
Automatic Gait Generation in Modular Robots:
”to Oscillate or to Rotate; that is the question”

Soha Pouya, Jesse van den Kieboom, Alexander Spröwitz, Auke Jan Ijspeert

Abstract— Modular robots offer the possibility to design
robots with a high diversity of shapes and functionalities. This
nice feature also brings an important challenge: namely how to
design efficient locomotion gaits for arbitrary robot structures
with many degrees of freedom.

In this paper, we present a framework that allows one to
explore and identify highly different gaits for a given arbitrary-
shaped modular robot. We use simulated robots made of several
Roombots modules that have three rotational joints each. These
modules have the interesting feature that they can produce
both oscillatory movements (i.e. periodic movements around a
rest position) and rotational movements (i.e. with continuously
increasing angle), leading to very rich locomotion patterns.
Here we ask ourselves which types of movements —purely
oscillatory, purely rotational, or a combination of both— lead
to the fastest gaits. To address this question we designed a
control architecture based on a distributed system of coupled
phase oscillators that can produce synchronized rotations and
oscillations in many degrees of freedom. We also designed a
specific optimization algorithm that can automatically design
hybrid controllers, i.e. controllers that use oscillations in some
joints and rotations in others, for fast gaits. The proposed
framework is verified by multiple simulations for several
robot morphologies. The results show that (i) the question
whether it is better to oscillate or to rotate depends on the
morphology of the robot, and that in general it is best to do
both, (ii) the optimization framework can successfully generate
hybrid controllers that outperform purely oscillatory and purely
rotational ones, and (iii) the resulting gaits are fast, innovative,
and would have been hard to design by hand.

I. INTRODUCTION

Modular robots present an interesting platform to explore
locomotion strategies for robotics. Indeed, their (self-) recon-
figurability allows one to explore various types of gaits in
multiple types of morphologies. However, the large variety
in robot configurations and having many degrees of freedom
make it problematic for the user to imagine all different so-
lutions. Hand coding and editing the gaits is tiring and time-
consuming. Moreover, there might always be some solutions
which are not explored by the designer. Therefore design
tools are needed to help extract the capabilities of a newly
designed modular robot. Here, our goal is two-fold: (i) to
present a framework for automatically designing locomotion
controllers for arbitrary robot morphologies, and (ii) to use
that framework to explore whether oscillations, rotations,
or combinations of both, lead to the fastest locomotion.
Some impressive locomotor performance can be obtained
by either type of movement (see for instance the Big Dog
robot for locomotion based on oscillatory movements [1] and

Authors are with Biorobotics Laboratory, Institute of Bioengineering,
School of engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL),
first-name.last-name@epfl.ch

Rhex and Whegs robots for rotational movements [2]), but
combinations of both are rarely used (see the salamander
robot in [3] for an exception). Furthermore, the questions of
which type of movements are best for a given morphology,
and whether combining them could lead to even better
performance, have not yet been addressed to the best of our
knowledge.

The framework that we propose has two components: a
distributed locomotion controller and an optimization al-
gorithm that performs both structural and parametric op-
timization. The locomotion controller is implemented in a
distributed system of coupled oscillators one per degree of
freedom similar to the concept of central pattern generators
(CPGs) found in the spinal cord of vertebrate animals. The
CPGs are based on coupled phase oscillators to ensure syn-
chronized behavior and have different output filters to allow
switching between oscillations and rotations. The optimiza-
tion algorithm is a modified Particle Swarm Optimization
(PSO) algorithm that optimizes both the structure of the
controller (i.e. which type of movement is used for each
degree of freedom) and its parameters (for instance amplitude
and phase difference between oscillators).

