,mergeS(G,G′)) if l = l′ and r = r′

(l′, r′, G′) otherwise

3. stop×((l, r,G), R) = stopsep((l, r, G), R)

The transfer relation is Cartesian, i.e., the successors of the different components
are computed independently (cf. [Beyer et al. 2006]). The merge operator joins
the shape graphs of abstract regions that agree on both the program location
and the predicate region. The predicate regions are never joined. Termina-
tion is checked using the coverage against single abstract states (stopsep). This
configuration corresponds to a predicated lattice [Fischer et al. 2005].

Example. To illustrate the difference between the various configurations, we use
the C program in Figure 3.3. This program constructs a list that contains the
data values 1 or 2, depending on the value of the variable flag, and ends with
a single 3. We illustrate the example using the following abstractions. In the
predicate abstraction, we keep track of the nullary predicate flag. In the shape
analysis, we represent the list pointed to by program variable a by shape graphs
of a shape class that contains points to predicates pta and ptp, field predicates
fdh=1, fdh=2 and fdh=3, and a binary predicate n. (These abstractions can be
automatically discovered by the refinement procedure described in Chapter 5,
but we do not focus on refinement in this chapter.) Figure 3.4 shows some shape
graphs that are encountered during the analysis.

3.4. APPLICATION 65

g1 pta

fdh=3

ptp

g2,1
npta

fdh=1 fdh=3

ptp

g2,2
npta

fdh=2 fdh=3

ptp

g3,1
n npta

fdh=1 fdh=1 fdh=3

ptp

g3,2
n npta

fdh=2 fdh=2 fdh=3

ptp

g4,1
n n

n

pta

fdh=1 fdh=1 fdh=3

ptp

g4,2
n n

n

pta

fdh=2 fdh=2 fdh=3

ptp

Figure 3.4: Example of shape graphs computed during the analysis of the pro-
gram in Figure 3.3

To understand how this composite program analysis works on this exam-
ple, we consider abstract states for which the program location component has
the value 18 (program exit point). Because of the merge operator, abstract
states that agree on both program location and predicates are joined. Con-
sequently, shape graphs corresponding to lists with different lengths are col-
lected in a single abstract state. When the program analysis has computed
all reachable abstract states, we therefore find at most one abstract state per
program location and predicate valuation, e.g., (18,flag, {g1, g2,1, g3,1, g4,1}) and
(18,¬flag, {g1, g2,2, g3,2, g4,2}).

Experimental Results. Precision: Shape analysis is based on a powerset domain,
and therefore the join has no negative effect on the precision of the analysis.
Performance: The idea behind the join in data-flow analysis is to keep the
number of abstract states small for efficiency and progress reasons, and in a
typical data-flow analysis the join operations are efficient. However, since an
abstract state contains a set of shape graphs in our analysis, the effect is the
opposite: the join operations add extra work, because larger sets of shape graphs
need to be manipulated. In addition, when the algorithm computes successors
of a joined set, the work that may have been done already for some subset is
repeated. This results in unnecessarily many, highly expensive operations.

66 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

B: As Precise as Model Checking (merge-sep, stop-sep)

Now we want to avoid that the merge operator causes join overhead in the
analysis when computing abstract successor states. This is easy to achieve in our
composite program analysis: we replace the composite merge operator merge×
by the merge operator mergesep. The new composite program analysis joins
neither predicate regions nor shape regions, and corresponds to the reachability
algorithm used in lazy shape analysis [Beyer et al. 2006].

Example. Since this composite program analysis is not joining elements, there
is no reached abstract state with a set of shape graphs of size larger than 1
(unlike in the previous configuration A). Instead, we maintain distinct abstract
states. In particular, at the exit program location, the set of reached abstract
states contains the following abstract states:

(18,flag, {g1}), (18,flag, {g2,1}), (18,flag, {g3,1}), (18,flag, {g4,1}),
(18,¬flag, {g1}), (18,¬flag, {g2,2}), (18,¬flag, {g3,2}), (18,¬flag, {g4,2})

This set of abstract states represents exactly the same set of concrete states
as the result of the previous analysis (configuration A). Note that the shape
graph g3,i is subsumed by shape graph g4,i but is not eliminated by the algorithm
because the abstract state with g3,i was added to the set reached before g4,i.

Experimental Results. All examples in our experiments have smaller run times
using this configuration, and the precision in the experiments does not change,
compared to configuration A. Precision: Shape analysis is based on a powerset
domain, and therefore, joins are precise. The precision of the predicated lattice is
the same as the precision of this variant without joins. Performance: Although
the number of explored abstract states is slightly higher, this configuration
improves the performance of the analysis. The size of lattice elements (i.e., the
average number of shape graphs in an abstract state) is considerably smaller
than in the predicated-lattice configuration (A). Therefore, we achieve a better
performance, because operations (in particular the successor computations) on
small sets of shape graphs are much more efficient than on large sets.

C: More Precision Using an Improved Transfer Relation (merge-sep, stop-sep,
transfer-new)

From the first to the second configuration, we could improve the performance of
the analysis. Now, we show how the precision of the analysis can be improved.
We replace the Cartesian transfer relation [Beyer et al. 2006] by a new, more

3.4. APPLICATION 67

Predicate CPA Shape CPA Composite CPA
merge stop merge stop × merge× stop×

A sep sep join sep Cartesian pred-join sep
B sep sep join sep Cartesian sep sep
C sep sep join sep strengthened sep sep
D sep sep join join Cartesian pred-join pred-join
E sep sep join join Cartesian join-shape pred-join
F join sep join join Cartesian join join

Table 3.1: Configurations of predicate and shape analysis

precise transfer relation that does not compute successors completely indepen-
dently for the different component analyses:

(l, r,G) g ×(l′, r′, G′) if l g Ll
′ and r g Pr

′ and G g
 SG

′′ and G′ = ↓S,P(G′′, r′)
The strengthening operator improves the precision of the transfer relation by
using the predicate region to sharpen the shape information.

Example. For the example program, the strengthening operator has no effect,
because the nullary predicate flag has no relation with any predicates used in
the shape graph. The strengthening operator would prove useful if, for example,
the shape graphs had in addition a unary field predicate h = x (indicating that
the field h of a node has the same value as the program variable x), and the
predicate abstraction had the nullary predicate x = 3. Consider the operation
at line 17 (p->h = 3). The successor of the shape graph before applying the
strengthening operator can only update the unary field predicate h = x to
value 1/2, while the unary field predicate h = 3 can be set to value 1 for the
node pointed to by p. Supposing x = 3 holds in the predicate region of the
abstract successor, the strengthening operator updates the field predicate h = x

to value 1 as well.

Experimental Results. This configuration results in an improvement in preci-
sion over published results for a ‘hard-wired’ configuration [Beyer et al. 2006],
at a reasonable cost. Precision: Because of the strengthening operator, the
abstract successors are more precise than using the Cartesian transfer relation.
Therefore, the whole analysis is more precise. Performance: The cost of the
strengthening operator is small compared to the cost of the shape-successor
computation. Therefore, the performance is not severely impacted when com-
pared to a Cartesian transfer relation.

68 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

Table
3.2:

Verification
tim

e
for

different
configurations

(a)
T
im

e
for

predicate
abstraction

and
shape

analysis
(false

alarm
:

fa)

Program
A

B
C

D
E

F
pred-join

m
erge-sep

m
erge-sep

m
erge-sep

m
erge-join-shape

m
erge-join

stop-sep
stop-sep

stop-sep
stop-join

stop-join
stop-join

transfer-new
join

preds
simple

0.53
s

0
.32

s
0
.40

s
0.34

s
0
.51

s
0.50

s
simple_backw

0.43
s

0
.28

s
0
.26

s
0.31

s
0
.44

s
0.45

s
list_1

0.42
s

0
.37

s
0
.41

s
0.32

s
0
.41

s
0.41

s
list_2

5.24
s

0
.85

s
1
.25

s
0.86

s
5
.34

s
5.36

s
list_3

138
.97

s
1
.79

s
2
.62

s
2.10

s
132.08

s
132

.07
s

list_4
>

600
s

9
.67

s
15
.44

s
11
.87

s
>

600
s

>
600

s
alternating

0.86
s

0
.61

s
0
.96

s
0.60

s
fa

fa
list_flag

0.69
s

0
.49

s
0
.79

s
0.46

s
fa

fa
list_flag2

fa
fa

0
.81

s
fa

fa
fa

(b)
T
im

e
for

predicate
abstraction

and
pointer

analysis

Program
C
FA

nodes
LO

C
A
:original

B
:m

ore
precision

m
erge-join

m
erge-sep

s3_clnt
272

2547
0.68

s
0
.83

s
s3_srvr

322
2542

0.56
s

0
.59

s
cdaudio

968
18225

33.50
s

>
600

s
diskperf

549
14286

248
.33

s
>

600
s

3.4. APPLICATION 69

D: As Precise as Model Checking with Improved Termination Check (merge-sep,
stop-join)

Now we try to achieve another improvement over configuration B: we replace
the termination check with one that checks the abstract state against the join
of the reached abstract states that agree on program locations and predicates.
To achieve this modification, we would need to change the component CPA for
shape analysis to use the termination check stopjoin. Specifically, we replace the
CPA S in the composition by the CPA S′ defined as follows:

S′ = (DS, S,mergeS, stopjoin)
The composite check operator is then modified as follows:

stop×((l, r, G), R) = stopS′(G, {G′ | (l, r, G′) ∈ R})
The previous termination check was going through the set of already reached
abstract states, checking against every abstract state for coverage. Alternatively,
abstract states that agree on the predicate abstraction can be summarized by
one single abstract state that is used for the termination check. This is sound
because the shape-analysis domain is a powerset domain.

Example. To illustrate the use of the new termination check in the example,
consider a set of reached abstract states that contains at some intermediate step
the following abstract states: (18,flag, {g1}), (18,flag, {g2,1}), (18,¬flag, {g1}),
and (18,¬flag, {g2,2}). If we want to apply the termination check to the abstract
state (18,flag, {g1, g2,1}) and the given set of reached abstract states, we check
whether the set {g1, g2,1} of shape graphs is a subset of the join of all shape
graphs already found for this program location and valuation of predicates (that
is, the set {g1, g2,1}). The check would not be positive at this point using
termination check stopsep.

Experimental Results. The overall performance impact is slightly negative. Pre-
cision: This configuration does not change the precision for our examples. Per-
formance: We expected improved performance by (1) avoiding many single
coverage checks because of the summary abstract state, and (2) fewer successor
computations, because we may recognize earlier that the fixpoint is reached.
However, the performance impact in our examples is negligible, because a very
small portion of the time is spent on termination checks, and the gain is more
than negated by the overhead due to the joins.

8A: predicated join; B: no join (model checking); C: no join and more precise transfer
relation; D: no join, termination check with join; E: normal join of shapes (data-flow analysis);
F: join for predicate abstraction. All experiments were run on a 3GHz Intel Xeon processor.

70 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

E: Join at Meet-Points as in Data-Flow Analysis for Shapes (merge-join-shape,
stop-join)

To compare with a classical data-flow analysis for shape analysis ran indepen-
dently of a model checker using predicate abstraction, we adapt the previous
configuration such that the abstract elements of the shape analysis are joined
where the control flow meets, independently of the predicate region. We use
the following merge operator, which joins with all previously computed shape
graphs for the program location of the abstract state:

merge×((l, r, G), (l′, r′, G′)) =
{

(l′, r′,mergeS(G,G′)) if l = l′

(l′, r′, G′) otherwise

Example. The composite program analysis encounters, for example, the abstract
state (18,flag, {g1, g2,1, g2,2, g3,1, g3,2, g4,1, g4,2}), which contains shape graphs
for lists that contain either 1s or 2s despite the fact that flag has the value true.
Therefore, we note a loss of precision compared to the previous configurations,
because the less precise merge operator looses the correlation between the value
of the nullary predicate flag and the shape graphs.

Experimental Results. The analysis is not able to prove several of the examples
that were successfully verified with previous configurations. Precision: The
shape-analysis component has lost path-sensitivity: the resulting shape graphs
are similar to what a classical fixpoint algorithm for data-flow analysis would
yield. Therefore, the analysis is less precise. Performance: The run time is
similar to configuration A.

F: Predicate Abstraction with Join (merge-join for preds)

We now evaluate a composite program analysis that is similar to a classical
data-flow analysis without path sensitivity, i.e., both predicates and shapes are
joined for the abstract states that agree on the program location. To achieve
this goal, we replace component CPA P for predicate analysis by a CPA P′ that
is the same as P but with the merge operator mergejoin:
P′ = (DP, P,mergejoin, stopP)

The composite merge operator is modified as follows:

merge×((l, r,G), (l′, r′, G′)) =
{

(l′,mergeP′(r, r′),mergeS(G,G′)) if l = l′

(l′, r′, G′) otherwise
This composite program analysis corresponds exactly to a data-flow analysis on
the direct product of the two lattices: the set of reached abstract states contains
only one abstract state per program location, because the merge operator joins
abstract states of the same program location.

3.4. APPLICATION 71

Example. At program location 18, at the end of the analysis, we have only one
abstract state: (18, true, {g1, g2,1, g2,2, g3,1, g3,2, g4,1, g4,2}).

Experimental Results. This configuration can prove the same example pro-
grams as configuration E, and the run times are also similar to configuration E.
Precision: This composite program analysis is the least precise in our set of
configurations, because the merge operator joins both the predicates and the
shape graphs independently, for a given program location. While join is suit-
able for many data-flow analyses, Cartesian predicate abstraction becomes very
imprecise when predicate regions are joined, because then it is not possible to
express disjunctions of predicates by the means of separate abstract states for
the same program location. Performance: Compared to configuration E, the
number of abstract states is smaller (only one per program location), but the
shape graphs have the same size. Therefore, this configuration is less precise,
although not more efficient.

Summary

For our set of examples, the experiments have shown that configuration C is the
best choice, and we provided justifications for the results. However, we cannot
conclude that configuration C is the preferred configuration for any combination
of abstract interpreters, and we provide evidence for this in the next subsection.

3.4.2 Configuring Predicate Abstraction + Pointer Analysis

In the experimental setting of this subsection we show that for a certain kind of
abstract interpreter the join is not only better, but that algorithms without join
show prohibitive performance, or do not terminate. We consider the combina-
tion of Blast’s predicate domain and a pointer-analysis domain, as described at
the end of Section 3.2. In Table 3.2(b) we report the performance results for two
different algorithms: configuration A for a “predicated lattice,” as described by
Fischer et al. [2005], and configuration B for an algorithm without join, using
the merge operator mergesep. The experiments give evidence that the number
of abstract states explodes, and blows up the computational overhead, but the
gained precision is not even necessary for proving our example programs correct.

72 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

3.5 Related Work

Unifying Model Checking and Program Analysis. Program analysis [Aho et al.
1986] has its roots in compiler optimization and therefore is required to be
efficient, often at the expense of precision; model checking [Clarke et al. 1999]
has its roots in program verification and thus is required to be precise, usually at
the expense of scalability. Accordingly, each of the two approaches has different
strengths and weaknesses. It has long been known that, in theory, program
analysis can be reduced to model checking, and vice versa [Steffen 1991; Schmidt
1998; Cousot and Cousot 1995]. The contribution presented in this chapter is
a unifying formal implementation framework, which supports different practical
combinations of both approaches, enabling experimentation that can ultimately
lead to more powerful software-verification tools.

Algorithms for Model Checking. Most current software model checkers are
based on predicate abstraction [Graf and Saïdi 1997]. The exhaustive state-
space exploration of the model checking procedure has been successfully im-
plemented using two different types of algorithms. Iterative model checkers,
such as Slam [Ball and Rajamani 2002] and Blast [Beyer et al. 2007], perform
abstract post operations along the control-flow graph in order to compute ab-
stract successor states and check the reachability of the error location. Bounded
model checkers, such as CBMC [Clarke et al. 2004] and SATabs [Clarke et al.
2005], first transform the program into a Boolean formula by unwinding the
control-flow graph, and then check the resulting formula for satisfiability. Nev-
ertheless, the latter is not sound in general because it considers a finite number
of unrolling of loops.

Algorithms for Program Analysis. Our execution algorithm (Algorithm 3.1) is
given as an abstract sketch of the basic steps that a program-analysis engine
has to perform. It does not dictate the details of the iteration order, i.e., the
implementation of the ‘choose’ operation in line 4 of Algorithm 3.1. The ex-
treme depth-first and breadth-first orders are in general not optimal, and finding
an optimal ordering of the (chaotic) iterations in a fixpoint computation is a
well-known problem in computing science. For example, Bourdoncle analyzed
different iteration orders for data-flow analysis which are based on the topologi-
cal ordering of the control-flow nodes [Bourdoncle 1993]. We have decoupled the
choice of iteration algorithm from the abstract domain, and the combination of
domains. Moreover, static analyzers such as Astrée [Blanchet et al. 2002] use
delayed joins, or path partitioning [Mauborgne and Rival 2005], to improve the

3.5. RELATED WORK 73

precision and efficiency of the analysis. We can model these techniques within
our framework by changing only the merge operator.

Combinations for Model Checking. Fischer et al. have combined the abstract
domain of predicate abstraction with a lattice-based data-flow domain to track
pointer and value information [Fischer et al. 2005]. The data-flow information
becomes more precise by distinguishing different paths through predicates. This
configuration represents just one possibility, namely, combining abstract reacha-
bility trees for the predicate domain with a join-based analysis for the data-flow
domain. Our contribution is to provide a formalism that makes it possible to ex-
periment with flexible combinations of abstract domains, where the algorithm
can be parameterized with a merge operation and a termination check. An-
other example is lazy shape analysis [Beyer et al. 2006], which ‘hard-wires’ one
particular combination of predicate abstraction and shape analysis.

Combinations for Program Analysis. There are many successful approaches for
the customization of data-flow domains [Lev-Ami and Sagiv 2000; Dwyer and
Clarke 1996; Martin 1998; Tjiangan and Hennessy 1992], and for the combina-
tion of abstract interpreters [Gulwani and Tiwari 2006; Cousot and Cousot 1979;
Codish et al. 1993; Lerner et al. 2002]. We go one step further, by parameterizing
the abstract interpreters in such a way that the analysis algorithm (and therefore
the precision) can be controlled so that the domain is analyzed using join-based
data-flow analysis, or using tree-based model checking, or using anything in
between. The direct product of domains is usually not ‘sharp’ enough [Cousot
and Cousot 1979; Codish et al. 1993], and improvements [Cousot and Cousot
1979; Gulwani and Tiwari 2006] are often hard-coded for particular domains.
We prefer to let the designer of the abstract interpreter specify the desired
degree of ‘sharpness’ using the composite operators ×, merge×, and stop×.
Our goal is to encode techniques such as delayed join [Blanchet et al. 2002] or
path partitioning [Mauborgne and Rival 2005] using our parameters, instead of
hard-coding them with a fixed analysis. A recent article [Cousot et al. 2008] on
the Astrée project emphasizes the importance of flexible communication be-
tween abstract domains, and that standard abstract interpretation [Cousot and
Cousot 1977] is not expressive enough to implement practical combinations of
program analyses. Cousot et al. also observe that complete lattices and Galois
connections are not necessary for program analysis, but that the concretization
function matters [Cousot et al. 2008]. Because the framework of abstract in-
terpretation is sometimes too restrictive for practically meaningful analyses, we
formalize program analyses using the less restrictive framework of configurable
program analysis (CPA).

74 CHAPTER 3. CONFIGURABLE PROGRAM ANALYSIS

3.6 Conclusion

We have modified Blast from a tree-based software model checker to a tool that
can be configured using different lattice-based abstract interpreters, composite
transfer functions, merge operators, and termination checks, transcending the
traditional boundaries between traditional program analyses and software model
checking. Specifically configured extensions of Blast with lattice-based analysis
had been implemented before, e.g., in predicated lattices [Fischer et al. 2005] and
in lazy shape analysis [Beyer et al. 2006]. As a side-effect, we can now express
the algorithmic settings presented in these papers in a simple and systematic
way, and moreover, we have found different configurations that perform even
better.

We have achieved a flexible combination of model-checking and program-
analysis algorithms, and abstract domains that can be used at different pre-
cisions. In the next chapter, we present an extension of the framework that
adjusts the precision during the analysis in order to verify different parts of the
program with different precisions.

CHAPTER 4

DYNAMIC PRECISION ADJUSTMENT

4.1 Motivation

The success of program analysis depends on finding a delicate trade-off between
the precision of an analysis and its cost. If the analysis is not precise enough, the
result is an overwhelming number of false alarms; if the analysis is too expensive,
it will not scale to large programs. Traditional research in program analysis has
focused on efficient, scalable analyses that are specified by the user before being
executed by a tool [Cousot and Cousot 1977; Sagiv et al. 2002]. Research in
model checking, on the other hand, has focused on expressive, expensive analyses
(such as predicate abstraction) whose precision can be increased automatically,
during execution of the analysis, as much as necessary [Clarke et al. 2003; Ball
and Rajamani 2002]. The traditional approach has the drawbacks that when
the result of an analysis is inconclusive, the user has to start a new analysis,
e.g., with greater precision; and that a given analysis and precision are applied
globally to the whole program. The framework of configurable program analysis
(CPA) presented in the previous chapter does not address this particular prob-
lem because the domain and the parameters are fixed before the analysis start
and cannot be changed during the reachability analysis. The model-checking
approach touts to overcome these drawbacks [Henzinger et al. 2002]. However,
not only is it expensive to automatically increase the precision of an analysis
(e.g., predicate discovery [Chaki et al. 2003; Henzinger et al. 2004]), but in or-
der to support an automatic precision-refinement procedure, the analysis itself
(predicate abstraction) is so expressive as to be prohibitively expensive. As a
result, there remains a gap of several orders of magnitude between the size of

75

76 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

programs that can be model checked and the size of programs that yield to
traditional static analyses [Blanchet et al. 2003].

In this chapter, we present and evaluate a new way of increasing the pre-
cision of an analysis during execution. What we do is best viewed as running
several different analyses simultaneously and using their results on-line to adjust
their respective precisions. For example, we may run an explicit analysis, which
tracks the values of a set of program variables, in parallel with a predicate anal-
ysis, which tracks the values of a set of predicates. We may start by tracking
all variables explicitly, and no predicates. As soon as we encounter, during the
analysis, a specified threshold number of different values of a variable, we may
switch from tracking explicitly the value of the variable to tracking a predicate
(or set of predicates) involving the variable. In other words, we dynamically
decrease the precision of one analysis (tracking fewer variables explicitly) and
at the same time increase the precision of another analysis (tracking more pred-
icates). This scheme, which can be applied to any combination of program
analyses, has several advantages. Compared with the purely predicate-based
precision refinement performed by many current software model checkers [Ball
and Rajamani 2002; Beyer et al. 2007], predicates are used only when and where
a simpler analysis fails. Compared with the explicit and symbolic analyses per-
formed by execution-based model checkers [Godefroid 1997; Sen et al. 2005],
predicates (or other forms of widening) can be introduced when and where they
are needed to complete a proof. Compared with traditional program analyzers
[Blanchet et al. 2003; Sagiv et al. 2002], the precision of an analysis can be
refined on-line, during the analysis, when and where necessary.

Motivating example. The program shown in Figure 4.1 is inspired by the code
in an SSH server software. We verify that the location at label ERROR is not
reachable. For the analysis we use the already mentioned combination of an
explicit analysis and a predicate analysis, where new predicates are introduced
whenever the number of encountered values of a variable exceeds a given thresh-
old. Initially, the explicit analysis tracks the values of the variables st, ok, cmd,
and p. For each of the first three variables, no more than five different values
are encountered. However, the loop counter p assumes a number of different
values that cannot be bounded by a constant. The precision adjustment that
takes place when the number of values for variable p hits, say, 10, prevents
the explicit analysis from exploring infinitely many concrete values. Then, the
precision adjustment injects the predicate p < n into the predicate analysis
and turns off the explicit analysis for variable p. By tracking the value of the
predicate p < n in the subsequent iteration, the loop analysis terminates and

4.1. MOTIVATION 77

1 int main () {
2 int st = 0, ok = 0, p;
3 int *a = getarray ();
4 int n = length (a);
5 int cmd = readcmd ();
6 while (1) {
7 switch (st) {
8 case 0:
9 if (cmd == 177) { st = 1; }

10 else { st = 2; }
11 break ;
12 case 1:
13 if (cmd == 177) { st = 3; cmd = readcmd (); }
14 else { st = 0; }
15 break ;
16 case 2:
17 if (cmd != 177) {
18 cmd = 79; st = 4; p = cmd;
19 while (p > 0) { --p; *(a+p) = 0; }
20 if (p > 0) goto ERROR;
21 }
22 else { goto ERROR; }
23 break ;
24 case 3:
25 if (cmd == 78) { st = 4; ok = 1; }
26 else { st = 0; cmd = readcmd (); }
27 break ;
28 case 4:
29 if (ok) { if (cmd != 78) goto ERROR; }
30 else { if (cmd != 79) goto ERROR; }
31 goto CONTINUE ;
32 }
33 }
34 CONTINUE :
35 p = cmd;
36 while (p < n) { ++p; *(a+p) = 0;}
37 if (p < n) goto ERROR;
38 return 0;
39 ERROR:
40 return 1;
41 }

Figure 4.1: Example program

78 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

the falsehood of the predicate prevents the symbolic execution from entering
the error state. During the analysis, we simultaneously performed a refinement
of the predicate abstract domain, because we added a new predicate, and an
abstraction of the explicit abstract domain, because we removed a variable. We
call this a dynamic (on-line) precision adjustment of the analysis.

