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ABSTRACT

Calibration of ultrasound tomography devices is a challenging problem and of highly practical interest in medical and
seismic imaging. This work addresses the position calibration problem in circular apertures where sensors are arranged
on a circular ring and act both as transmitters and receivers. We introduce a new method of calibration based on the time-
of-flight (ToF) measurements between sensors when the enclosed medium is homogeneous. Knowing all the pairwise
ToFs, one can find the positions of the sensors using multi-dimensional scaling (MDS) method. In practice, however,
we are facing two major sources of loss. One is due to the transitional behaviour of the sensors, which makes the ToF
measurements for close-by sensors unavailable. The other is due to the random malfunctioning of the sensors, that
leads to random missing ToF measurements. On top of the missing entries, since in practice the impulse response of the
piezoelectric and the time origin in the measurement procedure are not present, a time mismatch is also added to the
measurements. In this work, we first show that a matrix definedfrom all the ToF measurements is of rank at most four.
In order to estimate the structured and random missing entries, utilizing the fact that the matrix in question is shown
to be low-rank, we apply a state-of-the-art low-rank matrixcompletion algorithm. Then we use MDS in order to find
the correct positions of the sensors. To confirm the functionality of our method in practice, simulations mimicking the
measurements of an ultrasound tomography device are performed.

INTRODUCTION

Ultrasound tomography aims to evaluate certain features of
a medium by using ultrasound waves and characterizing the
sound propagation inside the medium. This process can be di-
vided into the following stages; one requires to have

• a reliable setup for obtaining the measurements.
• a proper forward model imitating the setup characteris-

tics.
• an accurate inverse model based on which characteriza-

tions of the medium can be estimated.

Often, the forward model might be as well used in the inverse
process [1].

The aforementioned forward and inverse models, are mostly
based on two different approaches: a) the full wave equation
for the forward and inverse problems [2–6], b) ray model for
propagation of sound [7, 8]. In both cases, modelling the ex-
perimentalf environment is of great importance for the forward
and inverse procedures. One of the key elements of these mod-
els is the position of the ultrasound sensors in the measurement
setup. In order to obtain accurate measurements, the tomogra-
phy model must be calibrated with the exact sensor locations
prior to the experiment.

One way to find the correct sensor positions is to use the time-
of-flight (ToF) of ultrasound signals, which is the time taken
by an ultrasound wavefront to travel from a transmitter to a
receiver. If we have all the ToF measurements between all pairs
of sensors when the enclosed medium is homogeneous, then
we can construct a ToF matrix where each entry corresponds

to the ToF measurement between each pair of sensors. We can
infer the positions of the sensors using this ToF matrix.

Acoustic tomography based on ToF estimation has been used
mostly in seismology to determine the sound speed distribu-
tion of the earth layers [9]. Recently, investigations are also
performed on the usage of ultrasound tomography in tempera-
ture and wind estimation [10]. Moreover, recent studies show
the benefits of ultrasound tomography in detection and diagno-
sis of breast cancer [11, 12]. Accordingly, some transmission
and reflection ultrasound scanners for measuring the parame-
ters in vivo have been developed. More details can be found in
the work of Carson et al. [12], Johnson et al. [13], and Duric et
al. [14].

The assumed model in this work is based on the circular to-
mography devices which are used in [10, 14]. These devices
consist of a circular ring surrounding an object and scanning
horizontal planes. Ultrasound sensors are placed on the interior
boundary of the ring and act as both transmitters and receivers.

To obtain the ToF entries appropriate for our purpose we as-
sume that no object is placed inside the ring. One can think
of this stage as the calibration procedure prior to actual experi-
ments.

There are a number of challenges we are encountering in this
work, namely,

• the ToF matrices obtained in a practical setup has miss-
ing entries.

• the measured entries of the ToF matrices are corrupted
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by noise.
• there is an unkown time mismatch added to the mea-

surements.