A. Related Work

Most projects in modular robotics have used oscillations
for generating forward locomotion [4]–[7]. Rotational move-
ments have shown interesting gaits using wheeled or Whegs-
like [8] propulsion. Combining these two modes sounds like
an interesting approach to derive newer gaits. Similar to
this idea, Hancher et al. [5] used rotation in wheeled-shape
modules and oscillation in different type of modules for
the rest of the robot shape. Zykov et al. [9] have recently
extended Molecubes with several active and passive modules
to diversify robot capabilities. In related work, we designed
a salamander robot that uses rotational movements for the
limbs and oscillatory movements for the spine [3]. However,
it has not been explored how a combination of different
movements in all the joints can influence the resulting gaits.
In particular, we are interested in comparing the function-
ality of oscillatory and rotational movements and also their
combinations in hybrid solutions. The Roombots modules
presented below allow to investigate these questions because
of their capability to perform both oscillation and continuous
rotation. Different locomotion control algorithms have been
developed for modular robots. As one of the pioneers in
the field, Yim [10] proposed gait table control which uses
sequences of time-driven actions for modules. In a recent
development, Zhang et al [11] use a new form of gait

tables called Phase Automata which uses event-driven state
machines. These methods usually use predefined sequences
but can be adjusted during runtime [12]. Role-based con-
trol [13], hormone-based control [14] and constraint-based
control [15] have been used for locomotion control with
more concentration on periodic movements for the joints.
Furthermore, several works have suggested using central
pattern generators (CPGs) as the locomotion control [16]
[6]. CPGs are networks of coupled nonlinear oscillators ca-
pable of producing robust, synchronized movement patterns
with minimum number of control parameters which makes
them well-suited for optimization algorithms. Similar to the
seminal work of Sims [17], Zykov et al. [4] used a genetic
algorithm (GA) to evolve the controller parameters with
rhythmic locomotion patterns. Sproewitz [6] used Powell’s
method as the online learning procedure for evolving the
CPG parameters. Hancher and Hornby [5] used steady-state
evolutionary algorithm while assuming fixed morphology
and a periodic gait. Christensen et al. [7] use a machine
learning approach to evolve the parameters of the controller
which can generate different actions of rotation and stopping.

In this paper, a CPG is used to produce synchronized
patterns for oscillatory and rotational joint movements ac-
tuating a Roombots structure. A modified version of particle
swarm optimization (PSO) provides the optimization of both
the CPG structure and parameters. The remainder of the
paper is organized as follows. We first describe the Room-
bots hardware in section II. Section III then presents the
applied controller architecture including the CPG model and
topology. In section IV the proposed algorithm for optimal
gait generation is presented. Sections V and VI describe the
experiments and their results. The article is concluded with
a discussion and an outlook on future work in section VII.

II. ROOMBOTS HARDWARE

Roombots modular robots [18] are fitted into a regular
cubic grid with 110mm edge length. We connect two Room-
bots modules serially into a RB metamodule. Any of the
three joints of a RB unit delivers sufficient torque to rotate
a metamodule in the “worst case scenario situation”, i.e. out
of a horizontal stretched position (see Table I for property
details). Roombots shell elements are printed in ABS plas-
tics, plate-elements are milled out of FR4 material. A RB
module weights about 1.4 kg, that includes batteries and the
estimated weight for electronic boards1. We use a relatively
high gear ratio (around 380 : 1) to achieve necessary torques,
what limits maximum rotational speed. The center RB joint
needs 3 sec to rotate 360◦, both outer joints roughly 2 sec.
The active connection mechanism is genderless, four-way

symmetric, has four mechanical latching fingers [19], and
its fingers are completely retractable. It is roughly 65mm in
diameter, and 19mm in height. In many ways the connector
design is similar to the AMAS connection mechanism [20],
although we use a different trajectory for the movement of
the latching fingers. Initial connector tests indicate a passive

1Roombots’ electronics are under construction

(a) One RB unit. (b) ACMs. (c) Actuators. (d) 3 DOF.

Fig. 1: (a) One Roombots module. (b) Four active connection mechanisms
are mounted into one RB module. (c) A custom designed motor-gearbox
combination. (d) All RB axes are continuous rotational.

TABLE I: Roombots module hardware specifications

Type Details #
Main joints continuous rotational 3
Size 110mm× 110mm× 220mm
Weight 1.4 kg
Mo 7Nm 2
Mi 5Nm 1
Outer gears 370 : 1, spur and planetary 2
Inner gears 380 : 1, spur and planetary 1
ACM 4 way symmetric, genderless, retractable 4
ACM actuator mini DC motor 1
Others 12-line slip rings 3

tolerance against alignment errors of roughly 2mm between
modules. To built a metamodule a RB units’ foot hemisphere
can be attached to the head hemisphere of the second RB unit
in one of the following modes, where each mode refers to the
relative orientation of the hemispheres axes: parallel (PAR),
perpendicular (PER), shear-S (SRS), and shear-Z (SRZ) (see
also figure 4a).

