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Abstract

This paper addresses the fundamental problem of computing sta-
ble medial representations of 3D shapes. We propose a spatially
adaptive classification of geometric features that yields a robust al-
gorithm for generating medial representations at different levels of
abstraction. The recently introduced continuous scale axis trans-
form serves as the mathematical foundation of our algorithm. We
show how geometric and topological properties of the continuous
setting carry over to discrete shape representations. Our method
combines scaling operations of medial balls for geometric simplifi-
cation with filtrations of the medial axis and provably good conver-
sion steps to and from union of balls, to enable efficient processing
of a wide variety shape representations including polygon meshes,
3D images, implicit surfaces, and point clouds. We demonstrate the
robustness and versatility of our algorithm with an extensive vali-
dation on hundreds of shapes including complex geometries con-
sisting of millions of triangles.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling;

Keywords: medial axis, stability, scale axis, geometry representa-
tions, shape analysis

1 Introduction

Geometric shape representations are at the core of algorithms in
computer graphics and geometric modeling. Two main classes are
prevalent today: Explicit representations store a set of primitives,
such as points, edges, or polygons, to define a continuous boundary
surface using appropriate interpolation schemes. Since the latter
commonly make use of a (local) parameterization, these represen-
tations are also referred to as parametric surfaces. The second main
class are implicit representations that model a surface as a level-set
of some scalar function defined over the embedding domain. A
popular variant are distance functions that represent the (signed)
distance to the surface for each point of the ambient space.

In this paper we focus on a third alternative: Medial representa-
tions, which can be considered a hybrid of explicit and implicit rep-
resentations. They explicitly store primitives (e.g., points, lines or
polygons) deeply in the interior of the shape that carry distance in-
formation to its boundary. As a result, medial representations give
direct access to both the shape interior and its boundary, enabling a
variety of applications in shape analysis, recognition, segmentation,
abstraction, or meshing. For a detailed discussion on applications,
we refer the reader to [Pizer et al. 2008], where also examples are
shown in geography, visual arts, motion planning, medicine, biol-
ogy, perception, or crystallography.

Figure 1: Different simplification levels of the discrete scale axis
(purple) capture the dominant geometric features and allow shape
representations at different levels of abstraction (transparent).

The most prominent medial representation is the medial axis trans-
form [Blum 1967]. Given a shape S ⊂ IRd, the medial axis MS

is the set of all points in the interior of S with at least two closest
points on the boundary of S. For shapes in 3D, the medial axis is
composed of 2D sheets that can degenerate into curves and single
points. The medial axis transform also stores for every point onMS

its distance to the boundary of S. An important characteristic of this
representation is bijectivity: Any closed shape has a unique medial
axis transform and the boundary of a shape is defined exactly by its
medial axis and the corresponding distance values. However, the
medial axis lacks a crucial property, namely stability. Here stabil-
ity means that two shapes that are geometrically close should also
be close in terms of representation. Unfortunately, the medial axis
is unstable: arbitrarily small changes of the shape can lead to large
changes of its medial axis (see Figure 2). This renders the medial
axis impractical in most applications, since geometric data is often
imprecise due to noise or approximation in discrete representations.

A common approach to obtain practically useful medial representa-
tions is to discard parts of the medial axis that are deemed unstable,
effectively trading exactness for stability. Typically, pruning is per-
formed using a uniform local threshold at every medial axis point,
e.g., on the angle formed by the vectors to the closest neighbors on
the shape boundary [Attali and Montanvert 1996], or the circumra-
dius of these closest neighbors [Chazal and Lieutier 2005]. How-
ever, it is well-known that this local filtering can lead to undesirable
results for shapes with features at different scales [Pizer et al. 2003;
Pizer et al. 2008; Attali et al. 2009] (see also Figure 2). We address
this issue and propose a global approach that achieves significantly
better results for a large class of shapes. Our method is based on
the scale-adaptive ordering of features originating from the theory
of the scale axis transform [Giesen et al. 2009], and defines a whole
family of medial representations at different levels of abstraction,
called scale axis representations (see Figure 1).

Contributions. The central contribution of this paper is a robust
algorithm for computing stable medial representations that faith-
fully capture the geometric and topological features of a 3D shape.
Our algorithm performs a multiplicative scaling of medial balls to



obtain a scale-adaptive ordering of geometric features. This con-
struction, in conjunction with topology-preserving medial axis fil-
tration techniques, allows the computation of practical scale axis
representations for a specific class of shapes, the union of a finite
number of balls. To complete our pipeline, we present provably
good conversion algorithms to and from union of balls. Combining
these two main components, our method becomes a general con-
version tool from polygonal meshes, 3D images, point sets, and
implicit functions to medial representations. To demonstrate the
robustness and versatility of our algorithm we present an extensive
empirical validation on hundreds of shapes, illustrating potential
benefits for geometry processing applications.

