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Model-Based Estimation of 3-D Stiffness Parameters
in Photonic-Force Microscopy

P. Thévenaz∗, A. S. G. Singh, E. Bertseva, J. Lekki, A. J. Kulik, and M. Unser

Abstract—We propose a system to characterize the 3-D diffu-
sion properties of the probing bead trapped by a photonic-force
microscope. We follow a model-based approach, where the model
of the dynamics of the bead is given by the Langevin equation.
Our procedure combines software and analog hardware to mea-
sure the corresponding stiffness matrix. We are able to estimate all
its elements in real time, including off-diagonal terms. To achieve
our goal, we have built a simple analog computer that performs a
continuous preprocessing of the data, which can be subsequently
digitized at a much lower rate than is otherwise required. We also
provide an effective numerical algorithm for compensating the cor-
relation bias introduced by a quadrant photodiode detector in the
microscope. We validate our approach using simulated data and
show that our bias-compensation scheme effectively improves the
accuracy of the system. Moreover, we perform experiments with
the real system and demonstrate real-time capabilities. Finally, we
suggest a simple adjunction that would allow one to determine the
mass matrix as well.

Index Terms—Brownian motion, Langevin process, quadrant
photodiode (QPD).

I. INTRODUCTION

A PHOTONIC-FORCE microscope (PFM) is an instru-
ment that uses a focused laser beam to loosely trap a

micrometer-sized bead within some liquid medium. Random
thermal fluctuations act upon molecules of the medium, which
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collide with the bead, setting it into motion, while the focused
laser pulls it back to a resting position. Using optical means, the
whereabouts of the bead is recorded through time.

The appropriate statistical analysis of the recorded path pro-
vides insights on the properties of the medium at the location of
the bead [1]–[6]. Not only do thermally induced fluctuations of
the position of the trapped bead provide access to the viscoelas-
tic properties of aqueous environments [1], they also provide
a valuable tool to measure the mechanical properties of single
motor molecules with high resolution [7]. Moreover, a PFM can
be used to image in 3-D the topology of a polymer network [8].
Unfortunately, these analyses require the processing of a high
amount of data. Until now, the calculations have been done
offline, which is extremely time-demanding.

In this paper, we provide the detailed explanations of a system
that we first proposed in [9], where we had added to the tradi-
tional PFM a combination of software and analog hardware.
When used jointly, these additional components allow for the
real-time estimation of the stiffness matrix of the trap, including
of its off-diagonal elements. In addition, we propose another
modification that will allow for the determination of the mass
matrix of the bead, also in real time and in 3-D.

The roadmap for this paper is as follows: In Section II, we
introduce and justify the use of the Langevin equation to model
the dynamics of the probe used in PFM. We also adopt a signal-
processing formalism to simplify the analysis and resolution
of the corresponding stochastic differential equation. The main
contribution is then to be found in Sections III and IV, where we
explain how we harness the raw data. We present experiments
in Section V, before we conclude in Section VI.

II. LANGEVIN PROCESS

A. Classical Analysis

We rely on Newtonian mechanics to describe the evolution
of the position of a bead inside an optical trap, which balances
four forces. The random driving force (σ0 n) is assumed to be
a scaled version of a centered Gaussian white noise n of unit
variance. The scaling factor is σ0 . This force is imparted to the
bead by its impact with molecules of the medium. Once set in
motion, the bead experiences a viscous drag, which we model
by a force that is proportional to the speed of the bead. (To
keep this model simple, we ignore contributions, such as the
hydrodynamic memory effect [10].) Once displaced, the bead
is pulled back to its resting position x0 by the optical trap. We
model this as a spring that would exert a linear response over a
range of about λ0/2 in axial and λ0/4 in lateral directions [11].
Moreover, we assume that the bead remains trapped at all times
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and never wanders beyond this linear range. Finally, the inertia
of the bead provides the reaction force. In 1-D, we therefore
express the dynamics of the system by

mẍ + γ ẋ + κ (x − x0) = σ0 n (1)

which is called the Langevin equation. Here, m is the mass of
the bead, γ is the coefficient of drag, κ is the spring stiffness, and
x is the position of the bead. The value σ0 =

√
2 kB T is given

by the Sutherland–Einstein–Smoluchowski relation, where T is
the temperature of the medium surrounding the bead and kB is
the Boltzmann constant. We consider that m, γ, and κ depend
neither on time nor on space, at least locally. However, their
large-scale evolution, particularly over space, is what we are
interested in.

To make the system tractable, further assumptions are re-
quired [12]. Among them, the system is assumed to be memo-
ryless and to satisfy the fluctuation–dissipation relations. Then,
(1) can be extended to 3-D [13]. This leads to

Mẍ + Γ ẋ + K (x − x0) = Fn (2)

where M is the mass matrix of the bead, Γ is a friction matrix
related to the medium, K is the stiffness matrix of the opti-
cal trap, x0 is the resting position of the bead, and where the
product of the matrix F with the noise vector n = (n1 , n2 , n3)
represents the contribution of the driving force. Component-
wise, ni ∈ N (0, 1) is again a centered, unit-variance, Gaussian,
white noise, while F depends on Γ and on the temperature. In
all generality, this system has no less than 31 free parameters
(the temperature, the three coordinates of x0 , along with the
elements of the three (3 × 3) matrices M, Γ, and K). As our
goal is to fit the parameters of the Langevin model to the experi-
mental path taken by the bead, we simplify (2) by assuming that
all matrices are symmetric. Nonetheless, we retain off-diagonal
terms, which is one important contribution of our method. Under
these conditions, a classical result from [12] is that the random
position x that satisfies (2) has an expected value E{x} = x0 ,
which does not depend on time. Moreover, x follows a Gaussian
distribution given by

p(x) =
1√

(2π)3 |det(C)|
e−1/2 (x−x0 )T C−1 (x−x0 ) (3)

where the autocovariance of the bead displacement is found to
be

C = kB T K−1 . (4)