If one had the complete and noiseless ToF matrix without time
mismatch, the task of finding the exact positions would be very
simple. This problem has been address in literature as the multi
dimensional scaling (MDS) [15]. Unfortunately, the ToF ma-
trix in such setups is never complete and many of the time-of-
flight values are missing. The missing entries can be divided
into two categories; the first category is the structured miss-
ing entries caused by inability of the sensors to compute their
mutual time-of-flights with their close by neighbours, and the
second category is the random missing entries due to random
malfunctioning of the sensors or the ToF estimation software
during the measurement procedure.

A good estimation of the positions of the sensors can be ob-
tained, if we have a good estimation of the missing entries of
the ToF matrix. In general, it is a difficult task to infer missing
entries of a matrix. However, it has recently been discovered
that if the matrix has low rank, a small random subset of its en-
tries allow to reconstruct it exactly. This result was first proved
by Candes and Recht who analyzed a convex relaxation of this
low-rank matrix completion problem [16]. More recently, an al-
ternative approach using a combination of spectral techniques
and manifold optimization was introduced in [17]. This novel
algorithm used in our work is referred as OPTSPACE and has
been shown to be stable under noisy measurements [18]. Since
the ToF matrix, when the entries are squared ToF measure-
ments, has low rank, its missing entries can be accurately es-
timated using OPTSPACE.

On top of the missing entries, we also need to deal with the
time mismatch. Since, in practice, the impulse response of the
piezoelectric and the time origin in the measurement procedure
are not present, an unknown time mismatch is added to the
measurements. To infer this time mismatch simultaneously as
the positions of the sensors, we propose a recursive algorithm
based on OPTSPACE.

We state theoretical bounds on the performance of our pro-
posed method under mild assumptions, however all the proofs
are omitted in this paper and interested readers are referred to
our technical report. The main focus of this work is on the prac-
ticality of our proposed method. For this reason, simulations
mimicking the measurements of an ultrasound tomography de-
vice are reported.

The organization of this paper is as follows; First, we define
the exact model of the problem and the process of dimension
reduction is introduced, the process of obtaining the time-of-
flights is discussed and the sources of missing entries are de-
scribed. The next section provides the precise mathematical
model of the problem. Then, we explain the OPTSPACE algo-
rithm adapted to this problem. Afterwards, the fundamentals
of the position reconstruction from the ToF matrix is discussed
and a measure of reconstruction quality is introduced. Later,
the main results of this paper in terms of the position recon-
struction and the reconstruction error bounds are providedand
finally some experimental results are presented.

CIRCULAR TOMOGRAPHY

The focus of this research is ultrasound tomography with cir-
cular apertures. In this setup,n ultrasound transmitters and re-
ceivers are installed on the interior edge of a circular ringand
an object with unknown acoustic characteristics is placed in-
side the ring. At each time instance a transmitter is fired, send-
ing ultrasound signals with frequencies ranging from hundreds

to thousands of kHz, and all the other sensors on the ring record
the signal reaching to their membrane. The same process is re-
peated for all the transmitters. Each one ofn sensors on the ring
is capable of transmitting and receiving ultrasound signals. The
aim of tomography in general is to use the recorded signals in
order to reconstruct the characteristics of the enclosed object
(e.g., sound speed, sound attenuation, etc.). The general con-
figuration for such a tomography device is depicted in Fig.1.
Employing these measurements, an inverse problem is con-
structed, whose solution provides the acoustic characteristics
of the enclosed object.

Figure 1: Circular setup for ultrasound tomography considered
in this work. Ultrasound transducers are distributed on theedge
of a circular ring and the object with unknown characteristics is
put inside. Sensors are fired each in turn and the rest of sensors
record the ultrasound signals reaching them.

There are two common methods for solving the inverse prob-
lem. The solutions are either based on the wave equation [2]
or the bent-ray theory [7]. Both techniques consist of forward
modelling the system and comparing the simulation results
with the measured data. For the detailed explanation of the
methods we refer interested readers to [2] and [7]. Nevertheless
In both cases, in order to simulate the forward model and rely
on the recorded data, very precise measurements of the sensor
positions are needed. In most applications (e.g., [1, 19, 20]) it
is assumed that the sensors are positioned equidistance apart
on a circle and no later calibration is performed to find the
exact sensor positions. The main objective of this paper is to
estimate the precise positions of the sensors.