Related Work. Numerous geometry representations and shape
descriptors related to medial or local symmetry structures have been
proposed in the past, including curve skeletons (see [Cornea et al.
2007] for an extensive survey), chordal axes [Prasad 1997], sym-
metry sets [Bruce et al. 1985], or the planar reflective symmetry
transform [Podolak et al. 2006]. We refer the reader to the recent
book [Pizer et al. 2008] for a detailed review and focus here on ap-
proaches directly based on the medial axis. We restrict our discus-
sion to algorithms that are not limited to 2D geometry, but suitable
for general 3D shapes also.

Robustly computing the exact medial axis is feasible only for a lim-
ited class of 3D shapes. Examples are the algorithm of Amenta et
al. [2001] to compute the medial axis of a union of balls and the
method introduced by Culver et al. [2004], which can handle poly-
hedrons of up to a few hundred faces. More common are approxi-
mation algorithms that have been proposed for a wide variety of ge-
ometry representations. Siddiqi et al. [2002] compute medial axis
approximations on 3D voxel grids by detecting shocks in a numer-
ically tracked level set of the distance function using flux computa-
tions. Another strategy labels voxels as belonging to the medial axis
based on functions evaluated on voxel neighborhoods and iterative
voxel pruning (e.g. [Svensson 2001]). In computational geome-
try, various methods have been introduced that process a sampling
of the shape boundary given as an unorganized point set [Amenta
et al. 2001; Dey and Zhao 2004; Chazal and Lieutier 2005]. Typi-
cally, such algorithms output a carefully chosen subset of Voronoi
faces or weighted Delaunay triangles derived from the input points.
Polygonal representations are either converted to a sample set [Dey
et al. 2003] or a voxel image [Sud et al. 2005; Foskey et al. 2003;
Stolpner and Whitesides 2009], or processed directly as in [Belyaev
et al. 2007]. However, the latter approach produces results that typ-
ically depend strongly on the meshing of the input shape.

Numerous constructions have been proposed to address the insta-
bility of the medial axis. The majority of these methods compute
an importance value for every medial axis point and discard me-
dial branches with importance below a given threshold. The λ-
medial axis [Chazal and Lieutier 2005; Chaussard et al. 2009] uses
the circumradius of the closest boundary points as the importance
value for this pruning operation. While this criterion yields a prov-
ably stable subset of the medial axis for small enough values of the
global parameter λ, this approach does not respect different scales
apparent in the object. Another popular criterion is based on the ob-
ject angle, i.e., the angle formed by a medial point with its closest
boundary points [Attali and Montanvert 1996; Amenta et al. 2001;
Dey and Zhao 2004; Foskey et al. 2003; Sud et al. 2005]. The
object angle adapts better to the local geometric scale, but yields
simplifications of different topological types (see Figure 2).

Both object angle and circumradius are local criteria in the sense
that they consider geometric information extracted from a single
medial ball to determine the importance of the corresponding me-
dial axis point. In order to detect higher level saliency of me-
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Figure 2: Instability of the medial axis. Shapes that are geomet-
rically close can have drastically different medial axes. Existing
criteria to mitigate instability based on pruning by object angle
and circumradius of the closest points produce unsatisfactory re-
sults if the shapes have features at different scales. The discrete
scale axis representations locally adapts to the feature size, yielding
more salient shape simplifications at different levels of abstraction.

dial axis points, several global methods exploit the fact that a 2D
shape is implicitly decomposed into two or more parts at every me-
dial ball (see the Domain Decomposition Lemma in [Choi et al.
1997]). Unfortunately, such a property does not hold for 3D ge-
ometry (see Section 6.2.3 in [Pizer et al. 2008]) and the exten-
sion of the 2D methods is problematic. As an alternative, Tam
and Heidrich [2003] compute saliency based on volume approxi-
mations, while Sud et al. [2005] use global connectivity informa-
tion to control the topology of an object angle filtration. Ward and
Hamarneh [2009] proposed statistical methods to identify stable
medial points of an entire group of shapes, and Styner et al. [2003]
exploit shape correspondences to compute stable and consistent
representations. While these global 3D methods perform well in
specific domains where multiple shapes of the same type are avail-
able (e.g. medical data sets of multiple patients), they are not appli-
cable for the general problem of finding a stable medial representa-
tion of a single 3D shape that we consider here.