B. Signal-Processing Perspective

In this section, we undertake the analysis of the 1-D Langevin
equation with concepts and notations familiar to a signal-
processing audience. In particular, we rederive a result con-
cerning the variance of the position x in (1). While the result
itself is well-known, the use of signal-processing tools makes
the self-contained derivation particularly simple and accessible.

An operator G takes a function as argument and transforms it
into another function. A convolutional operator is such that it is
fully characterized by its impulse response G{δ}, where δ is the

Dirac distribution. For instance, Dn is the operator that converts
a functional argument x into its nth derivative x(n) , in particular,
D0 = I is the identity. We observe that Dn is convolutional, with
impulse response δ(n) .

In (1), we take the view that (σ0 n) can be obtained by apply-
ing a convolutional operator G to the signal x. Without loss of
generality, we can assume x0 = 0, which leads to

G{x} = m D2{x} + γ D{x} + κ I{x}
= m ((D − s1 I) (D − s2 I)) {x}

where we have that

s1 =
1

2m

(
−γ +

√
γ2 − 4κm

)

and

s2 =
1

2m

(
−γ −

√
γ2 − 4κm

)
.

Next, we want to find ρ, such that G{ρ} = δ. The function ρ
is called the Green function of the operator, it is defined up to an
additive component ρ0 that belongs to the null-space of G, with
G{ρ0}(t) = 0 ∀t ∈ R. (We choose to ignore ρ0 because this
component is associated with the boundary conditions of the
system, while we are interested only in its steady-state regime.)
Using F to indicate the Fourier transform, with the pulsation
ω ∈ R, we have that

F{ρ}(ω) =
1

F{G{δ}}(ω)

=
1

m (jω − s1) (jω − s2)

= ρ̂(ω) (5)

where we have taken advantage of the Fourier property that
maps convolutions in the time domain to multiplications in
the pulsation domain. There, j is the imaginary unit, while
the forward Fourier transform f̂ of a function f is defined as
f̂(ω) =

∫
R

f(t) e−j ω t dt. (In the case of the forward Fourier
transform, the signal-processing conventions involve the ab-
sence of a (2π) factor and the presence of a negative sign in
the exponential.) Since �(s1) < 0 and �(s2) < 0, the solution
is well-defined and we have that

∀t ∈ R : ρ(t) =
1
m

(
(u(·) es1 ·) ∗ (u(·) es2 ·)

)
(t),

where u is the unit-step function with D{u} = δ, and where
the operation ‘∗’ is used to indicate the convolution of the two
signals x and y, defined as (x ∗ y) (t) =

∫
R

x(τ) y(t − τ) dτ .
From G{ρ}=δ ⇒ G{σ0 ρ ∗ n}=σ0 δ ∗ n = σ0 n=G{x},

we infer that the solution of the Langevin equation is as fol-
lows:

x = σ0 ρ ∗ n. (6)

This last equation suggests that the position of the bead can
be obtained by filtering the driving force acting upon it, which
provides a convenient way to synthesize trajectories when we
validate our approach, in Section V-A. Thus, the power spectral
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density of the position is S{x} = σ2
0 |ρ̂|2 , where the power spec-

tral density of (σ0 n) is σ2
0 = 2 kB T γ. Taking advantage of (5),

and taking an inverse Fourier transform R{x} = F−1{S{x}},
we can obtain the explicit form of the autocorrelation of x in
terms of a lag τ ∈ R as follows:

R{x}(τ)=
kB T

κ
e−(γ/2 m ) |τ |

(
cos(Ω τ)+

γ

2Ωm
sin(Ω |τ |)

)

with

Ω =

√
κ

m
−

( γ

2m

)2
.

Finally, the variance of x is given by R{x}(0), so that
VAR{x} = kB T/κ. Thus, the spring term κ �= 0 is respon-
sible for destroying the Brownian quality of the process, which
would otherwise be characterized by an unbounded variance.
This result generalizes to the 3-D Langevin process (2) as well.

III. PROPOSED SYSTEM

The overall strategy that we pursue here is first to obtain an
estimate of the autocovariance of the bead displacement, and
then, to get the stiffness matrix of the optical trap through (4).
We propose to obtain the autocovariance by using an analog
computer. This has two main benefits: 1) we can spare the high-
speed sampling, recording, and especially, processing of the
huge number of individual samples of the trajectory of the bead
that would otherwise be required by an offline approach; 2)
in our online approach, all the data continuously contribute to
the final measurements, while in an offline approach, whatever
happens to the signal is lost, except at the precise instants when
it is sampled. (While an optimal procedure to fill these gaps
exists [14], [15], this procedure is not trivial.)