Homogeneous Medium

In order to estimate the sensor positions, we use the bent-ray
tomography technique. In this method, the region of interest
is descretized and an unknown sound speedci is associated to
each tile in the region. Once each transmitter is fired and re-
ceivers recorded the signals, the relative time-of-flights(ToF)
between the pairs of transmitters and receivers will be mea-
sured. Afterwards, a non-linear set of equations is constructed
as below

L (xxx) = TTT , (1)

whereL (xxx) is a nonlinear transform which relates the lengths
of the bent-rays from a transmitter to a receiver to the travel
time between them. More precisely, the input of this nonlin-
ear transform is the vectorxxx whosei-th entryxi, is the inverse
of the sound speed in thei-th tile and the output is the ToFs
between each pair of sensors.

For estimating the sensor positions, we assume that we have
the measurements for ToFs when there is no object inside the
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ring. This means thatxxx is constant with valuesxi = 1/c0, where
c0 is the sound speed in a homogeneous medium (e.g., water in
the context of breast cancer detection) and entries ofTTT repre-
sent the time travelled by sound in a straight line between each
pair of a transmitter and receiver.

Knowing the the medium temperature and the characteristics
of the medium inside the ring, one can accurately estimate
the sound speedc0. Thus, it is reasonable to assume thatc0 is
fixed and known. Having the ToFs for a homogeneous medium
where no object is placed inside the ring, we can construct a
distance matrixDDD consisting of the mutual distances between
the sensors as

DDD =
[
di, j

]
= c0TTT , TTT =

[
ti, j

]
, i, j ∈ {1, · · · ,n} (2)

whereti, j is the ToF between sensorsi and j andn is the total
number of sensors around the circular ring. Notice that the only
difference between the ToF matrixTTT , and distance matrixDDD, is
the constantc0. This is why in the sequel our focus will mainly
be on the distance matrix rather than the actual measured ma-
trix TTT .

Dimensionality Reduction

Since the enclosed medium is homogeneous, the matrixTTT is
a symmetric matrix with zeros on the diagonal and so is the
matrix DDD. Even though, the distance matrixDDD is full rank in
general, a simple point-wise transform of its entries will lead to
a low rank matrix. More precisely, we can prove the following
lemma

Lemma 1. If one constructs the squared distance matrixD̄DD as

D̄DD = DDD⊙DDD =
[
d2

i, j

]
, (3)

then the matrixD̄DD has rank at most 4 and if the sensors are
placed on a circle, the rank is exactly 3.

In reality, as we will explain in the next section, many of thethe
entries of the ToF matrix (or equivalently the distance matrix)
are missing and there is an unknown time mismatch added to
all the measurements.

Time of Flight Estimation

Several methods for ToF estimation have been proposed in the
signal processing community [7, 8]. These methods are also
known as time-delay estimation in acoustic literature [21, 22].
In all these methods, the received signal is compared to a ref-
erence signal (generally the sent signal), and the relativedelay
is estimated between the two signals. However, this assump-
tion is not true in our case. Normally, each transmitter is fed by
an electrical short pulse and this pulse, convolved with theun-
known transfer function of the transducer, constructs the sent
signal. Unless we have measurements exactly on the transducer
membrane, we are not able to find the exact shape of the sent
signal. Thus, there is not any reference signal to find the rela-
tive time-of-flights.

Because of above limitations, we are forced to estimate theab-
solute ToFs. For this purpose, we will use first arrival method.
This method probes the received signal and defines the time-
of-flight as the time instant at which the received signal power
exceeds a predefined threshold.

In the practical screening systems, to record measurementsfor
one fired transmitter, all the sensors are turned on simultane-
ously and after some unknown transition time (which is caused
by the system structure, different sensor responses, etc.), the
transmitter is fed with the electrical signal and the receivers

start recording the signal. This unknown time may change for
each pair of transmitters and receivers. We will see that this
unknown time shift plays an important role in sensor position
estimation.

The transition behaviour prevents the transducers from respond-
ing to the received signal immediately after being turned on.
This results in the lack of correct ToF measurements for the
sensors positioned close to each other. Therefore, numbering
the sensors on the ring from 1 ton, in the ToF matrixTTT , we
will not have measurements on a certain band around the main
diagonal and on the lower left and upper right parts as well. We
call these missing entries asstructured missing entries.