We can also apply our approach to run an explicit heap analysis in parallel
with the shape analysis presented in Section 2.3 [Sagiv et al. 2002]. We start
tracking heap-stored data structures with an explicit, concrete representation
of the heap content. When a certain number of concrete heap cells is reached
for a given data structure, we switch from tracking heap content explicitly to
an appropriate symbolic representation based on shape graphs.

We present our scheme as an extension of the formalism of configurable pro-
gram analysis (CPA) presented in the previous chapter. While CPA already
allows a flexible composition of several analyses, and the on-line transfer of
information from one analysis to another, this transfer was limited to local in-
formation about the current abstract state. Rather than computing on abstract
states only, we compute on pairs (e, π) consisting of an abstract state e and
a precision π. For example, e may be the value of a floating-point variable
and π the number of digits in the mantissa of the floating-point representation;
together they represent a set of possible real numbers. In our algorithm, the
precision of an analysis can be changed depending on all abstract state–precision
pairs computed so far, i.e., depending on global information. For example, a
new predicate may be introduced depending on the fact that a certain set of
explicit values of a variable have been encountered (collected) in the analysis so
far. Or, one analysis may be switched on or off depending on the accumulated
results produced by another analysis so far.

4.2 Related Work

First, it is theoretically possible to model dynamic precision adjustments within
a configurable program analysis, but to do so, one would have to encode the set
of previously encountered abstract states as part of each abstract state. This
would result in a contrived abstract domain and would not allow the reuse of
existing analyses.

Second, there have been several previous proposals for combining explicit
and symbolic analyses [Yorsh et al. 2006; Gulavani et al. 2006]. While their
emphasis is on executing program parts in actual runtime environments in order

4.3. PROGRAM-ANALYSIS FRAMEWORK 79

to provide inexpensive information to a symbolic search for proof, we view both
explicit and symbolic execution as program analyses whose precisions can be
adjusted and traded off dynamically. This gives us greater flexibility. While
the previous approaches apply explicit program execution to all variables, we
choose dynamically and automatically which variables to track explicitly.

Third, in predicate-based abstraction refinement algorithms, new predicates
are introduced based on information obtained from counterexamples [Clarke
et al. 2003; Ball and Rajamani 2002]. By contrast, we introduce new predicates
based on information obtained from the abstract states encountered so far during
the analysis. Our work is more closely related to the automatic discovery of
invariants from state samples [Ernst et al. 2007], such as linear relationships
between variables, and to widening operators used in abstract interpretation
[Cousot and Cousot 1977]. However, unlike widening, we propose a framework
that does not relax the precision of individual abstract states but adjusts the
precision of entire analyses going forward. In particular, the precision of any
component analysis may be increased as well as decreased, depending on the
accumulated results so far.

4.3 Program-Analysis Framework

We introduce the concept of configurable program analysis with dynamic preci-
sion adjustment (CPA+). A CPA+ makes it possible to dynamically adjust the
precision of an analysis while exploring the abstract state space of the program.
A composite CPA+ can control the precision of its component analyses during
the verification process: it can make a component analysis more abstract, and
more efficient (in the extreme: switch it off completely), and it can make a
component analysis more precise, and more expensive (in the extreme: track
the values for each variable with the best precision possible).

4.3.1 Configurable Program Analysis with Dynamic Precision
Adjustment (CPA+)

For presentation and formalization purposes, we use the framework of config-
urable program analysis (Chapter 3). This provides the advantage of making
explicit the new, orthogonal capability that dynamic precision adjustment gives
the analysis. We add two components to the CPA: in order to pair abstract-
domain elements with precisions, we introduce a set of precisions, and in order
to adjust the precision of such pairs, we introduce a precision adjustment oper-

80 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

ator. Thus the new algorithm for dynamic precision adjustment will be able to
maintain and adjust for each abstract state its precision.

A configurable program analysis with dynamic precision adjustment (CPA+)
D+ = (D,Π, ,merge, stop, prec) consists of an abstract domain D, a set Π
of precisions, a transfer relation , a merge operator merge, a termination
check stop, and a precision adjustment function prec, which are explained in the
following.

1. The abstract domain D = (C, E , [[·]]) is defined by the set C of concrete
states, the semi-lattice E of abstract states, and a concretization func-
tion [[·]]. The semi-lattice E = (E,>,⊥,v,t) consists of the (possibly
infinite) set E of abstract domain elements, the top element > ∈ E, the
bottom element ⊥ ∈ E, the partial order v ⊆ E × E, and the func-
tion t : E × E → E (the join operator). The function t yields the least
upper bound for two lattice elements, and the symbols > and ⊥ denote
the least upper bound of the set E and ∅, respectively. The concretization
function [[·]] : E → 2C assigns to each abstract state e its meaning, i.e.,
the set of concrete states that it represents. For soundness of the program
analysis, the abstract domain must fulfill the following requirements:

(a) [[>]] = C and [[⊥]] = ∅

(b) ∀e, e′ ∈ E : e v e′ ⇒ [[e]] ⊆ [[e′]]

(c) ∀e, e′ ∈ E : [[e t e′]] ⊇ [[e]] ∪ [[e′]]
(the join operator is precise or overapproximate)

Note that requirements (b) and (c) are equivalent because the join oper-
ator t is defined as the least upper bound.

2. The set Π of precisions determines the possible precisions of the abstract
domain. The program analysis uses elements from Π to keep track of
different precisions for different abstract states. A pair (e, π) is called
abstract state e with precision π. The operators on the abstract domain are
parametric in the precision. Note that the definition of the concretization
function does not depend on the precision, i.e., an abstract state with
precision represents the same set of concrete states, irrespective of the
precision.

3. The transfer relation ⊆ E×G×E×Π assigns to each abstract state e
possible new abstract states e′ with precision π which are abstract suc-
cessors of e, and each transfer is labeled with a control-flow edge g. We

4.3. PROGRAM-ANALYSIS FRAMEWORK 81

write e g (e′, π) if (e, g, e′, π) ∈ , and e (e′, π) if there exists a g with
e
g
 (e′, π).

The transfer relation must fulfill the following requirement:

(d) ∀e ∈ E, g ∈ G, π ∈ Π :
⋃
e

g
 (e′,π)[[e′]] ⊇

⋃
c∈[[e]]{c′ | c

g→c′}
(the transfer relation overapproximates operations for every fixed pre-
cision)

4. The merge operator merge : E×E×Π→ E weakens the second parameter
using the information of the first parameter, and returns a new abstract
state of the precision that is given as third parameter.

The merge operator must fulfill the following requirement:

(e) ∀e, e′ ∈ E, π ∈ Π : e′ v merge(e, e′, π)
(the result of merge can only be more abstract than the second pa-
rameter)

5. The termination check stop : E × 2E × Π → B checks if the abstract
state given as first parameter with the precision given as third parameter,
is covered by the set of abstract states given as second parameter. The
termination check can, for example, go through the elements of the set R
that is given as second parameter and search for a single element that
subsumes (v) the first parameter, or —if D is a powerset domain1— can
join the elements of R to check if R subsumes the first parameter.

The termination check must fulfill the following requirement:

(f) ∀e ∈ E, R ⊆ E, π ∈ Π :
stop(e,R, π) = true ⇒ [[e]] ⊆

⋃
e′∈R[[e′]]

(if an abstract state e is considered to be ‘covered’ by R, then every
concrete state represented by e is represented by some abstract state
from R)

6. The precision adjustment function prec : E×Π×2E×Π → E×Π computes
a new abstract state and a new precision, for a given abstract state with
precision and a set of abstract states with precision. The precision adjust-
ment function may perform widening of the abstract state, in addition to
a change of precision.

The precision adjustment function must fulfill the following requirement:
1A powerset domain is an abstract domain s.t. [[e t e′]] = [[e]] ∪ [[e′]].

82 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

Algorithm 4.1 CPA+(D+, P, e0, π0)
Input: a CPA with dynamic precision adjustment D+ = (D,Π, ,merge, stop, prec),

a program P , an initial abstract state e0 ∈ E with precision π0 ∈ Π,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable abstract states
Variables: a set reached of elements of E ×Π,

a set frontier of elements of E ×Π
frontier := {(e0, π0)};
reached := {(e0, π0)};
while frontier 6= ∅ do

pop (e, π) from frontier ;
// Adjust the precision.
(ê, π̂) = prec(e, π, reached);
for each e′ with ê g

 (e′, π̂) for some CFA edge g of P do
for each (e′′, π′′) ∈ reached do
// Combine with existing abstract state.
enew := merge(e′, e′′, π̂);
if enew 6= e′′ then

frontier :=
(
frontier \ {(e′′, π′′)}

)
∪ {(enew, π̂)};

reached :=
(
reached \ {(e′′, π′′)}

)
∪ {(enew, π̂)};

// Add new abstract state?
if stop(e′, {e | (e, ·) ∈ reached}, π̂) = false then

frontier := frontier ∪ {(e′, π̂)};
reached := reached ∪ {(e′, π̂)}

return {e | (e, ·) ∈ reached}

(g) ∀e, ê ∈ E, p, p̂ ∈ Π, R ⊆ E ×Π :
(ê, p̂) = prec(e, p,R) ⇒ [[e]] ⊆ [[ê]]

Classical widening and strengthening operators can only decrease and in-
crease precision, respectively. The new operator prec can be used for both
increasing and decreasing the precision of abstract states. A CPA (without dy-
namic precision adjustment) is also capable of a limited form of widening (via
the operator merge). But in contrast with the precision adjustment function,
the merge operator has only access to one abstract state at a time. Neither
the transfer relation nor the merge operator can use global knowledge about
the overall analysis progress, i.e., cannot access the set of reachable states. In
order to adjust the global precision of a program analysis, we need the precision
adjustment operator of a CPA+. This operator can be used to realize a global,
dynamic change of precision, by taking into account all visited abstract states.

4.3.2 Reachability Algorithm for CPA+

The abstract domain of a program analysis defines a way to describe abstract
program states. An analysis algorithm needs to know in addition a precision

4.3. PROGRAM-ANALYSIS FRAMEWORK 83

for the abstract states (for example, which variable to ignore). Usually this
information is hard-wired in either the abstract-domain elements or the algo-
rithm. Algorithm CPA+ keeps for every abstract state a precision, i.e., we use
a pair (e, π) with e ∈ E and π ∈ Π to describe an abstract state and the pre-
cision at which it was computed. This means that the precision of the analysis
depends on the context, i.e., abstract states on which the algorithm is working.
The precision used in the algorithm can change dynamically from abstract state
to abstract state, by adjusting the precision using the function prec. Each of
the three other configurable components (transfer relation, merge operator, and
termination check) is parameterized with the precision of the resulting abstract
state.

Algorithm CPA+ (Algorithm 4.1) computes, for a given configurable pro-
gram analysis with dynamic precision adjustment, a given program, and an
initial abstract state with precision, a set of reachable abstract states, i.e., an
overapproximation of the set of reachable concrete states. The configurable
program analysis with dynamic precision adjustment is given by the abstract
domain D, the precisions Π, the transfer relation of the input program, the
merge operator merge, the termination check stop, and the precision adjust-
ment function prec. The algorithm keeps updating two sets of abstract states
with precision: a set reached to store all abstract states with precision that are
found to be reachable, and a set frontier to store all abstract states with pre-
cision that are not yet processed. The state exploration starts from the initial
abstract state e0 with precision π0. For a current abstract state e with preci-
sion π, the algorithm first adjusts the (local) precision of the algorithm using
the precision adjustment function prec, based on the set of reached abstract
states with precision. Next the algorithm considers each successor e′ with the
new precision π̂, according to the transfer relation. Now, using the given oper-
ator merge, the abstract successor state is combined with each existing abstract
state in reached. If the operator merge has added information to the new ab-
stract state, such that the old abstract state is strictly subsumed, then the new
abstract state with precision replaces the old abstract state with precision in
the sets reached and frontier (or is added if the old abstract state with precision
is not in the set). If after the merge step the resulting new abstract state with
precision is not covered by the set reached, then it is added to the set reached
and to the set frontier .

Theorem 4.1 (Soundness of CPA+). Given a configurable program analysis
with dynamic precision adjustment D+, a program P , and an initial abstract

84 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

state e0 with precision π0, Algorithm CPA+ computes a set of abstract states
that overapproximates the set of reachable concrete states:

[[CPA+(D+, P, e0, π0)]] ⊇ Reach(P, [[e0]])

Proof. The proof resembles the proof of soundness of CPA (Theorem 3.1). Given
a set of states with precisions R ⊆ 2E×Π, let σ(R) = {e | ∃π : (e, π) ∈ R}. We
prove that the out-most loop of Algorithm CPA+ satisfies the following two
loop invariants:

∀c ∈ [[e0]] : c ∈ [[σ(reached)]] (4.1)

∀c ∈ [[σ(reached \ frontier)]] : ∀c′ s.t. c→c′ : c′ ∈ [[σ(reached)]] (4.2)

Initially, both sets reached and frontier are the singleton set {(e0, π0)}; there-
fore initially σ(reached) = σ(frontier) = {e0}. Both invariants hold trivially.

We now prove that if the two invariants hold at the beginning of an iteration,
then they hold at the end of the iteration.

We first show that no operation in an iteration removes concrete states
from the set [[σ(reached)]]. Let R and W denote the values of variables reached
and frontier , respectively, at the beginning of the iteration, and R′ andW ′ their
values at the end of the iteration. We show that the following proposition holds:

[[σ(R)]] ⊆ [[σ(R′)]] (4.3)

All operations except one leave the variable reached unchanged or add an ele-
ment to it; we only need to consider the operation reached :=

(
reached \{e′′}

)
∪

{enew}. Let Rpre be the value of the variable reached before the operation, and
Rpost its value after the operation. The operation is executed only if enew 6= e′′;
as a consequence, we only need to show that [[e′′]] ⊆ [[enew]]. By construction
of the algorithm, we have enew = merge(e′, e′′, π̂). By requirement (e) on the
merge operator, we have e′′ v enew, and by requirement (b) on the lattice order,
we conclude that [[e′′]] ⊆ [[enew]].

The preservation of the first invariant immediately follows from (4.3).

To prove the preservation of the second invariant, we need to show that for
all c ∈ [[σ(R′ \ W ′)]], and all c′ such that c→c′, we have c′ ∈ [[σ(R′)]]. Let
(epop, πpop) be the element with precision removed from the set frontier in the

4.3. PROGRAM-ANALYSIS FRAMEWORK 85

first operation of the loop. We observe that R′ \W ′ = (R \W)∪ {(epop, πpop)}.
From Proposition 4.3 it suffices to show that:

{c′ | ∃c ∈ [[epop]] : c→c′} ⊆ [[σ(R′)]] (4.4)

The first operation of the loop is the precision adjustment function: let (ê, π̂) =
prec(epop, R, πpop). By requirement (g) on the precision adjustment function, we
have that [[epop]] ⊆ [[ê]]; therefore we can prove (4.4) by proving that {c′ | ∃c ∈
[[ê]] : c→c′} ⊆ [[σ(R′)]]. For all e′ such that ê (e′, π̂), the algorithm adds e′ to the
set reached (but not frontier) unless the termination check stop(e′, reached, π̂)
succeeds. If e′ is added to the set reached, trivially we have that [[e′]] ⊆ [[R′]].
Otherwise, by requirement (f) on the termination check stop, we also have [[e′]] ⊆
[[R′]]. Consequently,

⋃
ê e′ [[e

′]] ⊆ [[R′]] holds. From requirement (d) on the
transfer relation, we have {c′ | ∃c ∈ [[ê]] : c→c′} ⊆

⋃
ê (e′,π̂)[[e

′]]. Consequently,
the second invariant is also preserved.

Given loop invariants (4.1) and (4.2), if the algorithm terminates, we know
that the output value R̂ = CPA+(D+, e0, π0) satisfies the following two condi-
tions:

∀c ∈ [[e0]] : c ∈ [[σ(R̂)]] (4.5)

∀c ∈ [[σ(R̂)]] : ∀c′ s.t. c→c′ : c′ ∈ [[σ(R̂)]] (4.6)

From (4.5) and (4.6) it immediately follows that [[e0]] ⊆ [[σ(R̂)]], and that
[[σ(R̂)]] is transitively closed under the concrete transition relation →. Conse-
quently, by the definition of Reach(P, [[e0]]), the theorem holds.

We observe that the CPA+ framework is an extension of the CPA frame-
work. More specifically, for every CPA D = (D, ,merge, stop) we can build a
CPA+ D+ = (D,Π, +,merge+, stop+, prec) for the same domain as follows. The
set of precision Π contains a singleton precision π0. The transfer relation + has
the transfer e g +(e′, π0) if the transfer relation has the transfer e g e′. The
merge operator merge+ and the termination check stop+ are based on their CPA
counterpart: merge+(e, e′, π0) = merge(e, e′), and stop+(e, π0, R) = stop(e,R).
The precision adjustment function never changes the precision: prec(e, π0, R) =
(e, π0). Algorithm CPA applied to D and Algorithm CPA+ applied to D+ returns
the same result when run on the same program and the same initial abstract
element.

86 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

Theorem 4.2 (CPA+ is an extension of CPA). The CPA+ D+ corresponding
to a valid CPA D is a valid CPA+, and for every program P and initial abstract
state e0, we have CPA(D, P, e0) = CPA+(D+, P, e0, π0), where π0 is the only
precision of D+.

Proof. Requirements (a) to (f) hold because of the corresponding requirement
for the CPA D. Requirement (g) trivially holds because the precision adjustment
function never changes the element. By replacing the operators of D+ by their
definition in Algorithm CPA+, we immediately observe that we get an algorithm
equivalent to CPA.

4.3.3 Composition for CPA+

A configurable program analysis with dynamic precision adjustment can be
composed of several configurable program analyses with dynamic precision ad-
justment. A composite CPA+ C = (D+

1,D+
2,Π×, ×,merge×, stop×, prec×)2

consists of two configurable program analyses with dynamic precision adjust-
ment D+

1 and D+
2 sharing the same set of concrete states, E1 and E2 being their

respective sets of abstract states, a composite set of precisions Π×, a composite
transfer relation × ⊆ (E1 × E2) × G × (E1 × E2) × Π×, a composite merge
operator merge× : (E1×E2)× (E1×E2)×Π× → (E1×E2), a composite termi-
nation check stop× : (E1 ×E2)× 2E1×E2 ×Π× → B, and a composite precision
adjustment function prec× : (E1×E2)×Π×× 2(E1×E2)×Π× → (E1×E2)×Π×.
The three composites ×, merge×, and stop× are expressions over the com-
ponents of D+

1, D+
2, and Π× (i,mergei, stopi, preci, [[·]]i, Ei,>i,⊥i,vi,ti), as

well as the operators ↓ and �. The strengthening operator ↓ and the compare
relation � can be used to increase the precision of the composite operators in a
way similar to their use in CPA (Section 3.2.7).

To guarantee that a configurable program analysis with dynamic precision
adjustment can be built from the composite program analysis with dynamic
precision, we impose the requirements for CPA+ operators (d, e, f, g) from
Section 4.3.1 on the four composite operators.

For a given composite program analysis with dynamic precision adjust-
ment C = (D+

1,D+
2,Π×, ×,merge×, stop×, prec×), we can construct the CPA+

D+
× = (D×,Π×, ×,merge×, stop×, prec×), where the product domain D× is

defined as the direct product of D1 and D2: D× = D1 × D2 = (C, E×, [[·]]×).
The product lattice is E× = E1 × E2 = (E1 × E2, (>1,>2), (⊥1,⊥2),v×,t×)

2We extend this notation to any finite number of D+
i.

4.4. APPLICATION 87

with (e1, e2) v× (e′1, e′2) if e1 v1 e
′
1 and e2 v2 e

′
2 (and for the join operation,

we have (e1, e2) t× (e′1, e′2) = (e1 t1 e
′
1, e2 t2 e

′
2)). The product concretization

function [[·]]× is such that [[(d1, d2)]]× = [[d1]]1 ∩ [[d2]]2.

Similarly to composite analyses in the CPA framework, we can specify the
desired degree of ‘sharpness’ in the composite operators ×, merge×, and stop×
rather than by defining new product domains. In addition to that, the CPA+
allows the analysis algorithm to specify a local precision for each abstract state
and to adjust this precision dynamically during the analysis. As a consequence,
the precision adjustment function can be used to increase the precision of one
component analysis and decrease the precision of another component analysis,
because the (composite) precision operator can access information of both. In
addition to the limited form of widening provided by the composite merge oper-
ator, in the case of composition, the CPA framework provides a limited form of
strengthening, in the composite transfer relation, via the operator ↓. Neverthe-
less, this mechanism is only local, and only the composite precision adjustment
function can change globally and dynamically the composite precision (and as
a consequence the precision of the component analyses as well).

Theorem 4.3 (Composition of CPA+). Given a composite program analysis
with dynamic precision adjustment C, the result D+

× of the composition is a
configurable program analysis with dynamic precision adjustment.

Proof. The requirements (a), (b), and (c) for abstract domains of CPA+ follow
from the construction of D× as product domain (abstract domains are closed
under product). The operators of the composite CPA+ fulfill the requirements
(d), (e), (f), and (g) of CPA+ by definition.

4.4 Application: Combining Explicit and Symbolic
Program Analyses

The motivation of this work is the need for a formalism that allows us to compose
a program analysis from known parts and that makes it possible to dynamically
adjust the precision of the algorithm, locally, and across different abstract do-
mains. In particular, we are interested in cases where we first attempt to use
an explicit analysis (tracking precisely valuations of variable and content of the
heap), and later switch to a symbolic analysis (enabling a powerful represen-
tation of infinite set of states), leveraging the results obtained by the explicit
analysis so far. More specifically, we are aiming at formalizing the following

88 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

two analyses. The first analysis uses an explicit value analysis and a predicate
analysis. Our goal is to track variables explicitly in the analysis, and at the
point where it becomes too expensive to track all possible values, we abstract
the values that we have seen so far by predicates and add these predicates to
a predicate analysis. The second analysis uses an explicit heap analysis and a
shape analysis. Our goal is to track the content of the heap explicitly, and at the
point where the explicit heaps represent too large data structures, we abstract
the explicit heap to a shape graph and proceed using only the shape analysis.

We first introduce component CPA+’s and then the two composite CPA+’s.
The first three component CPA+’s (location, predicate, and shape analysis) are
based on CPAs presented in the last chapter. The other component CPA+’s
introduce explicit analyses.

4.4.1 CPA+ for Location Analysis

We extend the CPA L, which tracks the syntactical reachability of program
locations, to a single-precision CPA+. The CPA+ for location analysis L+ =
(DL+ ,ΠL+ , L+ ,mergeL+ , stopL+ , precL+), consists of the following components:

1. The domain DL+ is based on the flat lattice for the set L of program
locations:
DL+ = (C, E , [[·]]), with E = (L ∪ {>,⊥},>,⊥,v,t),
⊥ v l v > and l 6= l′ ⇒ l 6v l′ for all elements l, l′ ∈ L
(this implies ⊥t l = l,>t l = >, lt l′ = > for all elements l, l′ ∈ L, l 6= l′),
and [[>]] = C, [[⊥]] = ∅, and for all l ∈ L: [[l]] = {(l, ·, ·) ∈ C}.

2. There is only one precision, which is the set of all locations: ΠL+ = {L}.

3. The transfer relation L+ has the transfer l g L+(l′, π) if g = (l, ·, l′), and
the transfer > g

 L+(>, π) for all g ∈ G (the syntactical successor in the
CFA without considering the semantics of the operation op).

4. The merge operator does not combine elements when control flow meets:
mergeL+(e, e′, π) = e′.

5. The termination check considers abstract states individually:
stopL+(e,R, π) = (e ∈ R).

6. The precision is never adjusted: precL+(e, π,R) = (e, π).

4.4. APPLICATION 89

4.4.2 CPA+ for Predicate Analysis

We extend the CPA P for predicate analysis to a CPA+ with the precision repre-
senting the set of tracked predicates. The result is a program analysis for Carte-
sian predicate abstraction that tracks the validity of predicates in the precision.
The CPA+ for predicate analysis P+ = (DP+ ,ΠP+ , P+ ,mergeP+ , stopP+ , precP+)
consists of the following components:

1. The domain DP+ = (C, E , [[·]]) is based on predicates that represent re-
gions (of concrete states). The semi-lattice E = (2P , ∅,P,⊇,∩) mod-
els the abstract states as finite subsets e ⊆ P of predicates, where P is
the (infinite) set of quantifier-free predicates over variables from X (us-
ing linear-arithmetic expressions and equality with uninterpreted function
symbols). The concretization function [[·]] : 2P → 2C assigns to each ab-
stract state r its meaning, i.e., the set of concrete states that it represents:
[[r]] = {c ∈ C | c |= ϕr}, where for a set of predicates r ⊆ P, ϕr denotes
the conjunction of all predicates in r (in particular ϕ∅ = true).