We defer the description of our analog computer until
Section IV-A, because before any data are processed, either in
analog or digital fashion, we have to remember that the 3-D
displacement of the bead is measured at the output of an ultra-
fast quadrant photodiode (QPD) that collects interference pat-
terns [16]. Thus, the characteristics of the QPD are going to play
a significant role, which we detail in Section III-A.

A. Detector Response

The laser light that traps the bead also interferes with it. These
interference patterns are collected by a QPD that measures the
four intensities {Q1 , Q2 , Q3 , Q4}, as schematized in Fig. 1.
These quantities are not accessible directly, instead, the signal
of the detector is returned as the triplet

y =


 q1 ((Q1 + Q3) − (Q2 + Q4))

q2 ((Q1 + Q2) − (Q3 + Q4))
q3 (Q1 + Q2 + Q3 + Q4)


 (7)

where the set of coefficients {q1 , q2 , q3} translates the intensity
Q, in lumen, into the measured signal y, in volt. (Fortunately,
the explicit knowledge of these coefficients is unnecessary.)

1) Traditional Model: To obtain the position of the bead for
movements of small amplitude, it is customary to apply a simple
linear conversion factor, so that x̃1 = y1/β1 , x̃2 = y2/β2 , and

Fig. 1. Ultrafast QPD.

x̃3 = y3/β3 . The quantity x̃, thus obtained is but an estimate
of the true position x of the bead, which remains inaccessible.
The coefficients (β1 , β2 , β3) result from a calibration procedure
that involves the detection of a plateau in the spectrum of the
measurements [17]. This simple procedure, however, assumes
that the measurements are independent. In particular, it assumes
that y1 and y2 do not themselves depend on y3 .

2) Refined Model: We now show that this independence is
not consistent with even a very simple model of the QPD. We
start by establishing a coordinate system that is centered on the
junction of the quadrants and oriented in such a way that the
coordinates are indicated by u = (u1 , u2), as indicated in Fig. 1.
Next, we make the hypothesis that the QPD has infinite extent,
and that the interference pattern takes the form of a Gaussian
beam centered on v = (v1 , v2). Furthermore, we assume that the
components of v are proportional to the lateral displacements of
the bead with v1 ∝ x1 and v2 ∝ x2 . Then, we choose to model
the intensity reaching the QPD in each point by

q(u) = Q0

(
1 +

x3

X3

)
1

4σ2
B

√
2/π e−(‖u−v‖2 )/2 σ 2

B

where Q0 is a global illumination modulated by the axial posi-
tion x3 of the bead and X3 is a quantity that models the degree
of modulation. The width of the Gaussian beam is given by
σB . The scaling factor 1/4σ2

B

√
2/π has been thrown in for

notational convenience, to simplify the calculations that we are
about to perform. This model of the detector does not do justice
to any sort of diffraction patterns. Yet, it introduces a feature that
we believe is crucial and shared by more refined models. On one
hand, it encodes the lateral position (x1 , x2) of the bead in the
location (v1 , v2) of the Gaussian spot on the QPD. On the other
hand, the axial position is encoded by the intensity of the light,
which is made to vary linearly (in a first-order approximation)
with the axial position x3 of the bead.

To obtain the intensity Qi that reaches a quadrant of the
photodiode, we then integrate q over the ith quadrant. Finally,
we apply (7) to the outcome, which yields the measurement

y =




q1 Q0

(
1 + x3

X 3

) √
π
2 erf( v1

σB
√

2
)

q2 Q0

(
1 + x3

X 3

) √
π
2 erf( v2

σB
√

2
)

q3 Q0

(
1 + x3

X 3

) √
π
2
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THÉVENAZ et al.: MODEL-BASED ESTIMATION OF 3-D STIFFNESS PARAMETERS IN PHOTONIC-FORCE MICROSCOPY 93

where the McLaurin expansion of the erf function is erf(z) =
2/
√

π
∑

k∈N
(−1)k z2 k+1/ (k! (2 k + 1)). As can be seen,

this expansion lacks second-order terms, which means that a
linear approximation of erf is already good enough, at least for
small arguments z. Applying this approximation, we obtain

y =




q1 Q 0
σB

v1
x3 +X 3

X 3

q2 Q 0
σB

v2
x3 +X 3

X 3

q3 Q 0
X 3

√
π
2 (x3 + X3)


 .

We now make explicit the hypothesis that v1 and v2 are pro-
portional to x1 and x2 , respectively. To specify the appropriate
constants of proportionality, we aggregate the unknown parame-
ters qi , Q0 , X3 , and σB , which leads to (q1 Q0/σB) v1 = β1 x1 ,
(q2 Q0/σB) v2 = β2 x2 , and q3 Q0/X3

√
π/2 = β3 . This fi-

nally establishes that

y =




β1 x1
x3 +X 3

X 3

β2 x2
x3 +X 3

X 3

β3 (x3 + X3)


 . (8)

Clearly, (8) contradicts the hypothesis of independence between
the quantities y1 , y2 , and y3 that was made in the traditional
approach.

