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Abstract
We define a new filtration of the Delaunay triangulation of a finite set of points in R

d , similar to the alpha shape
filtration. The new filtration is parameterized by a local scale parameter instead of the global scale parameter
in alpha shapes. Since our approach shares many properties with the alpha shape filtration and the local scale
parameter conforms to the local geometry we call it conformal alpha shape filtration. The local scale parameter
is motivated from applications and previous algorithms in surface reconstruction. We show how conformal alpha
shapes can be used for surface reconstruction of non-uniformly sampled surfaces, which is not possible with alpha
shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

The method of alpha shapes was originally motivated for
the study of points in the plane [EKS83]. This method
was later generalized to higher dimensions and weighted
points [EM94]. Alpha shapes define a family of simpli-
cial complexes parameterized by α ∈ R. These α-complexes
have vertices in the point set and simplices from the points’
Delaunay triangulation. Consequently, alpha complexes are
efficiently computable. The family implies a filtration, a par-
tial ordering of the simplices of the Delaunay triangulation,
that may be used for multi-scale topological analysis of the
point cloud. It is this rich structure that makes alpha shapes
popular in many applications ranging from bio-geometric
modeling [EFL98], where atoms are modeled as weighted
points, to surface reconstruction, where the surface of some
solid is sampled.

Alpha shapes have influenced the development of prov-
able surface reconstruction algorithms in computational ge-
ometry. By “provable”, we mean geometric and topological

† Partially supported by the Swiss National Science Foundation un-
der the project “Non-linear manifold learning”.
‡ Partially supported by DARPA under grant 32905.

guarantees that are based on assumptions on the sampling.
We distinguish two major lines of Delaunay-based surface
reconstruction algorithms. The first line considers filtering
the Delaunay triangulation of a point cloud. Alpha shapes is
one such filter as each α-complex specifies a subset of the
simplices. Beginning with the seminal work of Amenta and
Bern, there have been a flurry of such algorithms proposed,
the most significant of which are the Crust and the Cocone
algorithms [AB99, ACDL00]. The second line of research
takes the fundamentally different approach of examining the
critical points of a discrete or continuous flow based on the
Delaunay complex [Ede04, GJ03]. These critical points are
related to the critical α-complex simplices: the simplices at
which the complex undergoes a topological change.

Although alpha shapes have inspired fruitful research on
surface reconstruction, the method’s utility is limited. First,
alpha shapes define a family of complexes, but it is not clear
which α-complex is suitable for reconstruction. Second, the
chosen α fixes a global scale, so the method can be success-
ful only for uniform sampling. The algorithms that have been
successful in practice all use local filters to cope with non-
uniform sampling.

In this paper, we introduce conformal alpha shapes which
use a local scale parameter α̂ instead of the global scale pa-
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rameter α. We show that conformal alpha shapes share many
properties with ordinary alpha shapes, but have additional
properties that are useful for surface reconstruction. In the
rest of the paper, we study the geometric and topological
consequences of localizing the scale parameter within the
framework of surface reconstruction. We begin by defining
conformal alpha shapes in Section 2. In Section 3, we de-
scribe the geometric consequences of utilizing conformal al-
pha shapes. In Section 4, we consider the topological reper-
cussions.

2. Conformal Alpha Shapes

In this section, we begin by briefly describing the back-
ground necessary for our work, including the definition of
alpha complexes as a family of subcomplexes of the Delau-
nay triangulation. We then introduce conformal alpha shapes
and prove that it also provides a family of subcomplexes as
the prior method.

2.1. Preliminaries

A point set P ⊂ R
d is in general position if there are no

k ≤ d +1 points on a common (k−2)-flat or k ≤ d +2 points
on a common (k−3)-sphere. In the following, we always as-
sume general position as this assumption simplifies the ex-
position and is justified in practice [Ede01]. A k-simplex σ
is the convex hull of k +1 points S ⊆ P. A simplex τ defined
by T ⊆ S is a face of σ and σ is a co-face of τ. A simplicial
complex K is a finite set of simplices that meet along faces,
all of which are in K. A filtration of a complex K is a nested
subsequence of complexes ∅ = K0 ⊆ K1 ⊆ . . .⊆ Km = K.