2. The set of precisions ΠP+ = 2P models a precision for an abstract state
as a set of predicates. For a predicate p, if p is in precision π, then p is
tracked by the analysis when precision π is used, and if p is in an abstract
state e, then p is true in all concrete states represented by the abstract
state e.

3. The transfer relation P+ has the transfer e g P+(e′, π), if post(ϕr, g) is
satisfiable and r′ is the largest set of predicates from precision π such
that ϕr ⇒ pre(p, g) for each p ∈ r′, where post(ϕ, g) and pre(ϕ, g) denote
the strongest postcondition and the weakest precondition, respectively, for
a formula ϕ and a control-flow edge g (as defined in the context of the
CPA P in Section 3.2.5).

4. The merge operator does not combine elements when control flow meets:
mergeP+(e, e′, π) = e′.

5. The termination check considers abstract states individually:
stopP+(e,R, π) = (∃e′ ∈ R : e ⊇ e′).

6. The precision adjustment function does not change the abstract state with
precision: precP+(e, π,R) = (e, π).

If a predicate is not in the precision set and not in the abstract state, then
this predicate is not tracked. If a predicate is in the precision set but not in

90 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

the abstract state, then there exists a concrete state represented by the abstract
state for which the predicate is not true. If a predicate is in the abstract state,
then the predicate is true for all concrete states represented by the abstract
state.

Note: Local precision

In comparison to the predicate analysis performed by software model check-
ers such as Blast, the above formalization has two limitations. First, we as-
sume a fixed universe of possible predicates — isolated automatic refinement of
the predicate abstraction (e.g., using counterexample-guided abstraction refine-
ment) is not discussed in this context, as our goal is to point out possibilities
to refine the abstract states by using information from other component anal-
yses. Second, we use the same global precision at every program location. In
contrast, software model checkers often use local precisions: different predicates
are tracked at different program locations. Our framework provides an elegant
way to enable local precisions by composing a predicate analysis with a location
analysis: we can define a composite analysis that uses a map from locations to
sets or predicates as composite precision and gives to the component predicate
analysis the precision corresponding to the current location. Consider the com-
posite program analysis with dynamic precision adjustment Cloc = (L+,P+,Π×,
 ×,merge×, stop×, prec×) defined as follows:

1. A composite precision π× ∈ Π× is a function from elements of the location
CPA+ to precisions of the predicate analysis: π× : (L ∪ {>,⊥})→ ΠP+ .

2. The composite transfer relation has the transfer
(l, r) g ×(l′, r′, π×) if l g ×(l′,L) and r g ×(r′, π×(l′)).

3. The composite merge operator never merges:
merge×((l, P), (l′, P ′), π×) = (l′, P ′, v′).

4. The composite termination check consider composite states individually:
stop×(e,R, π) = (∃e′ ∈ R : e v× e′).

5. The composite precision adjustment function does not change the abstract
state with precision: prec×((l, r), π×) = (l, r).

Note that the solution outlined above (unlike hard-coded local precisions)
can be adapted to select the precision for a component analysis based on the
value of any other component analysis.

4.4. APPLICATION 91

1 1 1 0

0

a p

Figure 4.2: Sample explicit-analysis state

4.4.3 CPA+ for Shape Analysis

We extend the CPA S for shape analysis to a CPA+ with the precision being
the shape abstraction specification on which the analysis is based. The result
is a program analysis for shape analysis that tracks shape regions of the shape
classes corresponding to the precision. The CPA+ for shape analysis S+ =
(DS+ ,ΠS+ , S+ ,mergeS+ , stopS+ , precS+) consists of the following components:

1. The domainDS+ = (C,D, [[·]]) is based on shape regions, where the abstract
domain is the lattice D of shape regions (for any shape abstraction) based
on the order on shape regions and the concretization function presented
in Section 2.

2. The set of precisions ΠS+ = {Ψ̂ | Ψ̂ is a shape abstraction specification}
models a precision for an abstract state as a shape abstraction specifi-
cation. The precision specifies which predicates are used in the shape
graphs.

3. The transfer relation S has the transfer G
g
 S(G′, Ψ̂) if G′ = postΨ(G, g),

(abstract post successor as described in Section 2.3.4) where Ψ is the shape
abstraction corresponding to Ψ̂.

4. The merge operator does not combine elements when control flow meets:
mergeS+(G,G′, Ψ̂) = G′.

5. The termination check considers abstract states individually:
stopS+(G,R, Ψ̂) = (∃G′ ∈ R : G v G′).

6. The precision adjustment function does not change the abstract state with
precision: precS+(G, Ψ̂, R) = (G, Ψ̂).

4.4.4 CPA+ for Explicit Value and Heap Analysis

We present an analysis that tracks explicitly both the value of variables and the
content of the heap. We then show how the analysis can be specialized to be a
pure value analysis (explicit value analysis, similar to constant propagation) or a
pure heap analysis (explicit heap analysis). The CPA+ for explicit analysis E+ =
(DE+ ,ΠE+ , E+ ,mergeE+ , stopE+ , precE+), consists of the following components:

92 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

1. The abstract domain DE+ = (C, E , [[·]]) is based on the semi-lattice E =
(E,>,⊥,v,t) defined as follows. The set E of abstract elements contains
elements of the form H = (v, h), consisting of the two following elements:
(1) the variable assignment v : X → Z> is a total function that maps each
variable identifier (integer or pointer variable) to an integer (representing
an integer value or a structure address) or the special value > (representing
the value ’unknown’); and (2) the heap assignment h : Z⇀ (F ⇀ Z>) is a
partial function that maps valid structure addresses to field assignments,
also called structure cell (memory content). A field assignment is a total
function that maps each field identifier of the structure to an integer (rep-
resenting an integer value or a structure address), or the special value >.
In addition, the set E contains the element ⊥ to denote an abstract states
representing no concrete state. The top element > = (v>, h>) ∈ E, with
v>(x) = >Z for all x ∈ X and h> = ∅, has has no explicit value for
any variable and represents every heap. The partial order v ⊆ E × E
is defined as ⊥ v H for all H ∈ E, and (v, h) v (v′, h′) if (1) for every
x ∈ X, we have v(x) = v′(x) or v′(x) = >, and (2) for every a ∈ dom(h′),
f ∈ dom(h′(a)), we have h(a)(f) = h′(a)(f), or h′(a)(f) = >. The join
t : E × E → E yields the least upper bound.

An explicit heap represents all states with matching value and heap con-
tents, for those variables and heap cells that have valuations different
from>, modulo a renaming of the addresses. We define the set of addresses
that occur in an element H = (v, h) of E, denoted by addresses(H), as
follows:

addresses(H) = dom(h)
∪ {v(x) 6= > | x ∈ dom(v) with T (x) 6= ∅}
∪ {h(a)(f) 6= > | a ∈ dom(h) with T (f) 6= ∅}

Given an elementH = (v, h) of E and an isomorphism α from addresses(H)
to a set A′ ⊆ Z, we define H|α = (v′, h′) as follows:

For every x ∈ dom(v) : v′(x) =
{

v(x) if T (x) = ∅
α (v(x)) otherwise

For every a ∈ dom(h) : h′ (α(a)) (f) =
{

h(a)(f) if T (f) = ∅
α (h(a)(f)) otherwise

Two elements H1 and H2 of E are heap-isomorphic, denoted H1 ≈ H2 if
there exists an isomorphism α from addresses(H1) to addresses(H2) such

4.4. APPLICATION 93

that H1|α = H2, i.e., H1 and H2 are identical modulo a renaming of the
addresses. The concretization function [[·]] : E → 2C is defined as follows:

[[H]] =
⋃

(v′,h′)≈H

(l, vc, hc) ∈ C

∣∣∣∣∣∣∣∣∣∣∣

∀x ∈ X :
v′(x) 6= > ⇒ vc(x) = v′(x)

∧ ∀a ∈ dom(h′), f ∈ dom(h′(a)) :
v′(a)(f) 6= > ⇒ hc(a)(f) = v′(a)(f)

Example. Figure 4.2 depicts an abstract state H = (v, h) of the explicit
analysis, where v = {a 7→ 1, p 7→ 4} and

h =
{

1 7→ {data 7→ 1,next 7→ 2}, 2 7→ {data 7→ 1,next 7→ 3},
3 7→ {data 7→ 1,next 7→ 4}, 4 7→ {data 7→ 0,next 7→ 0}

}
Note that the four addresses in the heap could be replaced by any four
distinct values, without changing the set of concrete states represented by
the abstract state.

2. A precision π = (ν, κ) from the set of precisions ΠE+ specifies both the
maximum number of values that the analysis tracks explicitly for a given
variable, and the maximum depth of the explicit heap from a given pointer
variable. The first component ν : X → (N∪{∞}) is a function that speci-
fies for each variable a threshold value on the maximal number of different,
explicitly stored values, where ν(x) = 0 means the value of variable x is
not tracked explicitly, and ν(x) = ∞ means the value of variable x is
tracked explicitly no matter how many different values exist. The second
component κ : Xptr → (N ∪ {∞}) is a function that specifies for each
pointer variable x a threshold value on the maximal depth that is tracked
explicitly for the data structure pointed to by x, where κ(x) = 0 means
that the heap elements reachable from x are not tracked explicitly, and
κ(x) = ∞ means that the analysis does not impose a limit on the num-
ber of heap elements it tracks explicitly for the heap elements reachable
from x.

3. The transfer relation E+ has the transfer (v, h) g (H ′, (ν, κ)) if one of the
following holds:

(1) g = (·, assume(p), ·) and either (a) p/v ⇒ false and H ′ = ⊥, or (b)
p/v 6⇒ false and H ′ = (v′, h) and for all x ∈ X :

94 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

v′(x) =

> if ν(x) = 0 or p/v ⇒ (x = >)
c if ν(x) 6= 0 and p/v ⇒ (x = c)
v(x) otherwise

where p/v denotes the predicate p with all occurrences of a vari-
able y ∈ X replaced by v(y). (Note that the heap part is not changed
because our programming language forbids pointer dereferences in-
side assume statements.)

(2) g = (·, w1 := w2->f, ·), H ′ = (v′, h) and for all x ∈ X :

v′(x) =

h(v(x))(f) if x = w1 and v(x) ∈ dom(h)
> if x = w1 and v(x) 6∈ dom(h)
v(x) if x 6= w1

(3) g = (·, w := malloc(), ·), H ′ = (v′, h′) and for all x ∈ X :

v′(x) =

> if x = w and κ(x) = 0
anew if x = w and κ(x) > 0 and anew /∈ dom(h)
v(x) otherwise

and h′ =
{
{(anew, {(f,>) | f ∈ F})} ∪ h if κ(w) > 0
h otherwise

(4) g = (·, w := exp, ·), H ′ = (v′, h) and for all x ∈ X :

v′(x) =

> if ν(x) = 0
exp/v if ν(x) 6= 0 and x = w

v(x) otherwise
where exp/v denotes the evaluation of an expression exp over X for
an abstract value assignment v and explicit heap h:

exp/v =

> if x ∈ X occurs in exp with v(x) = >
c otherwise, where expression exp evaluates to c, after

each occurrence of variable x ∈ X is replaced by v(x)
(5) g = (·, w1->f := w2, ·), H ′ = (v, h′) and for all a ∈ dom(h) :

h′(a) =

{(g, x) ∈ h(a) | g 6= f} ∪ {(f, x′)} if a = v(w1) 6= >
h(a) if a 6= v(w1) 6= >
{(g, x) ∈ h(a) | g 6= f} if v(w1) = >

Note that there are no transfer from ⊥.

4. The merge operator does not combine elements when control flow meets:
mergeE+(e, e′, π) = e′.

5. The termination check considers abstract states individually:
stopE+(e,R, π) = (∃e′ ∈ R : e v e′).

6. The precision adjustment function sets values or structure fields to > when
the thresholds on the number of different values or on the depth of the heap

4.4. APPLICATION 95

are exceeded. Given an element H = (v, h) and an address a, the depth
ofH from a, denoted by depth(H, a), is defined as the maximum number of
node on an acyclic path starting from a in the directed graph whose nodes
are addresses and where an edge from a1 to a2 exists if h(a1)(f) = a2

for some field f , starting from a. We denote by ReachAddr(H, a) the
set of addresses reachable from a in H, i.e. the set of nodes reachable
from a in the graph given in the previous definition. The precision adjust-
ment function computes a new abstract state with precision as follows:
precE+((v, h), (ν, κ), R) = ((v′, h′), (ν′, κ′)) if the following holds:

(1) for all x ∈ Xint : ν′(x) = ν(x) and if |R(x)| ≥ ν(x) then v′(x) = >,
otherwise v′(x) = v(x), where R(x) denotes the set {v(x) | ((v, ·), ·) ∈
R} of explicit values held in R for variable x, and

(2) Let Y = {y ∈ Xptr | v(y) 6= > and depth(H, v(x)) ≥ κ(x)} and
AY =

⋃
y∈Y ReachAddr(H, v(y)). We have that (a) for all x in Xptr ,

if v(x) ∈ AY , then κ′(x) = 0 ∧ v′(x) = >, otherwise κ′(y) =
κ(y) ∧ v′(x) = v(x), and (b) h′ = {(a, ·) ∈ h | a 6∈ AY }.

In the following, we present two specialized, explicit-analysis CPA+, whose
precisions are limited to a subset of the precision of E. The first analysis tracks
the value of a subset of the integer variables with a fixed threshold on the number
of different values, and the second analysis tracks explicitly the data structures
pointed to by a subset of the pointer variables with a fixed threshold on the
depth of the data structures.

For k in N∪{∞}, the CPA+ for explicit value analysis C+ = (DC+ ,ΠC+ , C+ ,

mergeC+ , stopC+ , precC+) with threshold k is defined as follows. The set of preci-
sions ΠC+ = 2Xint models a precision for an abstract state as a set of integer
variables that needs to be tracked. The operators C+ , mergeC+ , stopC+ , precC+

behave as the corresponding operator in E+ if precisions are transformed as fol-
lows. A precision V of C+ corresponds to the precision π = (ν, κ) defined as
follows: for every variable x in X, ν(x) = k if x ∈ V , and ν(x) = 0 otherwise;
for every variable x in Xptr , κ(x) = 0. Because the precision of the heap part of
the analysis κ is a constant function to 0, no data structure on the heap is ever
tracked and the heap-component of an abstract element always remains empty.
As a consequence, we can restrict the domain DC+ to abstract elements with
empty explicit heaps, and instead of writing (v, ∅) in the following, we shall
denote an abstract element of the explicit value analysis only by its variable
assignment v.

96 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

For k in N∪{∞}, the CPA+ for explicit heap analysis H+ = (DE+ ,ΠH+ , H+ ,

mergeH+ , stopH+ , precH+) with threshold k is defined as follows. The set of preci-
sions ΠH+ = 2Xptr models a precision for an abstract state as a set of pointer
variables that needs to be tracked. The operators H+ , mergeH+ , stopH+ , precH+

behave as the corresponding operator in E+ if precisions are transformed as fol-
lows. A precision Θ of H+ corresponds to the precision π = (ν, κ) defined as
follows: for every variable x in X, ν(x) =∞ if x is in Θ, and ν(x) = 0 otherwise;
for every variable x in Xptr , κ(x) = k if x is in Θ, and κ(x) = 0 otherwise. We
call an abstract state of the explicit heap analysis an explicit heap to emphasize
the fact that it focuses on capturing the content of the heap.

4.4.5 Composition of Explicit Value, Predicate, and
Location Analysis

We construct a composite CPA+ that dynamically changes the precision across
different analyses, based on the analyses defined in the previous subsections.
Specifically, we define a composite CPA+ that on-the-fly abstracts the explicit
value CPA+ (by switching it off for certain variables) and refines the predi-
cate CPA+ (by adding predicates), using information from the reachable set of
abstract states with precision. The predicates added to the predicate CPA+
characterize the sample set of values provided by the explicit CPA+.

The composite program analysis with dynamic precision C1 = (L+,P+,C+,Π×,
 ×,merge×, stop×, prec×), is based on the CPA+ for location analysis L+, the
CPA+ for predicate analysis P+, the CPA+ for explicit value analysis C+, and
the following components:

1. The composite precision is defined by Π× = ΠL+ ×ΠP+ ×ΠC+ . The initial
precision of the composite analysis is (L, ∅, Xint), i.e. initially, we track
no predicates and all variables are tracked explicitly.

2. The composite transfer relation × has the transfer
(l, P, v) g ×((l′, P ′, v′), (πl, πP , πv)) if l g L+(l′, πl) and P

g
 P+(P ′, πP) and

v
g
 C+(v′, πv).

3. The composite merge operator never merges:
merge×((l, P, v), (l′, P ′, v′), π) = (l′, P ′, v′).

4. The composite termination check consider composite states individually:
stop×(e,R, π) = (∃e′ ∈ R : e v× e′).

4.4. APPLICATION 97

next next

next

pta

fddata>0
ra,next

fddata>0
ra,next

fddata=0
ra,next
rp,next

ptp

Figure 4.3: Shape graph that is an abstraction of the sample explicit heap
depicted in Figure 4.2

5. The composite precision adjustment function is uses relies on the preci-
sion adjustment function of C+. Remember that the composite precision
adjustment function of C+ stops the explicit analysis for a variable x if
the number of values for x exceeds the specified threshold. If this situ-
ation occurs, then the precision of the predicate analysis is increased by
adding all predicates computed by an abstraction function InferPred :
(X × 2X→Z) → 2P . Formally, the composite precision adjustment func-
tion is defined by:
prec×((l, P, v), (πl, πP , πv), R) = ((l′, P ′, v′), (π′l, π′P , π′v))

if

(l′, π′l) = (l, πl)
(v′, π′v) = precC+(v, πv, {(v′′, π′′v) | ((l, p, v′′), (·, ·, π′′v)) ∈ R})
πnew
P =

⋃
x∈X:v(x)6=>∧v′(x)=> InferPred(x, {v′′ | ((l, P, v′′), ·) ∈ R})

π′P = πP ∪ πnew
P

P ′ = P ∪ {p ∈ πnew
P | v |= p}

Our implementation of InferPred applies a simple heuristic for discovering re-
lationships between variables and values, based on predicates that syntactically
occur in the program and user-defined predicates. More interesting implementa-
tions, which mine predicates that best generalize the sample set of explicit value
assignments, can rely on the techniques used in dynamic approaches. For in-
stance, the tool Daikon [Ernst et al. 2007], automatically detects partial invari-
ants from program executions, and could also be used to implement InferPred.

4.4.6 Composition of Explicit Heap, Shape, and Location Analysis

The combination of explicit value and predicate analysis focuses on the analysis
of the values of scalar variables. In this section in contrast we focus on the
content of the heap. We analyze data structures on the heap using a composi-
tion of the CPA+ for explicit heap analysis and the CPA+ for shape analysis.
The shape analysis is defined with respect to a maximum shape abstraction

98 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

specification Ψ̂max . The composite precision adjustment function tries to find a
trade-off between the large space requirements of the explicit heap analysis and
the expensive computations of the shape analysis. The explicit analysis is used
until the size of a structure in the explicit heaps exceeds a threshold. When
the threshold is exceeded, the explicit analysis is deemed too expensive and the
explicit heap is converted into a shape graph. Thereafter, the analysis proceeds
with tracking more precise shape regions and not storing explicit information
anymore for that particular structure.

The composite program analysis with dynamic precision C2 = (L+,S+,H+,Π×,
 ×,merge×, stop×, prec×), is based on the CPA+ for location analysis L+, the
CPA+ for shape analysis S+, the CPA+ for explicit heap analysis H+, and the
following components:

1. The composite precision is defined by Π× = ΠL+ × ΠS+ × ΠH+ . The
initial precision is (L, Ψ̂∅, Xptr), where Ψ̂∅ is the shape abstraction ob-
tained from Ψ̂max by replacing the tracked pointers by an empty set:
Ψ̂∅ = {(σ,m, (∅, ∅,Φ)) | (σ,m, (·, ·,Φ)) ∈ Ψ̂max}.

2. The transfer relation × has the transfer
(l, G,H) g ×((l′, G′, H ′), (πl, πG, πH)) if l g L+(l′, πl) andG

g
 S+(G′, πG) and

H
g
 H+(H ′, πH).

3. The composite merge operator never merges:
merge×((l, G,H), (l′, G′, H ′), π) = (l′, G′, H ′).

4. The composite termination check consider composite states individually:
stop×(e,R, π) = (∃e′ ∈ R : e v× e′).

5. The composite precision adjustment function relies on the precision adjust-
ment function of H+. Remember that the composite precision adjustment
function of H+ stops the explicit analysis for variables pointing to a data
structure whose depth exceeds the specified threshold. If this situation
occurs, then the precision of the shape analysis is increased by adding
to the tracking definitions of the current precision the pointers that were
removed from the explicit precision. Moreover, the function HeapToShape
generalizes from a set of explicit data structures to shapes, i.e., the func-
tion HeapToShape is called to abstract heaps to shape regions, for those
data structures whose pointers have been removed from the precision of
the explicit heap analysis. Function HeapToShape takes as parameter an
explicit heap, a set of pointers, and a shape abstraction specification, and
returns a set of shape regions of the shape abstraction specified by the

4.4. APPLICATION 99

third argument, which represents the data structures in the explicit heap
pointed to by some pointer in the set given as second argument. Formally,
the composite precision adjustment function is defined by:
prec×((l, G,H), (πl, πG, πH), R) = ((l′, G′, H ′), (π′l, π′G, π′H))

if

(l′, π′l) = (l, πl)
(H ′, π′H) = precH+(H,πH , {(H ′′, π′′H) | ((l, G,H ′′), (·, ·, π′′H)) ∈ R})
π′G =

{
(σ,m, (T ′, T ′s,Φ)) |

(σ,m, (T, Ts,Φ)) ∈ πG ∧ (σ,m, (Tmax , Tmax
s ,Φ)) ∈ Ψ̂max

∧ T ′ = T ∪ {x ∈ πH \ π′H | σ is the type of x}
∧ T ′s = Tmax

s ∩ T ′
}

G′ = G tHeapToShape(H, (πH \ π′H), π′G)

Example. The explicit heap H represented in Figure 4.2 has depth 4
from the addresses stored in pointer a. If it were encountered during an
analysis with threshold 3, the precision adjustment function of the ex-
plicit heap analysis would remove a and p (because the heap cell pointed
by p is reachable from a) from its precision and would return the ex-
plicit heap >. Suppose the maximal shape abstraction specification Ψ̂max

of the analysis contains a tracking definition that tracks pointers a and
p and field assertions data = 0 and data > 0, and a shape-class gen-
erator for singly-linked list that generates binary predicate next, unary
reachability predicates rx,next for every pointer x in the tracking defini-
tion, and the usual points-to and field predicates. The composite pre-
cision adjustment function would set the precision of the shape analy-
sis to Ψ̂max and would abstract explicit heap H to the shape region re-
turned by HeapToShape(H, {a, p}, Ψ̂max), which contains the shape graph
depicted in Figure 4.3.

Limitations

Note that the shape analysis component does not support isolated refinement
(e.g., counterexample-guided abstraction refinement). We suppose that we know
a-priori the shape abstraction that we need to use, and we only use the explicit
analysis to (1) enable shape analysis when needed and (2) to accelerate shape
analysis by allowing the analysis to build on the result of the explicit analysis.
The next chapter introduces a refinement technique for shape analysis using the
result of an explicit heap analysis, which also incorporates the features of the
CPA+ defined in the present section.

100 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

4.5 Experimental Evaluation

We implemented the configurable program analysis with dynamic precision ad-
justment as an extension of the Blast toolkit, building on our implementation
of configurable program analysis. Given a C program and command-line param-
eters that select the D+ to use for analysis, the tool computes abstract reachable
states, and checks that no assertions are violated, in a fully automatic way. All
experiments presented in this section were run on a GNU/Linux machine with
a Intel Core 2 Duo 6700 processor and 4GB RAM.

We cannot directly compare with the experiments presented in the previous
chapter (Section 3.4) to evaluate the CPA framework, because CPA can perform
only fixed instantiations of the precision parameters of CPA+. Nevertheless, we
provide a comparison of CPA+ with extreme instances (pure predicate or shape
analysis, and pure explicit analysis) of CPA.

4.5.1 Explicit Value Analysis and Predicate Analysis

For the first part of our evaluation, we used the composite CPA+ C1 that re-
sults from combining the CPA+ L+, P+, and C+. Table 4.1 reports verification
times results for two example sets (a) and (b). We experimented with several
configurations for the threshold that triggers the injection of a predicate into
the predicate analysis and switches off the explicit value analysis for a variable.
The value k given in the table correspond to the threshold of the explicit value
analysis, i.e., the number of different values after which the explicit tracking is
stopped. The function InferPred of the composite precision adjustment function
returns predicates which are currently the result of simple heuristics. Possible
alternative implementations include considering syntactic predicates from the
program or predicates returned by Blast’s lazy counterexample-guided refine-
ment.