Instead of pruning the medial axis, another strategy is to directly
modify the input shape and consider the medial axis of the modified
shape as the stable representation. Since smoothing the boundary
implicitly removes many undesired medial points, various numer-
ical methods incorporate smoothing in the distance field estima-
tion [Rumpf and Telea 2002]. However, choosing the right amount
of smoothing can be difficult or impossible for complicated shapes
with salient features at multiple scales. In general, as numerous
researchers comment (e.g. [Pizer et al. 2003; Pizer et al. 2008; At-
tali et al. 2009]), computing medial representations that are stable
with respect to perceptually small changes of the shape remains an
unsolved problem in 3D.

Our solution to this problem builds on the theory of the scale axis
transform that uses a scaling of medial balls to identify significant
features of the shape [Giesen et al. 2009]. The simplicity of this
construction makes the scale axis transform amenable to a rigor-
ous theoretical analysis. Giesen and co-workers present a detailed
mathematical study of the shape evolution under the scaling of me-
dial balls in the continuous setting, i.e., for infinite sets of balls.
Using the theory of semi-concave functions and non-smooth analy-
sis, they prove that the scale axis preserves the topology of the input
for simplification factors s smaller than a shape-dependent bound.



input
shape

union of
balls

medial
axis

grown 
balls

scale
axis

shrunken
balls

simplified
shape

conversion MAT growing MAT* shrinking conversion

Figure 3: Our processing pipeline for computing discrete scale axis representations for 3D shapes. ’MAT’ denotes the medial axis transform
while ’MAT*’ indicates the medial axis transform followed by a topology-preserving angle filtration.

In our work, we exploit the simplicity of the scale axis construction
to implement an effective algorithm for computing stable medial
representations for discrete 3D shapes.

Overview. Our method for computing medial representations fits
into the general class of algorithms that follow the approximation
paradigm described in [Attali et al. 2009]. The main strategy is
to approximate a given shape S by a shape U whose medial axis
MU can be computed exactly, and to simplify MU yielding a sta-
ble medial representation of S. Our choice for the approximating
shape U is a union of balls, a decision motivated by several reasons:
Firstly, any solid in IR3 can be approximated to arbitrary precision
by a finite union of balls. Secondly, the union of balls is one of the
very few shape classes for which the medial axis can be computed
exactly. Most importantly, for this class of shapes, we can design
an efficient scale-adaptive medial axis simplification algorithm as
a discrete version of the continuous scale axis. This algorithm is a
combination of multiplicative scaling operations from the definition
of the scale axis, and a topology-preserving angle filtration of the
medial axis. More precisely, we grow a subset of the medial balls
of the union of balls, compute the medial axis of the grown shape,
apply an angle filtration on this medial axis, and shrink a carefully
sampled set of medial balls back to the original scale. This simpli-
fied medial axis transform is the discrete scale axis representation.
We can compute an explicit or implicit representation of the simpli-
fied shape from the set of shrunken balls. The complete processing
pipeline of our method is shown in Figure 3.

2 Conversion to Union of Balls

The first step of our pipeline is the conversion of an input shape S
into a finite union of balls U that approximates S within some user-
specified tolerance δ, in our setting a distance value expressed rel-
ative to the diagonal of the bounding box of the input. For this
conversion we propose an output-sensitive algorithm with mathe-
matical guarantees on the quality of the approximation and bounds
on the number of balls necessary. More precisely, our conversion
algorithm guarantees that the computed union of balls is close to
the input shape in Hausdorff distance and has the same homotopy
type. Similar results have been presented for shapes represented by
a dense boundary sampling, first in [Amenta and Kolluri 2000] and
later in more detail in [Amenta et al. 2001]. Our approach extends
these results to other shape representations like polygonal meshes,
implicit surfaces and 3D images. The basic idea is to find a set
of “large” balls – called polar balls – deep within the shape, using
carefully chosen sample points on the shape boundary.

Polar balls. Our algorithm exploits properties of the polar balls of
a sampling of the shape boundary. These balls are derived from the

Voronoi diagram of the sample points. Let us recall the following
definitions: a Voronoi vertex is a point with four or more closest
sample points. The corresponding Voronoi ball is the unique ball
centered at the vertex that contains the closest sample points in its
boundary. For every sample point there is an inner pole, namely
the farthest Voronoi vertex in the intersection of the shape and the
Voronoi cell of the sample point. Amenta et al. [2001] prove in the
context of surface reconstruction that the inner poles converge to the
medial axis of the shape as the density of the sampling increases.
They also show that the union of polar balls, i.e., the Voronoi balls
corresponding to inner poles, provides a good approximation of a
shape. These results hold for surface samples of smooth surfaces as
defined by the ε-sampling condition [Amenta and Bern 1998].