3) Alternative Model: To approach the issue of indepen-
dence from another angle, we now forget about the Gaussian
spot of Section III-A2. Turning the model on its heel, we make
upfront the hypothesis that the light reaching a quadrant con-
sists of three additive contributions, and a scaling factor. The
first term is a baseline average illumination Q0 that is shared by
all quadrants. We let the second contribution be proportional to
the position x1 ; we choose to write the factor of proportionality
as ±β1/q1 , with a positive sign for Q1 and Q3 , and a negative
sign otherwise, as suggested in Fig. 1. (For instance, we want
to enforce that an increase of v1 results in an increase of Q1
and a similar decrease of Q2 .) The last additive contribution is
proportional to the position x2 ; the factor of proportionality is
±β2/q2 with a positive sign for Q1 and Q2 , and a negative sign
otherwise. These intensity terms are responsible for encoding
the lateral position of the bead. As earlier, we assume that they
are modulated by its axial position and made to be proportional
to (x3 + X3)/4X3 , where X3 is some constant offset. We write
this a priori model as follows:



Q1 =
(
Q0 + β1

q1
x1 + β2

q2
x2

)
x3 +X 3

4 X 3

Q2 =
(
Q0 − β1

q1
x1 + β2

q2
x2

)
x3 +X 3

4 X 3

Q3 =
(
Q0 + β1

q1
x1 − β2

q2
x2

)
x3 +X 3

4 X 3

Q4 =
(
Q0 − β1

q1
x1 − β2

q2
x2

)
x3 +X 3

4 X 3
,

where Q0 = (β3/q3) X3 represents the total time-averaged illu-
mination of the detector. Under the hypothesis that X3 
 |x3 |,
this illumination is sufficiently large to ensure that reasonable
changes in x lead to negative Qi only with a vanishingly small
probability, in the sense of (3).

Applying our alternative model to the system of measure-
ments (7), we observe that the formal outcome is again given

by (8), exactly. If we now set Y3 = β3 X3 , then we can rewrite
an equivalent version of (8) as follows:


y3 = β3 x3 + Y3
y1 = β1 x1

y3
Y3

y2 = β2 x2
y3
Y3

.

The major interest of this form is that every term is physically
accessible: yi is the voltage found at the ith output of the QPD,
βi is determined as in [17], and Y3 is the temporal average
of y3 under the hypothesis that x3 has the temporal average
E{x3} = 0.

B. Temporal Average

The major consequence of either the model of Section III-A2
or Section III-A3 is the observation that the components of the
measured signal are artificially coupled by the detector, which
leads to a bias in its time-averaged value. Indeed, combining (4)
and (8), we obtain the expected value of the measurements as
follows:

E{y} =




β1
X 3

kB T
[
K−1

]
13

β2
X 3

kB T
[
K−1

]
23

Y3


 (9)

under the hypotheses that prevail in the establishment of (3).

C. Autocovariance Matrix

Taking (8) and (9) into account, we can now express the
autocovariance matrix of the measurements as follows:

Σ = E{(y − E{y}) (y − E{y})T} (10)

with matrix entries σij . To do so explicitly, we need to calculate
high-order moments. Fortunately, x is following the Gaussian
distribution (3) for which explicit results are known [18]. This
leads to

σ11 = β2
1

(
c11

(
1 +

1
Y 2

3
β2

3 c33

)
+

1
Y 2

3
β2

3 c2
13

)

σ12 = β1 β2

(
c12

(
1 +

1
Y 2

3
β2

3 c33

)
+

1
Y 2

3
β2

3 c13 c23

)

σ13 = β1 β3 c13

σ22 = β2
2

(
c22

(
1 +

1
Y 2

3
β2

3 c33

)
+

1
Y 2

3
β2

3 c2
23

)

σ23 = β2 β3 c23

σ33 = β2
3 c33 (11)

where the terms cij are entries of the autocovariance matrix C
of the displacements of the bead. In the sequel, we are going to
establish a method to measure Σ, so that we can invert (11) to
compute C, therefore, determining K by the way of (4).

IV. ANALOG HARDWARE COMPUTATIONS

A. Analog Hardware

While our system is fast enough to acquire the three compo-
nents of y at a high sampling rate (typically, 1 MHz), we are
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Fig. 2. Schematics of the analog processor used to get S given y.

unable to perform their further processing in real time. Instead,
we simply store them for later inspection. Because it would be
difficult to obtain K−1 with online numeric computations, we
have built an analog hardware device to provide us with an es-
timate of the the autocovariance C over a sliding time window.

Since C = E{(x − E{x}) (x − E{x})T}, we need practi-
cal realizations of the expectation process E, which we ob-
tain by virtue of an analog low-pass filter. Therefore, we get a
time-varying access to the quantity E{x} by creating the signal
ȳ(t) =

∫ t

−∞ y(τ)h(t − τ) dτ , where h is the impulse response
of the filter. We have chosen to build h as the cascade of two
standard first-order RC (active) filters, which ensures that h
is causal and nonnegative, along with

∫ ∞
−∞ h(τ) dτ = 1. The

latter condition ensures unbiasedness (see Appendix A), while
the nonnegative condition ensures that the correlation matrix re-
mains semipositive definite (see Appendix B), which is required
for (3) to truly represent a Gaussian process. We have set the
cutoff frequency of h to 500 Hz.

The signal (yi − ȳi) is then multiplied by (yj − ȳj ). As this
multiplication is realized in analog fashion, a scaling factor λ−1

is required to homogenize the physical units. In our case, this
factor is such that multiplying together two signals of 1 V results
in an output signal of 0.1 V, so that λ = 10. The outermost
expectation operator defining C is finally implemented as yet
another low-pass digital filter, with identical order, make, and
cutoff frequency. This yields the components sij of the scatter
matrix S that estimates the autocovariance matrix Σ of the
measurements y, up to the multiplicative factor λ. We give in
Fig. 2, a schematic diagram of our device.