During the measurement procedure, it may also happen that
some sensors do not act correctly and give outliers. Thus, asin
[23], a post processing is also performed on the measurements,
in which a smoothness criteria is defined and the measurements
which do not satisfy this criteria are removed from the ToF ma-
trix. We address these entries asrandom missing entries. The
following figure illustrates one instance of the ToF matrix with
these random effects, whereTTT inc denotes the incomplete ToF
matrix and the grey entries correspond to the missing entries.

TTT inc=

?

?

?

.

Furthermore, in practice, the measurements are corrupted by
noise.

The above mentioned problems result in an incomplete matrix
TTT , which cannot be used for position reconstruction, unless
the mismatch effect is removed and the unknown entries are
estimated.

PROBLEM SETTING

We observed that the distance matrix when there is only water
inside the screening aperture can be calculated as in (2). We
also saw in the previous section that the measurements for ToF
matrix TTT have three major problems : they are noisy, some of
them are missing, and the measurements are added with some
unknown time delay. For simplicity, we will assume that this
time delay is constant for all the transmitters, namely all the
transmitters send the electrical signal after some fixed butun-
known delayt0. Hence, we can rewrite the ToF matrix as fol-
lows

T̃TT = TTT + t0AAA+ZZZ0 , (4)

where TTT consists of ideal measurements for ToF,ZZZ0 is the
noise matrix andAAA is defined as

AAA =
[
ai, j

]
, ai, j =

{
1 if i 6= j

0 otherwise
(5)

With the above considerations, the distance matrix can alsobe
written as

D̃DD = DDD+d0AAA+ZZZ , (6)

whereDDD = c0TTT , d0 = c0t0, andZZZ = c0ZZZ0.
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In our model we no longer assume that the sensors are placed
exactly on the ring. What happens in practice is that the sensor
positions deviate from the circumference and our ultimate goal
is to estimate these deviations or equivalently the correctposi-
tions (see Fig.2). The general positions taken by sensors are
denoted by the set of vectors{xxx1, . . . ,xxxn}.

Figure 2: Sensors are distributed around a circle of radiusr
with small deviations from the circumference.

As described earlier, there are two contributions of missing en-
tries. One is the missing measurements of close-by sensors,
which we callstructured missing entries. The other is the miss-
ing measurements due to random malfunction of sensors, which
we call random missing entries. First to incorporate the struc-
tured missing entries, we assume that any measurements be-
tween sensors of distance less thanδn are missing (see Fig-
ure 2). The number of structured missing entries depends on
the choice ofδn. In the real tomography data, we only have a
few structured missing entries per row. We are interested inthe
regime where we have a small number of structured missing
entries per row in the large systems limit. Accordingly, typical
range ofδn of interest isδn = Θ(r logn/n). A random set of
structured missing indicesS ⊆ [n]× [n] is defined from{xxxi}
andδn, by

S = {(i, j) : di, j ≤ δn andi 6= j} , (7)

wheredi, j = ||xxxi−xxx j||. Then, the structured missing entries are
denoted by a matrix

DDDs
i, j =

{
DDDi, j if (i, j) ∈ S ,

0 otherwise.
(8)

Note that the matrixDDDs̄ = DDD−DDDs captures the noiseless dis-
tance measurements that is not effected by structured missing
entries. This way, we can interpret the matrixDDDs as additive
noise in our model. Likewise, for the time mismatch we can
define

AAAs̄
i, j =

{
AAAi, j if (i, j) ∈ S⊥ ,

0 otherwise,
(9)

whereS⊥ denotes the complementary set ofS. Next, to model
the noise we add a random noise matrixZZZ s̄.

ZZZ s̄
i, j =

{
ZZZi, j if (i, j) ∈ S⊥ ,

0 otherwise.
(10)

We do not assume a prior distribution onZZZ, and the main the-
orem is stated for any general noise matrixZZZ, deterministic

or random. One practical example ofZZZ is an i.i.d. Gaussian
model.