The first set of example programs consists of some constructed, relatively
small examples. The programs ex1 and ex2 exhibit different scenarios for which
the combination of the two analyses is better than any of the component analyses
on its own. Program ex1 is the example from Figure 4.1. The results show that
it is best to track variables with a small number of possible values explicitly
and the loop index symbolically. The purely explicit analysis (k =∞) fails for
ex1 due to the unbounded number of iterations in one of the loops. Program
ex2 is like ex1 but the exit condition of the second loop is changed so that the
number of iterations is bounded by a known constant. Therefore, the purely

4.5. EXPERIMENTAL EVALUATION 101

(a) Extreme examples

Program Symbolic Explicit + Symbolic Explicit
k = 0 k = 1 k = 5 k =∞

ex1 0.46 s 0.17 s 0.21 s —
ex2 0.43 s 0.16 s 0.21 s 1.00 s
ex3_1 0.16 s 0.13 s 0.11 s 0.08 s
ex3_2 0.40 s 0.24 s 0.14 s 0.09 s
ex3_4 1.41 s 0.58 s 0.20 s 0.12 s
ex3_8 6.53 s 2.10 s 0.31 s 0.18 s
loop1 25.20 s 26.01 s 22.78 s 0.16 s
loop2 279.84 s 277.07 s 258.79 s 0.44 s
square — — — 0.08 s

(b) SSH client/server software

Program Symbolic Explicit + Symbolic
k = 0 k = 1 k = 2

s3_clnt.1 27.61 s 2.87 s 7.73 s
s3_clnt.2 22.14 s 2.47 s 3.58 s
s3_clnt.3 14.75 s 2.54 s 3.55 s
s3_clnt.4 10.61 s 2.52 s 3.56 s
s3_srvr.1 7.95 s 1.50 s 2.25 s
s3_srvr.2 5.00 s 1.39 s 2.13 s
s3_srvr.3 3.61 s 1.44 s 2.11 s
s3_srvr.4 4.32 s 1.41 s 2.14 s
s3_srvr.6 67.93 s 1.49 s 2.17 s
s3_srvr.7 35.59 s 1.95 s 2.56 s
s3_srvr.8 4.88 s 1.44 s 2.17 s
s3_srvr.9 33.20 s 1.94 s 2.67 s
s3_srvr.10 4.58 s 1.47 s 2.16 s
s3_srvr.11 36.64 s 1.95 s 2.60 s
s3_srvr.12 64.78 s 1.50 s 2.21 s
s3_srvr.13 125.91 s 2.04 s 2.64 s
s3_srvr.14 68.27 s 1.52 s 2.19 s
s3_srvr.15 5.01 s 1.68 s 2.12 s
s3_srvr.16 69.12 s 1.51 s 2.28 s

Table 4.1: Performance evaluation of dynamic precision adjustment on two sets
of examples for the combination of predicate analysis and explicit value analysis

102 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

explicit analysis succeeds, but the symbolic analysis is still faster due to the
high number of different values of the loop counter. Program ex3_1 results
from removing the loops in ex1. It shows that the purely explicit analysis
is always best. The three variations ex3_2, ex3_4 and ex3_8 are extended
versions of ex3_1, with a larger number of program locations, which is twice,
four times and eight times the size of ex3_1, respectively. This experimental
setting illustrates the exponential run time for the symbolic analysis versus the
linear run time for the explicit value analysis.

To verify programs loop1 and loop2, it is necessary to unroll a loop 100 and
200 times, respectively. A predicate analysis is prohibitively expensive because
it requires a predicate for every value of the variable: i = 0, i = 1, ..., i = 100.
Program square contains a function that computes the square using additions
exclusively (strength reduction). Predicate analysis of this program fails for two
reasons. First, even when unrolling the loop, the symbolic analysis could not
find the predicates necessary to prove safety. Second, the main program uses an
expression in an assert statement that is beyond the decision procedure used in
Blast. The explicit value analysis is able to prove the program safe efficiently.

The second set of programs (s3_clnt.i, s3_srvr.i) represents the subrou-
tine for the connection handshake protocol (state machine) of the SSH client and
server, for which we verify several protocol-specified safety properties (one line
in the table for one property). In all experiments, the combination analysis sig-
nificantly outperforms the pure predicate analysis (k = 0), sometimes by orders
of magnitude. The reason is that most predicates in the pure predicate analysis
are (mis-) used to track just one single explicit value, for which the explicit value
analysis is superior. The configuration for k = 2 always needs more time for
the verification task, because it tries to track a second value for variables that
require symbolic analysis; for these programs it is faster to switch to symbolic
tracking after the analysis has found out that one value is not sufficient. A
purely explicit analysis results in false alarms for all examples, because there
are variables that have to be analyzed symbolically. (The programs contain
branches whose outcome depends on inputs or uninitialized variables.)

Discussion

Overall, the combination speeds up significantly the analysis, as fewer pred-
icates are needed. On realistic examples, a small threshold provides a good
compromise in term of performance: it prevents the explicit value analysis from
running for a needlessly long time when a variable can have too many different

4.5. EXPERIMENTAL EVALUATION 103

Program Shapes Explicit + Shapes Explicit
k = 3 k = 5 k =∞

list_1 0.24 s 0.17 s 0.19 s —
list_2 0.84 s 0.85 s 1.08 s —
list_3 2.99 s 3.30 s 5.06 s —
list_4 8.80 s 11.40 s 24.39 s —
list_bnd4_1 0.35 s 0.28 s 0.07 s 0.06 s
list_bnd4_2 1.02 s 1.22 s 0.22 s 0.21 s
list_bnd4_3 2.90 s 4.40 s 1.23 s 1.15 s
list_bnd4_4 7.45 s 12.78 s 6.14 s 5.90 s
list_flags_1 0.44 s 0.36 s 0.36 s —
list_flags_2 1.36 s 1.08 s 1.19 s —
list_flags_3 4.95 s 3.70 s 4.15 s —
list_flags_4 19.66 s 13.89 s 16.33 s —
list_flags_5 79.10 s 59.09 s 74.50 s —
list_bnd2_f1 0.42 s 0.06 s 0.05 s 0.07 s
list_bnd4_f1 0.69 s 0.51 s 0.11 s 0.08 s
list_bnd4_f2 2.38 s 1.46 s 0.21 s 0.19 s
list_bnd4_f3 8.19 s 4.86 s 0.57 s 0.52 s
list_bnd4_f4 31.65 s 18.40 s 1.94 s 2.14 s
list_bnd4_f5 130.94 s 74.72 s 9.64 s 9.48 s

Table 4.2: Performance comparison on examples for the combination of shape
analysis and explicit heap analysis

values, and is enough to provide a great speedup by avoiding the addition of
predicates about those variables that have a constant value or only a very few
different values.

4.5.2 Explicit Heap Analysis and Shape Analysis

For the second part of our evaluation, we used the composite CPA+ C2 that
results from combining the CPA+ L+, S+, and H+. Table 4.2 reports the ver-
ification times for a set of small programs that manipulate lists. We experi-
mented with several configurations for the threshold value k of the explicit heap
analysis, which is the number of nodes in the list after which we call the func-
tion HeapToShape and switch off the explicit heap analysis for the heap. The
extreme threshold k = 0 switches the explicit analysis off for the whole analysis,
and h =∞ keeps the explicit heap analysis always on.

The first four lines of the table let us analyze a negative effect of explicit
heap analysis: the lists generated by program list_i represent an unbounded
sequence of i different data elements in an ascending order. The shape graph of
the shape analysis contains O(i) nodes, whereas the size of the explicit structure
not only has a size proportional to the length of the list, but explores many

104 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

different versions of the list for a given length (combinatorial explosion). The
next four examples are variations of the first four, but create lists of bounded
length (list_bnd4_i). The results show an effect similar to the unbounded
case, i.e., the explicit heap analysis suffers from combinatorial explosion for
larger values of i, and the summarization in the shape graphs overcompensates
the overhead for the expensive shape operations. But the explicit heap analysis
can be more efficient when the number of different lists that need to be examined
is relatively small.

The third set of examples list_flags_i again produces lists of unbounded
length. The performance numbers indicate that the explicit heap analysis can
be helpful —if the threshold is reasonably small— for constructing the abstract
shape graphs by conversion from explicit heap structures (speedup of 24% for
threshold k = 3). The last set of examples produces lists of bounded length, but
requires larger and many shape graphs to prove the property. This shows that
the overhead of expensive shape-analysis operations can be effectively avoided
by explicit heap tracking when the control flow of the program limits the number
of possible structures for the explicit heap analysis and leads to many different
shape graphs in the shape analysis.

Discussion

So far, our preliminary experiments have not identified an absolute advantage
of one of the configurations, but that different configurations lead to signifi-
cantly different performance, and that further work is necessary to leverage the
potential that the combination offers.

4.6 Conclusion

We have provided an algorithm and tool for experimenting with the combina-
tion of several program analyses. Our method allows the on-line transfer of
information between the different analyses, and this information can be used to
increase or decrease the precision of any analysis on-the-fly. Using our tool, we
showed that it can be beneficial to combine predicate abstraction with an ex-
plicit analysis because many predicates are used to track only specific values of
variables. Our method allows us to dynamically change the partition between
the variables that are analyzed symbolically using predicates and those that
are analyzed explicitly. We also studied the effects of combining a symbolic,
graph-based shape analysis with an explicit heap analysis. The new formalism

4.6. CONCLUSION 105

and tool allow us to quickly set up such experiments and study the effects of
different parameter settings.

In the next chapter, we present an extension of the same ideas (combina-
tions and change of precision) in the context of a refinement-based analysis. In
particular, we show how to use explicit heaps to provide hints for the refinement
of a shape abstraction.

106 CHAPTER 4. DYNAMIC PRECISION ADJUSTMENT

CHAPTER 5

SHAPE ABSTRACTION REFINEMENT

5.1 Motivation

Proving the safety of programs that use dynamically-allocated data structures
on the heap is a major challenge due to the difficulty of finding appropriate
abstractions. For cases where the correctness property intimately depends on
the shape of the data structure, researchers have over the last decade designed
abstractions that are collectively known as shape analysis. The approach that
we presented in Section 2.3 and that we have used in the experiments presented
in the previous two chapters is an example of shape analysis, where heaps are
represented by three-valued logical structures [Sagiv et al. 2002]. The precision
of the analysis is specified by a set of predicates over nodes (unary and binary)
representing core facts (e.g., points-to and field predicates) and derived facts
(e.g., reachability). The latter category of predicates —the so-called instrumen-
tation predicates— are crucial to control how precise the analysis is. First, they
can keep track of relevant properties; second, they allow for more precise suc-
cessor computations; and third, when used as abstraction predicates, they can
control node summarization.

In our previous work, we presented an automatic abstraction-refinement loop
for shape analysis (as well as predicate abstraction) [Beyer et al. 2006]. If a
chosen abstraction is too coarse to prove the desired correctness property, a
spurious counterexample path is identified, i.e., a path of the abstract program
which witnesses a violation of the property but has no concrete counterpart. We
analyzed such counterexample paths in order to determine a set of additional
pointers and field predicates which, when tracked by the abstraction, remove the
spurious counterexample. These core predicates are then added to the analysis,

107

108 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

and a new attempt is made at proving the property. A main shortcoming of that
work is that the refinement loop never automatically discovers the shape class
(e.g., doubly-linked list, binary tree) that is suitable for proving the desired
property, and it never adds new instrumentation predicates to the analysis.
Consequently, programs can only be verified if all necessary shape classes and
instrumentation predicates are “guessed” by the verification engineer when an
abstraction is seeded. In the absence of such a correct guess, the method will
iteratively track more and more core predicates, until either timing out or giving
up because no more relevant predicates can be found.

In this chapter, we focus on the stepwise refinement of a shape analysis by
automatically increasing the precision of the shape classes via instrumentation
predicates. Similarly to dynamic precision adjustment, refinement increases the
precision of the analysis across refinement iterations; unlike dynamic precision
adjustment, the analysis removes states with coarser precision from the reached
set when a refinement occurs. The refinement strategy that we propose is guided
by the analysis of spurious counterexamples (i.e., infeasible paths to an error
location). Suppose that counterexample analysis (e.g., following Beyer et al.
[2006]) indicates that we need to track the heap structure to which a pointer p
points, in order to verify the program. We can encounter two situations: (1) we
do not yet track p and we do not know to which kind of data structure p points;
or (2) we already track the shape of the heap structure to which p points but the
tracked shape class is too coarse and may lack some necessary instrumentation
predicates. We address situation (1) by running an explicit heap analysis in
order to identify the shape of the data structure from samples, and situation (2)
by selecting the coarsest refinement from a lattice of plausible shape classes. Our
implementation provides such plausible shape classes by default for standard
data structures like lists and trees, but also supports a flexible way to extend
the existing shape classes.

Motivating example. We illustrate our method on a simple program that ma-
nipulates doubly-linked lists (Figure 5.1). First, two (acyclic) doubly-linked
lists of arbitrary length are generated (alloc_list); then the two lists are con-
catenated; finally, the program checks if the result is a valid doubly-linked list
(assert_dll). Our algorithm automatically verifies that no assertion in this
program is violated. The algorithm starts with a trivial abstraction, where no
predicates are tracked, and the reachability analysis using this abstraction finds
an abstract error path. The algorithm checks whether this abstract error path
corresponds to a concrete error path of the program by building a path formula
(i.e., a formula which is satisfiable iff the path is a concrete error path). The

5.1. MOTIVATION 109

1 typedef struct node {
2 int data;
3 struct node *succ , *prev;
4 } *List;
5
6 List alloc_list () {
7 List r = (List) malloc (sizeof (struct node));
8 List p = r;
9 if (r == 0) exit (1);

10 while (*) {
11 List t = (List) malloc (sizeof (struct node));
12 if (t == 0) exit (1);
13 p->succ = t;
14 t->pred = p;
15 p = p->succ;
16 }
17 return r;
18 }
19
20 void assert_dll (List p) {
21 while ((p != 0) && (p->succ != 0)) {
22 assert (p->succ ->pred == p);
23 p = p->succ;
24 }
25 }
26
27 void main () {
28 List l1 = alloc_list ();
29 List l2 = alloc_list ();
30
31 List p = l1;
32 while (p->succ != 0) {
33 p = p->succ;
34 }
35 p->succ = l2;
36 l2 ->pred = p;
37
38 assert_dll (l1);
39 }

Figure 5.1: Example C program

110 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

>

0

> > > >

0

l1

(a) Sample explicit heap

succ

pred

succ

pred

ptl1
cancel[succ,pred]
cancel[pred,succ]

cancel[succ,pred]
cancel[pred,succ]

(b) Sample shape graph

Figure 5.2: Sample abstract states

path formula of the first abstract error path is unsatisfiable; therefore, this is an
infeasible error path (also called spurious counterexample), and the abstraction
is refined using an interpolation-guided refinement process. The following atoms
occur in interpolants for the first path formula: pointer equalities among l1,
l2, and p; l1->succ = p; and l2->pred = p. Since the interpolants mention
pointers of a recursive data structure, we need to observe them via a shape
analysis tracking l1, l2, and p (and their aliases).

But it is not enough to know which pointers to analyze; we also need to know
their data structures, in order to determine the shape abstraction, because dif-
ferent data structures require different instrumentation predicates. Since it is
the first time we encounter this data structure, our algorithm uses an explicit
heap analysis to collect explicit heap samples that would occur during program
execution. We graphically illustrate an explicit heap that is collected by the
explicit heap analysis in Figure 5.2(a). A node (rectangle with three boxes)
represents one structure element; the first box represents the integer value for
the field data; the second and third box represent the pointer values of the fields
succ and prev, respectively. An arrow represents a pointer valuation. A sym-
bol > in a box represents an unknown value. When a threshold is hit (e.g., once
we have collected explicit heaps with at least 5 nodes each), we stop the explicit
heap analysis, and extract the shape class from the explicit heap samples by
checking which data structure invariants they satisfy. In the example heap, all
nodes satisfy the invariant for acyclic singly-linked lists for each field individu-
ally, and the invariant for doubly-linked lists (for every node n, the predecessor
of the successor of n is n itself), but not the invariant for binary trees (acyclic
graph formed by the two field pointers). Knowing that the data structure is

5.2. RELATED WORK 111

not a tree, and because both fields pred and succ occur in interpolants, we
restrict the search for a shape abstraction to those suitable for doubly-linked
lists. We refine the shape abstraction by choosing the coarsest shape class for
doubly-linked lists, i.e., in addition to points-to predicates, we track two binary
predicates for the fields pred and succ, and no instrumentation predicates.

The refined abstraction is still not fine enough to prove the program safe,
because we find a new abstract error path. Its path formula is unsatisfiable, but
the interpolant-based analysis of the abstract error path does not yield any new
predicates. Therefore, we have to search for a finer shape class that contains
instrumentation predicates as well. From the previous analysis we know that we
have a doubly-linked list. We use a binary search to find, in the given lattice,
the coarsest abstraction specification that eliminates the abstract error path. In
our example, the tool discovers the necessity to track the unary instrumentation
predicates cancel[succ, pred] and cancel[pred, succ] in addition to previously
tracked predicates. For a node v, the predicate cancel[f1, f2](v) holds if the
following condition is fulfilled: if the field f1 of an element represented by v

points to an element represented by some node v′, then the field f2 of the element
represented by v′ points back to the element represented by v. After this last
refinement step, the abstract reachability analysis proves that no assertion is
violated. Figure 5.2(b) shows a shape graph that is reachable at the entry point
of function assert_dll. A node represents a single structure element, and
a summary node (drawn as a double circle) represents one or more structure
elements. Unary predicate valuations are represented by arrows (or the absence
of arrows) from predicates to nodes; binary predicate valuations are represented
by arrows between nodes, labeled with the predicate. We can observe that
the instrumentation predicates cancel[succ, pred] and cancel[pred, succ] have
a valuation of 1 for all nodes in the data structure. Due to the information
carried by those instrumentation predicates, we are able to prove the program
safe.

5.2 Related Work

Counterexample-guided abstraction refinement (CEGAR) [Clarke et al. 2003]
has been used in the context of several different abstractions.

First and foremost, it has been successfully applied in several predicate-
abstraction based verifiers [Godefroid 1997; Holzmann 1997; Corbett et al. 2000;
Havelund and Pressburger 2000; Ball and Rajamani 2002; Musuvathi et al.

112 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

2002; Andrews et al. 2004; Chaki et al. 2004; Clarke et al. 2005; Ivancic et al.
2005; Esparza et al. 2006; Beyer et al. 2007] and some of them also rely on
interpolation to infer predicates. Nevertheless, none of the existing software
model checkers have an heap analysis to the extent that we are providing, with
the strength of shape analysis and the efficiency of abstraction refinement. There
have also been proposals to encode shape analysis within predicate-abstraction
frameworks [Dams and Namjoshi 2003; Balaban et al. 2005]. So far they apply
only to restricted settings, such as singly-linked lists, or they need help from the
user for computing abstractions.

Gulavani and Rajamani [2006] proposed CEGAR-based widening operators
in the general context of abstract interpretation and applied it to shape analysis.

In the specific context of shape analysis, refinement of a TVLA-based shape
analysis has also been studied. Loginov et al. [2005] proposed a technique to
learn new instrumentation predicates from imprecise verification results. Our
previous work [Beyer et al. 2006] studied how to combine nullary predicate
abstraction and shape analysis, and how to refine shape analysis by discovering
new core predicates. Nevertheless, we did not address in our previous work the
refinement of SCGs.

Our predefined library of SCGs contains well-known instrumentation predi-
cates for the analysis of programs manipulating lists and trees [Sagiv et al. 2002].
More sophisticated predicates have been proposed [Reineke 2005] and can be
easily added to the library of SCGs. By relying on a given, fixed library of
SCGs, we are still not discovering automatically more general instrumentation
predicates. However, there are inherent limitations on what first-order theorem
provers can deduce about three-valued abstractions that use transitive-closure
predicates such as reachability [Yorsh et al. 2007]. Nevertheless, recent advances
in quantified interpolants may lift those limitations [McMillan 2008].

Other approaches to shape analysis exist but refinement is not as central as
in our context. Separation logic has been used to design abstract domains that
can be used in abstract interpreters [O’Hearn et al. 2001; Reynolds 2002; Diste-
fano et al. 2006], but the question of refinement is less central. The analysis is
generally tailored to support only particular data structures and as a result the
analysis scales to large programs [Yang et al. 2008]. Recent work considered the
extension of the approach to broader families of related data structures [Berdine
et al. 2007; Guo et al. 2007]. There exists other attempts to use interpolation
for the verification of data structures but they attempt to infer quantified in-
variants and are more geared towards the verification of program using a data-

5.3. PRELIMINARIES 113

structure library [Kapur et al. 2006]. Symbolic shape analysis based on Boolean
heaps [Podelski and Wies 2005; Wies 2009] bears many similarities with three-
valued logic-based approaches. Couterexample-guided abstraction refinement of
Boolean heap abstractions has been considered [Podelski and Wies 2010]. Not
only is the domain refined, but the transfer relation is also refined. We have not
considered the refinement of the transfer relation but this form of refinement
can also be integrated into our framework.

Our current work is also in the tradition of combining symbolic and ex-
plicit analyses for program verification. In particular, combinations of symbolic
abstraction methods with concrete program execution (testing) to build safety
proofs have received much attention recently. Such techniques have been ap-
plied in the context of predicate abstraction-based model checkers to accelerate
the state construction and guide the refinement [Gulavani et al. 2006; Beck-
man et al. 2008; Kröning et al. 2004; Yorsh et al. 2006], and in the context
of constraint-based invariant generation [Gupta et al. 2009]. We explored in
the previous chapter the use of precision adjustment to switch between explicit
and symbolic steps during a reachability analysis. We build on the same basic
idea in the context of refinement. To the best of our knowledge, no existing
technique uses explicit heaps to guide the refinement of a shape abstraction.

5.3 Preliminaries

We describe in the following the techniques that we use in order to analyze
counterexamples. First we present how we can construct a formula from a
program path such that the formula is satisfiable if and only if the program
path is feasible. Second we present a technique to extract useful facts from
unsatisfiable path formulas based on interpolation. The same techniques are
used in the lazy shape-analysis algorithm [Beyer et al. 2006].

5.3.1 Path Formulas

To check if a given program path is infeasible, we could in theory compute
the strongest postcondition. However, due to the large number of quantifiers
and the use of our modified theory of arrays, this operation can be expensive
to compute. To make the check of infeasibility more efficient, we construct a
path formula. A path formula is the conjunction of several constraints, one
per operation on the program path, such that the program path is infeasible iff
the path formula is unsatisfiable. We use an approach similar to static single-

114 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

assignment form (SSA) [Cytron et al. 1989], which introduces a new constant for
each assignment operation, in order to avoid quantification. If a program path
is found to be infeasible, we can learn the reason for its infeasibility —and how
to eliminate it— from Craig interpolants for the path formula (as detailed in the
next subsection). Every path formula is a formula in the quantifier-free theory
of rational linear arithmetic and equality with uninterpreted function symbols.
Interpolation is decidable for this theory; satisfiability and interpolants can be
computed by state-of-the art decision procedures [Beyer et al. 2008; Cimatti
et al. 2008].

The technique for building path formulas used in the previous version of
Blast [Henzinger et al. 2004] cannot be reused directly, because it does not
handle recursive data structures. However, since the number of structure cells
possibly involved in a program path is bounded, we can still produce a finite
formula. The address of each structure cell that is accessed on a program
path must have been previously assigned to a pointer variable (because we
consider a restricted set of possible lvalues). To refer to integer values and
addresses in the path formula, we use SSA-like lvalue constants. For a program
path of length n, an lvalue constant is either 〈var, l〉 (an identifier constant),
or 〈〈var, l〉->field, l′〉 with position labels l, l′ ∈ [0..n] and l′ ≥ l. An lvalue is
either var, or 〈var, l〉->field. The labels l and l′ identify the positions in the
program path where the lvalues may have been modified. An lvalue map θ is a
function from lvalues to labels. The lvalue-renaming function sub(θ, v) is defined
by sub(θ, s) = 〈s, θ(s)〉 and sub(θ, s->f) = 〈sub(θ, s)->f, θ(sub(θ, s)->f)〉, where s
is a variable identifier and f is a field identifier. We extend the function sub to
expressions and predicates in the natural way.

To simplify the path formula using alias information, the function may maps
a label and an lvalue constant to the set of identifier constants that may have
the same value, i.e., 〈s, ls〉 ∈ may(l, c) if, after the l-th operation of the program
path, the value of c may be equal to the value of s after the ls-th operation
of the program path. The function may is not essential for the path formula:
it is used only to reduce the size of the path formula by taking into account
information that two pointers are guaranteed not to be equal.

The path formula for a program path t is the conjunction of all formulas in
the final constraint map, i.e., the path formula for t of length l is

∧
0≤i≤l Γi with

(·,Γ) = Con(t).