III. CONTROLLER ARCHITECTURE

This section describes the CPG locomotion controller.
Control inputs for the CPG are high level parameters such as
amplitude, offset and phase lags. Each oscillator is capable of
producing either oscillatory or rotational joint angle signals.2

We apply an oscillator network topology which matches the
hardware topology, e.g. a quadruped structure or a single
Roombots metamodule. An evolutionary algorithm provides
an automatic design of the control input parameters.

A. CPG Model

We designed a CPG controller which can produce two
types of basic movements for each DOF: (i) Rotational
movements that result from a continuously rotating (swivel)
joint, and can provide wheel or Whegs-like [8] propulsion,
and (ii) Oscillatory movements that periodically oscillate
around a resting position. Since it is important for stable,
reproducible locomotion to keep all DOF synchronized what-
ever their mode, we built the controller as a distributed

2In the remaining part of the paper we will use oscillator to refer to
pattern generators capable of producing both oscillatory and rotational
output.

system of coupled phase oscillators, with one oscillator per
DOF (joint) i:

φ̇i = 2π · ωi +Ki + fθi(~s) (1)

Ki =
∑
j

wij · rj · sin (φj − φi − ψij)

ṙi = ai(Ri − ri) + fri(~s) (2)

θi = ri · sin(φi) +Xi (Oscillation)
θi = φi (Rotation)
θi = Xi (Locked)

 servo inputs

(3)
where θi is the servo input which can be derived with

different functions corresponding to the desired servo move-
ment. Variables ri and φi are state variables which encode
amplitude and phase of the oscillation. The parameters wij
and ψij are respectively the coupling weight and phase bias
of the coupling between oscillators i and j. ai is a positive
constant which determines the rise time of the amplitude
to the desired value Ri. The parameters Ri, Xi, and ψij are
open parameters of which a subset (depending on the selected
mode) is subject to optimization. Furthermore, this structure
is capable of including sensory feedback. 3 For this purpose
the state variables can be influenced by sensory feedback
signals through the functions fθi and fri , ~s being a vector
of sensor states.

Equation 3 shows three possible modes which result in
oscillations, rotations or a locked condition. In the oscillation
mode, the output exhibits limit cycle behavior, thus produc-
ing a stable periodic trajectory. For rotation a constant-speed
profile is generated leading to a monotonic increase of the
joint angle. We also include a third mode which allows the
controller to lock a joint.

With the right parameter values, rotational and oscillatory
DOF will rapidly converge to a phase-locked regime, i.e. a
regime with a constant phase difference even between phase
oscillators that are in different modes. This is highly desirable
for the implementation of stable, coordinated gaits. It will
also ensure that several joints remain phased-locked, even if
they are controlled by oscillators implemented on different
micro-controllers with slightly different clocks. Fig. 2 shows
this synchronization behavior between three DOFs, with two
activated in oscillation mode and one in rotation mode.

B. CPG Topology

When designing CPGs, the network coupling parameters
wij and φij between different oscillators are of impor-
tance. For known types of locomotion gait patterns, such
as quadrupedal or snake gaits, the coupling architecture can
be specified based on biological observations. Here the goal
is to find different and unexpected gaits, which an arbitrarily
shaped modular robot could potentially create. Hence we
do not specify a pre-defined oscillator network topology.
We let the coupling structure of the CPG correspond the
robot’s morphology, i.e. phase oscillators of neighbor DOF
are coupled together. We use one common frequency for

3Note that sensory feedback is not applied in this article.

−2

0

2

θ
(r
ad

)

Osc. 1

Osc. 2

0

2

4

6

θ
(r
ad

)

Rot. 1

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Frequency of Osc. 2

Amplitude of Osc. 1

Time (sec)

M
o
d
u
la
ti
on

Fig. 2: Synchronization behavior of three coupled oscillators: two in
oscillatory mode (upper plot) and one in rotational mode (middle plot).
All oscillators are coupled, hence synchronize within the first seconds.
Frequency modulation from t = 10 to 20 sec, amplitude modulation from
t = 30 to 40 sec of the simulation.

all oscillators (f = 0.26Hz, derived from the hardware
implementation) and symmetric bi-directional couplings. All
coupling weights are set to 2, phase differences ψij are open
parameters and subject to optimization. We do not induce
symmetry artificially, i.e. we do not apply any mirroring
of parameter sets along our network. Applying symmetry
is usually a good strategy to reduce the number of open
parameters. However it also might limit the resulting gaits,
as it restricts the possible variety of parameters.