Finally, to model the random missing entries, we assume that
each entry ofDDDs̄ + t0c0AAAs̄ +ZZZ s̄ is sampled with probabilitypn.
In the calibration data, we typically see a small number of ran-
dom missing entries. Hence, in order to model it we assume
that pn = θ (1). Let E ⊆ [n]× [n] denote the subset of indices
which are not erased by random missing entries. Then a projec-
tion PE : R

n×n → R
n×n is defined as

PE(MMM)i, j =

{
MMMi, j if (i, j) ∈ E ,

0 otherwise.
(11)

We denote the observed measurement matrix by

NNNE = PE(DDDs̄ +d0AAAs̄ +ZZZ s̄), (12)

whered0 = t0c0 is a constant. Notice that the matrixNNNE has
the same shape asTTT inc shown already schematically.

Goal: Given this observed matrixNNNE and the missing indices
S∪E⊥, we want to estimate a matrix̂DDD which is very close to
the correct distance matrixDDD. Then by usingD̂DD we would like
to be able to estimate the sensor positions.

In order to achieve this goal, there are two obstacles we need
to overcome. First, how to estimate the missing entries ofNNNE

and second, how to find the sensor positions given approximate
pairwise distances. The former is done by deploying the matrix
completion algorithm and the latter by using the multidimen-
sional scaling.

MATRIX COMPLETION

OPTSPACE, introduced in [17], is an algorithm for recovering
a low-rank matrix from noisy data with missing entries. The
steps are shown in Algorithm1. Let MMM be a rank-q matrix of
dimensionsn× n, ZZZ the measurement noise, andE the set of
indices of the measured entries. Then, the measured noisy and
incomplete matrix isMMME = PE(MMM +ZZZ).

Algorithm 1 OPTSPACE

Input: Observed matrixMMME = PE(MMM +ZZZ).
Output: EstimateMMM.

1: Trimming: remove over-represented columns/rows;
2: Rank-q projection on the space of rank-q matrices accord-

ing to (13);
3: Gradient descent: Minimize a cost functionF(·) defined

in [17];

In the trimming step, a row or a column is over-represented ifit
contains more samples than twice the average number of sam-
ples per row or column. These rows or columns can dominate
the spectral characteristics of the observed matrixMMME , and are
removed from the observed matrix. LetM̃MM

E
be the resulting ma-

trix of this trimming step. This trimming step is presented here
for completeness, but in the case whenpn is larger than some
fixed constant (like in our case wherepn = Θ(p)), MMME=M̃MM

E

with high probability and the trimming step can be omitted.

In the second step, we first compute the singular value decom-
position (SVD) ofM̃MM

E
.

M̃MM
E

=
n

∑
i=1

σi(ÑNN
E
)uiv

T
i ,

whereσi(·) denotes thei-th singular value of a matrix. Then,
the rank-q projection returns the matrix

Pq(M̃MM
E
) = (1/pn)

q

∑
i=1

σi(M̃MM
E
)uiv

T
i , (13)
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obtained by setting to 0 all but theq largest singular values.

Starting from the initial guess provided by the rank-q projec-
tion Pq(M̃MM

E
), the final step minimizes the cost functionF(·)

defined in [17] using a gradient descent method. This last step
tries to get us as close as possible to the correct low rank matrix
MMM.

POSITION RECONSTRUCTION

Even if we had a good estimate ofDDD, how we would position
the sensors is not a trivial question. Multidimensional scaling
(MDS) is a technique used in finding the configuration of ob-
jects in a low dimensional space such that the measured pair-
wise distances are preserved. If all the pairwise distancesare
measured without error then a naive application of MDS ex-
actly recovers the configuration of sensors [15, 24, 25].

Algorithm 2 Classical Metric MDS [25].

Input: Dimensiond, estimated squared distance matrixD̄DD
Output: Estimated positionsMDSd(D̄DD)

1: Compute(−1/2)LLLD̄DDLLL, whereLLL = In − (1/n)1n1
T
n ;

2: Compute the best rank-d approximationUUUdΣΣΣdUUUT
d of

(−1/2)LLLD̄DDLLL;

3: ReturnMDSd(D̄DD) ≡UUUdΣΣΣ1/2
d .