The Voronoï diagram V (P) of P is a cell decomposition
of R

d into convex polyhedra. Every Voronoï cell Vp corre-
sponds to exactly one sample point p ∈ P and contains all
points of R

d closest to p. That is,

Vp = {x ∈ R
d | ‖x− p‖ ≤ ‖x−q‖,∀q ∈ P}.

Closed facets shared by d − k + 1 Voronoï cells are called
Voronoï k-facets.

The Delaunay triangulation D(P) of P is the dual of
the Voronoï diagram. Whenever a collection Vp1 , . . .,Vpk of
Voronoï cells have a non-empty intersection, the simplex de-
fined on the corresponding points p1, . . ., pk is in D(P). The
Delaunay triangulation is a simplicial complex that decom-
poses the convex hull of the points in P. In the rest of the
paper, all simplices will be Delaunay. At times, we will re-
state this to remind the reader.

2.2. Alpha Shapes

For a given value of α ∈ [0,∞), alpha balls are balls of ra-
dius α around the points in P. The corresponding alpha com-
plex of P is the Delaunay triangulation of P restricted to the
alpha balls. A simplex belongs to the alpha complex if the

Figure 1: Alpha shapes for growing values of α.

Voronoï cells of its vertices have a common non-empty in-
tersection with the set of alpha balls. Note that at α = 0,
the alpha complex consists just of the set P, and for suffi-
ciently large α, the alpha complex is the Delaunay triangu-
lation D(P) of P. For any simplex σ ∈ D(P), let α(σ) be
the α value at which σ appears for the first time in the alpha
complex. The alpha shape filtration is the sequence of alpha
complexes obtained from growing α from zero to infinity.
We show a few complexes from the alpha shape filtration for
a small set of points in Figure 1.

2.3. Definition

For p ∈ P, let Dp ⊆ D(P) denote the simplices incident on
p. The alpha values determine a partial ordering on Dp, one
which we make into a total ordering by sorting according to
dimension and breaking the remaining ties arbitrarily. We
may then view Dp as a sequence of simplices with non-
decreasing alpha values α1

p ≤ ·· · ≤ αn
p. Note that α1

p = 0
since the first simplex in Dp is the point p which appears
at α = 0. Let α−

p < α+
p be two α values in {αi

p}i. We will
specify how to choose these values later in the paper. We
now rescale αi

p using these local values:

α̂i
p =

αi
p −α−

p

α+
p

.

We call α̂i
p the internal alpha scale. This scale is invariant

to Euclidean transformations and scaling, so it is conformal.
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As in alpha shapes, we consider a restricted Delaunay tri-
angulation for each value α̂ ∈ (−∞,∞). But the restriction
is not to the set of alpha balls, but a new set of balls whose
radii are determined from their internal alpha scales. We put
a ball of radius αp at each point p ∈ P, where

αp(α̂) = α+
p α̂+ α−

p ,

and a ball of negative radius is defined to be empty. Let Cα̂
p

be the intersection of the Voronoï cell Vp and the ball at p
and let Cα̂ be the interior of ∪p∈PCα̂

p . The conformal alpha
shape (complex) is the Delaunay triangulation of P restricted
to Cα̂.

As in the definition of α(σ), let α̂(σ) be the α̂ value at
which σ appears for the first time in the conformal alpha
shape. We may compute the α̂(σ) from the value of α(σ).
Let p1, . . ., pk ∈ P be the vertices of σ. Then,

α̂(σ) = max
1≤i≤k

inf{α̂ | αpi(α̂) ≥ α(σ)}. (1)

Lemma 1 The sequence of conformal alpha shapes obtained
by growing α̂ from zero to infinity is a filtration of the De-
launay triangulation D(P) of P.