The constraint-construction function Con takes as input a triple ((θ,Γ), l, opl),
which consists of a pair (θ,Γ) of an lvalue map θ and a constraint map Γ

5.3. PRELIMINARIES 115

O
pe

ra
tio

n
op
l

N
ew

m
ap

θ′
an

d
Al

loc
′

C
on

st
ra
in
t

Γ′
(l

)
s

=
e

θ′
(s

)=
l

su
b(
θ′
,s

)=
su

b(
θ,
e)

s 1
=
s 2

θ′
(s

1)
=
l

∀f
∈
T

(s
1)

:θ
′ (〈
s 1
,l
〉-

>f
)=

l
eq

va
r((
s 1
,θ
′),

(s
2,
θ)

)

s 1
=
s 2

->
f

θ′
(s

1)
=
l

∀f
∈
T

(s
1)

:θ
′ (〈
s 1
,l
〉-

>f
)=

l

su
b(
θ′
,s

1)
=

su
b(
θ,
s 2

->
f

)

∧
∧

c
∈

ma
y(
l-

1,
su

b(
θ
,s

2
->
f

))(su
b(
θ,
s 2

->
f

)=
c

⇒
eq

va
r((
s 1
,θ
′),

(c
,θ

))

)

s 1
->
f

=
s 2

θ′
(〈
s 1
,θ

(s
1)
〉-

>f
)=

l
∀c
∈

ma
y(
l-1
,〈
s 1
,θ

(s
1)
〉)

:
θ′

(c
->
f

)=
l

su
b(
θ′
,s

1-
>f

)=
su

b(
θ,
s 2

)

∧
∧

c
∈

ma
y(
l-

1,
su

b(
θ
,s

1
)) ite

.(c
=

su
b(
θ,
s 1

))
.su

b(
θ′
,c

->
f

)=
su

b(
θ,
s 2

)
.su

b(
θ′
,c

->
f

)=
su

b(
θ,
c-

>f
)

s

=
m

al
lo

c(
)

θ′
(s

)=
l

∀f
∈
T

(s
):

θ′
(〈
s,
l〉

->
f

)=
l

Al
loc
′

=
Al

loc
∪
{〈
s,
l〉
}

∧
a
∈

Al
loc
〈s
,l
〉6=

a

as
su

m
e(
p
)

clo
s*(
θ,

tr
ue
,p

)

Fi
gu

re
5.
3:

D
efi
ni
tio

n
of

Co
n
fo
r
ea
ch

pr
og
ra
m

op
er
at
io
n:

(θ
′ ,

Γ′
)=

Co
n(

(θ
,Γ

),
l,

op
l)
.

116 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

from position labels to first-order logic formulas over lvalue constants, a po-
sition label l, and the operation opl at position l, and produces as output a
pair (θ′,Γ′) of a new lvalue map and a new constraint map. For a given pro-
gram path t, we define Con(t) as (θn,Γn) that is obtained by the recursion
(θl,Γl) = Con((θl-1,Γl-1), l, opl), where l is the position label of opl in the pro-
gram path. The map θ0 is the constant function λx : 0, and Γ0 is the constant
function λx : ∅. The map θl differs from θl-1 only in the lvalue that may be
modified by opl, which is mapped to l by θl. The map Γl results from extend-
ing Γl-1 by mapping l to the constraint derived from opl. We derive constraints
from operations similarly to the previous approach [Henzinger et al. 2004]. A
modification to the previous approach is necessary for assignments to pointers:
we cannot ‘unroll’ a recursive data structure and refer to all reachable structure
cells, because this would yield an infinite formula. Additionally, we need to add
aliasing constraints when several lvalue constants may point to the same struc-
ture cell. The formal definition of the function Con is given in Figure 5.3, where
the operations in the first column are defined by the grammar in Figure 2.1.

The function Con for operations of the form s = e assigns in θ′ the new
position label l to variable identifier s, since the new value of s must be repre-
sented by a new identifier constant. The constraint for position l represents the
equality of the new identifier constant and the renamed expression. No aliasing
needs to be considered since s is of type integer (T (s) = ∅).

For operations of the form s1 = s2, Con assigns the new position label l not
only to the variable identifier s1, but also to all field identifiers of s1 (if s1 is
of type pointer). The constraint is given by function eqvar, which produces a
constraint that represents the equality of two variable identifiers and all their
field identifiers (if there are any):

eqvar((s1, θ1), (s2, θ2)) =

 sub(θ1, s1) = sub(θ2, s2) ∧∧
f∈T (s1)

sub(θ1, s1->f) = sub(θ2, s2->f)

For operations of the form s1 = s2->f , the constraint has not only to represent

the equality that results from the assignment, but also all possible equalities
with pointer variables and their field identifiers, for pointers that are aliased
with s2->f .

For operations of the form s1->f = s2, the new lvalue map assigns a new
position label to the field identifier s1->f and to all field identifiers f that can
be accessed through other pointers that may be aliased with s1. The constraint

5.3. PRELIMINARIES 117

represents the equality that results from the assignment, and in addition it
assigns values to the new lvalue constants for each field identifier f : if the pointer
is actually aliased with s1, then the lvalue constant for its field identifier f is
equal to the identifier constant for s2, and if not, then the lvalue constant does
not change.

For allocation operations, besides assigning new position labels to the vari-
able identifier and its field identifiers, we keep track of the new structure cell
in the allocation set Alloc, and the constraint represents that the new structure
address is different from all previously allocated structure addresses.

For assume operations, the lvalue map does not change, but the assume
predicate is renamed, and extended by field-identifier equalities. The function
clos*(θ, b, p) produces, given an assume predicate p, the predicate that results
from replacing all equalities s1 = s2 occurring positively (or negatively, depend-
ing on the value of the Boolean value b) by eqvar((s1, θ), (s2, θ)):

clos*(θ, b, p) =

clos*(θ, b, p1) bop clos*(θ, b, p2) if p ≡ (p1 bop p2)
¬ clos*(θ,¬b, p1) if p ≡ (¬p1)
eqvar((s1, θ), (s2, θ)) if p ≡ (s1==s2) and b ≡ true
¬ eqvar((s1, θ), (s2, θ)) if p ≡ (s1!=s2) and b ≡ false
sub(θ, p) otherwise

Example. Recall the program whose CFA is given in Figure 2.3 and the
infeasible program path used in the example in Section 2.1. Figure 5.4 contains
the constraint of the path formula corresponding to the infeasible program path.
Note that the conjunction of the constraints is unsatisfiable.

The following lemma justifies the use of path formulas as replacement for the
concrete semantics in our model-checking algorithm, for precisely determining
whether a path is infeasible.

Lemma 5.1. Let P be a program and let t be a program path of P . The program
path t is infeasible iff the path formula for t is unsatisfiable.

Proof. We need to show that the path formula for t and the strongest post-
condition of true and t are equisatisfiable. Consider a given program path t.
We denote the strongest postcondition of true and t by ϕSP = SP(true, t). We
denote the path formula for t by ϕCon =

∧
i Γi, where (·,Γ) = Con(t). In the

following, we prove that ϕSP and ϕCon are equisatisfiable.

118 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

Operation Constraint of the path formula
Interpolant: true

1 a=malloc() true
Interpolant: true

2 p=a 〈p, 2〉 = 〈a, 1〉 ∧ 〈〈p, 2〉->data, 2〉 = 〈〈a, 1〉->data, 1〉
∧〈〈p, 2〉->next, 2〉 = 〈〈a, 1〉->next, 1〉

Interpolant: 〈p, 2〉 = 〈a, 1〉
3 p->data=0 〈〈p, 2〉->data, 3〉 = 0

∧

 ite.(〈a, 1〉 = 〈p, 2〉)
.〈〈a, 1〉->data, 3〉 = 〈〈p, 2〉->data, 3〉
.〈〈a, 1〉->data, 3〉 = 〈〈a, 1〉->data, 1〉

Interpolant: 〈〈a, 1〉->data, 3〉 = 0

4 p=a 〈p, 4〉 = 〈a, 1〉 ∧ 〈〈p, 4〉->data, 4〉 = 〈〈a, 1〉->data, 3〉
∧〈〈p, 4〉->next, 4〉 = 〈〈a, 1〉->next, 3〉

Interpolant: 〈〈p, 4〉->data, 4〉 = 0
5 x=p->data 〈x, 5〉 = 〈〈p, 4〉->data, 4〉

Interpolant: 〈x, 5〉 = 0
6 assume(x!=1) 〈x, 5〉 6= 1

Interpolant: 〈x, 5〉 = 0
7 assume(x!=0) 〈x, 5〉 6= 0

Interpolant: false

Figure 5.4: Constraints of the (unsatisfiable) path formula for an (infeasible)
path of the program in Figure 2.3 and interpolants at every cut point

5.3. PRELIMINARIES 119

To prove equisatisfiability, we build a reversible mapping from terms oc-
curring in the strongest postcondition (including sel applications, but not upd
applications) to terms in the path formula. We denote this partial mapping by
µ: for a term e in our modified theory of arrays of the form s or sel(h, s, f),
µ(e) is a term over lvalue constants. Moreover, we will show that the path for-
mula contains conjuncts that represent all necessary instantiations of the two
axioms of our modified theory of arrays used in SP. Note that terms containing
array updates (i.e., applications of the upd function) do not occur directly in
the translated formula; instead we instantiate all relevant axioms that depends
on them (in particular read-over-write axioms).

The proof is by structural induction over the program path.

The base case is trivial to prove (both formulas are true). The mapping µ
is initially the following function:

µ(e) =
{
〈s, 0〉 if e = s with s ∈ X
〈〈s, 0〉->f, 0〉 if e = sel(h, s, f) with s ∈ X and f ∈ T (s)

Note that it is equivalent to renaming lvalues using the initial mapping θ0 used
in the path formula construction.

We prove the induction case by assuming that the lemma holds for a pro-
gram path t, and by showing that the lemma holds for the program path t′ =
t ; (op : ·). Let l′ be the length of program path t′. We have that SP(true, t′) =
SP(SP(true, t), op). Let (θ,Γ) = Con(t) and (θ′,Γ′) = Con(t′). We have that for
all 0 ≤ i < l′, Γ′i = Γi. Therefore we can rewrite the induction hypothesis as
SP(true, t) and

∧
0≤i<l′ Γ′i are equisatisfiable. Moreover, we assume that µ is the

mapping computed in the induction step for program path t. In the following,
we define a new mapping µ′ for the formulas about t′. We consider six cases,
each one corresponding to one kind of program operation, and for each case (1)
we define the new mapping µ′ by extending the previous mapping µ by asso-
ciating to newly modified terms lvalue constants with label l′, and performing
variable-identifier renaming where appropriate, and (2) we show that we have
instantiated all relevant axioms for any possible suffix of the program path.

Case op = s = e: The new mapping is defined as follows:

µ′(e) =
{
〈s, l′〉 if e = s

µ(ê) otherwise, where ê = e[ŝ/s]

Because the program is well-typed, it follows that s is a variable of type integer
(i.e., T (s) = ∅), and therefore s cannot occur as a structure address in a sel

120 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

expression, i.e. there are no expressions of the form in sel(·, s, ·) occurring in the
strongest postcondition. Therefore, no new axioms need to be instantiated.

Case op = s1 = s2: The new mapping is defined as follows:

µ′(e) =

〈s1, l

′〉 if e = s1

〈〈s1, l
′〉->f, l′〉 if e = sel(h, s1, f) with f ∈ T (s1)

µ(ê) otherwise, where ê = e[ŝ1/s1]

In the path formula, we instantiate the congruence axioms to add all terms of the
form sel(h, s1, f) = sel(h, s2, f) with f ∈ T (s1) through the use of the eqvar func-
tion. (Note that we have that T (s1) = T (s2) because the program is well-typed.)
Those are the only additional axiom instances necessary. New read-over-write
axiom instances are not needed since they can be inferred from previously in-
stantiated read-over-write axioms (by induction hypothesis, we know all relevant
read-over-write axioms triggered by upd applications have been instantiated for
variable identifiers occurring in the prefix t), the newly introduced congruence
axioms, and transitivity of equality.

Case op = s1 = s2->f : The new mapping is defined as in the previous case.
By comparison with the previous case, we need to instantiate new congruence
axioms for terms with nested sel function applications. Lvalue constants are
intended to represent values without such a nesting. To accommodate this re-
striction, the path formula instantiates the congruence axioms for any identifier
constants that is equal to the new value of pointer s1. The construction is
guaranteed to be sound under the hypothesis that may has the aforementioned
soundness requirement.

Case op = s1->f = s2: The new mapping is defined as follows:

µ′(e) =

〈〈s1, l

′〉->f, l′〉 if e = sel(h, s1, f)
〈〈s2, l2〉->f, l′〉 if e = sel(h, s2, f) and µ(s2) = 〈s2, l2〉

and 〈s2, l2〉 ∈ may(l′ − 1, µ(s1))
µ(e) otherwise

The postcondition formulas never refer to heap assignment other than the most
recent ones. Consequently µ′ does not contain any mapping for expressions
referring to the old value of the heap assignment ĥ in contrast to the other
cases; all mappings are updated to refer to the new heap assignment h. In the
path formula, read-over-write axioms are instantiated for all possible identifier
constants for which it is relevant. Note that this directly relies on the soundness
of the may operator since axioms are not instantiated for those value that are

5.3. PRELIMINARIES 121

not possibly equal to s1 (according to may). Moreover, for terms in µ where field
identifiers different from f occur, the mapping is not changed, which has the
same result has instantiating read-over-axioms for the case where field identifiers
are different.

Case op = s = malloc(): In the case of allocations, we need to refer to previously
allocated addresses. Allocated addresses are represented by the set Alloc in the
path formula, and by the predicate alloc in the strongest postcondition. We
can see that the set Alloc contains the µ-translation of all pointers t for which
alloc(h, t) holds; therefore, the set of inequalities we introduce in the strongest
postcondition is the same as its counterpart in the path formula. The mapping
is changed in the following way:

µ′(e) =
{
〈s, l′〉 if e = s

µ(ê) otherwise, where ê = e[ŝ/s]

No new axiom needs instantiation since only inequalities with a fresh identifier
are added to the formula.

Case op = assume(p): In this case, the mapping is left unchanged (i.e., µ′ = µ).
Similarly to the first case, we instantiate congruence axioms for those equalities
that occur positively in the predicate (it is the role of the clos* function as it can
be seen from its definition).

Note that the proof could only be done because of the restriction on the
programming language, which enforces that each relevant structure cell (i.e.
those that are ever dereferenced along the program path) was pointed in the
past by some pointer variable. Our implementation supports C code by trans-
forming the code in the simplified programming language, introducing auxiliary
variables.

5.3.2 Interpolation

Interpolation is a technique to get small reasons as to why a formula is
unsatisfiable. The notion of interpolant was introduced by Craig [1957] and
has gained considerable attention in the verification community over the last
decade [McMillan 2005a], as a way to extract information from counterexam-
ples for refinement of predicate abstraction over different theories [Henzinger
et al. 2004; Esparza et al. 2006; Kapur et al. 2006], as well as for other do-
mains including shape analysis [Beyer et al. 2006], and as a way to approximate
transition relations [Jhala and McMillan 2005].

122 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

Algorithm 5.1 ExtractInterpolants(t,Γ)
Input: an infeasible program path t = (op1 : l1); . . . ; (opn : ln), a constraint map Γ
Output: a map Π from the locations of t to sets of atomic predicates
Π(l) := ∅ for each control location l
ψ := true
for i := 1 to n− 1 do
ϕ− := ψ ∧ Γ(i)
ϕ+ :=

∧
i+1≤j≤n

Γ(j)

ψ := Itp(ϕ−, ϕ+)
Π(li) := Atoms(Clean(ψ))

return Π

For two formulas ϕ− and ϕ+, such that ϕ− ∧ ϕ+ is unsatisfiable, a Craig
interpolant ψ satisfies the three following conditions: (1) formula ϕ− implies
formula ψ, (2) the conjunction ψ ∧ ϕ+ is unsatisfiable, and (3) ψ contains only
symbols that are common to ϕ− and ϕ+. For the theory used in our path
formula (propositional formula with equality), interpolants can be computed by
readily available tools [McMillan 2005b; Rybalchenko and Sofronie-Stokkermans
2007; Beyer et al. 2008; Cimatti et al. 2008].

The interpolants contain all information that we need in order to elimi-
nate an infeasible program path in further iterations of the analysis. In our
context, we use interpolants as a way to extract from unsatisfiable path for-
mulas both pointers and field assertions that a shape analysis should track in
order to eliminate an infeasible program path. To extract predicates (and later
pointers and field assertions from the predicates) from a path formula, we use
Algorithm ExtractInterpolants.

Algorithm ExtractInterpolants (5.1) takes as input an infeasible program
path t and a constraint map Γ, and returns a function Π that assigns to each
CFA location of t a set of (nullary) predicates. The constraint map that is
given as input is the result of the constraint-construction function Con. The
returned function Π contains for every control location of t all predicates that are
necessary to eliminate an infeasible program path t from the overapproximation.
These predicates can be used to refine a predicate precision in a way that makes
the abstract program path also infeasible, or, in our case, to refine tracking
definitions.

The algorithm splits the (infeasible) path formula at every control location
and computes an inductive interpolant. Function Itp(ϕ−, ϕ+) returns a for-
mula ψ that is a Craig interpolant of ϕ− and ϕ+. Our algorithm produces
interpolants that are inductive, i.e. the interpolant at location li+1 is implied
by the interpolant at location li and the constraint for the operation from li

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 123

to li+1. Inductive interpolants are guaranteed to eliminate the infeasible pro-
gram path. In the actual implementation, we use a function Itp that takes as
input a sequence of n formulas and produces a sequence of n − 1 inductive in-
terpolants [McMillan 2005b]. This way the procedure can be more efficient by
deriving all interpolants from the same proof of unsatisfiability. For a given for-
mula, the function Clean replaces each lvalue constant by its lvalue, i.e., removes
the labels. The function Atoms returns the set of atomic predicates (no Boolean
operators) of a formula. 1

Example. Consider the infeasible program path and its path formula shown
in Figure 5.4. The interpolants at each cut points are indicated at the figure.
For example, the interpolant after the fourth operation of the path (at control
location 7) is 〈〈a, 1〉->data, 3〉 = 0, and the interpolant after the fifth (at control
location 8) is 〈〈p, 4〉->data, 4〉 = 0. The extracted predicates (after applying
Clean and Atoms) are a->data = 0 for control location 7, and p->data = 0 for
control location 8.

5.4 Shape Analysis with Abstraction and Refinement

We introduce a new verification algorithm that is based on abstraction and
refinement. Shape types can be refined in two different ways: either we refine
the shape type’s tracking definition, or we refine the shape type’s SCG. In both
cases, the resulting shape class is guaranteed to be finer, because SCGs are
monotonic. Previous work has shown how tracking definitions can be refined,
by extracting information from infeasible error paths using interpolation [Beyer
et al. 2006]. Our approach is based on this algorithm, and proposes a novel
technique to refine SCGs, by combining information from two sources. The first
source of information consists of explicit heaps, which are used to restrict the
refinement to SCGs that are designed to support the kind of data structure
(e.g., doubly-linked list, binary tree) that the program manipulates. When we
discover pointers to data structures for the first time, we run an explicit heap
analysis of the program until we encounter explicit heaps with a depth that
exceeds a given threshold. The explicit heaps that have been computed are
queried for data structure invariants, and are then abstracted to shape graphs.
The second source of information consists of infeasible error paths. We simulate
shape analysis with different SCGs along the path to determine the coarsest SCG

1In principle, it would be possible to use the original interpolants for the predicate precision,
but Blast is based on a Cartesian abstraction, which usually requires to split the formulas.

124 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

that is able to eliminate the infeasible path. A library of SCGs that supports
standard data structures like lists and trees is available in Blast.

We express the reachability analysis that is performed between refinement
iteration as a composite program analysis with dynamic precision adjustment.
In order to allow the analysis to terminate before a fixed point is reached in
case an error is reached, we adapt the precision adjustment function and the
reachability algorithm so as to interrupt the analysis when a refinement might be
needed. In this section, first, we introduce the concept of an interruptible CPA+,
a CPA+ with the new precision adjustment function; second, we present the
modified reachability algorithm; third, we present the component CPA+ and the
composite CPA+ that we use; fourth, we describe our overall counterexample-
guided refinement loop and the details of our refinement strategy.

5.4.1 Interruptible CPA+ and Reachability Algorithm

We adapt the CPA+ framework to allow the analysis to terminate before a
fixed-point is reached in case a refinement of the precision is needed. The
resulting analysis is called an interruptible CPA+. The only difference between
a CPA+ and an interruptible CPA+ is the precision adjustment function prec:
in addition to returning an abstract state with precision, the function may also
return the special value interrupt meaning that the reachability analysis should
be interrupted. Analogously, we can define composite interruptible CPA+ by
modifying the composite precision adjustment function.

An interruptible CPA+ D+ = (D,Π, ,merge, stop, prec) has the same com-
ponents and requirements as a CPA+ except for the precision adjustment func-
tion prec:

Let E be the set of abstract elements of domain D. The precision ad-
justment function prec : E × Π × 2E×Π → (E × Π) ∪ {interrupt} either
returns a new abstract state and a new precision or returns the special
value interrupt, for a given abstract state with precision. The precision
adjustment function has to fulfill the following requirement:

(g) ∀e, ê ∈ E, p, p̂ ∈ Π, R ⊆ E ×Π :
(ê, p̂) = prec(e, p,R) ⇒ [[e]] ⊆ [[ê]]

Note that requirement (g) leaves the freedom to the analysis to return
special value interrupt at any time.

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 125

Algorithm 5.2 PartialCPA+(D+, P,R0, F0)
Input: a CPA+ with early termination D+ = (D,Π, ,merge, stop, prec),

a program P , a set of abstract states with precision R0 ⊆ E ×Π,
a subset F0 of R0 representing its frontier,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable abstract states with precision and its frontier
Variables: a set reached of elements of E ×Π,

a set frontier of elements of E ×Π
frontier := F0;
reached := R0;
while frontier 6= ∅ do
pop (e, π) from frontier ;
// Adjust the precision or interrupt the analysis.
r = prec(e, π, reached);
if r = interrupt then

frontier := frontier ∪ {(e, π)};
return (reached, frontier)

(ê, π̂) = r;
for each e′ with ê g

 (e′, π̂) for some CFA edge g of P do
for each (e′′, π′′) ∈ reached do
// Combine with existing abstract state.
enew := merge(e′, e′′, π̂);
if enew 6= e′′ then

frontier :=
(
frontier \ {(e′′, π′′)}

)
∪ {(enew, π̂)};

reached :=
(
reached \ {(e′′, π′′)}

)
∪ {(enew, π̂)};

// Add new abstract state?
if stop(e′, {e | (e, ·) ∈ reached}, π̂) = false then

frontier := frontier ∪ {(e′, π̂)};
reached := reached ∪ {(e′, π̂)}

return (reached, ∅)

A CPA+ is a special case of an interruptible CPA+: any valid CPA+ is also a
valid interruptible CPA+.

We provide a composition mechanism for interruptible CPA+ similar to
the composition mechanism for CPA and CPA+. A composite interruptible
CPA+ C = (D+

1,D+
2,Π×, ×,merge×, stop×, prec×)2 has the same compo-

nents as a composite CPA+ except for D+
1 and D+

2 that are interruptible
CPA+’s, and for the composite precision adjustment function: prec : E× ×
Π× × 2E××Π× → (E× ×Π×) ∪ {interrupt}, where E× is the Cartesian product
of the sets of abstract states of D+

1 and D+
2. A composite interruptible CPA+

C = (D+
1,D+

2,Π×, ×,merge×, stop×, prec×) corresponds to the interruptible
CPA+ D+ = (D×,Π×, ×,merge×, stop×, prec×) whereD× is the domain based
on the direct product of the domains of D+

1 and D+
2. It can be proved in the

same way as for composite CPA+, that the resulting interruptible CPA+ fulfills
the requirements of an interruptible CPA+.

2We extend this notation to any finite number of D+
i.

126 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

We adapt the reachability algorithm so that the analysis is interrupted when
the precision adjustment function returns interrupt. To allow the analysis to
resume from intermediate results, the algorithm is seen as a transformation of a
reached set and its frontier (both are sets of states with precision). The reached
set represents the reachable states computed so far, and its frontier is a subset
of the reached set that contains those abstract states whose successors have
not yet been added to the reached set. Algorithm PartialCPA+ (5.2) takes as
input an interruptible CPA+, a program, an initial set of abstract states and
its frontier. The algorithm attempts to iteratively compute reachable states by
computing successors of state in the frontier until either the frontier becomes
empty (fixpoint), or the precision adjustment function returned value interrupt.
The reached set and its frontier are iteratively updated as they were updated
in the reachability algorithm for a CPA+. The analysis returns a larger set of
reached states with precision and its frontier. We can distinguish between the
two outcomes of the algorithm by considering the returned frontier: in case the
analysis was interrupted, the frontier is nonempty.