IV. OPTIMAL GAIT GENERATION

The optimization algorithm can be described by two
layers. The outer layer performs structural optimization, and
is discrete. The inner layer performs parametric optimiza-
tion on continuous valued parameters corresponding to the
selected movement types.

In this paper, an extension of Particle Swarm Optimization
[21] is used to perform the optimization process. PSO is
a stochastic, population based optimization method using
principles of collaboration rather than competition to evolve
individuals. In PSO, each individual is represented by a
position and velocity vector, representing respectively the
particle’s parameter values and search direction. The evo-
lution of each particle in the swarm is then governed by Eq.
(4) as suggested in [22].

~vi(t+ 1) = K · [~vi(t) + c1r1(~pi − ~xi(t)) + (4)
c2r2(~pg − ~xi(t))]

~xi(t) = ~xi(t− 1) + ~vi(t)

Where ~vi(t) is the velocity vector, ~x(t) is the position vector,
K is a constriction factor, c1 and c2 are respectively the
cognitive and social factors, r1 and r2 are two pseudo-
random numbers in the range [0 1], pi is the best known
solution vector of particle i and pg is the global best known
solution vector. The constriction factor, cognitive factor and
social factor were set to ensure convergence (see for more
detail, [22]).

The PSO algorithm described thus far is used for the
inner layer optimization of the continuous parameters of a
specific selection of movement types. Particles are initially
uniformly distributed over the possible combinations of
movement types. In each such combination, particles share
the same parameters, and an independent PSO optimizes
their respective solutions. The task of the outer layer is then
to do the structural optimization and to move particles from
one combination of movement types to another.

The outer layer consists of a set of mutation operators
inspired by Genetic Algorithms. Similar to the velocity
update of the PSO, the probability of mutation of each
actuated degree of freedom is composed of:

• Pe: exploration probability of mutation to a movement
type (oscillation, rotation or locked) other than the current
one

• Pc: cognitive probability of mutation to the movement
type which is part of the selection with the best results
in the particle’s history

• Ps: social probability of mutation similar to Pc but from
the best results taken over all the particles

Governed by these three probabilities, particles will be
mutated to different combinations of movement types during
the optimization process. Once a particle moves to a different
parameter space it is incorporated in the PSO running locally
in that space.

A main challenge is to choose appropriate values for the
different probabilities Pe, Pc and Ps. In general, we want to
stimulate exploration in the early phases of the optimization,
visiting many possible combinations of movement types.
Then, as the optimization progresses, particles should start
exploring their local known best solutions in more detail.
Finally we want the particles to converge in the best known
space, as if selecting the best configuration of movement
types. The system then starts behaving as a standard PSO
with a fixed configuration of movement types as more and
more particles are attracted.

The desired behavior can be designed by varying the
probabilities Pe, Pc and Ps as the optimization progresses.
In this paper, the exploration and social probability were
defined using a sigmoid function. The cognitive probability
was defined using a gaussian function. Fig. 3 shows the
probability characteristics used in all the experiments.

V. EXPERIMENTAL SETUP

We performed several experiments applying our CPG- and
optimization framework. Firstly we were interested in explor-
ing the locomotion abilities of the four types of metamodules
(PAR, PER, SRS, and SRZ), and of two quadruped robot
(Fig. 4). Our motivation for testing metamodules is that they
represent the simplest possible robot shape built from two
Roombots modules (six DOF). In addition, two quadruped
shapes were carefully designed featuring symmetry and
DOFs allowing quadruped locomotion. These structures were
used to verify our approach on more complex shapes with
well designed features. Finally, a more arbitrary, asymmetric
shape was constructed with no specific design features in

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Iteration

Pr
ob

ab
ili

ty

Pe
Pc
Ps

Fig. 3: Mutation probability characteristics for the exploration probability
Pe, cognitive probability Pc and social probability Ps, emphasizing early
exploration and late convergence.

mind (Fig. 4c). This allows us to compare the performance
of the optimization algorithm on shapes with no pre-designed
characteristics, for which a well performing gait can be hard
to imagine or design.