There are various types of MDS techniques, but, throughout
this paper, by MDS we refer to the classical metric MDS, which
is defined as follows. LetL be ann×n symmetric matrix such
that

LLL = In − (1/n)1n1
T
n , (14)

where1n ∈ R
n is the all ones vector andIn is then× n iden-

tity matrix. Let MDSd(D̄DD) denote then × d matrix returned
by MDS when applied to the squared distance matrixD̄DD. The
task is to embedn objects in ad dimensional spaceRd . In
our case for instance, where we want to find the position of
sensors on a two dimensional space, we haved = 2. Then,
in formula, given the singular value decomposition (SVD) of
a symmetric and positive semidefinite matrix(−1/2)LLLD̄DDLLL as
(−1/2)LLLD̄DDLLL = UUUΣΣΣUUUT ,

MDSd(D̄DD) ≡UUUdΣΣΣ1/2
d ,

whereUUUd denotes then×d left singular matrix corresponding
to thed largest singular values andΣΣΣd denotes thed ×d diag-
onal matrix withd largest singular values in the diagonal. This
is also known as the MDSLOCALIZE algorithm in [15]. Note
that since the columns ofUUU are orthogonal to1n by construc-
tion, it follow thatLLL ·MDSd(D̄DD) = MDSd(D̄DD).

It can be easily shown that when MDS is applied to the correct
and complete squared distance matrix without noise, the con-
figuration of sensors are exactly recovered [15]. This follows
from the following equality

−
1
2

LLLD̄DDLLL = LLLXXXXXXT LLL , (15)

whereXXX denotes then×d position matrix in which thei-th row
corresponds toxxxi, thed dimensional position vector of sensori.
Note that we only get the configuration and not the absolute po-
sitions, in the sense thatMDSd(D̄DD) is one version of infinitely
many solutions that matches the distance measurementsDDD. In-
tuitively, it is clear that the pairwise distances are invariant to a
rigid transformation (a combination of rotation, reflection and
translation) of the positionsXXX , and therefore there are multiple
instances ofXXX that result in the sameDDD. For future use, we in-
troduce a formal definition of rigid transformation and related
terms.

Denote byO(d) the group of orthogonald ×d matrices. A set
of sensor positionsYYY ∈ R

n×d is a rigid transform ofXXX , if there
exists ad-dimensional shift vectors and an orthogonal matrix
QQQ ∈ O(d) such that

YYY = XXXQQQ +1nsT .

YYY should be interpreted as a result of first rotating (and/or re-
flecting) sensors in positionXXX by QQQ and then adding a shift by
s. Similarly, when we say two position matricesXXX andYYY are
equal up to a rigid transformation, we mean that there existsa
rotationQQQ and a shifts such thatYYY = XXXQQQ +1nsT . Also, we
say a functionf (XXX) is invariant under rigid transformation if
and only if for all XXX andYYY that are equal up to a rigid trans-
formation, we havef (XXX) = f (YYY ). Under these definitions, it is
clear thatDDD is invariant under rigid transformation, since for
all (i, j), DDDi j = ||xxxi − xxx j|| = ||(xxxiQQQ + sT )− (xxx jQQQ + sT )|| , for
anyQQQ ∈ O(d) ands ∈ R

d .

Let X̂XX denote ann×d estimation forXXX with estimated position
for sensori in the i-th row. Then, we need to define a metric
for the distance between the original position matrixXXX and the
estimationX̂XX which is invariant under rigid transformation of
XXX or X̂XX .

The matrixLLL defined in (14) is a symmetric matrix with rank
n−1 which eliminates the contributions of the translation. More
precisely,

LLLXXX = LLL(XXX +1sT ),

for all s ∈ Rd . We can show thatLLL has the following properties.

Lemma 2. [15, 25, 26] Let the matrixLLL be defined as in (14).
Moreover, letXXX and X̂XX be two position matrices with dimen-
sionn×d. Then, we can show that

• LLLXXXXXXT LLL is invariant under rigid transformation.

• LLLXXXXXXT LLL = LLLX̂XXX̂XX
T

LLL implies thatXXX andX̂XX are equal up
to a rigid transformation.