Because h is a low-pass filter, we can sample sij ≈ σij /λ at a
much lower rate (as low as 1 kHz in our current system) than we
sample y. In this way, we can now process the data numerically
in real time. For instance, it becomes possible to reduce the
influence of noise by computing a numeric time average of the
slow signal.

B. Stiffness Matrix

Taking advantage of (11), it is possible to relate the inverse
K−1 of the stiffness of the trap to the autocovariance matrix
S ≈ (1/λ)Σ that we obtained with the aid of the hardware,
we just described in Section IV-A. Fortunately, although (11) is
quadratic in terms of cij , its inversion results in simple expres-
sions. We have that

[
K−1]

11 =
λ

kB T

(
s11

β2
1
− λ

Y 2
3

s2
13

β2
1

) (
1 +

λ

Y 2
3

s33

)−1

[
K−1]

12 =
λ

kB T

(
s12

β1 β2
− λ

Y 2
3

s13 s23

β1 β2

) (
1 +

λ

Y 2
3

s33

)−1

[
K−1]

13 =
λ

kB T

s13

β1 β3

[
K−1]

22 =
λ

kB T

(
s22

β2
2
− λ

Y 2
3

s2
23

β2
2

) (
1 +

λ

Y 2
3

s33

)−1

[
K−1]

23 =
λ

kB T

s23

β2 β3

[
K−1]

33 =
λ

kB T

s33

β2
3

. (12)

Alternatively, two components of this matrix can also be ob-
tained from (9) as

[
K−1

]
13 = (1/kB T ) (ȳ1 ȳ3)/(β1 β3) and[

K−1
]
23 = (1/kB T ) (ȳ2 ȳ3)/(β2 β3), where (ȳ1 , ȳ2 , ȳ3) ≈

E{y}. However, the analog-to-digital card we use to acquire
the slow signal has eight entries only, while we would need nine
to simultaneously access ȳ and S. Therefore, we have relied on
S alone while estimating K.

To summarize, the method that we propose to obtain the
stiffness of the optical trap results in a symmetric matrix K
that takes cross-terms into account. It also compensates for the
undesired correlations that the QPD detector creates between
measurements. We have built an analog processor to handle the
primary high-bandwidth signal. It generates a low-pass signal
that we further process numerically. Our setup allows us to
attain real-time performance. In Fig. 3, we provide a flowchart
that summarizes the main ingredients of our approach.

C. Mass Matrix

The autocovariance matrix C of the 6-D signal (x, ẋ) has
been calculated in [12]. It is given by

C =
(

kB T K−1 0
0 kB T M−1

)

where we recognize the contribution of (4) of which we have
already taken care. But the structure of C also clearly suggests
that a similar approach can be used to access the mass matrix
M, provided we start from the time derivative ẏ of the available
signal y. Fortunately, building an analog differentiator can be
trivially achieved by an RC analog circuitry.

From (8), we write that

ẏ =


 β1 ẋ1 + β1

X 3
(ẋ1 x3 + x1 ẋ3)

β2 ẋ2 + β2
X 3

(ẋ2 x3 + x2 ẋ3)
β3 ẋ3


 .
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Fig. 3. Flowchart of our experimental setup. The QPD yields the analog signal
y, which is a vector with three components. This signal is transformed by our
proposed analog processor into three autocovariances E{yi yj }, i = j , and
three cross-covariances E{yi yj }, i �= j . These get sampled and become the
six independent components of the symmetric (3 × 3) covariance matrix S.
We then apply (12) to numerically compute the six independent components
of the inverse of the symmetric (3 × 3) stiffness matrix K. The grayed boxes
indicate our specific contributions.

Because E{x} = x0 is not time-dependent, we have that
E{ẋ} = 0. In addition, by examination of the off-diagonal block
matrices of C, we also see that E{ẋi xj} = 0. We, thus, easily
conclude that E{ẏ} = 0, which equates the autocovariance of
ẏ with its autocorrelation.

According to [12], both x and ẋ follow a Gaussian distri-
bution, which again allows us to apply the results of [18] in
developing expressions for the autocovariance matrix of ẏ. This
leads to

E{ẏ1 ẏ1} = β2
1 kB T

[
M−1]

11

+
β1 β2

3 β1

Y 2
3

(kB T )2 ([
K−1]

33

[
M−1]

11

+2
[
K−1]

13

[
M−1]

13 +
[
K−1]

11

[
M−1]

33

)
E{ẏ1 ẏ2} = β1 β2 kB T

[
M−1]

12

+
β1 β2

3 β2

Y 2
3

(kB T )2 ([
K−1]

33

[
M−1]

12

+
[
K−1]

23

[
M−1]

13 +
[
K−1]

13

[
M−1]

23

+
[
K−1]

12

[
M−1]

33

)
E{ẏ1 ẏ3} = β1 β3 kB T

[
M−1]

13

E{ẏ2 ẏ2} = β2
2 kB T

[
M−1]

22

+
β2 β2

3 β2

Y 2
3

(kB T )2 ([
K−1]

33

[
M−1]

22

+2
[
K−1]

23

[
M−1]

23 +
[
K−1]

22

[
M−1]

33

)

TABLE I
PRESCRIBED RANGE OF COEFFICIENTS

E{ẏ2 ẏ3} = β2 β3 kB T
[
M−1]

23

E{ẏ3 ẏ3} = β2
3 kB T

[
M−1]

33 . (13)

While (11) was quadratic, the situation is now simpler, since
(13) is a linear system of equations, where the entries

[
M−1

]
ij

of the inverse of the mass matrix are the unknowns, provided
the stiffness matrix K has already been computed according to
Section IV-B. For the sake of brevity, we omit here the trivial
step of expressing M−1 in terms of E{ẏi ẏj}.