We are also interested to know which type of move-
ment, oscillatory or rotational, would lead to the highest
locomotion speed. We conducted the following optimization
experiments with different possible combinations of the four
joint modes: (1) pure rotation, all DOF are in the rotation
mode, (2) hybrid rotation with DOF either in rotation or
locked mode, (3) pure oscillation, all DOF are in oscillation
mode, and (4) fully hybrid, DOF are in oscillation, rotation,
or locked mode, and different modes coexist within the robot.

The evolutionary algorithm evolves new solutions, com-
bining structural and parametric optimization. The generated
solutions are then evaluated in Webots [23], a simulation tool
based on ODE providing simulation of collisions, rigid body
dynamics and actuator properties. The average locomotion
speed determines the fitness of a particular solution, which
is sent back to the optimizer. A RB module/module collision
detection penalizes unrealistic solutions with a zero fitness.

VI. RESULTS AND DISCUSSION

a) Fitness behaviour and automatic mode selection:
Fig. 6 shows the average and standard deviation of the robots’
speed over ten optimizations with different initial conditions.
The results illustrate three interesting properties of this
framework. (i) The capability of combining different modes
in the fully hybrid setting results in finding solutions with
higher values for both average speed and variance in all robot
structures, thus resulting in faster and more diverse solutions
in the same number of simulations. (ii) Results from pure
rotation show a drastic reduction in the robot performance. In
the worst case, no viable gait (i.e. one without self-collision)
could be found for the Quad5 and Arbit robots. Allowing
the robot to lock some of its degrees of freedom, when the
others are in rotational mode, helps to avoid self-collision
during robot locomotion. The performance of this mode is
comparable in terms of characteristics with the oscillation
mode since both include locked joints (defined implicitly in
oscillation mode due to zero amplitudes). (iii) The results
indicate that the performance of both oscillation and hybrid
rotation mode are strongly dependent on the robot shape. In

Fig. 4: Pictures of different robot shapes used for our experiments, and their
CPG networks: four metamodule configurations; one arbitrary, asymmetric
shape with three RB units (Arbit); quadruped with five units (Quad5);
quadruped with six units (Quad6). The network mimics the physical
topology by coupling neighbor oscillators.

the case of PAR and Quad6, oscillation largely outperforms
hybrid rotation. For PER, SRS, SRZ and Quad5 however,
similar performance for both modes is observed. Hybrid
rotation is only prefered for the Arbit robot. This shows
that for a given robot shape, it is not trivial to select either
oscillation or hybrid rotation. The complex interaction of
the different DOF of a robot shape and the environment
determine whether hybrid rotation or oscillation will provide
the best performance. In almost all experiments having a
mixture of both movement types (fully hybrid) yields better
results. Thus, to answer the question of rotation versus
oscillation, combining both modes provides the best strategy.

b) Gait diversity: Table II shows the comparison be-
tween the different movement type experiments for gait
generation of the Quad6 robot. We consider four aspects; (i)
the best speed driven by each experiment (ii) the mean value
of the speed of the resulting gaits, (iii) the standard deviation
of the speed and (iv) the number of different combinations of
movement types which are used to generate the gaits. Results
in table II show that fully hybrid solutions not only result
in average higher speeds, but also allow the robot to derive
these solutions by using combinations of joint movements
(i.e. have a high “diversity”). Most of the combinations of

movement types are hard to imagine and design by hand,
because the locomotion behavior results from the complex
interactions of the movements of all the degrees of freedom
4. One can imagine a situation where the algorithm provides
an initial selection of possible movement type configurations.
A human supervisor can then manually select a few of these
configurations, which are of some particular interest, and
further optimize the controller for these configurations.