Sampling. To exploit the results of Amenta et al. [2001], we need
to compute an appropriate sampling of the boundary surface of the
input shape S. We use the method of [Boissonnat and Oudot 2005]
that incrementally builds a set of sample points and an approximat-
ing surface mesh, until the approximation tolerance δ is met. The
samples are generated using a Delaunay refinement technique that
maintains a surface mesh as a specific subset of the Delaunay tri-
angulation of the sample points, the Delaunay faces restricted to
the boundary of the input shape. The beauty of this algorithm lies
in the fact that the shape needs to be given only through an oracle
that evaluates a single predicate: decide whether a given line seg-
ment intersects the shape boundary an odd number of times, and if
so, compute one of the intersection points. Such an oracle can be
implemented robustly and efficiently for both explicit and implicit
representations using appropriate spatial data structures as detailed
in [Boissonnat and Oudot 2005]. Therefore our algorithm can pro-
cess 3D images, polygonal meshes, and level sets. Inputs described
as point sets can be resampled, e.g., use moving least-squares ap-
proximation to evaluate the predicate. Alternatively, if the point
sample is dense and noise-free we can directly use the power crust
algorithm for the conversion to a union of balls.

Conversion Algorithm. Since our sampling comes with connec-
tivity information, we can apply a much simpler and more robust
algorithm for identifying the inner poles than the original method
of [Amenta et al. 2001] that has been designed for unorganized
point clouds. The sampling step extracts a subset of the Delaunay
triangles that tightly approximates the boundary of the shape. Thus
we can easily classify the Delaunay tetrahedra as inner and outer
tetrahedra with respect to S. For any given point, in particular any
Voronoi vertex, we can decide at the cost of a point location query
in the Delaunay triangulation, if the point lies inside an inner tetra-
hedron. This easily allows identifying the farthest inner Voronoi
vertex for every sample. If the boundary sampling is dense enough,
this identification of inner poles is provably correct. In the appendix
we provide bounds on the geometric closeness between the input



shape S and the approximating union of balls U . We also present
an asymptotic upper bound on the number of balls generated by our
algorithm, and prove homotopy equivalence of S and U . However,
even if the conditions that are necessary to derive these theoretical
guarantees are not satisfied, our algorithm produces good results
in practice as illustrated in Figure 6. The statistics show that the
runime and the size of the output is mainly influenced by δ. As
a result, the runtime is proportional to the size of the output (i.e.
the algorithm is output-sensitive), which effectively allows trading
computation time for precision using the tolerance δ.

3 Discrete Scale Axis

The conversion of a shape S into a union of balls U provides us
with a shape representation that allows computing an exact medial
axis. The essential question now becomes which parts of this me-
dial axis, and hence which features on the boundary surface, should
be considered stable. The key property of our approach is that we
address this question in a scale-adaptive way: the importance of a
surface feature is not determined in isolation based on purely lo-
cal criteria, but depends on the relation of a feature to neighboring
features, where the neighborhood size itself automatically adapts
to the geometry. We achieve this spatially adaptive feature classi-
fication using a simple scaling of medial balls, i.e., balls centered
on the medial axis that touch the boundary of the shape. We first
review the main concepts of the continuous scale axis transform to
illustrate the effect of the scaling operation. Then we discuss the
main algorithmic components of our method in the discrete setting.

Scale Axis Transform. The scale axis transform has been intro-
duced in [Giesen et al. 2009] as a generalization of the medial axis
transform for solid shapes in IRd. The s-scale axis transform of a
shape S is defined by the following construction: (i) compute the
medial axis of S yielding the (typically infinite) union of medial
balls, (ii) scale the radius of each medial ball by the factor s ≥ 1,
(iii) recompute the medial axis of the scaled union of balls, and (iv)
re-scale the new medial balls by the inverse factor 1/s. The re-
sulting set of balls is the s-scale axis transform of S and the ball
centers define the corresponding s-scale axis. For s = 1 the scale
axis transform is identical to the medial axis transform, while larger
values of s lead to increasingly higher levels of simplification (see
Figure 2). Let us illustrate the effect of the scaling operation on a
simple 2D example:

