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Objectives

Thin-shell and rod theory using discrete mechanics applied to structures in civil engineering.

The aim is to apply structure preserving algorithms to concrete problems in construction. The

major objectives of this interdisciplinary work is the search and the development of a practical

tool to study irregular surfaces.

Notation and Definitions

In this paper we shall regard a body B ⊆ R
3 as a smooth orientable Riemannian manifold

endowed with a Riemannian metric G. The space S ⊆ R
3 in which the body moves is also taken

to be a smooth orientable Riemannian manifold with a metric g. A configuration φ : B → S

is, by definition, an orientation preserving diffeomorphism between B and its embedded image

φ(B) ⊆ S . The configuration space is defined to be C := {φ : B → S | φ a C∞ embedding}.

The deformed body φ(B) inherits the Riemannian structure of S . We shall call B the reference

configuration and S the ambient space. Let TB, TS be the tangent bundles of B and S ,

respectively, and let T ∗B, T ∗S be their cotangent bundles. Let {XI} denote the Euclidean

coordinates of a point X ∈ B relative to the standard basis {ÎI} of R
3. Similarly, {xi} are the

Euclidean coordinates of a point x ∈ S relative to the standard basis {̂ii} of R
3.

If {θi} is an arbitrary coordinate system on S we write the coordinate change as a C∞ map
(
x1, x2, x3

)
7−→

(
θ1

(
x1, x2, x3

)
, θ2

(
x1, x2, x3

)
, θ3

(
x1, x2, x3

))
,

with C∞ inverse. Similarly

(X1, X2, X3) 7→
(
Θ1

(
X1, X2, X3

)
, Θ2

(
X1, X2, X3

)
, Θ3

(
X1, X2, X3

))

denotes a coordinate change to an arbitrary coordinate system {ΘI} in the body. Therefore,

the coordinate bases {EI(Θ)}, {ei(θ)} associated to coordinate systems {ΘI} and {θi} are

defined, respectively, by

EI =
∂XJ

∂ΘI
ÎJ , ei =

∂xj

∂θi
îj, I, J, i, j = 1, 2, 3 (1)

A motion of the body is a curve t ∈ R 7→ φt ∈ C, where φt(X) := φ(X, t) ∈ S for

t ∈ R fixed and φ0 = Identity. The motion φt is called regulara if each φt(B) is open and

(φt)
−1 : φt(B) → B exists for all t. Motion of a body occurs due to the action of body forces

b per unit mass and surface traction forces t per unit area of the boundary ∂B.

Discrete Variational Mechanics

Let φ(B)×φ(B) be the discrete configuration space associated to the deformed surface φ(B) and

define the discrete path space by Cd(φ(B)) := {xd = {xk}
N
k=0

| xk ∈ φ(B),xk = xd(tk), tk =

kh, tk ∈ [0, T ]}; h is the time step. A discrete path xd ∈ Cd is said to be a solution of the

discrete Euler-Lagrange equations if

D2Ld(xk−1,xk) + D1Ld(xk,xk+1) = 0, for all k = 1, ..., N − 1, (2)

where Ld : φ(B) × φ(B) → R is a discrete Lagrangian of order r, that is, it satisfies

Ld(xk,xk+1, ∆t) =

∫ tk+1

tk

L(x, ẋ)dt + O(∆t)r+1, (3)

where L is the Lagrangian of the continuous systems and x(t) is the solution of the Euler-

Lagrange equations satisfying x(tk) = xk and x(tk+1) = xk+1. By applying the discrete

Euler-Lagrange equation the points {xk} are iteratively defined by the one-step integrator

FLd
: (xk−1, xk) 7→ (xk, xk+1) which has two important structure preserving properties. First,

FLd
is symplectic. Second, if Ld is invariant under Lie algebra action, the discrete Lagrangian

momentum map JLd
is a conserved quantity: JLd

◦ FLd
= JLd

.

In order to achieve conservation of energy we also consider the time interval [0, T ] and define

the extended configurations by ϕ̃ : B̃ → S̃ , where B̃ := R × B, S̃ := R × S , and R is time

axis. Thus we get a new condition that ensures conservation of discrete energy:

D3Ld(xk−1, xk, hk−1) − D3Ld(xk, xk+1, hk) = 0, where hk = tk+1 − tk (4)

Consequently, we get an implicit algorithm giving the value of the time step hk for each k; the

integrator is said to be an Asynchronous Variational Integrator (AVI).
aIn contact problems, where the body may consist of two disconnected components that are brought together during the morion, regularity fails.

