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ABSTRACT
This paper addresses the problem of the distributed deliv-
ery of correlated data sources with help of network coding.
Network coding provides an alternative to routing algorithms
and offers improved system performance, robustness and
throughput, with no need of deploying sophisticated routing
strategies. However, the performance is directly driven by
the number of innovative data packets that reach the receiver.
If the number of received innovative data packets is signifi-
cantly small, the decoder cannot perfectly recover the trans-
mitted information. However, we show that the correlation
between the data sources can be used at decoder for effective
approximate decoding. We analytically investigate the im-
pact of the network coding algorithm, and in particular, of the
size of finite fields on the decoding performance. Then, we
determine an optimal field size that minimizes the expected
decoding error, which represents a trade-off between quanti-
zation of the source data and probability of decoding error.
The network coding with approximate decoding algorithm is
implemented in illustrative multimedia streaming and sensor
network applications. In both cases, the experimental results
confirm the field size analysis and illustrate the effectiveness
of approximate decoding of correlated data.

1. INTRODUCTION

The rapid developments of sensor networks has triggered im-
portant research efforts that study the design of low complex-
ity sensing strategies and efficient solutions for information
delivery. Since it is often difficult to achieve and maintain
the coordination among sensors, the transmission of informa-
tion from the sensors has typically to be performed in a dis-
tributed manner on ad-hoc or overlay mesh network topolo-
gies. Network coding [1] has been recently proposed as a
method to build efficient distributed delivery algorithms in
networks with path and source diversity. It is based on the
paradigm, where the network nodes are allowed to perform
basic processing operations on information streams. The net-
work nodes can combine information packets and transmit
the combined data to the next network nodes. When the de-
coder receives enough data, it recovers the original informa-
tion by performing inverse operations (e.g., Gaussian elim-
ination for linear combinations). Such a strategy permits to
improve the throughput of the system and to approach better
max-flow min-cut limit of networks [2, 3]. It enhances the
robustness to data loss and reduces the need for coordination
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Figure 1: A distributed data transmission system.

in the transmission of data in overlay networks compared to
classical routing and scheduling algorithms. In practice, ran-
dom linear network coding (RLNC) [4], where coding in the
network is based on a random selection of coefficients, is of-
ten the preferred network coding solution for the distributed
delivery of time-sensitive multimedia information [5]. Us-
ing RLNC enables distributed delivery, as each node can act
independently with no need for central coordination.

We focus on the distributed transmission of correlated
data sources with network coding techniques, which is il-
lustrated in Fig. 1. Correlated data can be sources having
external correlation (e.g., data measured from different loca-
tions in sensor networks) or intrinsic redundancy (e.g., im-
ages in a video sequence). The transmission of correlated
sources is generally studied in the framework of distributed
coding [6], where sources are encoded by systematic channel
encoders and eventually jointly decoded [7, 8]. This choice,
however, does not fully exploit the network diversity. More-
over, in the proposed approach, each sensor does not need to
know the correlation information, which may enable the pro-
posed solutions to take into account more general scenarios.
Thus, network coding is a natural solution to the transmission
of correlated data over networks with diversity [9], where it
leads to efficient distributed algorithms. However, due to the
source and network dynamics, there is no guarantee that each
node receives enough useful packets for successful data re-
covery. This becomes even more critical if applications are
delay-sensitive, as delayed packets are discarded due to tim-
ing constraints. Thus, it is essential to have a methodology
that enables the recovery of the original data with a good
accuracy, when the number of innovative packets1 is not suf-
ficient for perfect decoding.

Since the encoding and decoding processes in each node
of RLNC are based on linear operations (e.g., weighted lin-
ear combinations, inverse of linear matrix, etc.) in finite alge-
braic fields, the original data can be approximately recovered

1A packet is referred to as innovative if it increases the rank of the coding
coefficient matrix.
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Figure 2: An illustrative example for network coding.

with help of regularization techniques such as Tikhonov reg-
ularization [10]. While regularization techniques provide a
closed form solution and can be used in a general case, it may
result in significantly unreasonable approximations [10]. In
this paper, we propose to use the correlation between the
sources to design approximate decoding algorithms when the
number of packets is insufficient. We show that the use of
data correlation, such as external correlation or intrinsic re-
dundancy at decoding can lead to an efficient solution for
data recovery.