This naturally defines the following distance betweenXXX andX̂XX .

d1(XXX , X̂XX) =
1
n

∣∣∣∣LLLXXXXXXT LLL−LLLX̂XXX̂XX
T

LLL
∣∣∣∣

F , (16)

where|| · ||F denotes the Frobenius norm.

According to Lemma2 this distance is invariant to rigid trans-
formation ofXXX andX̂XX . Furthermore,d1(XXX , X̂XX) = 0 implies that
XXX andX̂XX are equal up to a rigid transformation. We later state
our theoretical results in terms of the distance defined in (16).

MAIN RESULTS

The main reason we cannot apply OPTSPACE onNNNE in (12)
is the mismatch time. SinceAAA is a full rank matrix, the matrix
D̃DD

⊙
D̃DD no longer has rank four. Therefore, our main concern

is to estimate the valued0 and subtract it from the observed
entries ofNNNE . Since the measurements are noisy, one cannot
hope for estimating the exact value ofd0. Hence, we propose
an iterative algorithm for estimating the value ofd0.

In fact, the above algorithm guarantees that after removingthe
effect of the time-mismatch, we have found best rank 4 approx-
imation of the distance squared matrix. In other words, if we
remove exactly the mismatchd0, we will have an incomplete
version of a rank 4 matrix and after reconstruction, the mea-
sured values will be close to the reconstructed ones.

For the following theorems, we assume that our estimation for
d0 is good and we can subtract the mismatch term inNNNE . There-
fore, the resulting matrix can be approximated by using the
matrix completion algorithm OPTSPACE.
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Algorithm 3 Findingd0.

Input: Matrix NNNE ;
Output: Estimated0;

1: Construct the candidate setCd = {d(1)
0 , . . . ,d(M)

0 } contain-
ing discrete values ford0.

2: for k = 1 to M do
3: SetNNNE

(k) = NNNE −d(k)
0 AE ;

4: SetN̄NNE
(k) = NNNE

(k)

⊙
NNNE

(k);

5: Apply OPTSPACEon N̄NNE
(k) and call the output̂NNN

(k)
;

6: Apply MDS and letX (k) = MDS2(N̂NN
(k)

);
7: Find c(k)

c(k) = ∑(i, j)∈E∩S⊥
(
d(k)

0 +‖X (k)
i −X (k)

j ‖−NNNE
i, j

)2;
8: end for
9: Findd0 satisfying

d0 = d(l)
0 , l = argmink c(k);

Theorem 1. Assumen sensors are distributed uniformly at
random around a circle with radiusr. The resulting distance
measurement matrix̄DDD is corrupted by systematic missing en-
triesD̄DDs and measurement noiseZZZ s̄. Further, the entries are ran-
domly missing with probabilitypn. Let NNNE = PE(D̄DD− D̄DDs

+
ZZZ s̄) denote the observed matrix. Assumeδn = δ r logn/n and
pn = p, whereδ ∈ [1,∞) andp ∈ [0,1] are constants which do
not depend onn. Let YYY be defined from the noise matrix such
thatYYY i, j = ZZZ2

i, j +2ZZZi, jDDDi, j. Then, there exists constantsC1, C2,

andC3 such that the output of OPTSPACED̂DD achieves

1
n
||D̄DD− D̂DD||F ≤C1 r2

(δ logn
n

)3
+C2

||PE(YYY s̄)||2
pn

, (17)

with probability larger than 1− 1/n3 provided that the right
hand side is less thanC3r2.

The above theorem, in great generality, holds for any noise
matrix Z, deterministic or random. The above guarantees only
hold ‘up to numerical constants’. To see how good OPTSPACE

is in practice, we need to run numerical experiments. For more
results supporting the robustness of OPTSPACE, we refer to
[27].

Theorem 2. Applying multidimensional scaling algorithm on
D̂DD, the error on the resulting coordinates will be bounded as
follows

d1(X̂XX ,XXX) ≤C1r2
(δ logn

n

)3
+C2

||PE(YYY s̄)||2
pn

, (18)

with probability larger than 1−1/n3.