Proof We need to show the following: (1) If α̂ < α̂′, the
simplices in the conformal α̂-shape are also in the conformal
α̂′-shape. (2) For sufficiently large α̂, the conformal α̂-shape
is D(P). (3) A simplex σ ∈ D(P) is earlier than all its co-
faces τ in the filtration, that is, α̂(σ) ≤ α̂(τ).
Property (1) holds as Cα̂ ⊂ Cα̂′

for α̂ < α̂′. Property (2)
holds as Cα̂ covers R

d in the limit as α̂ approaches infin-
ity. For property (3), let S = {pi}i be the vertices of σ. The
co-face τ also has S as vertices, along with some additional
vertices. There exists a point pi ∈ S such that

αpi

(

α̂(σ)) = α(σ) ≤ α(τ) ≤ αpi(α̂(τ)),

which implies α̂(σ) ≤ α̂(τ) as αpi is a monotonically in-
creasing function.

3. Geometry

We wish to use conformal alpha shapes to reconstruct a
smooth surface S in R

3 from a finite sampling P. In this
section, we describe a geometrical approach very much in
line with the philosophy behind the Crust and Cocone al-
gorithms. We begin with the common geometric definitions
and then examine the geometry of the reconstruction.

3.1. Preliminaries

Suppose we are given a smooth surface S embedded in R
3.

An open ball is empty if it does not contain any point from
S. An empty ball is maximal if it is not contained in a larger
empty ball. The medial axis M(S) of S is the union of the
centers of all maximal open balls. The distance of a point

x ∈ S to the medial axis is M(S) its local feature size. We
define f : S → R,

f (x) = inf
y∈M(S)

‖x− y‖,

to be the function that assigns the local feature size to a point.

An ε-sample of S is a subset P ⊆ S such that every point
x ∈ S has a point p ∈ P at distance at most ε f (x). An ε-
sampling is uniform if every point has a point in P at distance
at most infx∈S f (x). Although the sampling density may vary
non-uniformly across S, the density is bounded below by the
smallest feature size. For sufficiently small ε, every ε-sample
is uniform but it depends on S what sufficiently small means.

Let Vp be the Voronoï cell of a sample point p ∈ P. If Vp
is bounded, we let~u be the vector from p to the Voronoï ver-
tex in Vp that has the largest distance to p. Otherwise, Vp is
unbounded and we let ~u be a vector in the average direction
of all unbounded Voronoï edges incident to Vp. The pole of
Vp is the Voronoï vertex p∗ in Vp with the largest distance to
p such that the vector ~u and the vector from p to p∗ make an
angle larger than π/2 [AB99].

3.2. Reconstruction

We begin by specifying the internal alpha scale parameters
α−

p and α+
p for a sample point p ∈ P. Let α−

p = α1
p = 0. Let

α+
p be the α value at which the simplex dual to the pole p∗

appears in the ordinary alpha shape, that is, α+
p = ‖p− p∗‖.

Note that with these values for the parameters, the points
in P all appear at α̂ = 0. This implies that all the simplices
appear at non-negative α̂ values.

The restricted Voronoï diagram VS(P) is the Voronoï di-
agram V (P) intersected with the surface S. The restricted
Delaunay triangulation DS(P) is its dual and is necessarily
a subset of the Delaunay triangulation. In the rest of the sec-
tion, we use η = ε/(1− ε) for notational brevity. We begin
with the following result.

Lemma 2 ([AB99]) Let P be an ε-sample of a smooth sur-
face S and let p ∈ P be a sample point. Then,

• For any point x in the cell Vp in VS(P), ‖p− x‖ ≤ η f (p).
• For any point x in the intersection of Vp with the hyper-

plane containing p and orthogonal to p∗− p,

‖x− p‖ ≤
η f (p)

sin
( π

2 −3arcsinη
) .

Lemma 3 Let P be an ε-sample of a smooth surface S. Then,
all conformal alpha shapes for α̂ ≥ η contain DS(P).

Proof For p ∈ P, let αi
p be the largest α value at which a

simplex from DS(P) incident to p appears in the ordinary
alpha shape. By Lemma 2 we have that

αi
p ≤ η f (p).
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We also have α+
p ≥ f (p) by our choice of α+

p . Therefore,

α̂i
p =

αi
p

α+
p
≤

η f (p)

α+
p

≤ η.