The information about correlation provides additional
constraints in the decoding process, such that well-known
approaches for matrix inversion (e.g., Gaussian elimination)
can be efficiently used. We show analytically that the use
of correlation leads to a better data recovery, or equivalently,
that the proposed approximate decoding solution results in
improved decoding performance. Moreover, we analyze the
impact of the accuracy of the correlation information on the
decoding performance, since the correlation information is
usually obtained from estimation in practice. Our analysis
shows that more accurate correlation information leads to
better performance in the approximate decoding. We then an-
alyze the influence of the network coding strategy, and in par-
ticular, of the choice of the finite field size (i.e., Galois Field
(GF) size) on the performance of the approximate decoding.
We demonstrate that the GF size should be selected by con-
sidering the tradeoff between source approximation and de-
coding performance. Specifically, the quantization error of
the source data decreases with the coding GF size, while the
decoding error probability increases with the field size. We
show that there is an optimal value for the GF size when ap-
proximate decoding is enabled at the receivers. Finally, we
illustrate the performance of the network coding algorithm
with the approximate decoding on two types of correlated
data, i.e., seismic data (external correlation) and video se-
quences (intrinsic correlation). We demonstrate the results
of the finite field size analysis and show that the approximate
decoding leads to efficient reconstruction when the correla-
tion information is used during decoding.

This paper is organized as follows. In Section 2, we de-
scribe the network coding framework considered in this pa-
per. The influence of the size of the finite field is studied
in Section 3. In Section 4, we provide illustrative examples
that show how the proposed approach can be implemented in
video delivery or sensor networks applications, and conclu-
sions are drawn in Section 5.

2. PROPOSED FRAMEWORK

In this section, we describe the framework considered in this
paper and present the encoding and decoding strategies. Let
x1, . . . ,xN be N non-negative correlated original data, where
xn ∈X for 1 ≤ n ≤ N. X denotes an alphabet size of xn.
In RLNC, a node k transmits packets y(k) = ∑

N
n=1 cn(k)xn,

which is a linear combination of xn with weights cn(k) ran-
domly chosen from GF(2r). These packets are transmitted
to other nodes. Hence, the GF size is determined by r. The
nodes are distributed over a network (e.g., adhoc network).
We assume that |X | ≤ 2r. An illustrative example of the
coding process in the case where N = 3 is shown in Fig. 2.

If K innovative (i.e., linearly independent) packets,
y(1), . . . ,y(K), are available, the following linear system
y(K) = Cx can be formed2: y(1)

...
y(K)

=

 c1(1) . . . cN(1)
...

. . .
...

c1(K) . . . cN(K)

 x1
...

xN

 . (1)

The goal of decoding is therefore to estimate x̂ from the
received y(K) in (1). If K = N, x̂ can be uniquely determined
as x based on well-known approaches such as the Gaussian
elimination method. However, if K < N, there may be infinite
number of solutions for x̂ as the coding coefficient matrix C
is not full-rank. Hence, additional constraints need to be im-
posed into C appropriately such that the coding coefficient
matrix becomes a full-rank matrix and the corresponding x̂
is a good approximation of x. A similar problem has been
studied in compressive sensing, where the original data can
be recovered from a small set of equations, under sparsity as-
sumptions [11]. However, such approaches are not applica-
ble to this problem, since coding operations are performed in
finite fields on data that are not necessarily sparse. When the
data are correlated, the correlation information can be used
by the decoder in order to provide additional constraints to
C in the decoding process. This leads to approximate decod-
ing solutions that enable the reconstruction of the original
data with tolerable distortion. We study in the next section
the influence of the finite field size (GF size) in the proposed
framework, and then, we provide illustrative examples of ap-
proximate decoding of video and sensor data.

3. INFLUENCE OF FINITE FIELD SIZE

In this section, we study the impact of the construction of
the coding coefficient matrix C on the approximated decod-
ing performance. In particular, we analyze the influence of
the GF size on the performance of the system. We assume
that C is not a full-rank matrix. Approximate decoding is
performed with help of additional constraints, which can be
imposed based on the correlation information. The correla-
tion information is communicated as side information in the
beginning of transmission process.

We study first the influence of the GF size on the decod-
ing error probability. Then, we determine the optimal GF
size that leads to the smallest expected error at decoder.