V. EXPERIMENTS

A. Synthetic Validation

We have performed numeric simulations of our system to val-
idate the calculations of this paper. For one typical experiment,
we have generated one set of random matrices {M0 ,Γ0 ,K0},
as explained in Appendix C. We have also generated a large set
of N random samples n that are normally distributed in N (0, 1)
and provide a realization of a white-noise process with flat power
spectrum. We have then applied the solution (6) of the Langevin
process to filter n and to obtain N coordinates x, at a random
but fixed temperature T0 . We have proceeded in the discrete
Fourier domain. The details can be found in Appendix D.

The numerical availability of x has allowed us to check the
similarity between K0 and K1 = kB T0 C−1 , even though x
would not be directly accessible in reality. Then, we have drawn
one random set of coefficients {β1 , β2 , β3 ,X3} from the uni-
form distributions specified in Table I, and finally, taken the
QPD into account by using (8) to transform x into a sequence
of virtual measurements y.

1) Offline Stiffness: The offline determination of the stiffness
matrix is usually done using as data the whole sequence y. We
have simulated it by producing the QPD-uncorrected sequence

x̃ = (y1/β1 , y2/β2 , y3/β3), along with K̃ = kB T0 Σ̃
−1

, where
Σ̃ is the autocovariance of x̃. To give this method a chance in

the sequel, we have kept the off-diagonal terms of Σ̃ and Σ̃
−1

,
but we must note that this already goes one step beyond what is
commonly done in practice.

2) Online Stiffness: The contribution of this paper is the
computation of the stiffness matrix K according to (12). To
obtain it, we have mainly followed the schematics of Fig. 2,
except that for algorithmic commodity, we have implemented h
as a moving-average filter of length L. We have applied h twice:
a first time to get ȳ, and a second time to get S. The resulting
estimates sij of the product ((yi − ȳi) (yj − ȳj )) have then
been downsampled by a factor M . Finally, we have produced
a single S0 as the time-average of the downsampled sequence,
and determined K as stated in (12).
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TABLE II
SIMULATION RESULTS FOR THE FULL STIFFNESS MATRIX, BASED ON CROSS

CORRELATIONS (SMALLER IS BETTER)

TABLE III
SIMULATION RESULTS FOR TWO ELEMENTS OF THE STIFFNESS MATRIX, BASED

ON AVERAGING (SMALLER IS BETTER)

3) Figure of Merit: We need a figure of merit to compare
the virtual measurements K1 , K̃, and K to the ground-truth
K0 . In this role, we have retained the Frobenius norm F (Q) =∥∥QK−1

0 − I
∥∥.

We report in Table II the outcome of performing one hundred
times the operations of Sections V-A1 and V-A2 with N = 105

and L = M = 103 . In this case, the two components of the
online system that we have simulated would share the compu-
tational load in such a way that the analog hardware described
in Section IV-A would take care of most “computations,” while
the load of the digital computer would be M = 1000 times less
important to get K than to get K̃. (Remember that the oracle so-
lution K1 is not accessible outside of simulations.) Despite that
it is computationally more frugal, the average figure of merit
of our proposed method is nearly twice better than that of the
offline approach. Had we not kept the off-diagonal terms of Σ̃,
the comparison would be even more in our favor.

Alternatively, we could have chosen to follow the strat-
egy suggested in (9) to access two out of the six in-
dependent components of the stiffness matrix. To focus
on these two cases, we propose the following figures of
merit: G13 =

∣∣(β1/X3) kB T
[
K−1

0

]
13 /ȳ1 − 1

∣∣ and G23 =∣∣(β2/X3) kB T
[
K−1

0

]
23 /ȳ2 − 1

∣∣. We present the results in
Table III, where we see that (9) lacks in stability when compared
to (12), which is therefore the approach that we recommend to
get every element of K.

4) Bias: We want now to examine the capacity of our pro-
posed method to cancel the bias that results from the artificial
correlations introduced by the QPD detector. As evidenced by
inspection of (8) or (12), this bias is most prevalent for small
X3 ∝ Y3 . Therefore, we suggest to sort the figure of merit ac-
cording to X3 . As expected, we see in Fig. 4 that the oracle
solution K1 does not depend on X3 . Meanwhile, the offline
estimation, which does not attempt to cancel the bias, exhibits
a particularly strong error F (K̃) when X3 is small—this corre-
sponds to weak trapping (see Fig. 5). Finally, we see in Fig. 6
that our proposed method is able to considerably attenuate the
dependence of the error on the depth of modulation. Moreover,
the figure of merit comes close to that achieved by the oracle
estimator, despite the perturbations introduced by the QPD.