TABLE II: Gait generation results from the different experiments for Quad6

Mode Best (m/s) Mean (m/s) Std % # of config.
Pure Rotation 0.22 0.17 3.1 1
Hybrid Rotation 0.24 0.21 1.4 6
Pure Oscillation 0.29 0.26 3.0 1
Fully Hybrid 0.33 0.27 3.9 10

c) Framework performance: Fig. 5 shows the fitness
optimization for the best fully hybrid solution of the Quad6
robot. As discussed in section IV, the fully hybrid framework
is capable of visiting different combinations of movement
types, or sub-swarms, and select the best solution among
them. These graphs are related to the sub-swarm with the best
speed. Fig. 5a shows the number of fitness evaluations versus
the number of iterations. One can see in which iterations
and how many times this sub-swarm has been explored. As
a result of the mutation probabilities (Fig. 5b), within the
first 75 iterations, particles are divided into different sub-
swarms exploring different possible solutions. After itera-
tion 75, exploration stops and the exploitation phase starts
where the particles start to be attracted to the best sub-
swarm found in exploration phase. In other words, in the
first phase different solutions are explored to find the best
candidate and in the second phase these solution spaces are
attracting more particles to optimize the open parameters.
The plot also shows that to prevent self-collision, several
solutions are being penalized by setting their fitness value to
zero. Fig. 5b shows how the best fitness of this movement
type configuration is evolving through the iterations of the
optimization process.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Iteration

F
itn

es
s

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Iteration

B
es

t f
itn

es
s

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Iteration

F
itn

es
s

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Iteration

B
es

t f
itn

es
s

Fig. 5: Fitness optimization of the best fully hybrid solution for Quad5 robot.
The figure on the left shows the number of fitness evaluations through the
iterations; the figure on the right shows the best fitness for each iteration.

4Locomotion videos are available at the Roombots webpage:
http://biorob.epfl.ch/page38279.html

Fig. 7: Snapshots for an evolved gait with a RB PER-metamodule, the module “rolls” from the left to the right. It starts in a folded posture and rotates
while unfolding towards the right. While folding top and bottom RB module are switched. This speeds the robot up to 13 cm/s.

Fig. 8: Fully hybrid optimization on the Quad5 robot, it walks from left to right with 15 cm/s. Hip joints use rotating patterns, spine joints are blocked.
Diagonal limbs are in-phase, and neighboring hind or front limbs are in anti-phase. This results in a trot-like gait.

Fig. 9: The Quad6 robot moves from left to the right, half a cycle is shown. It shows one of the fastest “gaits”, however does not behave like a typical
quadruped. It propels with a winding-like mechanism: by leaving two extremities on the ground it winds the remaining two of them around the body stem
and vice versa. Overall direction of movement is sideways with about 29 cm/s.

d) Gait pattern description: Fig. 7, 8 and 9 show three
examples of gait patterns, namely for a PER-metamodule
and the two quadruped robots (Fig. 4). Joint movements
of the PER-metamodule in Fig. 7 are purely oscillatory,
but the robot rolls over itself from cycle to cycle. This
is possible in a metamodule-robot because six joints are
connected serially—amplitude and velocity are adding up
in those structures. The gait (Fig. 9) for the Quad6 robot
(Fig. 4) was derived in the fully hybrid optimization mode,
and achieves oscillatory and rotational joint movements: both
spine joints are in oscillatory mode, one of the outer joints
is blocked, one is in rotational mode, and the remaining two
leg joints oscillate. The wind-up like gait propels the robot
with 29 cm/s. Average speed for all the quadruped robot
gaits derived in fully hybrid mode are approximately 26 cm/s
(Fig. 6).

e) Advantages from CPG Model: The CPG model has
several interesting features that make it well suited for modu-
lar robotics. (i) Our model can produce stable rhythmic and
rotational patterns such that the dynamical system rapidly
returns to its steady state after perturbations of the state
variables. (ii) The applied CPG model only needs a few,
high level control parameters (in our case amplitude, offset
and phase lag). Hence it can reduce the dimensionality of
the control problem such that the optimization algorithm
only needs to optimize a small number of control signals.
(iii) Another useful CPG property is its ability to generate
different gaits, which can be achieved by setting the network
coupling type and topology. In this way we can reproduce
animal-like gaits. This has been done in previous work for
quadruped, and modular robots ([6], [24], [25]). Yet one has