We observe that medial balls are covered completely by larger
nearby balls when scaling each ball’s radius. On the other hand,
small balls without larger balls in their vicinity are not covered.
This can be interpreted as a small feature next to a large feature
being less important than a small feature that has no significantly
larger features nearby. Recomputing the medial axis achieves the
simplification and removes all covered balls, since these do not
touch the boundary anymore and are thus no longer medial. To
maintain the same global geometric scale, the final step of the con-
struction shrinks the latter medial balls by the inverse of the origi-
nal scaling factor. As the figure above illustrates, the scale-adaptive
classification allows discarding unimportant branches of the medial
axis, while keeping the features that are essential to capture the se-
mantics of the shape, even if these features are small.

grow shrink

(a) (b)

Figure 4: Scaling medial balls. The medial axis transform of the
union of the two purple balls consists of infinitely many balls, some
of which are indicated as gray circles. Growing all these balls is
equivalent to growing only those balls centered at the vertices of
the piecewise linear medial axis (a). When shrinking, however, we
need to sample the medial axis to obtain a finite union of balls that
approximates the shrunken shape (b).

There is an interesting connection between the scale axis and the
object angle stability measure. The object angle at some medial
axis point can be directly derived from the scaling factor at which
the corresponding medial ball is covered by the neighboring medial
balls during the multiplicative growing. The crucial difference in
the definition of the scale axis is that there all medial balls are scaled
simultaneously, thus a ball can be covered by some distant but large
medial ball, as well. Consequently, stability is determined in a more
global fashion. Intuitively, angle filtration determines importance
based on local shape of the object, while the scale axis uses the
relative sizes of features.

Medial Axis of a Union of Balls. Although the medial axis is ge-
ometrically unstable, we argue in the appendix that the exact medial
axis MU of the the union of balls U is well suited for approximat-
ing the stable subset of the medial axis MS of S. To compute MU ,
we use the method of Amenta and Kolluri [2001] and incorporate
the extensions proposed by Tam and Heidrich [2003]. Details of
the implementation are provided in Section 4.

Growing Medial Balls. The key element in the construction of
the scale axis transform is the scaling of all medial balls by the
simplification factor s ≥ 1. However, an algorithmic solution to
this scaling operation is not obvious, since in general the number
of medial balls is infinite. We solve this problem by exploiting the
specific structure of the medial axisMU . SinceU is a finite union of
balls, MU is piecewise linear and can be represented as a simplicial
complex [Amenta and Kolluri 2001]. As illustrated in Figure 4 on
a small example, the growing of a specific finite subset of medial
balls creates exactly the same shape as growing the infinite set of
all medial balls. It is easy to verify that this set consists of the
medial balls corresponding to the vertices of the simplicial complex
describing MU . Note that this property only holds for the medial
axis of a finite union of balls, which is exactly how we approximate
the input shape S. The medial axis of the union of balls after scaling
cannot contain the centers of all covered balls, hence these parts of
the medial axis will be discarded. Effectively, MU is simplified by
removing unstable branches to yield a stable approximation ofMS .

Filtering. The scale axis construction has the property that
branches of the medial axis can not only be pruned, but they can
also move or get straightened out. This allows simplifying branches
without breaking topology, even when aiming for drastic simplifi-
cations. However, the movement of branches also has a drawback:
If the boundary of the shape contains spherical patches (or circu-
lar arcs in 2D), small spurious branches can appear (see Figure 5).
Since the boundary of U consists by construction of such spherical
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Figure 5: The limited resolution of the finite union of balls can
lead to spurious branches. A local filtering step based on the object
angle criterion removes these discretization artifacts.

patches, we need to apply an explicit pruning step to remove these
discretization artifacts. The pruning step is based on the observa-
tion that spurious branches appear when the intersection of a ball
with the shape boundary consists not only of isolated points, but
entire spherical patches. Any such ball needs to be medial and it
may stay medial for a longer period when growing the radii, hence
a new branch can originate at its location. However, the object angle
of this medial ball decreases significantly, which allows identifying
these spurious branches. To avoid changing the topology of the
shape, we use a topology-conserving version of the angle filtration
similar to [Sud et al. 2005]. As illustrated in Figure 5, this pruning
step removes spurious branches without affecting the salient fea-
tures of the scale axis representation.

Shrinking Medial Balls. The final step in the construction is re-
scaling the medial balls of the grown shape by a factor 1/s. Un-
fortunately, the finite scaling property described above only holds
when growing balls, but not when shrinking them (Figure 4 (b)). In
order to obtain a finite set of shrunken balls, we adaptively sample
the scale axis such that the shrunken balls centered at these sample
points intersect deeply, i.e., the intersection angle between two ad-
jacent balls is above a certain threshold (we use 150◦ for all our ex-
amples). Edges of the simplicial representation of the scale axis are
recursively split in half, while triangles are recursively subdivided
using the standard 1-to-4 split, until balls centered at the triangle
vertices meet at least as deeply as described by the threshold.