Theorem 1 Let xn be selected from a finite size alphabet
X and coding coefficients cn(k) be randomly selected from

2In this paper, vectors and matrices are represented by boldfaced lower-
case and boldfaced capital letters, respectively.



GF(2r). If GF(2r) is extended to GF(2R) (r < R), the proba-
bility that decoding errors become higher increases.

Proof : Let x∈X be an original data, and let x̂r and x̂R be the
decoded x over GF(2r) and GF(2R), respectively, where R > r
for r,R ∈ N. We assume that |X |= 2r. We also assume that
the recovered data is uniformly distributed over X , since
the coefficients of RLNC are randomly selected based on a
uniform distribution over GF(2r) or GF(2R) in RLNC, the
reconstructed data follows a uniform distribution [12]. Thus,
the probability mass function of x̂k is given by

pk(x̂k) =
{

1/2k, if xk ∈ [0,2k−1]
0, otherwise

for k ∈ {r,R}. To prove that extending GF size results in a
higher decoding error, we may show

Pr(|x− x̂R| ≥ |x− x̂r|) > 0.5. (2)

The left hand side of (2) can be expressed as

Pr
(

x̂R ≥ x̂r,x≤
x̂R + x̂r

2

)
+Pr

(
x̂R < x̂r,x >

x̂R + x̂r

2

)
= Pr(x̂R ≥ x̂r)Pr (2x≤ x̂R + x̂r| x̂R ≥ x̂r)

+Pr(x̂R < x̂r)Pr (2x > x̂R + x̂r| x̂R < x̂r)

= 2r−R−1 +
(
1−2r−R) P̂

since x̂R and x̂r are both uniformly distributed. We define
P̂, Pr (2x≤ x̂R + x̂r| x̂R ≥ x̂r). Using Bayes’ rule,

P̂ = ∑
2r−1
z=0 Pr (2z≤ x̂R + x̂r| x̂R ≥ x̂r,x = z)Pr(x = z)

=
1
2r ∑

2r−1
z=0 Pr (2z≤ x̂R + x̂r| x̂R ≥ x̂r,x = z) .

For r,R ∈ N and R > r, R can be expressed as R = r + α ,
where α ∈ N, and since

∑
2r−1
z=0 Pr (2z≤ x̂R + x̂r| x̂R ≥ x̂r,x = z)

=
1

2r+R ∑
2r−1
z=0

[
2r+R−

{
2r−1(2r−1)+2∑

z
l=0 l

}]
=

1
2r+R

{
22r+R− 1

6
(
5 ·23r−3 ·22r−2 ·2r)} ,

P̂ can be expressed as

P̂ = 1− 1
6

[
5 · 1

2α
− 3

2r+α
− 2

22r+α

]
.

Because limr→∞ P̂ > 0.5 for all α ∈ N, and P̂ is a non-
increasing function of r, P̂ > 0.5 for all r and R. Therefore,

Pr(|x− x̂R| ≥ |x− x̂r|) > 0.5 (3)

which completes the proof. �
Theorem 1 implies that a smaller GF size is preferred

given a fixed number of data set, in order to reduce the ex-
pected decoding error. However, if the GF size becomes
smaller, the maximum number of data that can be encoded
and perfectly decoded by RLNC decreases correspondingly.
Specifically, if |X |> 2r′ for r′ < r, part of data in X needs

to be discarded such that |X ′| ≤ 2r′ . Hence, all the data in
X ′ can be distinctly encoded in GF(2r′ ).

In summary, reducing the GF size for coding coefficients
may result in lower decoding errors. However, this also in-
duces higher loss of original data information. Based on this
clear tradeoffs, Theorem 2 shows that
• there exists an optimal GF size that minimizes the ex-

pected decoding error,
• what is the optimal GF size.

In this analysis, we assume that if the GF size is reduced
from GF(2r) to GF(2r−z), the least significant z bits are first
discarded from x ∈X . Moreover, we assume that the corre-
sponding information (data) loss is uniformly distributed and
the recovered data is also uniformly distributed [12].

Theorem 2 There exists an optimal GF size that minimizes
the expected decoding error of RLNC encoded data. More-
over, the optimal GF size, GF(2r−z∗ ), is determined at z∗ =
d(r−1)/2e and z∗ = b(r−1)/2c.