This implies the statement of the lemma.

Essentially, Lemma 3 asserts that the alpha shape for a
large enough α̂ contains certain simplices of the Delaunay
triangulation of a surface sampling. The following lemma
states that the conformal alpha shape does not contain sim-
plices that are too large. The idea behind this lemma is that
the Voronoï cells of the sample points are long and thin
and directed almost along the normals at the sample points.
Therefore, edges that are almost tangential to the surface will
appear early in the conformal alpha shape.

Lemma 4 Let P be an ε-sample of a smooth surface S. The
neighbors of p ∈ P in a conformal alpha shape for small val-
ues of α̂ are at distance at most

(

1 + α̂
1− α̂

)

(

2η
sin
( π

2 −3arcsinη
)

)

f (p).

Proof Let l be the vector p∗ − p as in Figure 2 to the left.
We first want to bound the width of smallest cylinder with
axis l that contains the intersection of the Voronoï cell Vp
of p with the ball of radius αp centered at p. Let x be any
point in the intersection of the boundary of Vp and the hy-
perplane containing p and orthogonal to l. Any hyperplane
H supporting Vp at x must have p and p∗ on the same side.
In the limiting case, p∗ is contained in H and so we consider
this case. Then H contains a line l′ through p∗ and x. Let β
be the acute angle made by l and l′ at p∗, shown in Figure 2

x p

l

β

l’

p*

y’y

l

px

’

w

p*

l

Figure 2: Bounding tanβ and the width w of the cylinder.

γ

d
p

l

p*

p
w

p*

l

Figure 3: Bounding tanγ and the distance d to a neighbor in
the conformal alpha shape.

to the left. By Lemma 2,

tanβ =
‖x− p‖
‖p− p∗‖

≤
η f (p)

α+
p sin

( π
2 −3arcsinη

) .

The line l′ intersects the boundary of the ball of radius αp(α̂)
centered at p in at most two points, as shown in Figure 2 to
the right. Let y be the intersection point furthest from p∗.
Since we haven chosen p∗ and H to be the limiting case,
the distance of y to l is an upper bound for the width w of
the cylinder we are looking for. Let y′ be the projection of y
onto l. Then,

w ≤ ‖y′− p∗‖ tanβ
= (‖p− p∗‖+‖y′− p‖) tanβ
≤ (α+

p + αp(α̂)) tanβ.

Now let F be the affine hull of a Voronoï facet in Vp that is
intersected by Cα̂

p . Again, p∗ must be on the same side of F
as p. The line l intersects F in a unique point. Let γ be the
minimum angle between l and F at this intersection point, as
shown in Figure 3 to the right. Then, we have

tanγ ≤
w

‖p− p∗‖−αp(α̂)
=

w
α+

p −αp(α̂)
.

The length d of the Delaunay edge dual to the Voronoï facet
corresponding to F may be bounded by:

d ≤ 2‖p− p∗‖ sinγ
= 2α+

p sinγ

≤ 2α+
p tanγ
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≤
2wα+

p

α+
p −αp(α̂)

=

(

α+
p + αp(α̂)

α+
p −αp(α̂)

)

2‖p− p∗‖ tanβ

≤

(

α+
p + αp(α̂)

α+
p −αp(α̂)

)(

2η
sin
( π

2 −3arcsinη
)

)

f (p).

This implies that all neighbors of p in a conformal alpha
shape are at distance at most
(

α+
p + α+

p α̂
α+

p −α+
p α̂

)(

2η
sin
( π

2 −3arcsinη
)

)

f (p)

=

(

1 + α̂
1− α̂

)

(

2η
sin
( π

2 −3arcsinη
)

)

f (p).

This completes the proof.

Basically, Lemma 4 states that the conformal alpha shape is
contained in a thickening of the surface S where the thicken-
ing factor with respect to the feature size depends on α̂ and
η via

(

1 + α̂
1− α̂

)

(

2η
sin
( π

2 −3arcsinη
)

)

.