Kirchhoff-Love assumptions for thin-shell

According to standard Kirchhoff-Love assumptions, we take the reference shell directora T and

the deformed shell director t to equal the third basis vector respectively

E1 × E2

|E1 × E2|
⊥ TXB, and

e1 × e2

|e1 × e2|
⊥ Txφ(B) (5)

Denote by 〈·, ·〉x the standard inner product in R
3 for vectors based at x ∈ S = R

3 and by

〈·, ·〉X the standard inner product in R
3 for vectors based at X ∈ B. The components gαβ of

the metric tensor on φ(B) (obtained by pulling back by the inclusion map the inner product

〈·, ·〉x on R
3 to φ(B)) are defined by gαβ(x) := 〈eα, eβ〉x. Similarly define the components

Gαβ of the metric on B by Gαβ(X) := 〈Eα,Eβ〉X. Let [Gαβ] := [Gαβ]−1 and [gαβ] := [gαβ]−1.

The strain mesures relative to the dual spatial surface basis :

ǫij :=
1

2

(
〈ei, ej〉 − 〈Ei,Ej〉

)

ραβ :=

〈
∂Eα

∂θβ
,E3

〉
−

〈
∂eα

∂θβ
, e3

〉

For the simplest properly invariant isotropic constitutive relations we postulate the existence

of a stored energy function of the displacement field u of the form

W (u) =
1

2

(
Eh

1 − ν2

)
Hαβγδǫαβǫγδ +

1

2

(
Eh3

12(1 − ν2)

)
Hαβγδραβργδ (6)

where E is Young’s modulus, ν is Poisson’s ratio, h is the thickness of the shell, and

Hαβγδ = ν GαβGγδ +
1

2
(1 − ν) (GαγGβδ + GαδGβγ). (7)

To ensure that the bending energy is finite we used biquadratic uniform B-splines.

Simulations

To get equilibrium positions, we introduce a dissipative system. And, in the presence of forcing,

discrete Noether’s theorem exists, which allows us to obtain consistent results.

Let discrete Lagrange d’Alembert principle for discrete mechanical systems with left and right

discrete exterior forces F−
d and F+

d

δ
∑

Ld(qk, qk+1)dt +
∑(

F−
d (qk, qk+1)δqk + F+

d (qk, qk+1δqk+1

)
= 0, (8)

And consequently we obtain an integrator (qk, qk+1) 7→ (qk+1, qk+2), given explicitly by the

discrete forced Euler-Lagrange equations for a good discrete Lagrangian Ld

D1Ld(qk+1, qk+2) + D2Ld(qk, qk+1) + F−
d (qk+1, qk+2) + F+

d (qk, qk+1) = 0 (9)
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These results were obtained using a module of elasticity E = 1.1 · 109 and Poisson ratio

ν = 0.3, with a plate of lengths l1 = l2 = 1m, width h = 0.01m, and density ρ = 400kg/m3.

And we consider this thin-shell as simply supported, using quadratic B-spline instead of

classical shape functions.
aWe assume the existence of a traction vector t for the motion of B in S.

Energy behavior

We get consistent and explicit integrator by using discrete Lagrangian Ld, as

Ld(xk, xk+1, h) =
h

2

(
xk+1 − xk

h

)T

M

(
xk+1 − xk

h

)
− hV (xk), (10)

With Ld, let discrete energy Ed,k as previously defined, for time step hk = tk+1 − tk, such that

Ed,k = −D3Ld(xk, xk+1, h) =
1

2

(
xk+1 − xk

h

)T

M

(
xk+1 − xk

h

)
+ V (xk) (11)

Since Ed,k 6= Ed,k+1 for fixed time-steps, the difference between both sides of the inequality

represents the variation of energy between succesive integration steps, called the energy residue.

And we note that the energy residue is smaller by almost two orders of magnitude in absolute

value compared to the energy itself.
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Energy behavior for a single element K (left), total energy behavior (middle) of the thin-

shell (green = exterior potantial energy, blue = elastic potantial energy, black = kinetic

energy, red = total energy), and energy residue behavior for a single element K (right)

at the center (black = residue using kinetic energy on nodes, red = residue using kinetic

energy on element K).

One edge and two plates

We consider two thin-shells of same sizes, leaning against each other, so they form an edge.

And, as previously, we get equilibrium position, by introducing a dissipative system.
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These results were obtained using a module of elasticity E = 1.1 · 109 and Poisson

ratio ν = 0.3, with two plates of lengths l1 = l2 = 1m, width h = 0.01m, and density

ρ = 400kg/m3. And we consider this thin-shells as simply supported on the boundaries

except on the edge, using quadratic B-spline instead of classical shape functions.
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