PAR PER SRS SRZ Arbit Quad5 Quad6
0

0.05

0.1

0.15

0.2

0.25

0.3

Robot Morphology

B
es

t f
itn

es
s

va
lu

e
(a

ve
ra

ge
 s

pe
ed

 m
/s

)

Pure Rotation

Hybrid Rotation

Pure Oscillation

Fully Hybrid

Fig. 6: The optimization results from the seven different robot structures:
PAR, PER, SRS and SRZ metamodules, one assymetric robot with 3
modules (arbit) and the two quadruped shapes. Each experiment was
repeated ten times, with different initial conditions.

the option to keep the network topology open, and to let
new and unexpected gaits emerge. This approach is even
more appealing for modular robots, where ideal gaits are
initially unknown due to new robot topologies. The proposed
framework can reproduce animal-like gaits or find alternative
solutions in an automated manner. (iv) This CPG model can
be used to generate different types of locomotion patterns.
Our control architecture offers a high variety of basic lo-
comotion patterns e.g. it can generate any combination of
oscillatory and rotational movements. This allows us to apply
those movements to the robot while ensuring that they are
in their phase-locked regimes. We observed interesting and

unexpected locomotion gaits being derived by our combined
architecture. In this work we used specific patterns, such as
sine-waves for oscillation, and constant speed for rotation.
However the framework is kept open and more complex
patterns can be implemented, which could lead to an even
higher versatility of derived gaits.

VII. CONCLUSION AND FUTURE WORK

In this paper we have derived a framework for locomotion
control of modular robots where a central pattern gener-
ator (CPG) as the motion controller and the optimization
algorithm are tightly connected. This framework provides an
important feature: the optimization algorithm can choose and
switch between oscillatory and rotational joint movements,
for any joint, at any time during the optimization process, and
is fully automated. The user is not required to, but can pre-
assign a movement-type to a joint type. This enables us to
derive gait patterns for traditional robots like quadrupeds (os-
cillatory and stop joint control) but also for robots featuring
the more capable, continuous rotational joints, e.g. Whegs-
like robots or in our case the Roombots modules. We have
presented results of our optimization framework deriving
pure oscillatory or rotational joint controllers based on CPGs,
as well as hybrid controllers. Optimized robot gaits for the
latter type often result in mixed-mode joint controllers with
surprising characteristics and very competitive performance.
In other words it is better to let the optimization algorithm
find suitable modes for each joint rather than designing
them by hand. Our research on locomotion control will
be further pursued in order to address the problems of (i)
how to properly include sensory feedback for improving the
efficiency and robustness of locomotion patterns, and (ii) of
navigation, i.e. how to modulate speed and direction to reach
a specific location in a room. We plan to extend the hardware
by passive, light-weight elements like carbon-fiber plates to
built more complex, and a larger variety of locomotion gaits.

VIII. ACKNOWLEDGEMENT

This project has received funding from the EPFL and from
the European Community’s Seventh Framework Programme
FP7/2007-2013 - Future Emerging Technologies, Embod-
ied Intelligence, under the grant agreements no. 231 688
(Locomorph) and no. 231 451 (EVRYON). We gratefully
acknowledge the technical support of André Guignard,
André Badertscher, Peter Brühlmeier, Philippe Voessler, and
Manuel Leitos in the design and construction of the robot
modules.

REFERENCES

[1] R. Playter, M. Buehler, and M. Raibert, “BigDog,” in Proceedings of
SPIE, vol. 6230, 2006, p. 62302O.

[2] U. Saranli, M. Buehler, and D. Koditschek, “Rhex: A simple and
highly mobile hexapod robot,” The International Journal of Robotics
Research, vol. 20, no. 7, p. 616, 2001.

[3] A. Ijspeert, A. Crespi, D. Ryczko, and J. Cabelguen, “From swimming
to walking with a salamander robot driven by a spinal cord model,”
Science, vol. 315, no. 5817, p. 1416, 2007.

[4] V. Zykov, J. Bongard, and H. Lipson, “Evolving dynamic gaits on a
physical robot,” in Proceedings of Genetic and Evolutionary Compu-
tation Conference, Late Breaking Paper, GECCO, vol. 4. Citeseer,
2004.

[5] M. Hancher and G. Hornby, “Evolving Quadruped Gaits with a
Heterogeneous Modular Robotic System,” pp. 3631–3638, 2007.