Note that the thickening factor has two terms: a first part that
only depends on the scale parameter α̂, and a second part
that only depends on the sampling density ε. If α̂ = η and
ε < 0.1, then η < 0.112 and this factor is less than 1. That is,
the conformal alpha shape of an ε-sample with ε < 0.1 does
not contain any point from the medial axis of the surface.
This is true regardless of what the surface is provided it is
smooth. This contrasts with ordinary alpha shapes where for
any ε > 0, we can give a surface such that the alpha shape
contains a point of the medial axis.

The Crust and Cocone algorithms begin by filtering a set
of candidate triangles from the Delaunay triangulation. An
edge is sharp if it has either a single incident triangle, or if
any two consecutive triangles incident to it form an angle
more than 3π/2. In the second step, the algorithms remove
all triangles incident on sharp edges. Finally, the algorithms
compute a reconstruction by “walking” on either the inside
or outside of the remaining set of candidate triangles. The
resulting surface is homeomorphic to the original surface S
if P is a sufficiently dense ε-sample. The homeomorphism
proof needs two properties of the set of candidate triangles.
First, it has to contain all triangles of the restricted Delau-
nay triangulation DS(P). Second, all triangles need to have
a small circumradius compared to the feature size at their
vertices.

We now show that a conformal alpha shape for a suitable
value of α̂ may be used as the source of the candidate tri-
angles, still giving us the topological guarantees after prun-

ing and walking. Suppose we are given an ε-sample P of a
smooth closed surface S with ε < 0.1. To show the homeo-
morphism property, we need to satisfy the two requirements
discussed above. By Lemma 3, we know that the conformal
alpha shape for α̂ = η = ε/(1− ε) contains the restricted
Delaunay triangulation DS(P). It remains to show that all
triangles in this conformal alpha shape have a small circum-
radius.

Lemma 5 Let P be an ε-sample of a smooth surface S. All
triangles incident to p ∈ P in a conformal alpha shape for
α̂ < 1 have circumradius of at most

(

1 + α̂
1− α̂

)

(

η
sin
( π

2 −3arcsinη
)

)

f (p).

The proof is basically the same as for Lemma 4. Therefore,
we may compute a homeomorphic reconstruction of S from
the conformal alpha shape of P with α̂ = η.

4. Topology

In this section, we study both the ordinary and the conformal
alpha shape filtrations. A filtration allows us to track of topo-
logical changes at different scales. Here, the scale parameter
is either α or α̂. The topology of the respective alpha shapes
changes only at a finite number of critical α values as both
have a finite number of simplices. We characterize these val-
ues and uncover the relationship between the critical values
of conformal alpha shapes and those of the ordinary alpha
shapes.

A simplex σ is α-late if α(ρ) < α(σ) for all faces ρ, and
α-early if α(σ) < α(τ) for all co-faces τ. If σ is both α-
late and α-early, it is α-critical. We similarly have α̂-late,
α̂-early, and α̂-critical. We define every vertex to be α- and
α̂-late and every d-dimensional simplex to be α- and α̂-early.
Note that by the filtration property we always have α(ρ) ≤
α(σ) ≤ α(τ) and α̂(ρ) ≤ α̂(σ) ≤ α̂(τ) for faces ρ and co-
faces τ of simplex σ.

Lemma 6 The homotopy type of the alpha shape (ordinary
or conformal) of a finite point set in general position changes
only when a critical simplex enters the shape.