Theorem 5.2. Given an interruptible CPA+ D+, a program P , an initial set
of abstract states with precision R0 and its frontier F0 ⊆ R0,
if PartialCPA+(D+, P,R0, F0) terminates and returns (R′, F ′), we have:

(1) [[σ(R0)]] ⊆ [[σ(R′)]] and
(2) if Succ(P, [[σ(R0\F0)]])) ⊆ [[σ(R0)]], then Succ(P, [[σ(R′\F ′)]]) ⊆ [[σ(R′)]],

where σ(R) denotes {e | ∃π : (e, π) ∈ R}.

Proof. We do not detail the proof as it follows exactly the same structure as the
proof of loop invariants of Algorithm CPA+ (Theorem 4.1). The loop bodies
have different behavior only when the precision adjustment function returns
value interrupt. In that case, property (1) holds because no operation removes
concrete states from the set reached (as proved before); and property (2) holds
because the element popped from frontier is re-added to frontier when prec
returns interrupt.

5.4.2 Interruptible CPA+ for Path Analysis

We extend the CPA+ L+, which tracks the syntactical reachability of program
locations, to an interruptible CPA+ L+

i that tracks the program path that lead
to the current location. The precision of the analysis is a set of locations,
at which the analysis must be interrupted. The interruptible CPA+ for path

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 127

analysis L+
i = (DL+

i
,ΠL+

i
, L+

i
,mergeL+

i
, stopL+

i
, precL+

i
), consists of the following

components:

1. The domain DL+
i
is based on the flat lattice for the set L∗ of sequences of

program locations: DL+
i

= (C, E , [[·]]), with E = (L∗ ∪ {>,⊥},>,⊥,v,t),
⊥ v p v > and l 6= p′ ⇒ p 6v p′ for all elements p, p′ ∈ L∗ (this implies
⊥ t p = p,> t p = >, p t p′ = > for all paths p, p′ ∈ L∗, p 6= p′). For a
nonempty word p over locations L, we denote by last(p) the last location of
the word. An abstract element (i.e., a path) represents the set of concrete
states whose location is the last location in the path: [[>]] = C, [[⊥]] = ∅,
and for all p ∈ L∗: [[p]] = {(l, ·, ·) ∈ C | last(p) = l}.

2. The precision of the analysis is a set of location: ΠL+
i

= 2L.

3. The transfer relation L+
i
has the transfer p g L+

i
(p′, π) if g = (l, ·, l′) and

last(p) = l and p′ = pl′, and the transfer > g
 L+

i
(>, π) for every CFA edge g

and π ∈ ΠL+
i
.

4. The merge operator does not combine elements when control flow meets:
mergeL+

i
(p, p′, π) = p′.

5. The termination check considers only the last location of the path:
stopL+

i
(p,R, π) = (∃p′ ∈ R : last(p) = last(p′)).

Note that the termination is sound because of the definition of the con-
cretization function.

6. The precision adjustment function returns interrupt when the path ends
at a location in the precision; and otherwise, the precision is not adjusted:

precL+(p, π,R) =
{

interrupt if last(p) ∈ π
(p, π) otherwise

Typically, the precision of the analysis contains the error location. The
analysis terminates when the error location is reached, and at that point the
abstract state contains the program path that led to the error location. We
can use the abstract element to determine whether the error path is feasible.
Note that by modifying the precision adjustment function, the analysis can be
interrupted when the path satisfies an arbitrary property, e.g., the path violates
a certain protocol.

5.4.3 Interruptible CPA+ for Explicit Heap Analysis

We extend the CPA+ H+, which tracks explicitly the content of the heap, to an
interruptible CPA+ H+

i . The precision of the analysis is a set of pointers whose

128 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

data structures are tracked explicitly, and the analysis is interrupted when the
depth of a data structure in the explicit heap exceeds the threshold k. (In
contrast, H+ discards parts of the explicit heap when a tracked data structures
becomes too deep.) The interruptible CPA+ for explicit heap analysis H+

i =
(DH+ ,ΠH+ , H+ ,mergeH+ , stopH+ , precH+

i
), has the same components as H+ except

for the precision adjustment function:

6. The precision adjustment function returns interrupt when the threshold
is hit, and otherwise the precision is never adjusted:
precH+

i
(H,Θ, R)

=
{

interrupt if H = (v, h) ∧ ∃p ∈ Θ : v(p) 6= > ∧ depth(H, v(p)) ≥ k
(H,π) otherwise

5.4.4 Composite Interruptible CPA+ for Path, Shape, and Explicit
Heap Analysis

We present a composite interruptible CPA+ that combines the interruptible
CPA+ L+

i for path analysis, the CPA+ S+ for shape analysis (Section 4.4.3),
and the CPA+ H+

i for explicit heap analysis. The composite analysis is inter-
rupted if one of the following condition is satisfied: (1) a composite abstract
state representing some concrete state whose location is an error location is en-
countered, or (2) the depth of an explicit heap has exceeded a threshold. The
two cases correspond to situations where we want to change the precision and
update the reached states before proceeding further with the analysis: in case (1)
we stop in order to check the feasibility of the error path (potentially leading to
a refinement); in case (2) we stop in order to select meaningful shape class gen-
erators based on the explicit heap. In addition, the composite analysis supports
local precisions for the shape analysis and the explicit heap analysis (similarly
to the example given for predicate abstraction in Section 4.4.2). The composite
interruptible CPA+ Csr = (L+

i ,S+,H+
i ,Π×, ×,merge×, stop×, prec×), is based

on the interruptible CPA+ L+
i , the CPA+ S+, the interruptible CPA+ H+

i , and
the following components:

1. The composite precision is defined by:

Π× = ΠL+
i
× {Ψ̂ : L → ΠS+} × {Θ : L → ΠH+

i
}

The initial precision is ({lerr}, Ψ̂0,Θ0), where lerr denote the error loca-
tion, and for every l in L, Ψ̂0(l) is a trivial shape abstraction specification

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 129

containing for every structure type an empty tracking definition and the
smallest shape class generator m0, and Θ0(l) = ∅.

2. The transfer relation × has the transfer
(p,G,H) g ×((p′, G′, H ′), (πp, πG, πH)) for g = (l, op, l′) if p g L+

i
(p′, πp)

and G g
 S+(G′, πG(l′)) and H g

 H+
i
(H ′, πH(l′)).

3. The composite merge operator never merges:

merge×((p,G,H), (p′, G′, H ′), π×) = (p′, G′, H ′)

4. The composite termination check considers states separately:

stop×((p,G,H), R, (πp, πG, πH))

= ∃(p′, G′, H ′) ∈ R :

stopL+

i
(p, {p′}, πp)

∧ stopS+(G, {G′}, πG)
∧ stopH+

i
(H, {H ′}, πH)

5. The composite precision adjustment function interrupts the analysis if the
precision adjustment function of the path analysis or of the explicit heap
analysis returns interrupt (the precision adjustment function of the shape
analysis never returns interrupt):

prec×((p,G,H), (πp, πG, πH), R)

=

interrupt if rp = interrupt or rH = interrupt
((p′, G′, H ′), (π′p, π′G, π′H)) if rp = (p′, π′p) and rG = (G′, π′G)

and rH = (H ′, π′H)

where rp = precL+
i
(p, πp, {(p′′, π′′p) | ((p, ·, ·), (π′′p , ·, ·)) ∈ R})

and rG = precS+(G, πG, {(G′′, π′′G) | ((·, G′′, ·), (·, π′′G, ·)) ∈ R})
and rH = precH+

i
(H,πH , {(H ′′, π′′H) | ((·, ·, H ′′), (·, ·, π′′H)) ∈ R})

The interruptible CPA+ corresponding to the composite interruptible CPA+
Csr is referred in the following as D+

sr . Note that the path analysis allows to
store the same information in the set of reached states as the information that
is found in an abstract reachability tree (ART), a data structure often used in
software model checkers [Beyer et al. 2007]: the path-analysis state encodes the
path from the root of the ART to the current node.

130 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

Algorithm 5.3 ModelCheck(P, lerr ,M)
Input: a program P , an error location lerr of P ,

a lattice M of SCGs with finite height
Output: either a set of abstract states that overapproximates the set of reachable

states to witness safety,
or an error path to witness the existence of a feasible error path

Variables: an explicit-heap precision Θ, a shape-abstraction specification Ψ̂,
an ART A, a mapping E from types to sets of enabled SCGs

for each pointer type σ in P do
E(σ) := M

for each location l of P do
Ψ̂(l) := Ψ̂∅; Θ(l) := ∅;

reached := {((l0, G0, H0), ({lerr}, Ψ̂,Θ))};
frontier := {((l0, G0, H0), ({lerr}, Ψ̂,Θ))};
while true do

(reached, frontier) := PartialCPA+(D+
sr , P, reached, frontier);

if frontier = ∅ then
print “Yes. The program is safe. Certificate:” σ(reached); stop;

else if there is (p,G,H) in frontier s.t. last(p) = lerr then
let t be the program path for the sequence of locations p
(·,Γ) := Con(t);
if

∧
1≤i≤|p|

Γ(p) ` false; then // t is infeasible due to a too coarse precision

(reached, frontier , E) := Refine(t, reached, frontier ,M,E);
else // t is feasible; the error is really reachable

print “No. The program is unsafe. Counterexample path:” t; stop;
else // threshold exceeded, switch off explicit tracking

(reached, frontier , E) := Abstract(reached, frontier ,M,E);

5.4.5 Model-Checking Algorithm (ModelCheck)

Our analysis algorithm is based on the composite interruptible CPA+ described
in the previous section. Algorithm PartialCPA+ is called iteratively. While the
partial reachability analysis returns a nonempty frontier (i.e., the set of reached
states is not a complete overapproximation of the reachable states), we either
report an error path if a feasible error path has been found, and otherwise, we
adjust the precision and restart the analysis with a different initial precision.

Algorithm ModelCheck (Algorithm 5.3) takes as input a program P , an error
location lerr of P , and a lattice M of SCGs. The algorithm tries to prove
(or disprove) that lerr is not reachable in any concrete program execution. It
maintains a set of reachable states with precision and its frontier. In addition,
it maintains a mapping from program types to sets of enabled SCGs (subsets
ofM). Only enabled SCGs are considered during refinement. In a first step, the
algorithm initializes the set of reachable states with precision and its frontier:
initially, both contains an abstract state representing all states whose location
is the initial location of P ; and the initial composite precision consists of the

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 131

singleton {lerr}, a trivial shape precision and an empty set of tracked pointers at
every location. All SCGs are initially enabled for any type. Then a check-refine
loop is executed until either the program is declared safe or a feasible path to
the error location is found.

In every iteration, we first call procedure PartialCPA+ (Algorithm 5.2) with
the interruptible CPA+ D+

sr (defined in Section 5.4.4) to extend, for the given
program P , the given set of states with precision R towards a set of states
that is closed under abstract successors (i.e., the frontier is empty) starting the
exploration from its frontier F . Procedure PartialCPA+ stops if one of the
following conditions is fulfilled:

(a) The reachability analysis encounters an abstract state whose path ends at
the error location. The error abstract state is in the returned frontier.

(b) The reachability analysis reaches a fixpoint, i.e., the frontier becomes
empty, and no state in the reached set represents error states.

(c) The reachability analysis determines that the last computed abstract state
has an explicit heap suitable for abstraction. The frontier is nonempty but
the reached set contains no error state.

Algorithm ModelCheck distinguishes the different outcomes of PartialCPA+
based on the frontier. (1) If the frontier is empty, then the overall algorithm
can stop and report that the program is safe. (2) If the frontier is nonempty
but contains no error state, then the threshold for the explicit heap analysis was
reached; in other words, the explicit heap analysis has collected enough informa-
tion to guide the refinement of the shape-abstraction specification. Procedure
Abstract is called to analyze explicit heaps in order to restrict enabled SCGs,
to refine SCGs in the shape-abstraction specification, and to replace explicit
heaps in the reached set by shape graphs. (3) If the frontier is nonempty and
contains a state whose path ends at the error location, then either (3a) the path
is feasible, and the overall algorithm can stop and report an error, or (3b) the
path is infeasible, and procedure Refine will try to find a more suitable precision
because the path was encountered due to a too coarse precision. Procedure Re-
fine may fail due to the absence of a suitable, fine-enough SCG in the lattice of
SCGs. Note that Algorithm ModelCheck may not terminate, in case it produces
finer and finer precisions to rule out longer and longer infeasible error paths.

5.4.6 Algorithm for Abstraction from Explicit Heaps (Abstract)

132 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

Algorithm 5.4 Abstract(R,F,M,E)
Input: a set of abstract states with precision R and its frontier F ,

a set M of SCGs, and a type-to-SCGs mapping E
Output: a set of abstract states with precision and its frontier and

a type-to-SCGs mapping E
let π′ = ({lerr}, Ψ̂,Θ) be the precision of states in F
refined := ∅
for each abstract state ((p,G,H), ·) in F with H = (v, h) do
let l := last(p)
for each pointer p ∈ Θ(l) s.t. depth(H, v(p)) > k do

let σ be T (p);
refined := refined ∪ {σ}
choose (σ,m,D) ∈ Ψ̂(l)
// evaluate invariants on explicit heap, and update precisions
E(σ) := E(σ) ∩ SCGsFromExplicit(H, p)
let m′ be the coarsest SCG in E(σ)
replace (σ,m,D) by (σ,m′, D) in Ψ̂(l)
// switch to shape analysis mode
remove all x from Θ(l) s.t. T (x) = T (p)

// remove explicit heaps, and update shape graphs and precision
π′ = ({lerr}, Ψ̂,Θ)
Y := {x ∈ Xptr | T (x) ∈ refined}
for each abstract state ((l, G,H), π) in F do

let G′ := G tHeapToShape(H,Y, Ψ̂(l))
let H ′ := ForgetPtrs(H,Y)
replace ((l, G,H), π) by ((l, G′, H ′), π′) in R and F

return (R,F,E)

When the explicit heap analysis has generated sufficiently large explicit
heaps, Algorithm Abstract (Algorithm 5.4) is called to extract information from
explicit heaps in order to choose a suitable SCG and to abstract explicit heaps
to shape graphs. The algorithm takes as input a set of abstract states with
precision R and its frontier F , a lattice of SCGs, and a mapping E from types
to sets of enabled SCGs. Upon termination, the algorithm returns the updated
set of states with precision and its frontier, and the updated mapping.

The algorithm first determines all pointers that point into a data structure
whose depth exceeds the threshold k. Function SCGsFromExplicit analyzes an
explicit heap and returns all relevant SCGs: every SCG is annotated with a set
of invariants that must be fulfilled by explicit heaps for the SCG to be relevant
(e.g., all SCGs generating instrumentation predicates for trees are annotated
with the tree-ness invariant). For each SCG m, function SCGsFromExplicit
evaluates the invariants of m on explicit heap H, and if all those invariants are
fulfilled, the function enables m for its structure type. Then the precision is
updated: pointer p and all other pointers of the same type are removed from
the explicit-heap precision, and we refine the SCG of the chosen shape type to

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 133

be the coarsest enabled SCG for the structure type. After the refinement of the
SCG, we erase the portion of the explicit heap whose pointers are not tracked
anymore (function ForgetPtrs), and augment the corresponding shape region by
the result of abstracting the erased portion of the explicit heap to shape graphs
(function HeapToShape). Function ForgetPtrs takes as input an explicit heap H
and a set of pointers P and returns an explicit heap where the information about
any pointers in P and data structures pointed to by P are forgotten. Recall
that for an explicit heap and a pointer variable p, ReachAddr(H, p) denotes the
set of addresses reachable from p. Formally, we have:

ForgetPtrs((v, h), Y) = (v′, h′) if
(1) for every x in Xint , v

′(x) = v(x), and
(2) for every x in Xptr , if x ∈ Y then v′(x) = > else v′(x) = v(x), and
(3) h′ = {(a, F) ∈ h | a 6∈

⋃
y∈Y ReachAddr(H, v(y))}

The result of HeapToShape is a shape region with a single shape graph for each
shape class that results from applying the newly refined SCG to the current
tracking definitions, for those pointers erased from the explicit heap.

Example. Suppose that the analysis has computed the explicit heap graph
that we depicted in Figure 5.2(a) on page 110 and that the threshold is 3.
Figure 5.2(a) graphically depicts an explicit heap H = (v, h) with v = {l1 7→ 1}
and

h = { 1 7→ {data 7→ >, succ 7→ 2, prev 7→ 0},
2 7→ {data 7→ >, succ 7→ 3, prev 7→ 1},
3 7→ {data 7→ >, succ 7→ 4, prev 7→ 2},
4 7→ {data 7→ >, succ 7→ 5, prev 7→ 3},
5 7→ {data 7→ >, succ 7→ 0, prev 7→ 4} }

The depth of the heap starting from the address stored in l1 is depth(H, 1) = 5,
which exceeds the threshold. The set of SCGs for doubly-linked lists is included
in SCGsFromExplicit(H, {l1}) becauseH fulfills the invariants of a valid doubly-
linked list. An example of an SCG for doubly-linked lists is an SCG m1 that
generates binary predicates for fields succ and pred and the instrumentation
predicates cancel [succ,pred] and cancel [pred,succ]. The shape graph represented in
Figure 5.2(b) is a possible abstraction of the explicit heap represented in Fig-
ure 5.2(a), i.e., for a shape abstraction specification Ψ̂ tracking pointer l1 and us-
ing an SCG m1, HeapToShape(H, {l1}, Ψ̂) returns a shape region that contains
the shape graph depicted in Figure 5.2(b). The result of ForgetPtrs(H, {l1}) is
an empty heap H ′ = ({l1 7→ >}, ∅).

134 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

In the next iteration of reachability, the extension of the reached set will
continue from the frontier which contains abstract states with the newly com-
puted shape graphs. Note that converting an explicit heap to a shape graph
is significantly less expensive than obtaining the shape graph via abstract post
computations, and is similar to the precision adjustment function of the com-
posite CPA+ that combines an explicit-heap analysis with a shape analysis
(Section 4.4.6).

Theorem 5.3. Given a program P , a set of abstract states with precision R

and its frontier F ⊆ R, a lattice M of SCGs and a type-to-SCGs mapping E,
Abstract(R,F,M,E) terminates and returns (R′, F ′, E′) such that:

(1) [[σ(R)]] ⊆ [[σ(R′)]] and
(2) if Succ(P, [[σ(R \ F]])) ⊆ [[σ(R)]], then Succ(P, [[σ(R′ \ F ′)]]) ⊆ [[σ(R′)]].

Proof. The only operation that modifies abstract states is the abstraction from
explicit heaps to shape graphs. The theorem follows immediately from the
definitions of ForgetPtrs and HeapToShape: we have [[H]] ⊆ [[ForgetPtrs(H,Y)]]
and [[H]] ⊆ [[HeapToShape(H,Y, Ψ̂(l))]].

5.4.7 Algorithm for Shape Refinement (Refine)

When an infeasible error path is found, it is due to the shape precision being
too coarse. Algorithm Refine tries to produce a finer precision and to use it to
refine the reached set such that an error state for the same path does not occur
anymore when the reachability analysis is called on the refined reached set.
Algorithm Refine (Algorithm 5.5) takes as input a set R of reached states with
precision and its frontier F , a lattice of SCGs, and a mapping from types to sets
of enabled SCGs. The algorithm assumes that there is one state (p,G,H) in F
whose path p ends at the error location and is infeasible. Upon termination,
a refined set of states with (refined) precision and its frontier, and a (possibly
updated) mapping from types to sets of enabled SCGs are returned.

The first step of the algorithm analyzes the infeasible error path. We com-
pute the (inductive) interpolants of the (unsatisfiable) path formula correspond-
ing to the path from the root to node n, for every location on the path (Ex-
tractInterpolants). We use the interpolants to check whether we can find new
pointers or field assertions to track by analyzing atoms occurring in interpolants.
If we find a pointer that we have to track, we add it to the set of tracked sepa-
rating pointers, and add all its aliases to the set of tracked pointers. If it is the
first time we encounter a pointer, we need to know which kind of data structure

5.4. SHAPE ANALYSIS WITH ABSTRACTION AND REFINEMENT 135

Algorithm 5.5 Refine(t, R, F,M,E)
Input: a program path t, a set of abstract states with precision R and its frontier F ,

a set M of SCGs, and a type-to-SCGs mapping E
Output: a set of abstract states with precision and its frontier and

a type-to-SCGs mapping E
Variables: an interpolant map Π

let ({lerr}, Ψ̂,Θ) be the precision of the states in F ;
Π := ExtractInterpolants(t,Γ);
for i := 1 to |t| do
choose (σ,m,D) from Ψ̂(li), with D = (T, Ts, P)
// Step 1: Refine the tracking definitions
for each atom φ ∈ Π(li) do

if some pointer p occurs in φ, and type(p) matches σ then
add p and all elements of alias(p) to D.T
add p to D.Ts

if pointer p is dereferenced in φ then
add to D.P the field assertion corresponding to φ

// Step 2: Start explicit heap analysis or refine the SCG
for each pointer p in D.T do

if p 6∈ Θ(li) and m = m0 then
// p was not analyzed before, switch to explicit heap analysis mode
add p to Θ(li)

if p 6∈ Θ(li) and m 6= m0 then
// in shape analysis mode: binary-search refinement
m′ := FineTune(t,m,E(σ))
if m = m′ then // the binary search cannot refine; extend the search
add to E(σ) every m′′ ∈M s.t. m 6v m′′
m′ := FineTune(t,m,E(σ))

replace (σ,m,D) by (σ,m′, D) in Ψ̂(li)
if Θ(li) or Ψ̂(li) was changed then
remove from R and F all abstract states (p, ·, ·) such that li occurs in p;
add to F all abstract states (p, ·, ·) ∈ R s.t. last(p) is a predecessor of li;

if Ψ̂ and Θ did not change then
print “Refinement failed on path:” t; stop;

let R′ = {((p,G,H), ({lerr}, Ψ̂,Θ)) | ((p,G,H), ·) ∈ R and last(p) 6= lerr};
let F ′ = {((p,G,H), ({lerr}, Ψ̂,Θ)) | ((p,G,H), ·) ∈ F and last(p) 6= lerr};
return (R′, F ′, E)

136 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

it is pointing to in order to enable only a subset of the SCGs in M . To discover
this information, we cannot rely exclusively on syntactical type information.
For example, the types for doubly-linked lists and binary trees (without parent
pointers) have the same syntactical structure. We enable an explicit heap anal-
ysis of the data structure by adding the pointer to the precision of the explicit
heap analysis, and the SCG is the trivial SCG m0. If we considered the pointer
before, then the explicit analysis was switched on, and we refined the SCG to a
non-trivial SCG. In this case, the explicit heap analysis need not be run again
because it will not provide new information. Instead, we decide to fine-tune the
SCG by using a binary-search-like exploration of the lattice of enabled SCGs.
If the fine-tuning fails to yield a finer SCG, it may still be the case that there
exists a fine-enough SCG in the lattice of all SCGs that is prevented from being
found because the explicit heap analysis over-restricted the set of enabled SCGs.
In this case, we extend the set of enabled SCGs to include all SCGs from M

that are not coarser than the current SCG.

Procedure FineTune takes as input an infeasible program path t, the current
SCG m and a lattice M of SCGs. The procedure searches for the coarsest
SCG m′ such that m′ rules out path t, i.e., the abstract strongest postcondition
of the program path represents no states when SCG m is replaced by m′ in
the shape-abstraction specification. Note that we only compute shape regions
along the given path t at this point, not along any other program path. To make
the search more efficient, we try to prune in each iteration approximately half
of the candidate SCGs. Because of the monotonicity of SCGs, if a given SCG
cannot rule out t, then no coarser SCG can. The algorithm maintains a set C of
candidates. The set C is initialized with all SCGs in M that are finer than m.
We repeat the following steps until no more SCGs can be removed from C. We
select a subset S of SCGs as small as possible such that the set of SCGs coarser
than some SCG in S contains as many elements as the set of SCGs finer than
some SCG in S. If no SCG in S rules out t, we remove from C all SCGs coarser
or equal to a SCG in S; otherwise, we keep in C only those SCGs that are
coarser or equal to some SCG in S that rules out t. When the loop terminates,
if C = ∅, then the fine-tuning failed and we return m; otherwise, we choose one
SCG m′ in C that generates the fewest predicates when applied to the current
tracking definition, and return m′.

Theorem 5.4. Given a program P , a program path t, a set of abstract states
with precision R and its frontier F ⊆ R, a lattice M of SCGs and a type-
to-SCGs mapping E, if Refine(t, R, F,M,E) terminates normally and returns
(R′, F ′, E′) then:

5.5. IMPLEMENTATION 137

(1) [[σ(R)]] ∩ {(lerr , ·, ·) ∈ C} = ∅ and
(2) if Succ(P, [[σ(R \ F]])) ⊆ [[σ(R)]], then Succ(P, [[σ(R′ \ F ′)]]) ⊆ [[σ(R′)]].

Proof. Every time a refinement occurs at location l, we remove all states whose
path contains l and add to the frontier the abstract states whose location is a
predecessor of l. As a consequence, property (1) holds because the error states
are removed, and property (2) holds because we add the predecessor states to
the frontier.