4 Implementation

Our implementation is based on CGAL (www.cgal.org). For the
boundary sampling, we rely on the implementation of the method
of Oudot et al. [2005] in the 3D meshing package of CGAL, and
implement the polar ball extraction using the Delaunay triangula-
tion package. The conversion from a union of balls to a polygo-
nal mesh to reconstruct the simplified shapes is implemented using
the 2D surface meshing package, treating the union of balls as an
implicit surface and accelerating the point location using weighted
Delaunay triangulations.

Medial Axis Computation. The largest part of the implementa-
tion is the method for computing the medial axis of union of balls
as described in [Amenta and Kolluri 2001]. This algorithm com-
bines computations on Delaunay triangulations and weighted alpha
shapes, combinatorial tests involving different triangulations, and
flooding algorithms to extract the medial axis. The main obsta-
cle for a robust implementation are geometric degeneracies (mul-
tiple balls intersecting the same sample points). Tam and Hei-
drich [2003] have proposed various extensions to improve on ro-
bustness. For sets of polar balls they detect degenerate tetrahedra
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δ 0.03 0.02 0.008 0.004 0.003 0.002
error 0.01137 0.00709 0.00281 0.00162 0.00119 0.00078
# balls 1,728 3,570 20,316 79,106 139,767 313,245
time (sec) 6.9 14.6 115.1 571.8 992.7 2,745.0

Figure 6: Statistics for the conversion from a polygon mesh to a
union of balls and back to a mesh. The error is the Hausdorff dis-
tance between the input mesh and the output mesh relative to the
diameter of the bounding box.

using only combinatorial information. We can apply this approach
to compute the medial axis MU of the union of polar balls U . Still,
the geometric predicates on the input balls are degenerate by con-
struction. While CGAL allows evaluating geometric predicates for
degenerate configurations robustly, it does so at the cost of exact
arithmetic computations. We reduce the time to evaluate such pred-
icates considerably by perturbing the ball centers by a random dis-
placement of at most a fixed factor of their radius (in our implemen-
tation we use a factor of 10−4 ). Note that polar balls themselves
are a sampling of the medial axis transform of U . Hence, one can
improve efficiency without affecting the results by skipping the first
medial axis computation and directly computing the medial axis of
the grown set of polar balls.

Filtering. Since the computed medial axis has full connectivity
information for its faces, our angle-based filtering step to remove
spurious branches can be constrained to preserve topology, similar
to the method of [Sud et al. 2005]. The algorithm first segments
the medial axis into sheets that are bounded by non-manifold edges
(edges where three or more medial faces meet) and assigns an im-
portance value to every sheet. The importance value is the max-
imum object angle on this sheet. Sheets of minimal importance
are removed iteratively, while maintaining the neighborhood infor-
mation between sheets to preserve the topology of the medial axis.
Since the segmentation of the medial axis in such sheets is unstable,
this method is not suitable for general medial axis simplifications.
In our setting, however, the spherical boundary patches induce only
small spurious sheets that can be clearly separated and pruned with-
out changing topology. Our implementations uses a fixed threshold
on the object angle of 30◦ for the pruning.

Sheet boundaries. The approximation of S by a finite number
of balls has a boundary composed of spherical patches, i.e., there
are surface features at the intersections of adjacent balls resulting
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Figure 7: Comparison of the discrete scale axis representation for s = 1.15 and the original medial axis of the union of balls for a complex
model consisting of 1.7 million triangles. Since unstable parts of the medial axis are removed in a scale-adaptive way, the representation
preserves important features such as the teeth, while small wrinkles in the skin are removed.

Figure 8: A higher abstraction factor of s = 1.2 simplifies the medial axis more aggressively, removing most of the folds on the body but
preserving the sharp edge of the pants, since this feature is dominant in relation to the geometry of its surroundings.

from the discretization that are not be present in the continuous
medial axis transform. The scale axis representation captures both
the salient features of the input shape and the ones resulting from
the discretization. As a consequence, the sheets of the medial axis
often have a jagged boundary depending on the distribution of the
balls. For applications where more regular boundaries might be
needed, we can smooth these boundaries by moving the centers of
the medial balls that contribute to the sheet boundary and align them
in a more regular fashion. Smoothing is implemented using the
uniform Laplacian on the ball centers that lie on a one-manifold
boundary of the medial axis. Since we ensure that the balls stay
in the interior and touch the boundary of the unmodified union of
balls, the shape is only altered minimally.