Proof Clearly, the homotopy type of an alpha shape (ordi-
nary or conformal) changes when a critical simplex appears.
If a k-dimensional critical simplex appears either the (k−1)-
th Betti number of the alpha shape decreases by 1 or the
kth Betti number increases by 1 in simplicial homology. At
the appearance of 0-dimensional simplices (vertices), the 0th
Betti number always increases, and at the appearance of crit-
ical d-dimensional simplices, the (d−1)-th Betti number al-
ways decreases.
In the following, we restrict our exposition to α̂(·), but all ar-
guments also hold for α(·). We need to show that the homo-
topy type of the alpha shape does not change for non-critical
simplices. If a k-dimensional simplex σ is non-critical, then
either σ has a (k−1)-dimensional face ρ with α̂(ρ) = α̂(σ)
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or σ is the face of a (k+1)-dimensional simplex with α̂(σ) =
α̂(τ). Note that if α̂(ρ) = α̂(σ), then ρ is non-critical and if
α̂(σ) = α̂(τ), then τ is non-critical.
Let σ be the highest dimensional simplex involved in a non-
critical alpha event, that is, the highest-dimensional simplex
among those that appear at the same α̂ value. The dimension
k of σ is at least two as a non-critical event may not involve
just vertices and edges: if an edge is early, it has to be critical
as by definition it is always late. By our assumption, σ can-
not be early, so it must have at least one (k−1)-dimensional
face ρ with α̂(ρ) = α̂(σ). If we can show that there is exactly
one such face ρ then we are done as there is a straightforward
deformation retraction of σ to ∂σ\ρ and the homotopy type
of the alpha shape does not change.
We need to show that there is only one (k−1)-dimensional
face ρ of σ with α̂(ρ) = α̂(σ). Let p1, . . ., pk+1 ∈ P be the
vertices of σ. The (k− 1)-dimensional faces ρi of σ are the
convex hull of the vertex sets {p1, . . ., pk+1}\{pi} for 1 ≤
i ≤ k. Let V be the Voronoï facet dual to σ and Vi be the
Voronoï facet dual to ρi. As σ is not α̂-late, there is a Vi with

min{α̂ |Cα̂ ∩Vi 6= ∅} = min{α̂ |Cα̂ ∩V 6= ∅},

as α̂(ρi) = α̂(σ). Now assume that there is another face ρ j 6=
ρi with the same property

min{α̂ |Cα̂ ∩V j 6= ∅} = min{α̂ |Cα̂ ∩V 6= ∅}.

Then, we have

Cα̂(σ)∩Vi = Cα̂(σ)∩V j = Cα̂(σ)∩V.

The intersection Cα̂(σ)∩V must be a single point since α̂(σ)

is the smallest α̂ such that Cα̂ ∩V 6= ∅. Let x be the inter-
section point. Since α̂(ρi) = α̂(σ), there must exist a vertex
q ∈ ρi with argminy∈Vi

‖q− y‖ = x. But any point y ∈Vi has
the same distance to all vertices of ρi. So, for all vertices
q ∈ ρi,

argmin
y∈Vi

‖q− y‖ = x.

Similarly, for all vertices r ∈ ρ j,

argmin
y∈Vj

‖r− y‖ = x.

Since σ is at least two-dimensional, i.e., k ≥ 2, ρi and ρ j
must have at least one vertex p ∈ P in common. For this
vertex p,

argmin
y∈Vi

‖p− y‖ = argmin
y∈Vj

‖p− y‖ = x,

and x is the center of the circumcircle of the triangle pi p j p:

‖pi − x‖ = ‖p j − x‖ = ‖p− x‖.

By construction, the line through p and p j is orthogonal to
the affine hull of Vi as the line segment pp j is an edge of
ρi. Similarly, the line through p and pi is orthogonal to the
affine hull of V j . But this is impossible since the Voronoï cell
Vp is convex and we assumed the point set P is in general

p

xV Vi j

pi , pj

Figure 4: The only position of pi and p j is degenerate, tak-
ing the convexity of Vp into account.

position, as shown in Figure 4. Therefore pi = p j, arriving
at a contradiction. This completes the proof.

Lemma 7 Every α-critical Delaunay simplex σ is also α̂-
critical.