Theorem 5.5. Given a program P , a location lerr , and a lattice M of SCGs:

(1) if ModelCheck(P, lerr ,M) terminates and report a safety certificate R, then
Reach(P, {(l0 , ·, ·) ∈ C}) ⊆ [[R]] and [[R]] ∩ {(lerr , ·, ·) ∈ C} = ∅; and

(2) if ModelCheck(P, lerr ,M) terminates and report an error path t, then t is
a feasible path containing lerr .

Proof. The theorem follows directly from Theorems 5.1, 5.2, 5.3 and 5.4.

Note that we do not guarantee that the analysis terminate. There are pro-
grams that result in an infinite sequence of refinements, in case the interpolation-
based counterexample analysis discovers new field predicates for longer pro-
gram paths. Predicate-abstraction based model-checkers share the same caveat.
Moreover, the overall algorithm may fail if the libraryM of SCGs do not contain
suitable SCGs. It is a fundamental shortcoming of our approach. In practice,
if the library is rich enough, the problem does not occur for a large class of
programs.

5.5 Implementation

The algorithm presented in this paper is implemented as an extension to Blast.
The implementation builds on our extension to Blast to support the CPA and
CPA+ frameworks. Tvla is integrated into Blast as a particular implementa-
tion of a shape-analysis module. In addition to the shape analysis discussed in
this paper, our implementation supports nullary predicate abstraction and its
refinement based on interpolants, similarly to lazy shape analysis [Beyer et al.
2006]. In the following we detail two important aspects of our implementation:
first we discuss how the library of shape class generators is implemented and
the default library that we provide with the tool; second we discuss alternative
methods to select appropriate SCGs based on information given by the user
(programmer or verification engineer).

138 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

Singly-linked list

Doubly-linked list Binary tree

Binary tree with parent pointer

Figure 5.5: Hierarchy of data structures. Finer data structures are drawn lower.

5.5.1 Library of Shape-Class Generators

Our algorithm relies on a pre-defined library of SCGs. In order to decouple
the specification of the library of SCGs from the implementation of the overall
verification algorithm, we make use of a domain-specific language (DSL) for
specifying SCGs. Code is generated from the DSL, compiled as a library, and
linked against the verification tool. As a result, the task of supporting new data
structures or to enhance existing SCGs is easy and decoupled from the analysis
and refinement engine.

The DSL is structured in entries. Each entry defines SCGs to analyze one
type of data structure (e.g., our implementation contains one DSL entry for
singly-linked lists, one for doubly-linked lists, one for binary trees, and one for
binary trees with parent pointers). Every entry in the DSL consists of three
parts:

1. the maximal set of core and instrumentation predicates that can be used
during the analysis (parametric in the tracking definition),

2. the definition of transfer functions to describe how predicate valuations
are modified by abstract post computations corresponding to program
operations, and

3. a set of invariants on explicit heaps such that if the invariants hold on
sample explicit heaps then the SCGs corresponding to the entry can be
enabled (used in the implementation of SCGsFromExplicit).

A refinement relation among DSL entries is specified separately. The refinement
relation allows to express that a data structure can also be seen as a simpler data
structure. For instance, a doubly-linked list can also be seen as a singly-linked
list (if we ignore one of the pointer fields).

5.5. IMPLEMENTATION 139

The set of predicates of a DSL entry (part 1) defines the most refined
SCG m>, i.e., it contains all predicates that could be tracked for the data
structure. However, not every predicate may be necessary to verify a program.
Therefore, one entry spans a lattice of SCGs rather than a single SCG. A shape
predicate p1 depends on a shape predicate p2 if p1 is an instrumentation predi-
cate and p2 occurs in the defining formula of p1. A DSL entry spans the lattice
of all SCGs m′ such that (a) m′ v m> and (b) for every tracking definition D,
the shape class S = m′(D) is such that if p1 is in S and predicate p1 depends on
predicate p2, then p2 is in S. The task of selecting an SCG within the lattice is
the responsibility of the FineTune function used in the Refine algorithm.

Table 5.1 lists the four DSL entries that we have implemented. Each row
of the table represents one DSL entry. For each entry, we give the name of the
data structure for which the entry is relevant; how many recursive fields are
tracked using binary core predicates; the instrumentation predicates defined by
the entry; and the invariants that explicit heaps should satisfy. The refinement
relation among entries is shown in Figure 5.5.

The instrumentation predicates that our implementation support are well-
known instrumentation predicates found in the literature [Sagiv et al. 2002]. We
detail thereafter the meaning of the instrumentation predicates. In the following,
p denotes any pointer variable; f, f1, f2 any recursive field, and v, v1, v2 any
shape graph node.

– Unary reachability reachability[p, f](v) holds if elements represented by
node v are reachable from the element pointed to by p, by following zero,
one or more f -fields.

– Binary reachability reachability2 [f](v1, v2) holds if elements represented
by node v2 are all reachable from any element represented by node v1 by
following zero, one or more f -fields.

– Unary cyclicity cyclicity[f](v) holds if the elements represented by v are
reachable from themselves by following one or more f -fields.

– Unary cancellation cancel[f1, f2](v) holds if, when field f1 of node v points
to node v′, then field f2 of v′ points back to v.

– Binary down points-to down[f1, f2](v1, v2) holds if field f1 or field f2 of v1

points to v2.

140 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

D
ata

structure
R
ec.

fields
Instrum

entation
predicates

/
Invariants

Singly-linked
list

(sll)
1
(n)

reachability[p
,n](v)

for
each

pointer
p

cyclicity[n](v)
—

D
oubly-linked

list
(dll)

2
(s,

p)
reachability2[f](v

1 ,v
2)

for
each

rec.
field

f
reachability[p

,f](v)
for

each
pointer

p,rec.
field

f
cyclicity[f](v)

for
each

rec.
field

f
cancel[s

,p],cancel[p
,s]

∀
p

1 ,p
2

:
(p

1 ->s==
p

2
→
p

2 ->p==
p

1)∧
(p

1 ->p==
p

2
→
p

2 ->s==
p

1)
B
inary

tree
w
ith-

out
parent

pointer
(tree)

2
(l,

r)
down[l

,r](v
1 ,v

2),down
∗[l
,r](v

1 ,v
2)

downReachability[p
,l
,r](v)

for
each

pointer
p

downC
yclicity[l

,r](v)
∀
p

:reach(p->l)∩
reach(p->r)=

∅
B
inary

tree
w
ith

parent
pointer

(tree+
p)

3
(l,

r,
p)

down[l
,r](v

1 ,v
2),down

∗[l
,r](v

1 ,v
2)

downReachability[p
,l
,r](v)

for
each

pointer
p

downC
yclicity[l

,r](v)
cancel[l

,p],cancel[r
,p]

∀
p

:
reach(p->l)∩

reach(p->r)=
∅

∀
p

1 ,p
2

:
(p

1 ->l==
p

2
→
p

2 ->p==
p

1)∧
(p

1 ->r==
p

2
→
p

2 ->p==
p

1)

Table
5.1:

Library
ofSC

G
used

in
the

experim
ents.

For
each

data
structure

(D
SL

entry),w
e
give

the
set

ofinstrum
entation

predicates
that

can
be

enabled,and
invariants

that
m
ust

hold
in

explicit
heaps

5.5. IMPLEMENTATION 141

– Unary downward reachability downReachability[p, f1, f2](v) holds if ele-
ments represented by node v are reachable from the element pointed to
by p, by following zero, one or more f1 or f2-fields.

– Unary downward cyclicity downCyclicity[f1, f2](v) holds if the elements
represented by v are reachable from themselves by following one or more
f1 or f2-fields.

For every data structure, we (maximally) track the following instrumentation
predicates:

– for singly-linked lists: reachability (unary) and cyclicity (unary);

– for doubly-linked lists: reachability (unary and binary) separately for each
pointers, cyclicity (unary), and cancellation (unary);

– for trees (with and without parent pointers): down points-to and its tran-
sitive closure (down∗, binary), downward reachability (unary), and down-
ward cyclicity (binary), and in addition, for trees with a parent pointer,
cancellation for left and parent, and right and parent (unary).

5.5.2 Manual Annotations of Data Types

When writing a program, programmers generally know the kind of data struc-
ture a pointer of a given type points to. For instance, if the programmer creates
a structure type struct tree_cell, its intention is likely to model a tree (rather
than a doubly-linked list). As a consequence, given a pointer type, the program-
mer would know which entries of the SCG library are relevant. Therefore, if
the verification tool knew this information, it would not have to run the explicit
analysis to guess which SCG to use. We designed a mechanism for the program-
mer (or the verification engineer) to communicate to the tool which SCGs to
use via code annotations.

For a given structure (struct) type of the C program, the programmer spec-
ifies which entry from the library of SCGs to use by creating an alias of the type
with a special name that the tools recognizes. More specifically, if a program
type T is aliased (using typedef) to a name of the form __SA__entry_..., then
only SCGs in the library corresponding to entry are enabled. For example,
suppose the program contains the following type:

struct tree_node {

tree_node *l;

142 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

tree_node *r;

void *data;

};

The programmer adds the following type alias to specify that struct tree_node

represents a tree:

typedef struct tree_node __SA__tree_l_r ;

Note that annotated code are valid C programs and the behavior of the program
is not affected by the annotation. In richer programming languages, instead of
using type aliases, a more elegant solution would be the use of an annotation
mechanism provided by the programming language (as for example annotations
in Java 1.5).

For many programs an even simpler heuristics can be used successfully to
identify the kind of data structures, based on the following simple observation:
a programmer is likely to give meaningful names to the types he declares. For
example, a type representing a tree is likely to contain ‘tree’ in its name. We
have implemented such a simple heuristics in our tool and it can be optionally
enabled by the user.

5.6 Experimental Evaluation

Based on the implementation described in the previous section, we evaluated
experimentally our approach on example programs manipulating different kind
of data structures.

5.6.1 Example Programs

We evaluate our technique on code taken from the open-source C library for
data-structures GDSL 1.4 3. We consider non-trivial low-level functions oper-
ating on doubly-linked lists and trees. Each function is inserted in client code,
non-deterministically simulating valid uses of the function. The client code
inputs arbitrary valid data structures to the function, and on return, checks
that a given property is preserved. Both the instance generation and the prop-
erty check are expressed as regular C code. In the case of property check,
we cannot rely on assertions because we are limited to what can be expressed

3Available at http://home.gna.org/gdsl/

5.6. EXPERIMENTAL EVALUATION 143

M
ax

im
al

SC
G

W
it
h
re
fin

em
en
t

Pr
og
ra
m

SC
G

#
in
st
r.

pr
ed

.
fa
m
ili
es

T
im

e
SC

G
#

in
st
r.

pr
ed
.

fa
m
ili
es

/
m
ax

#
re
fin

em
en
ts

A
nn

ot
at
io
n

Ex
pl
ic
it

ca
nc

el
_l

is
t_

li
nk

dl
l

3
10
.0

4
s

dl
l

1/
3

1
td
,1

sc
g

12
.6

5
s

13
.7

6
s

ca
nc

el
_l

is
t_

in
se

rt
_a

ft
er

dl
l

3
23
.6

2
s

dl
l

1/
3

1
td
,1

sc
g

24
.4

1
s

26
.8

2
s

ca
nc

el
_l

is
t_

in
se

rt
_b

ef
or

e
dl
l

3
30
.9

0
s

dl
l

3/
3

2
td
,2

sc
g

69
.0

1
s

77
.2

2
s

ca
nc

el
_l

is
t_

re
mo

ve
dl
l

3
4.

42
s

dl
l

2/
3

1
td
,1

sc
g

28
.4

9
s

29
.0

5
s

ac
yc

li
c_

li
st

_l
in

k
dl
l

3
11
.5

7
s

sll
2/
2

1
td
,1

sc
g

6.
32

s
6.

49
s

ac
yc

li
c_

li
st

_i
ns

er
t_

af
te

r
dl
l

3
24
.2

1
s

sll
2/
2

1
td
,1

sc
g

23
.5

7
s

26
.0

6
s

ac
yc

li
c_

li
st

_i
ns

er
t_

be
fo

re
dl
l

3
34
.5

3
s

dl
l

3/
3

2
td
,2

sc
g

80
.8

1
s

88
.2

1
s

ac
yc

li
c_

li
st

_r
em

ov
e

dl
l

3
4.

23
s

sll
2/
2

1
td
,2

sc
g

96
.7

7
s

99
.7

5
s

bi
nt

re
e_

ro
ta

te
_l

ef
t

tr
ee
+
p

5
>

90
00

s
tr
ee

2/
4

3
td
,2

sc
g

41
4.

28
s

52
1.

31
s

bi
nt

re
e_

ro
ta

te
_r

ig
ht

tr
ee
+
p

5
>

90
00

s
tr
ee

2/
4

3
td
,1

sc
g

41
9.

24
s

43
7.

30
s

bi
nt

re
e_

ro
ta

te
_l

ef
t_

ri
gh

t
tr
ee
+
p

5
>

90
00

s
tr
ee

2/
4

2
td
,2

sc
g

70
23
.4

1
s

74
01
.7

4
s

tr
ee

p_
ro

ta
te

_l
ef

t
tr
ee
+
p

5
>

90
00

s
tr
ee
+
p

2/
5

4
td
,2

sc
g

18
0.

58
s

66
.6

3
s

tr
ee

p_
ro

ta
te

_r
ig

ht
tr
ee
+
p

5
>

90
00

s
tr
ee
+
p

2/
5

4
td
,2

sc
g

40
2.

70
s

38
4.

19
s

tr
ee

p_
ro

ta
te

_l
ef

t_
ri

gh
t

tr
ee
+
p

5
>

90
00

s
tr
ee
+
p

2/
5

4
td
,2

sc
g

11
75
.1

4
s

11
89
.4

2
s

Ta
bl
e
5.
2:

Ve
rifi

ca
tio

n
tim

e
of

B
la

st
on

fu
nc

tio
ns

fr
om

th
e
G
D
SL

lib
ra
ry
,u

sin
g
(a
)m

ax
im

al
SC

G
,o

rs
ha

pe
re
fin

em
en
tw

ith
(b
)p

ro
gr
am

an
no

ta
tio

ns
or

(c
)
ex
pl
ic
it
he

ap
an

al
ys
is

to
de
te
rm

in
e
th
e
SC

G

144 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

with a C expression rather than considering more general assertion languages.
The benchmarks cancel_* and acyclic_* operate on doubly-linked lists, and
check, respectively, for the preservation of the structure of a doubly-linked list
(i.e., the backward pointer of the node pointed to by a given node’s forward
pointer points back to the given node, and vice versa), and for acyclicity fol-
lowing forward pointers. The benchmarks bintree_* and treep_* operate on
binary trees, and check, respectively, for the preservation of acyclicity following
left and right pointers, and for the validity of parent pointers with respect to
left and right pointers.

5.6.2 Results

All examples could be proved safe by Blast after a few refinement steps. Ta-
ble 5.2 reports the execution time of Blast on a GNU/Linux machine with an
Intel Core Duo 2 6700 processor and 4 GB of memory. The first part of the table
reports the results with the most refined (maximal) SCG used for all pointers
in the program, and therefore no refinement is needed. The first column reports
the kind of data structure and the number of instrumentation predicate fami-
lies used by the SCG. (We call instrumentation predicate family a collection of
predicates capturing a particular property, e.g., all the unary instrumentation
predicates for reachability form a predicate family; the unary instrumentation
predicate for cyclicity forms a predicate family; etc.) The second column re-
ports the verification time. The second part of the table reports the results
when refinement is used. The first column of this part of the table reports the
SCG and number of enabled instrumentation predicates families (compared to
maximum). The second column reports the number of each kind of refinements:
the first kind (td) corresponds to the refinement of a tracking definition (i.e., a
new pointer or a new field predicate is discovered), and the second kind (scg)
corresponds to the refinement of SCGs (i.e., new instrumentation predicates
are introduced). The information in the first and second columns is identical
for both configurations with refinement. To evaluate the impact of the explicit
heap analysis on performance, we replace in one experimental setting the pro-
cedure Abstract by a procedure that enables the suitable set of SCGs based on
our knowledge of the data structures, encoded as annotations for Blast in the
code. Therefore, the third column reports verification times for the experiments
when using annotations to determine the type of data structures (explicit heap
analysis disabled), and the fourth column, when using the explicit heap analysis
to infer the type of data structures. We run the explicit heap analysis until five

5.6. EXPERIMENTAL EVALUATION 145

different samples of data structures containing (at least) four structure nodes
are collected. In all examples, both tracking definitions and SCGs are refined.
In most examples, the finest SCG is not needed (only a subset of available pred-
icates is used). Note that for three out of four acyclic_* benchmarks, a shape
class for singly-linked lists (considering only the forward pointer) is sufficient to
prove safety.

The explicit heap analysis correctly identifies the data-structure in every
example. The run time for explicit-heap based refinement is comparable to
annotation-guided refinement. The variations between the two result from two
sources: (1) the overhead of performing the explicit heap analysis, and (2) the
abstraction from explicit heaps to shape graphs and the subsequent extension of
the set of reachable states. On all examples, the explicit heap analysis accounts
for a negligible fraction of the execution time. Most of the runtime is consumed
by (symbolic) shape operations in Tvla. On the one hand, some shape-graph
computations are saved. But on the other hand, depending on how large the
set of reachable states is when Abstract is executed, many explicit heaps may
abstract to the same shape graph, subsequently causing an overhead. Infeasible
error paths may also have different lengths resulting in different interpolation
and refinement timings. On small examples, the refinement contributes most of
the total execution time (up to nearly 50%): most of the time is spent in the
path simulations of FineTune. On larger examples, most of the time is spent
in the final iteration of the reachability analysis, in particular, while computing
abstract shape successors using Tvla. Overall, we conclude that the explicit
heap analysis provides reliable information for the refinement, for a reasonable
overhead.

Our refinement strategy outperforms the direct use of the most refined SCG
on large examples (involving trees), because the refinement allows for the use
of significantly less instrumentation predicates, compared to the most refined
SCGs. On smaller examples, though, the run time can be larger if refinement is
used, due to the high portion of time spent on refinement and the high number
of instrumentation predicates we need, compared to the most refined case. The
final reachability analysis sometimes takes significantly less time if the most
refined SCG is used; one particular case is the two list_remove examples. The
reason is that the SCG discovered by our refinement strategy (which only tracks
the forward pointer) happens to generate more different shape graphs than the
most refined SCG (which tracks both pointers), although the former generates
less predicates than the latter.

146 CHAPTER 5. SHAPE ABSTRACTION REFINEMENT

5.7 Conclusion

We developed a novel approach to the refinement of a particular kind of ab-
straction: shape abstraction based on logical structures. To express our new
algorithm, we have extended the framework presented in the previous chapter
(CPA+) to support the interruption of the analysis when a refinement is de-
sired (because large-enough explicit heaps have been computed) or when an
error path is encountered (because an abstract error has been found). The
main insight is the use of an explicit analysis in order to make good guesses as
to which abstraction are suitable and to restrict the search to relevant abstrac-
tions. Our experiments show that the mechanism we suggest is successful in
identifying data structures, and do not incur a significant overhead. We believe
that for other abstract domains, it make sense to take advantage of information
provided by a cheap, explicit analysis to guide the refinement.

CHAPTER 6

CONCLUSION

Software verification is an inherently difficult problem, on which a lively research
community is working. When the goal is as difficult as automatic software ver-
ification, it is imperative to bring to bear insights and optimizations no matter
if they originated in model checking, program analysis, or automated theorem
proving. The similarities between those approaches (and other approaches in-
cluding testing) and the need to make them work together have been stressed
several times by the community [Steffen 1991; Schmidt 1998; Cousot and Cousot
1995; Yorsh et al. 2006; McMillan 2009]. It is high time we abolished the ar-
tificial frontiers that have kept research communities segregated in the past if
we want to push the boundaries of programs, for which ever more complex
properties can be proven.

In this thesis we presented a unified framework for software verification.
Our approach intended to be pragmatic and practical. Configurable program
analysis captures the essence of overapproximation-based methods to software
verification. The key insight is that existing approaches can be viewed as par-
ticular instantiations (or configurations) of a generic verification algorithm. We
showed how the CPA framework enables to express classical approaches and
new approaches uniformly, in a way that make side-by-side comparison easier.
As such, we believe that it could be an excellent educational tool, where the un-
derstanding of the fundamental similarities and differences between algorithms
is made clear. It should be noted that it is not a replacement to existing frame-
works such as abstract interpretation. Our framework does not go in the same
theoretical depth as abstract interpretation as a general study of the relation
between abstract and concrete domains. Rather it focuses on the feature of

147

148 CHAPTER 6. CONCLUSION

the reachability algorithm and can build upon previous and future research on
improving abstract interpreters.

From an implementation perspective we strongly believe that the design
choices made while designing the CPA framework form a sound foundation
for a versatile implementation of program analyses. For the purpose of this
thesis we extended an existing model checker because it enabled us to quickly
prototype a working system based on existing building blocks from the Blast

model checker and the Tvla analyzer. It helped us validate our approach and
its applications. The group of Dirk Beyer has implemented over the last few
years an implementation of the CPA framework called CPAchecker [Beyer and
Keremoglu 2009]. Their implementation matches the theoretical concepts that
we presented and therefore provides an ideal experimentation field, where a
broad variety of abstract domains could be parameterized and combined in
novel ways.

We see a great potential in the idea of encapsulating orthogonal aspects of
an analysis in parameters of a generic algorithm. Parameterization enables easy
experimentation of different configurations. As a result, we are able to evaluate
experimentally the quality of certain choices and we can identify ‘sweet spots’
for the value of parameters for particular abstract domains or combinations of
abstract domains. In this thesis, we have defined four parameters that control
the analysis (transfer, merge, termination, precision adjustment). We believe
that the same idea could be applied to control other aspects of the analysis. An
obvious example is the exploration order, i.e., how to select the abstract state
to remove from the frontier Extreme cases would be DFS and BFS orders, and
intermediate solutions include random search and chaotic search. A study sim-
ilar to the study of Bourdoncle [1993] on the influence of the exploration order
could be conducted by considering the different values of the new operator. An
other example is the work of Beyer et al. on variable-size block encoding [Beyer
et al. 2009; Wendler 2010]. They studied the influence of the points at which
abstraction is performed for a Boolean predicate abstraction. One extreme,
small-block encoding, corresponds to the case where abstraction is performed
at every location; the other extreme, large-block encoding, corresponds to the
case where abstraction occurs only at loop heads. The latter was shown to be
most efficient for predicate abstraction.

Static analyses strive to prove safety, but when they fail, in general, little use-
ful information is provided to the user. Moreover, although the analysis might
have succeeded in proving some part of the program safe, the user has no easy
way of knowing which parts were successfully verified and which parts caused

149

the failure. An extension to our analysis algorithm could enable the analysis to
output an assumption under which the program is safe. Implementing such an
approach on top of our framework could provide a configurable way to control
how complete the safety proof is. It is yet another example of an orthogonal
parameter of an analysis that could be made configurable.

One theme that is pervasive to this thesis is the idea of combining analyses.
Combination enhances modularity because it allows to use different abstract
domains to adequately capture different aspects of concrete program states.
One example is the location domain that frees the other domains from track-
ing location information. Moreover, we have seen in three different contexts
that combining analysis generates better algorithms. First, combination on its
own provides more precise results than running analyses independently. Second,
combination in conjunction with dynamic precision adjustment allows analyses
of different precisions to collaborate so as to take advantage of the strengths of
each analysis. Third, combination in conjunction with refinement enables the
result of a cheap analysis to contribute information for the refinement of an
expensive analysis. For every of these directions, there is potential for future
research. Combination of analysis has received a lot of focus in the past; yet,
few approaches and tools are able to use a multitude of different analyses simul-
taneously. The uniformity of the CPA framework would enable to experiment
with the combination of an arbitrary large number of analyses, and an inter-
esting research question is how to determine which analysis to use for which
program variables, either based on the program structure (a priori heuristics)
or based on the partial verification results (as in CPA+). The least explored
area is the use of combinations for refinement, and we are convinced that refine-
ment strategies for domains other than three-valued-logic-based shape analysis
could be enhanced using information extracted from an explicit analysis or from
concrete program executions.

Our focus has been on reachable state space overapproximation. Under-
approximation techniques are equally interesting, in particular in the context
of bug finding. Some attempts have been made to integrate testing with soft-
ware verification [Yorsh et al. 2006; McMillan 2009] and approaches such as
directed testing are definitely at the border between symbolic approaches and
testing [Godefroid et al. 2005; Sen et al. 2005; Godefroid and Klarlund 2005]. A
framework similar to CPA in spirit but with different requirements can be de-
veloped to represent underapproximation approaches, or even combinations of
underapproximation and overapproximation methods. Such a framework would
open vast lines of research.

150 CHAPTER 6. CONCLUSION

As a final note, if software verification is to succeed in solving its grand
challenge [Hoare 2003], we need researchers to be able to exchange and reuse
each other’s ideas not only at a theoretical level but also at a practical level. The
lack of standard frameworks, input and output languages, and broad benchmark
sets results in a research field where it is hard to evaluate the real impact of
new solutions. We hope that our work is one step in the right direction, by
providing a unified and flexible framework, in which new solutions can be easily
compared head to head.

BIBLIOGRAPHY

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley.