5 Evaluation and Discussion

In Figure 6 the performance of the sampling algorithm described in
Section 2 is summarized. We show statistics of the conversion from

a mesh to a union-of-balls and back to a mesh for a complex shape
with sharp features consisting of 177,044 triangles. As the zooms
illustrate, geometric features are faithfully captured at a comparable
number of primitives. The quality of the approximation, in addition
to the theoretical guarantees and the robustness of the computation,
make this conversion algorithm a useful tool in itself for various
geometry processing applications.

Figures 7 and 8 show discrete scale axes for complex models with
geometric features at different scales. The essential filtering step
is the scaling of medial balls in conjunction with a re-computation
of the medial axis to remove unstable branches in a scale-adaptive
fashion. The simplicity of this construction is imperative for the
effectiveness of the algorithm: no special cases need to be handled
and no hidden parameters need to be adapted to specific models.
Our method has two main parameters, the approximation threshold
δ for the conversion to and from union of balls, and the scaling
factor s that determines the level of simplification. Figure 9 shows
how these parameters control the output of our algorithm. For high
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Figure 9: Medial representations for different values of the approximation threshold δ and scale parameter s.

levels of abstraction, i.e. large values of s, a higher threshold δ can
be used for improved performance.

An important characteristic of the scale axis concept is that the re-
sulting medial representation is stable for relatively long intervals
of the scale parameter s, e.g., on Figure 9 the medial represen-
tation undergoes very minor changes for values of s in the inter-
val [1.05, 1.15]. Hence, selecting suitable simplification levels be-
comes significantly easier than for existing methods that often ex-
hibit a more volatile behavior when varying the filtering parameter
(see video in additional material). Figure 11 provides a compari-
son with existing methods. Figure 12 summarizes results on a large
set of different shapes ranging from mechanical parts to smooth
organic surfaces. In total, we batch-processed all 380 models of
the [Chen et al. 2009] database without any manual tuning of pa-
rameters or handpicking models. These examples confirm that the
discrete scale axis is a general tool for geometric data analysis and
processing.

Table 1 shows some statistics of our algorithm. Roughly 80% of the

Figure 10: Sharp features can be approximated up to the precision
of δ and concave regions can be filled up for larger values of s.

Model (δ, s) #Triangles UoB #Balls DSA

Raptor (0.002, 1.15) 1,716,200 23.9 217,200 2.39

Woman (0.003, 1.2) 177,044 16.5 139,767 2.14

Shell (0.005, 1.1) 1,268,908 11.6 130,120 2.51

CAD (0.01, 1.2) 29,990 15.1 155,620 1.25

Vase (0.01, 1.1) 29,744 1.37 21,049 0.32

Vase (0.03, 1.1) 29,744 0.15 2,434 0.07

Vase (0.05, 1.1) 29,744 0.05 970 0.03

Table 1: Statistics and timings (in min.) measured on a Intel i7
2.93MHz with 6 Gb memory running our single-threaded 32-bit
application. UoB denotes the conversion to a union of balls, while
’DSA’ comprises the steps of the discrete scale axis computations.

time is spent on converting the input shape to a union of balls. Our
current implementation focuses on robustness and is not optimized
for speed, thus substantial performance improvements should be
possible. For example, the sampling algorithm could be speed up
by directly inserting the original vertices of the input mesh instead
of exploring similar ones by the sampling algorithm.

Limitations. Figure 12 demonstrates that a wide range of models
can be processed with our algorithm. In Figure 10 we illustrate
some problems that can arise, in particular for large values of s
and highly concave regions of the input shape boundary. These
issues are related to the fact that the scale axis is not necessarily
a subset of the exact medial axis and in extreme cases can even
move outside the original shape. While this in general allows more
drastic simplifications of the input shape, artifacts can appear in the
form of unnatural merging of branches. A possible solution would
be to explicitly map the discrete scale axis to a close subset of the
medial axis and compute a medial axis filtration based on the scale
axis. However, such a mapping between the scale axis and medial
axis subsets is not straightforward to compute and needs further
investigation.

While sharp features are handled robustly in practice as shown in
Figure 10, an explicit representation of sharp features requires an



extension of our algorithm. Notice that the continuous scale axis
transform does represent sharp features exactly, since the definition
is based on an infinite number of balls. In the discrete setting, how-
ever, the finite number of balls is able to represent sharp features
only for concave configurations. In future work we plan to inves-
tigate how to enrich a union of balls representation with additional
primitives allowing to represent sharp features exactly, while still
being able to efficiently compute the medial axis of the union.