Fig. 4. Repartition of the Monte Carlo error F (K1 ) committed by the oracle
estimator in terms of the relative depth of modulation of the laser light, along
with the associated linear regression.

Fig. 5. Repartition of the Monte Carlo error F (K̃) committed by the offline
estimator in terms of the relative depth of modulation of the laser light, along
with the associated linear regression.

Fig. 6. Repartition of the Monte Carlo error F (K) committed by the proposed
estimator in terms of the relative depth of modulation of the laser light, along
with the associated linear regression.

B. Real Data

In addition to the synthetic experiments of Section V-A, we
have designed and built a real system that couples a PFM to
the device proposed in Section IV. To this system, we have
added a piezoelectric actuator to move the bead in relation to
its surroundings. These large-scale displacements allow us to
explore the medium around the bead and are driven by a 3-D
joystick that has six degrees of liberty. Then, we have capitalized
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TABLE IV
TIME BETWEEN SAMPLES OF S

TABLE V
SURROGATE GROUND TRUTHS FOR τ0 = 0 s AND ∆t0 = 11 s

on the fact that we can attain real-time performance to close the
measurement loop and to exert feedback forces on the joystick,
which therefore acts as a full haptic device. A photograph of
the system is available from [9], along with some practical
experiments.

In this paper, we want to focus on the real-time capabili-
ties of our system. We have thus synchronously acquired y
and S over a duration ∆t = 11 s, with a sampling frequency
of 106 and 6.4 × 103 Hz, respectively. The material of the
probing bead was polystyrene and its diameter was 10−6 m.
It was trapped in pure water at room temperature, taken to
be 300K. The conditions were assumed to remain stable dur-
ing the duration of the experiment. From these collected data,
along with the calibration procedure [17], we could determine
that β1 = 123.5 × 106 V m−1 , β2 = 118.9 × 106 V m−1 , and
β3 = 39.54 × 106 V m−1 . We also measured Y3 = 7.46V.

1) Jitter: The acquisition of y is performed by a dedicated
system that ensures the stability of the sampling rate. Mean-
while, S is sampled by a PC that occasionally honors a variety
of concurrent real-time tasks. For monitoring purposes, we have
recorded a time stamp τ with every sample of S. A breakdown
of these time stamps reveals that we rarely miss a beat. However,
a wide gap in the data sometimes develops. The details can be
seen in Table IV.

2) Surrogate Ground-Truths: To obtain surrogate ground-
truths, we estimate K̃(τ0 ;∆t0) over the whole available signal,
from τ0 = 0 s and for a duration ∆t0 = 11 s. In parallel, we
estimate K(τ0 ;∆t0) by applying (12) to S(τ0 ;∆t0) averaged
over the whole signal. We provide in Table V the corresponding
estimates of stiffness. We observe that the two approaches result
in different (but similar) outcomes. At this stage, it is difficult
to know which one is closest to the true K0 . Therefore, we are
going to keep both versions in the next experiment.

3) Stability: In this section, we check the ability of our sys-
tem to determine K on the basis of few data only. We have
cut the data in hundred overlapping pieces that last ∆t1 = 1 s
each and that are separated by a tenth of a second. Using the
figure of merit of Section V-A3 with the matching surrogate K0
from Section V-B2, we have built Fig. 7 to show F (K̃(τ ;∆t1))
and F (K(τ ;∆t1)) in terms of τ . Clearly, the error commit-
ted by our proposed combination of hardware and software is

Fig. 7. Error over time of the estimation of stiffness with real data. (Upper
trace) Offline approach K̃. (Lower trace) Our proposed K. In each case, a linear
regression is provided.

Fig. 8. Average error of the estimation of stiffness with real data in terms
of the amount of data used to perform the estimation. (Upper curve) Offline
approach K̃. (Lower curve) Our proposed K.

lower than that of the offline approach. On average, we reach
F̄ (K(∆t1)) = 0.06 ± 0.02, which is about twice better than
F̄ (K̃(∆t1)) = 0.13 ± 0.04.

In the next series of experiments, we have observed how F̄
evolves when we gradually reduce ∆t from 1 to 0.1 s. In Fig. 8,
we present the degree of consistency between K(∆t0) with
∆t0 = 10 s, and K(∆t) with ∆t  ∆t0 . We observe that this
consistency remains about twice better for our proposed system
than in the case of the offline approach, which certainly suggests
that K(τ0 ;∆t0) is a better estimation of K0 than K̃(τ0 ;∆t0).

VI. CONCLUSION

We have proposed to complement a PFM with a combina-
tion of software and low-cost hardware that work hand-in-hand.
Their design has been dictated by the Langevin stochastic differ-
ential equation that describes the dynamics of the probing bead
of the PFM. Our system allows for the real-time estimation of
the full symmetric 3-D stiffness matrix found in the Langevin
model.

Our analysis reveals that every term associated with the lateral
displacements of the probing bead of the PFM is corrupted by a
bias. This bias is due to artificial correlations created by a QPD
used as the main detector of the PFM. Therefore, we have writ-
ten our software to fully cancel the QPD-related correlations.
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This cancelation is particularly important because we want to
estimate not only the diagonal terms of the stiffness matrix of
the PFM, but also its off-diagonal terms. We showed with Monte
Carlo simulations that our proposed algorithm results in better
accuracy than can be reached in the absence of cancelation.