Andrews, T., Qadeer, S., Rajamani, S. K., Rehof, J., and Xie, Y. 2004. Zing:
A model checker for concurrent software. In Proceedings of the 16th International
Conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science 3114. Springer, 484–487.

Balaban, I., Pnueli, A., and Zuck, L. D. 2005. Shape analysis by predicate
abstraction. In Proceedings of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI). Lecture Notes in Com-
puter Science 3385. Springer, 164–180.

Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey,
C., Ondrusek, B., Rajamani, S. K., and Ustuner, A. 2006. Thorough static
analysis of device drivers. In Proceedings of the 2006 EuroSys Conference. ACM,
73–85.

Ball, T., Podelski, A., and Rajamani, S. K. 2001. Boolean and cartesian ab-
stractions for model checking C programs. In Proceedings of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Lecture Notes in Computer Science 2031. Springer, 268–283.

Ball, T. and Rajamani, S. K. 2001. Automatically validating temporal safety
properties of interfaces. In Proceedings of 8th International SPIN Workshop on
Model Checking Software. Lecture Notes in Computer Science 2057. Springer,
103–122.

Ball, T. and Rajamani, S. K. 2002. The Slam project: Debugging system soft-
ware via static analysis. In Conference Record of the 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 1–3.

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and Leino, K. R. M.
2005. Boogie: A modular reusable verifier for object-oriented programs. In Pro-
ceedings of the 4th International Symposium on Formal Methods for Components
and Objects (FMCO). Lecture Notes in Computer Science, vol. 4111. Springer,
364–387.

Beckman, N., Nori, A. V., Rajamani, S. K., and Simmons, R. J. 2008. Proofs
from tests. In Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 3–14.

Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W., Wies,
T., and Yang, H. 2007. Shape analysis for composite data structures. In Pro-
ceedings of the 19th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science, vol. 4590. Springer, 178–192.

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M. E., and Sebastiani,
R. 2009. Software model checking via large-block encoding. In Proceedings of

151

152 BIBLIOGRAPHY

the 9th International Conference on Formal Methods in Computer-Aided Design
(FMCAD). IEEE, 25–32.

Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar, R. 2007. The software
model checker Blast. Int. J. Softw. Tools Technol. Transfer 9, 5-6, 505–525.

Beyer, D., Henzinger, T. A., and Théoduloz, G. 2006. Lazy shape analysis.
In Proceedings of the 19th International Conference on Computer Aided Verifi-
cation (CAV). Lecture Notes in Computer Science 4144. Springer, 532–546.

Beyer, D. and Keremoglu, M. E. 2009. CPAchecker: A tool for configurable
software verification. Tech. Rep. SFU-CS-2009-02, Simon Fraser University. Jan-
uary.

Beyer, D., Zufferey, D., and Majumdar, R. 2008. CSIsat: Interpolation for
LA+EUF. In Proceedings of the 20th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science 5123. Springer,
304–308.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., and Rival, X. 2002. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embedded software.
In The Essence of Computation: Complexity, Analysis, Transformation. Lecture
Notes in Computer Science 2566. Springer, 85–108.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Monniaux, D., and Rival, X. 2003. A static analyzer for large safety-
critical software. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI). ACM, 196–207.

Bourdoncle, F. 1993. Efficient chaotic iteration strategies with widenings. In Pro-
ceedings of the International Conference on Formal Methods in Programming
and Their Applications. Lecture Notes in Computer Science 735. Springer, 128–
141.

Chaki, S., Clarke, E. M., Groce, A., Jha, S., and Veith, H. 2004. Modular
verification of software components in C. IEEE Trans. Softw. Eng. 30, 6, 388–
402.

Chaki, S., Clarke, E. M., Groce, A., and Strichman, O. 2003. Predicate ab-
straction with minimum predicates. In Proceedings of the 12th IFIP WG 10.5
Advanced Research Working Conference on Correct Hardware Design and Verifi-
cation Methods (CHARME). Lecture Notes in Computer Science 2860. Springer,
19–34.

Chase, D. R., Wegman, M. N., and Zadeck, F. K. 1990. Analysis of point-
ers and structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (PLDI). ACM, 296–310.

Cimatti, A., Griggio, A., and Sebastiani, R. 2008. Efficient interpolant gener-
ation in satisfiability modulo theories. In Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Lecture Notes in Computer Science, vol. 4963. Springer, 397–
412.

Clarke, E. M., Biere, A., Raimi, R., and Zhu, Y. 2001. Bounded model checking
using satisfiability solving. Formal Methods in System Design 19, 1, 7–34.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM 50, 5, 752–794.

Clarke, E. M., Grumberg, O., and Peled, D. A. 1999. Model Checking. MIT.

BIBLIOGRAPHY 153

Clarke, E. M., Kroening, D., and Lerda, F. 2004. A tool for checking ANSI-
C programs. In Proceedings of the 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture
Notes in Computer Science 2988. Springer, 168–176.

Clarke, E. M., Kroening, D., Sharygina, N., and Yorav, K. 2005. SatAbs:
SAT-based predicate abstraction for ANSI-C. In Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Lecture Notes in Computer Science 3440. Springer, 570–574.

Codish, M., Mulkers, A., Bruynooghe, M., de la Banda, M. G., and
Hermenegildo, M. 1993. Improving abstract interpretations by combining do-
mains. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM). ACM, 194–205.

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Pasareanu, C., Robby,
Laubach, S., and Zheng, H. 2000. Bandera: Extracting finite-state mod-
els from Java source code. In Proceedings of the 22nd International Conference
on Software Engineering (ICSE). ACM, 439–448.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model
for the static analysis of programs by construction or approximation of fixpoints.
In Conference Record of 4th ACM Symposium on Principles of Programming
Languages (POPL). ACM, 238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frame-
works. In Conference Record of the 6th Annual ACM Symposium on Principles
of Programming Languages (POPL). ACM, 269–282.

Cousot, P. and Cousot, R. 1992. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Proceedings of the 4th
International Symposium on Programming Language Implementation and Logic
Programming (PLILP). Lecture Notes in Computer Science 631. Springer, 269–
295.

Cousot, P. and Cousot, R. 1995. Compositional and inductive semantic defini-
tions in fixpoint, equational, constraint, closure-condition, rule-based and game-
theoretic form. In Proceedings of the 7th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science 939. Springer,
293–308.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., and Rival, X. 2008. Combination of abstractions in the Astrée static
analyzer. In Proceedings of the 11th Asian Computing Science Conference on
Secure Software and Related Issues (ASIAN’06). Lecture Notes in Computer
Science 4435. Springer, 272–300.

Craig, W. 1957. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
J. Symb. Log. 22, 3, 250–268.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck,
F. K. 1989. An efficient method of computing static single assignment form. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles of
Programming Languages (POPL). ACM, 25–35.

Dams, D. and Namjoshi, K. S. 2003. Shape analysis through predicate abstrac-
tion and model checking. In Proceedings of the 4th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI). Lecture
Notes in Computer Science 2575. Springer, 310–324.

Davey, B. A. and Priestley, H. A. 1990. Introduction to Lattices and Order.
Cambridge University Press.

154 BIBLIOGRAPHY

Dhamdhere, D. M., Rosen, B. K., and Zadeck, F. K. 1992. How to analyze
large programs efficiently and informatively. In Proceedings of the ACM SIG-
PLAN’92 Conference on Programming Language Design and Implementation
(PLDI). ACM, 212–223.

Distefano, D., O’Hearn, P. W., and Yang, H. 2006. A local shape analysis based
on separation logic. In Proceedings of the 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture
Notes in Computer Science, vol. 3920. Springer, 287–302.

Dwyer, M. B. and Clarke, L. A. 1996. A flexible architecture for building data-
flow analyzers. In Proceedings of the 18th International Conference on Software
Engineering (ICSE). IEEE, 554–564.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C.,
Tschantz, M. S., and Xiao, C. 2007. The Daikon system for dynamic detec-
tion of likely invariants. Sci. Comput. Program. 69, 1-3, 35–45.

Esparza, J., Kiefer, S., and Schwoon, S. 2006. Abstraction refinement with
Craig interpolation and symbolic pushdown systems. In Proceedings of the
12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Lecture Notes in Computer Science 3920.
Springer, 489–503.

Field, J., Goyal, D., Ramalingam, G., and Yahav, E. 2003. Typestate verifica-
tion: Abstraction techniques and complexity results. In Proceedings of the 10th
International Symposium on Static Analysis (SAS). Lecture Notes in Computer
Science, vol. 2694. Springer, 439–462.

Fischer, J., Jhala, R., and Majumdar, R. 2005. Joining data flow with predi-
cates. In Proceedings of the 10th European Software Engineering Conference held
jointly with the 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE). ACM, 227–236.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B.,
and Stata, R. 2002. Extended static checking for Java. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design and Im-
plementation (PLDI). ACM, 234–245.

Floyd, R. W. 1967. Assigning meanings to programs. In Mathematical Aspects of
Computer Science. AMS, 19–32.

Godefroid, P. 1997. Model checking for programming languages using VeriSoft.
In Conference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL). ACM, 174–186.

Godefroid, P. and Klarlund, N. 2005. Software model checking: Searching for
computations in the abstract or the concrete. In Proceedings of the 5th Inter-
national Conference on Integrated Formal Methods. Lecture Notes in Computer
Science, vol. 3771. Springer, 20–32.

Godefroid, P., Klarlund, N., and Sen, K. 2005. Dart: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). ACM, 213–223.

Graf, S. and Saïdi, H. 1997. Construction of abstract state graphs with Pvs. In
Proceedings of the 9th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science 1254. Springer, 72–83.

Gulavani, B. S., Henzinger, T. A., Kannan, Y., Nori, A. V., and Rajamani,
S. K. 2006. Synergy: A new algorithm for property checking. In Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 117–127.

BIBLIOGRAPHY 155

Gulavani, B. S. and Rajamani, S. K. 2006. Counterexample-driven refinement for
abstract interpretation. In Proceedings of the 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science 3920. Springer, 474–488.

Gulwani, S. and Tiwari, A. 2006. Combining abstract interpreters. In Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 376–386.

Guo, B., Vachharajani, N., and August, D. I. 2007. Shape analysis with induc-
tive recursion synthesis. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). ACM, 256–265.

Gupta, A., Majumdar, R., and Rybalchenko, A. 2009. From tests to proofs. In
Proceedings of the 15th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science 5505. Springer, 262–276.

Havelund, K. and Pressburger, T. 2000. Model checking Java programs using
Java PathFinder. Int. J. Softw. Tools Technol. Transfer 2, 4, 366–381.

Hecht, M. S. 1977. Flow Analysis of Computer Programs. Elsevier North-Holland.
Hecht, M. S. and Ullman, J. D. 1973. Analysis of a simple algorithm for global

data flow problems. In Conference Record of the ACM Symposium on Principles
of Programming Languages (POPL). ACM, 207–217.

Henzinger, T. A., Jhala, R., Majumdar, R., and McMillan, K. L. 2004.
Abstractions from proofs. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 232–244.

Henzinger, T. A., Jhala, R., Majumdar, R., Necula, G. C., Sutre, G., and
Weimer, W. 2002. Temporal-safety proofs for systems code. In Proceedings
of the 14th International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science 2404. Springer, 526–538.

Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. 2002. Lazy ab-
straction. In Conference Record of the 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 58–70.

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Commun.
ACM 12, 10, 576–580.

Hoare, C. A. R. 2003. The verifying compiler: A grand challenge for computing
research. J. ACM 50, 1, 63–69.

Holzmann, G. J. 1997. The Spin model checker. IEEE Trans. Softw. Eng. 23, 5,
279–295.

Ivancic, F., Yang, Z., Ganai, M. K., Gupta, A., Shlyakhter, I., and Ashar,
P. 2005. F-Soft: Software verification platform. In Proceedings of the 17th
International Conference on Computer Aided Verification (CAV). Lecture Notes
in Computer Science 3576. Springer, 301–306.

Jhala, R. and Majumdar, R. 2009. Software model checking. ACM Computing
Surveys (CSUR) 41, 4, 1–54.

Jhala, R. and McMillan, K. L. 2005. Interpolant-based transition relation
approximation. In Proceedings of the 17th International Conference on Com-
puter Aided Verification (CAV). Lecture Notes in Computer Science, vol. 3576.
Springer, 39–51.

Jones, N. D. and Muchnick, S. S. 1982. A flexible approach to interprocedural
data-flow analysis and programs with recursive data structures. In Conference

156 BIBLIOGRAPHY

Record of the 9th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL). ACM, 66–74.

Kapur, D., Majumdar, R., and Zarba, C. G. 2006. Interpolation for data struc-
tures. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2005). ACM, 105–116.

Kennedy, K. W. 1975. Node listings applied to data flow analysis. In Conference
Record of the 2nd ACM Symposium on Principles of Programming Languages
(POPL). ACM, 10–21.

Kildall, G. A. 1973. A unified approach to global program optimization. In Con-
ference Record of the ACM Symposium on Principles of Programming Languages
(POPL). ACM, 194–206.

Kleene, S. C. 1987. Introduction to Metamathematics. North-Holland, Amsterdam,
Hollad.

Kröning, D., Groce, A., and Clarke, E. M. 2004. Counterexample-guided ab-
straction refinement via program execution. In Proceedings of the 6th Interna-
tional Conference on Formal Engineering Methods, Formal Methods and Soft-
ware Engineering (ICFEM). Lecture Notes in Computer Science 3308. Springer,
224–238.

Lam, P., Kuncak, V., and Rinard, M. C. 2005. Hob: A tool for verifying data
structure consistency. In Proceedings of the 14th International Conference on
Compiler Construction (CC). Lecture Notes in Computer Science, vol. 3443.
Springer, 237–241.

Leino, K. R. M. and Nelson, G. 1998. An extended static checker for Modula-3.
In Proceedings of the 7th International Conference on Compiler Construction
(CC). Lecture Notes in Computer Science 1383. Springer, 302–305.

Lerner, S., Grove, D., and Chambers, C. 2002. Composing data-flow analy-
ses and transformations. In Conference Record of the 29th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 270–282.

Lev-Ami, T. and Sagiv, M. 2000. Tvla: A system for implementing static analy-
ses. In Proceedings of the 7th International Symposium on Static Analysis (SAS).
Lecture Notes in Computer Science 2280. Springer, 280–301.

Loginov, A., Reps, T. W., and Sagiv, M. 2005. Abstraction refinement via induc-
tive learning. In Proceedings of the 17th International Conference on Computer
Aided Verification (CAV). Lecture Notes in Computer Science 3576. Springer,
519–533.

Martin, F. 1998. Pag: An efficient program analyzer generator. Int. J. Softw.
Tools Technol. Transfer 2, 1, 46–67.

Mauborgne, L. and Rival, X. 2005. Trace partitioning in abstract interpretation
based static analyzers. In Proceedings of the 14th European Symposium on Pro-
gramming on Programming Languages and Systems (ESOP). Lecture Notes in
Computer Science 3444. Springer, 5–20.

McMillan, K. L. 2003. Interpolation and SAT-based model checking. In Pro-
ceedings of the 15th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science 2725. Springer, 1–13.

McMillan, K. L. 2005a. Applications of craig interpolants in model checking. In
Proceedings of the 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science, vol. 3440. Springer, 1–12.

BIBLIOGRAPHY 157

McMillan, K. L. 2005b. An interpolating theorem prover. Theor. Comput.
Sci. 345, 1, 101–121.

McMillan, K. L. 2008. Quantified invariant generation using an interpolating
saturation prover. In Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture
Notes in Computer Science, vol. 4963. Springer, 413–427.

McMillan, K. L. 2009. What’s in common between test, model checking, and de-
cision procedures? In Proceedings of the 14th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS). Lecture Notes in Computer
Science, vol. 5825. Springer, 35–36.

Musuvathi, M., Park, D. Y. W., Chou, A., Engler, D. R., and Dill, D. L.
2002. Cmc: A pragmatic approach to model checking real code. In Proceedings
of the 5th Symposium on Operating System Design and Implementation (OSDI).
USENIX.

Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. 2002. Cil: In-
termediate language and tools for analysis and transformation of C programs.
In Proceedings of the 11th International Conference on Compiler Construction
(CC). Lecture Notes in Computer Science 2304. Springer, 213–228.

Nelson, G. and Oppen, D. C. 1979. Simplification by cooperating decision pro-
cedures. ACM Trans. Program. Lang. Syst. 1, 2, 245–257.

Nielson, F., Nielson, H. R., and Hankin, C. 1999. Principles of Program Anal-
ysis. Springer.

O’Hearn, P. W., Reynolds, J. C., and Yang, H. 2001. Local reasoning about
programs that alter data structures. In Proceedings of the 15th International
Workshop on Computer Science Logic (CSL). Lecture Notes in Computer Sci-
ence, vol. 2142. Springer, 1–19.

Podelski, A. and Wies, T. 2005. Boolean heaps. In Proceedings of the 12th In-
ternational Symposium on Static Analysis (SAS). Lecture Notes in Computer
Science, vol. 3672. Springer, 268–283.

Podelski, A. and Wies, T. 2010. Counterexample-guided focus. In Proceedings of
the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 249–260.

Reineke, J. 2005. Shape analysis of sets. M.S. thesis, Saarland University, Ger-
many.

Reps, T. W., Horwitz, S., and Sagiv, M. 1995. Precise interprocedural
data-flow analysis via graph reachability. In Conference Record of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM, 49–61.

Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of the 17th IEEE Symposium on Logic in Computer Science
(LICS). IEEE Computer Society, 55–74.

Rinetzky, N., Sagiv, M., and Yahav, E. 2004. Interprocedural functional shape
analysis using local heaps. Tech. Rep. TAU-CS-26/04, Tel-Aviv University.

Rybalchenko, A. and Sofronie-Stokkermans, V. 2007. Constraint solving for
interpolation. In Proceedings of the 8th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI). Lecture Notes in
Computer Science 4349. Springer, 346–362.

Sagiv, M., Reps, T. W., and Wilhelm, R. 2002. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst. 24, 3, 217–298.

158 BIBLIOGRAPHY

Saidi, H. 2000. Model-checking-guided abstraction and analysis. In Proceedings of
the 7th International Symposium on Static Analysis (SAS). Lecture Notes in
Computer Science 1824. Springer, 377–396.

Schmidt, D. A. 1998. Data-flow analysis is model checking of abstract interpre-
tations. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 38–48.

Sen, K., Marinov, D., and Agha, G. 2005. Cute: A concolic unit testing engine
for C. In Proceedings of the 10th European Software Engineering Conference held
jointly with the 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE). ACM, 263–272.

Sharir, M. 1980. A new approach to flow analysis in optimizing compilers. Com-
puter Languages 5, 141–153.

Steffen, B. 1991. Data-flow analysis as model checking. In Proceedings of the
International Conference on Theoretical Aspects of Computer Software (TACS).
Springer, 346–365.

Strom, R. E. and Yemini, S. 1986. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Softw. Eng. 12, 1, 157–171.

Tjiangan, S. W. K. and Hennessy, J. 1992. Sharlit: A tool for building opti-
mizers. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation (PLDI). ACM, 82–93.

Wendler, P. 2010. Software verification based on adjustable large-block encoding.
M.S. thesis, University of Passau, Germany.

Wies, T. 2009. Symbolic shape anaylsis. Ph.D. thesis, University of Freiburg, Ger-
many.

Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., and
O’Hearn, P. W. 2008. Scalable shape analysis for systems code. In Proceedings
of the 20th International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 5123. Springer, 385–398.

Yorsh, G., Ball, T., and Sagiv, M. 2006. Testing, abstraction, theorem proving:
Better together! In Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA). ACM, 145–156.

Yorsh, G., Reps, T. W., Sagiv, M., and Wilhelm, R. 2007. Logical characteri-
zations of heap abstractions. ACM Trans. Comput. Log. 8, 1, 5.

CURRICULUM VITAE

Grégory Théoduloz

Education

2006 – 2010 Ph.D. in Computer Science
Ecole Polytechnique Fédérale de Lausanne (EPFL)

2001 – 2006 M.Sc. in Computer Science
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Experience

Spring 2010 Teacher of “Theoretical Computer Science”
Ecole Polytechnique Fédérale de Lausanne (EPFL)

2006 – 2009 Teaching Assistant for “Theoretical Computer Science”
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Summer 2006 Visiting student with Prof. Rupak Majumdar
University of California, Los Angeles

2005 – 2006 Teaching and Research Assistant
Models and Theory of Computation, EPFL

2003 – 2005 Teaching Assistant for undergraduate and graduate classes
School of Computer and Communication Sciences, EPFL

Publications

1. Grégory Théoduloz, “Integrating Shape Analysis in the Model Checker
Blast”, Master thesis, Ecole Polytechnique Fédérale de Lausanne, 2006.

159

160 CURRICULUM VITAE

2. Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz, “Lazy Shape
Analysis”, Proceedings of the 18th International Conference on Computer-
Aided Verification (CAV), Lecture Notes in Computer Science, Springer,
2006.

3. Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz, “Configurable
Software Verification: Concretizing the Convergence of Model Checking
and Program Analysis”, Proceedings of the 19th International Conference
on Computer-Aided Verification (CAV), Lecture Notes in Computer Sci-
ence, Springer, 2007.

4. Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz, “Program
Analysis with Dynamic Precision Adjustment”, Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 29–38. IEEE, 2008.

5. Dirk Beyer, Thomas A. Henzinger, Grégory Théoduloz, and Damien Zuf-
ferey, “Shape Refinement through Explicit Heap Analysis”, Proceeding of
the 13th International Conference on Fundamental Approaches to Soft-
ware Engineering (FASE 2010), Lecture Notes in Computer Science 6013,
pages 263–277. Springer, 2010.

Academic Awards

1. Cousin Award (best grade average first and second undergraduate years),
2003

2. Dommer Award (best grade average for engineering sections), 2006

3. Elca Award (best M.Sc. in Computer Science grade average), 2006

4. Unicible Award (Master thesis in Computer Science of an outstanding
quality), 2006

5. Microsoft Research PhD Scholarship (3 years), 2007

Coordinates

Models and Theory of Computation
School of Computer and Communication Sciences
Ecole Polytechnique Féderale de Lausanne (EPFL)
CH-1015 Lausanne

Email: gregory.theoduloz@a3.epfl.ch
Web: http://me.gtz.ch

161

Personal Details

Date of birth: 7 February 1983

Citizenship: Swiss

Marital status: Single

	Title
	Abstract
	Résumé
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Previous Publications
	Introduction
	A Unified and Flexible Analysis Framework
	Combination of Analyses
	Dynamically Adjustable Precision
	Combination of Analyses for Refinement
	Structure of the Thesis

	Preliminaries
	Programs
	Control-Flow Automata and Types
	Concrete Semantics

	Verification Problem
	Shape Analysis
	Shape Classes
	Two-valued Shape Graphs
	Three-valued Shape Graphs, Abstraction and Embedding
	Abstract Program Semantics
	Shape Abstraction and Shape Regions
	Tracking Definitions and Shape-Class Generators

	Configurable Program Analysis
	Motivation
	Formalism and Algorithm
	Preliminaries
	Configurable Program Analysis (CPA)
	Reachability Algorithm for CPA
	CPA for Location Analysis
	CPA for Predicate Analysis
	CPA for Shape Analysis
	Composite Program Analysis

	Comparison with Data-flow Analysis and Abstract Interpretation
	Encoding a Traditional Program Analysis as a CPA
	Encoding a CPA as a Join-Based Analysis

	Application: Configuring Compositions of Analyses
	Configuring Predicate Abstraction + Shape Analysis
	Configuring Predicate Abstraction + Pointer Analysis

	Related Work
	Conclusion

	Dynamic Precision Adjustment
	Motivation
	Related Work
	Program-Analysis Framework
	CPA with Dynamic Precision Adjustment (CPA+)
	Reachability Algorithm for CPA+
	Composition for CPA+

	Application: Combining Explicit and Symbolic Program Analyses
	CPA+ for Location Analysis
	CPA+ for Predicate Analysis
	CPA+ for Shape Analysis
	CPA+ for Explicit Value and Heap Analysis
	Composition of Explicit, Predicate, and Location Analysis
	Composition of Explicit, Shape, and Location Analysis

	Experimental Evaluation
	Explicit Value Analysis and Predicate Analysis
	Explicit Heap Analysis and Shape Analysis

	Conclusion

	Shape Abstraction Refinement
	Motivation
	Related Work
	Preliminaries
	Path Formulas
	Interpolation

	Shape Analysis with Abstraction and Refinement
	Interruptible CPA+ and Reachability Algorithm
	Interruptible CPA+ for Path Analysis
	Interruptible CPA+ for Explicit Heap Analysis
	Composite Interruptible CPA+ for Path, Shape, andExplicit Heap Analysis
	Model-Checking Algorithm (ModelCheck)
	Algorithm for Abstraction from Explicit Heaps (Abstract)
	Algorithm for Shape Refinement (Refine)

	Implementation
	Library of Shape-Class Generators
	Manual Annotations of Data Types

	Experimental Evaluation
	Example Programs
	Results

	Conclusion

	Conclusion
	Bibliography
	Curriculum Vitae