Proof : Suppose that |X | = 2r and GF(2r). If GF size
is reduced from GF(2r) to GF(2r−z), where 0 ≤ z ≤ r− 1
(z∈Z), the decoding errors eD are uniformly distributed over
[−rD,rD], where rD = 2r−1−z−1, i.e.,

peD(eD) =
{

1/(2rD +1), if eD ∈ [−rD,rD]
0, otherwise . (4)

Correspondingly, X is reduced to X ′, where |X ′| = 2r−z

by discarding least significant z bits from all x ∈X . This
information loss also results in errors eI over [−rI ,rI ], where
rI = 2z−1, i.e.,

peI (eI) =
{

1/(2rI +1), if eI ∈ [−rI ,rI ]
0, otherwise . (5)

The distribution of total error, peT (eT ) = peD(eD)+ peI (eI),
is given by [13]

peT (eT ) =
1
2

H{|eT + rI + rD +1|− |eT + rI− rD|

− |eT − rI + rD|+ |eT − rI− rD−1|}

for |eT | ≤ rI + rD , emax
T and H = (2rI + 1)−1(2rD + 1)−1.

Since eT + rI + rD + 1 ≥ 0 and eT − rI − rD− 1 ≤ 0 for all
|eT | ≤ emax

T (= rI + rD), by substituting rI and rD, we have

peT (eT ) =
1
2

H{2
(
2z +2r−1−z−1

)
−|eT +2z−2r−1−z|− |eT −2z +2r−1−z|}. (6)

By denoting a(z) , 2z− 2r−1−z and b(z) , 2z + 2r−1−z, the
expected decoding error E[|eT |] = ∑

∞
eT =−∞ |eT | · peT (eT ) can

be expressed as

1
2

H
emax

T

∑
eT =−emax

T

|eT |[2(b(z)−1)−|eT +a(z)|− |eT −a(z)|].

Since both |eT | and [2(b(z)−1)−|eT +a(z)|− |eT −a(z)|]
are symmetric on z = d(r−1)/2e and z = b(r−1)/2c, E[|eT |]
is also symmetric. Moreover, it can be easily shown that for
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Figure 3: Illustrative examples of patch p with size 2×2 and
patches in a generation t.

the case where a(z) > 0, which corresponds to r/2 < z ≤
r−1, E[eT ] can be expressed as

E[|eT |] =
[

H
3

b(z)(b(z)−1)(b(z)−2)− H
3

a(z)(a(z)2−1)
]

and this is an increasing function for r/2 < z ≤ r−1. Since
E[|eT |] is a symmetric on z = d(r− 1)/2e and z = b(r−
1)/2c, and is an increasing function over r/2 < z ≤ r− 1,
E[|eT |] is convex over 0 ≤ z ≤ r− 1. Therefore, there ex-
ists an optimal z∗ that minimizes the expected decoding er-
ror. Moreover, since E[|eT |] is symmetric on d(r−1)/2e
and b(r−1)/2c, the minimum E[eT ] can be achieved at
z∗ = d(r−1)/2e and z∗ = b(r−1)/2c. �

In the next section, we confirm the theoretical results dis-
cussed in this section by implementing the approximate de-
coding strategy to two illustrative applications.

4. ILLUSTRATIVE EXAMPLES

4.1 Network Coding of Uncompressed Video Frames
We illustrate the findings of the previous section in an ap-
plication that perform network coding of images in a video
sequence, and approximate decoding using the information
provided by motion estimation in the video sequence.

Let Y t
p(k) = ∑

N
n=1 cn

p(k)X
n
p be the kth received data that

corresponds to a patch p with size L×L in generation t (i.e., a
GOP). Y t

p(k) = [yt p
1 (k), . . . ,yt p

L2(k)]T is a vector of linear com-
bination of corresponding Xn

p = [xnp
1 , . . . ,xnp

L2 ]T at nth frame
in GOP t with coding coefficients cn

p(k), which is randomly
chosen in GF(2r). We assume that the original data (i.e., pix-
els) has values ranging in [0,255], and thus, |X |= 256 = 28.
An example is illustrated in Fig. 3.

For patch p, if a node receives K innovative data, i.e., the
node has Y t

p(k), k = 1, . . . ,K, the node can form the following
linear system Yt

p(K) = CpXp: Y t
p(1)
...

Y t
p(K)

=

 c1
p(1)IL2 . . . cN

p (1)IL2

...
. . .

...
c1

p(K)IL2 . . . cN
p (K)IL2


 X1

p
...