Our proposed additional hardware involves off-the-shelf elec-
tronics; its purpose is to act as an analog computer to preprocess
the data. Once preprocessed, the sampling rate can be drastically
reduced, which offers us the opportunity to use a standard PC
to compute in real-time quantities that otherwise would have
required either an offline analysis, or high-performance equip-
ment. We have built this system and shown that it is not only
faster but also more accurate than the offline approach to ac-
quire a stiffness matrix. Finally, we have suggested an exten-
sion whereby one could similarly access the mass matrix of the
probing bead.

APPENDIX A

FILTER UNBIASEDNESS

Let h be the impulse response of a filter that satisfies∫ ∞
−∞ h(τ) dτ = 1. We show here that the time average of a

weakly stationary signal x is equal to that of the filtered signal
(h ∗ x), since

h ∗ x =
∫ ∞

−∞
h(τ)x(· − τ) dτ

=
∫ ∞

−∞
h(τ)x(· − τ) dτ

= x
∫ ∞

−∞
h(τ) dτ

= x.

The same reasoning can be applied to show that the estimated
covariance matrix defined in Appendix B is unbiased, too.

APPENDIX B

SEMIPOSITIVE-DEFINITE AUTOCORRELATION

Let h be the real and nonnegative impulse response of an ab-
solutely integrable filter, and let x be a signal with time average
x̄. Moreover, let C be the estimate of the covariance matrix of
x given by

C(t) =
∫ ∞

−∞
h(τ) (x(t − τ) − x̄) (x(t − τ) − x̄)T dτ.

Then, C is semipositive definite because for any signal x, for
any vector u �= 0, and at any time t, we have that

uT C(t)u =
∫ ∞

−∞
h(τ)

(
(x(t − τ) − x̄)T u

)2
dτ

≥ 0.

A nonnegative h is not only a sufficient condition, it is also
a necessary one. Indeed, consider the particular signal x0(t) =
min(0, h(−t))1, which has a support Ω0 that is identical to the
support of h < 0. Because h ∈ L1 , we have that x̄0 = 0. Then,

TABLE VI
PRESCRIBED RANGE OF EIGENVALUES

Fig. 9. Path taken by a virtual bead satisfying an idealized Langevin
process. In this specific case, the arbitrary random parameters are M0 =
{{3.39,−0.64,−0.20}, {−0.64, 2.96, 0.60}, {−0.20, 0.60, 2.19}}, Γ0 =
{{34.65,−6.71, 0.0047}, {−6.71, 26.57,−1.40}, {0.0047,−1.40, 25.14}},
and K0 = {{1.50, 0.35, 1.16}, {0.35, 1.18, 1.26}, {1.16, 1.26, 2.97}}, with
T0 = 8.4.

under the a contrario hypothesis Ω0 �= ∅, we write

uT C0(0)u =
∫ ∞

−∞
h(τ) (min(0, h(τ)))2 (

1T u
)2

dτ

=
(∑

ui

)2
∫

Ω0

h3(τ) dτ

≤ 0

so that C is semipositive definite, if and only if Ω0 = ∅.

APPENDIX C

SYNTHESIS OF RANDOM MATRICES

To generate any one of {M0 ,Γ0 ,K0}, we have started in each
case with a purely random (3 × 3) matrix A0 , whose entries aij

are uniformly distributed in the range [−1, 1]. We have then
made it symmetric by computing A1 = A0 AT

0 and expressed
it as A1 = VT Λ1 V, where Λ1 contains the eigenvalues of
A1 and V its eigenvectors. Finally, we have substituted the
eigenvalues by sorted random numbers uniformly distributed in
a prescribed range and built the final matrix as A = VT ΛV.
The force matrix that drives the Langevin process has then been
set to F0 = VT

Γ
√

2 kB T0 ΛΓ VΓ , where VΓ and ΛΓ represent
the eigendecomposition of Γ0 , and where the square root has to
be understood componentwise. The temperature T0 also follows
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a prescribed uniform distribution. In the simulation world, we
have set kB = 1.

We give in Table VI the range of eigenvalues, which we have
chosen arbitrarily. We have enforced that the third eigenvalue of
K0 differs markedly from the two others, which simulates the
difference in axial and lateral trapping of the bead. However,
the corresponding eigenvector is left free to align (or not) with
the third axis of the system of coordinates.

APPENDIX D

SYNTHESIS OF THE LANGEVIN PROCESS

We have generated N positions of the bead by filtering the
sequence (F0 n) by ρ, as explained for the 1-D case in Section II-
B. More precisely, we have proceeded in Fourier and computed
x̌[n] =

(
−ν2

n M0 + j νn Γ0 + K0}
)−1 F0 ň(νn ), with νn =

(2π/N) (((n + �N/2� − 1) mod N) − �N/2� + 1), where ň
is the discrete Fourier transform of the sequence n, computed as
∀n ∈ [0 . . . N − 1] : ň[n] =

∑N −1
k=0 n[k] e−j 2 π (n k)/N . An in-

verse discrete Fourier transform has then been applied to obtain
∀k∈ [0 . . . N − 1] : x[k] = (1/N)

∑N −1
n=0 x̌[n] ej 2 π (k n)/N . We

illustrate this construction in Fig. 9, where we show a short
sequence of N = 103 coordinates joined by straight lines.
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