[6] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, “Learning to
move in modular robots using central pattern generators and online
optimization,” The International Journal of Robotics Research, vol. 27,
no. 3-4, pp. 423–443, mar 2008.

[7] D. Christensen, M. Bordignon, U. Schultz, D. Shaikh, and K. Stoy,
“Morphology independent learning in modular robots,” in Proc.,
International Symposium on Distributed Autonomous Robotic Systems
(DARS). Springer, 2008.

[8] R. T. Schroer, M. J. Boggess, R. J. Bachmann, R. D. Quinn, and R. E.
Ritzmann, “Comparing cockroach and whegs robot body motion,”
Proceedings of the IEEE International Conference on Robotics and
Automation 2004, pp. 3288—3293, apr 2004.

[9] V. Zykov, P. William, N. Lassabe, and H. Lipson, “Molecubes Ex-
tended: Diversifying Capabilities of Open-Source Modular Robotics,”
in IROS-2008 Self-Reconfigurable Robotics Workshop, accepted, 2008.

[10] M. Yim, “Locomotion with a unit modular reconfigurable robot,” Ph.D.
dissertation, Stanford University Mechanical Engineering Dept., 1994.

[11] Y. Zhang, M. Yim, C. Eldershaw, D. Duff, and K. Roufas, “Scalable
and reconfigurable configurations and locomotion gaits for chain-
type modular reconfigurable robots,” in International Symposium on
Computational Intelligence in Robotics and Automation, 2004, pp.
893–899.

[12] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–
1121, 2006.

[13] K. Stoy, W. Shen, and P. Will, “Implementing configuration dependent
gaits in a self-reconfigurable robot,” in Proceedings of ICRA2003,
2003.

[14] W. Shen, P. Will, A. Galstyan, and C. Chuong, “Hormone-inspired
self-organization and distributed control of robotic swarms,” Au-
tonomous Robots, vol. 17, no. 1, pp. 93–105, 2004.

[15] Y. Zhang, M. Fromherz, L. Crawford, and Y. Shang, “A general
constraint-based control framework with examples in modular self-
reconfigurable robots,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS2002), 2002.

[16] A. Kamimura, H. Kurokawa, E. Toshida, K. Tomita, S. Murata, and
S. Kokaji, “Automatic locomotion pattern generation for modular
robots,” in IEEE International Conference on Robotics and Automation
(ICRA2003), 2003.

[17] K. Sims, “Evolving 3d morphology and behavior by competition,” in
Proceedings, Artificial Life IV. MIT Press, 1994, pp. 28–39.

[18] A. Sproewitz, A. Billard, P. Dillenbourg, and A. J. Ijspeert,
“Roombots-mechanical design of self-reconfiguring modular robots
for adaptive furniture,” in 2009 IEEE International Conference on
Robotics and Automation, Kobe, Japan, 2009, pp. 4259–4264.

[19] A. Sproewitz, M. Asadpour, Y. Bourquin, and A. Ijspeert, “An active
connection mechanism for modular self-reconfigurable robotic systems
based on physical latching,” in Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, 2008, pp. 3508–3513.

[20] Y. Terada and S. Murata, “Automatic modular assembly system and its
distributed control,” The International Journal of Robotics Research,
vol. 27, no. 3-4, pp. 445–462, mar 2008.

[21] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in ”Pro-
ceedings of IEEE International Conference on Neural Networks”,
vol. 4, 1995, pp. 1942–1948.

[22] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” ”Evolutionary
Computation, IEEE Transactions on”, vol. 6, no. 1, pp. 58–73, 2002.

[23] Webots, “http://www.cyberbotics.com,” commercial Mobile Robot
Simulation Software. [Online]. Available: http://www.cyberbotics.com

[24] H. Kimura, Y. Fukuoka, and A. H. Cohen, “Adaptive dynamic walking
of a quadruped robot on natural ground based on biological concepts,”
The International Journal of Robotics Research, vol. 26, no. 5, pp.
475–490, may 2007.

[25] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and
S. Kokaji, “Distributed adaptive locomotion by a modular robotic
system, M-TRAN II,” in Proceedings of the IEEE/RSJ IROS2004,
2004, pp. 2370–2377.