XN
p

 ,

where IL2 is L× L identity matrix. Correspondingly, for
N frames (each of frame is decomposed into M patches,
1 ≤ p ≤ M), linear system Y(K) = CX in generation t

can also be formed, where Y(K) = [Yt
1(K), . . . ,Yt

M(K)]T ,
C = diag(C1, . . . ,CM), and X = [X1, . . . ,XM]T . Y(K) is a
KML2× 1 vector, C is a KML2×NML2 matrix, and X is a
NML2×1 vector. We consider the case of K < N, where the
approximated decoding approach can be deployed by impos-
ing additional (N−K)ML2 constraints into the coding coef-
ficient matrix C.

The illustrative example consists of the first three frames
extracted from Silent QCIF format (174×144) standard se-
quence. The pixel values in each frame have range of [0,
255]. Thus, RLNC coefficients are randomly selected from
GF(28), which corresponds to r = 8 in our analysis of Sec-
tion 3. However, if the GF size decreases by z bits, i.e., the
network coding coefficients are selected over GF(28−z), the
least significant z bits are discarded from each pixel. In our
experiments, we assume that 2/3 of innovative packets are
received. The rest of equations can be additionally imposed
based on the information about the matched units in a patch
(i.e., correlations between frames). To find the matched units
in a patch a simple block-based motion estimation technique
is used.3 Each of the constraints can contribute to C as a
form of row vector with NML2 zeros (i.e., additive identity
over GF(2r)) except two elements of 1 and -1 in the position
of matched units.4 For the motion estimation, we use the first
and the second frames. The patch size is 16×16 and a block
size is 8×8. The experiment results are shown in Fig. 4.

Fig. 4 shows the quality measured as PSNR from actually
decoded the three frames in Silent for different GF sizes 28−z.
As discussed in Theorem 2, the expected decoding error can
be minimized if z∗ = d(r−1)/2e or z∗ = b(r−1)/2c, which
corresponds to z∗ = 3 and z∗ = 4. This is confirmed from the
experiment results, where the two highest average PSNRs are
achieved at z = 3 and z = 4.

4.2 Seismic Signals in Sensor Networks
The approximated decoding can be used to recover the
data transmitted from distributed sensors in sensor networks,
where each sensor captures a source signal from different
locations. The correlation among the signals that depends
on the proximity of the sensors used for approximate decod-
ing when the decoding system is not full-rank. Note that
the closer the sensors are located, the higher correlations are
achieved.

We consider seismic signals that are captured by sensors
spaced by 100m transmitted to neighbors nodes (e.g., relay
nodes) or receivers. For this illustration, we assume that a re-
ceiver tries to recover the signals of sensors 1, 2, and 30 from
the received packets in a generation (i.e., signal samples in a
fixed size window) encoded based on RLNC. We assume that
the correlation information among signals is included in ad-
dition to the coding coefficients in the encoding process, and
transmitted with packets. Similarly to the illustrative exam-
ple in Section 4.1, we assume that 2/3 of linear equations
required for perfect decoding are received, and that the rest
of 1/3 of constraints are imposed into the coding coefficient
matrix based on the included correlation information. For
simplicity, we assume that the signals from two close sen-
sors, sensor 1 and sensor 2, are highly correlated. The cap-

3This information is included in the encoded packets in addition to the
coding coefficients.

4-1 denotes the additive inverse of 1 over GF(2r).
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tured data is in the range of [0,1023]. Thus, the maximum
GF size is GF(210). The experimental results are shown in
Fig. 5.

Fig. 5 shows the mean square error (MSE) from decoded
signals for different GF sizes sizes 210−z. Theorem 2 is also
confirmed from these results, as the two lowest average de-
coding errors (i.e., normalized average MSE) are achieved at

z∗ = d(10−1)/2e= 5 and z∗ = b(10−1)/2c= 4.

5. CONCLUSIONS

In this paper, we have described a framework for the deliv-
ery of correlated information sources with help of network
coding and approximate decoding based on correlation in-
formation. We have analyzed the tradeoffs between the de-
coding performance and the size of finite fields. We can
determine an optimal field size that leads to the highest ap-
proximated decoding performance. The proposed approach
is implemented in illustrative video streaming and sensor net-
works applications, where the experimental results confirm
the effectiveness of the proposed approach. Further interest-
ing research topics may include the relation between delay
and approximate error
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