Proof Let p1, . . ., pk ∈ P be the vertices of σ. We begin by
showing that if σ is α-late, then it is also α̂-late. If σ is α-
late, α(ρi) < α(σ) for all its (k− 2)-dimensional faces ρi,
1 ≤ i ≤ k. So,

α̂(ρi) = max
1≤ j≤k

j 6=i

inf{α̂ | αp j (α̂) ≥ α(ρ j)}

< max
1≤ j≤k

j 6=i

inf{α̂ | αp j (α̂) ≥ α(σ)}

≤ max
1≤ j≤k

inf{α̂ | αp j (α̂) ≥ α(σ)}

= α̂(σ),

for 1 ≤ i ≤ k. That is, σ is also α̂-late. We now show the
reverse statement: if σ is α-early, then it is also α̂-early. Let
τ be any k-dimensional co-face of σ and let pk+1 be be the
additional vertex of τ. Since σ is α-early, α(σ) < α(τ). We
have

α̂(σ) = max
1≤ j≤k

inf{α̂ | αp j (α̂) ≥ α(σ)}

< max
1≤ j≤k

inf{α̂ | αp j (α̂) ≥ α(τ)}

≤ max
1≤ j≤k+1

inf{α̂ | αp j (α̂) ≥ α(τ)}

= α̂(τ).

Therefore, σ is also α̂-early. Since it was α̂-late from before,
σ is α̂-critical.

Note that the reverse of Lemma 7 is not true in general. There
can be more α̂-critical simplices then there are α-critical
ones, as demonstrated in Figure 5.

We get two permutations of the α-critical simplices ac-
cording to the α and α̂ values, respectively. The distance
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rp

q

Figure 5: The reverse of Lemma 7 is not always true. Tri-
angle pqr is α̂-critical but not α-critical if we assume that
the poles p∗ and r∗ are somewhere below (not shown in the
figure) and the pole q∗ is the circumcenter of the triangle
pqr.

of these permutations is a measure of the non-uniformity in
data set P. Suitable measures of the distance of two permu-
tations π1 and π2 include Spearman rules

F(π1,π2) = ∑
i
|π1(i)−π2(i)|

R2(π1,π2) = ∑
i
|π1(i)−π2(i)|

2,

as well as Kendall’s tau

K(π1,π2) = minimum number of bubble sort steps

taking π−1
1 to π−1

2 .

The α-critical simplices have a simple characterization.

Lemma 8 ([Ede04]) The α-critical Delaunay simplices are
exactly those that have a non-empty intersection with their
dual Voronoï cells. This intersection is a unique point,
namely the center of the smallest enclosing ball of the sim-
plex.

Suppose P is an ε-sample of a smooth surface S with
ε < 0.1. Recently, it was shown that the intersection points
of an α-critical simplex with its dual Voronoï cell is ei-
ther very close to the surface S or very close to the me-
dial axis M(S) [DGRS05]. Therefore, we can classify an
α-critical simplex as either surface- or medial-axis-critical.
The second line of surface reconstruction algorithms that
we discussed in the introduction used the α-critical sim-
plices for reconstruction. The separation property above is
the key reason why these algorithms have been success-
ful. By Lemma 4, we know that in the α̂-permutation of α-
critical simplices, the surface-critical ones all appear before
the medial-axis-critical. Therefore, conformal alpha shapes
incorporate a local filtering that will allow surface recon-
struction based on critical simplices.

5. Conclusion

In this paper, we introduce conformal alpha shapes, a varia-
tion of the method of alpha shapes, that utilizes a local scale
parameter α̂ that is invariant to scaling and Euclidean trans-
formations. The local parameter reorders the simplices of the
alpha shapes filtration into a new filtration. We show that this
filtration has complexes that contain the restricted Delaunay
simplices. As such, conformal alpha shapes may be utilized
for provable surface reconstruction algorithms that compute
candidate sets by filtering. Within the α̂-filtration, the critical
simplices of the alpha shapes filtration remain critical. More-
over, the new ordering separates the critical simplices that
are near the surface from those near the medial axis. There-
fore, conformal alpha shapes may also be used by the second
type of surface reconstruction algorithms that examine criti-
cal simplices. Conformal alpha shapes shed new light on the
relationship between the two main approaches in Delaunay-
based surface reconstruction algorithms. We hope that this
new understanding will allow for a new “universal” theory
that unifies the two approaches in the near future.
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