6 Conclusion

We presented an effective method for generating discrete scale axis
representations of complex 3D geometries. The conceptual sim-
plicity of the central operation – scaling of medial balls – allows
bridging the gap between sound mathematical theory and robust
computations, yielding an effective algorithm suitable for a large
class of shapes. Applications that so far have been hampered by
a lack of robustness of such representations can benefit from our
method. In particular, applications in shape analysis or geometric
data processing that operate on noisy scans can employ the discrete
scale axis representation, e.g. for feature extraction, segmentation,
simplification, or abstraction. As a new general representation for
3D geometry, the discrete scale axis offers numerous avenues for
future work. Interesting theoretical and practical question remain
to be investigated. For example, designing a variant of the scale
axis as a nested sequence of geometric structures (instead of inde-
pendent structures) would allow for directly extracting information
encoded at all abstraction levels.
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Appendix

Guarantees for Conversion to Union of Balls. One of the free
parameters of our method that need to be specified by the user is the
tolerance δ > 0 that controls the approximation of an input shape
by a union of balls. Here we provide the following theoretical guar-
antees regarding this parameter:
1. For δ → 0, the Hausdorff distance between the smooth input
shape and its approximation goes to zero. We can even provide
bounds on the speed of convergence. These bounds depend on the
shape, or more specifically on the so called reach of the shape.
2. For small values of δ the approximation becomes homotopy
equivalent to the smooth input shape. Again, ’small’ here is mea-
sured with respect to the reach of the input shape.
3. The number of balls in the approximation can be asymptotically
bounded in terms of δ and the input shape.
To make our claims precise we need the following definitions. A
shape can be any bounded, open set S ⊂ IR3. The boundary
of shape S is denoted as ∂S, the local feature size lfs(x) maps
any point x ∈ ∂S to its distance from the medial axis of S, and
finally, the reach is the minimum of the local feature size, i.e.,
rc(S) = minx∈∂S lfs(x) is a shape dependent constant.

Corollary 1. For any open set S ⊂ IR3 with smooth boundary
and δ < ε · rc(S) with ε < 0.064, the output U of our algorithm
satisfies

i) U is homotopy equivalent to S

ii) for any x ∈ ∂U , there exists a y ∈ ∂S with d(x, y) < δ·O(ε2)

iii) the number of balls in U is limited by O(
∫∫
S
dx
δ2
)

Proof Sketch. The proof is based on already proven properties of
the sampling algorithm and polar balls. We use the algorithm
of [Boissonnat and Oudot 2005] to generate a set P of sample
points using the sizing field σ(x) = δ < ε · lfs(S) for any x ∈ IR3,
see [Boissonnat and Oudot 2005] for details. The claim on the num-
ber of balls needed in the approximation (iii) follows from Lemma
8.3 of [Boissonnat and Oudot 2005] that provides an asymptotic
upper bound of O(

∫∫
S
dx
δ2
) on the size of P . Since P limits the

number of polar balls this implies (iii) Furthermore, from Lemma
8.2 of [Boissonnat and Oudot 2005] it follows that P is a so-called
’loose ε-sample’, which is also an ε′-sample with ε′ = ε(1+8.5ε)
according to Corollary 4.10 of [Boissonnat and Oudot 2005]. Being
an ε′-sample means that any x ∈ ∂S has a point in P at distance
at most ε · lfs(x). Since δ is chosen such that ε′ is less than 0.1,
then conditions of Theorem 14 of [Amenta and Kolluri 2000] and
Theorem 21 of [Amenta et al. 2001] are satisfied. These theorems
immediately imply our claim of topological equivalence (i) and our
claim of geometric closeness (ii) for the input shape and its approx-
imation.

We have shown that U and S are topologically equivalent, therefore
their medial axes have the same homotopy type, as well. But the
geometric closeness on the boundaries of U and S does not imply
closeness on their medial axes. However, a Hausdorff bound on the
shape boundaries as in (ii) implies that certain stable subsets of the
two medial axes, namely the λ-medial axes, are close to each other.
This means that the medial axis of U captures all the features of
the original shape S up to a size that is determined by δ. And the
additional unstable parts of the medial axis of U will be removed in
the scale-adaptive simplification step later in our pipeline.



Figure 12: A subset of the 380 discrete scale axes for the shape database of [Chen et al. 2009], all computed using the same settings δ = 0.01
and s = 1.1. In the top left corner we show result for a shape described as point set. In the bottom right corner we show the discrete scale
axis (δ = 0.005, s = 1.1) for a scan of a Cardium Pseudolima shell model consisting of 1,268,908 triangles.