The proofs of all the lemmas and theorems can be found in our
technical report.

EXPERIMENTAL RESULTS

In order to evaluate the theoretical results, we have also pro-
vided practical evidence. We construct a set of simulationsim-
itating the problem setup. In the sequel, a sensing ring with
200 transducers is assumed to acquire the ultrasound signals.
The ring diameter is assumed 10 cm. The setup is close to the
one used in [14]. At each time instance a transmitter sends ul-
trasound signal to the enclosed field and all the other sensors
record the measurements.

In the calibration problem, we are interested in the measure-
ments taken with homogeneous medium (for example water as

in [14] or homogeneous air as in [10]). A first set of simula-
tions is done under the fact that there is no noise in the ToF
measurements. In this case, the ToF matrix will correspond to
the mutual distances between the sensors up to a scale byc0,
the sound speed in the medium. In the simulations, the sound
speed is assumed to equal to 1500m/s. From the ToF matrix,
the distance matrix̃DDD is constructed. Afterwards,ε of the en-
tries are removed from the matrix (these correspond to the ran-
dom missing entries) with positions taken uniformly in the ma-
trix. Then, the measurements smaller thanδ are set to zero in
D̃DD matrix (these correspond to the structured missing entries).
The value fort0 is also set and all the measurements in the ma-
trix are added byc0t0. Afterwards, the elements of the matrix
are raised to the power 2 and the new matrix is calledD̄DD. The re-
sultingD̄DD matrix is demonstrated in Fig.3(a). As it is shown in
the resulting ToF matrix, we do not have measurements for the
ToF between close sensors, this is represented by black bands
in the diagonal and the corners of the matrix. Due to the ran-
dom malfunction of the sensors, some measurements in other
regions of the matrix are also removed in the post-processing
phase of data acquisition.

In order to complete this matrix and find the time mismatch at
the same time, we use the algorithm presented in Algorithm3.
We force the rank ofD̄DD to 4. The value fort0 is found as
4µs which is exactly as set in the simulation. The output of
OPTSPACEalgorithm is the completed̄DDD matrix which is shown
in Fig. 3(b).
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Figure 3: Input and output of OPTSPACE algorithm. Figure
(a) shows the incomplete distance squared matrixD̄DD, with ε =
0.05, t0 = 4µs andδ = 7cm. Figure(b) shows the completed
matrix with estimatedt0 = 4µs. The modified OPTSPACE al-
gorithm in this case can find the time mismatch correctly.

Using the completed distance squared matrix, the MDS algo-
rithm 2 is used to estimate the sensor positions. As discussed
in aforementioned section, the positions are estimated up to a
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certain translation, reflection and rotation, but the key property
which is their order of appearance is preserved in this process.
Thus, to be consistent in the figures and comparisons, the esti-
mated positions are translated and rotated so that sensor num-
ber one has the same angle as for the uncalibrated correspond-
ing sensor. Note that in the tomography setup the positions and
the orientation of the ring does not affect the inverse imaging
procedure and all the positions are relative. Then, the distance
of the sensors from the center of the circle is calculated and
plotted in Fig.4. From the figure it is obvious that in contrary
to the uncalibrated positions, in fact, sensors are off the circle.

0 50 100 150 200
9.85

9.9

9.95

10

10.05

10.1

 

 

Before Calibration
After Calibration

Figure 4: Distance of each sensor from the center of the cir-
cle before calibration and after calibration. In practice it is as-
sumed that the sensors are placed on the circle and thus the
distance from circle for all of them would be assumed equal
to 10 cm in this case, whereas, in reality, they deviate from the
circle.

In order to check how much the calibration problem affects the
final inversion procedure, another test is performed. Thus,in
the next phase of the experiments, the estimated positions are
fed to the inverse imaging algorithm. This test basically deter-
mines how accurate are the estimated coordinates. Essentially,
if the positions were accurate, after the reconstruction ofthe
inside object-which is water in this case- the ring should not
appear in the reconstructed image. However, if the positions
are not correct, the time-of-flights do not correspond exactly to
the positions and this causes a ring to appear in the reconstruc-
tion. This effect is shown in Fig.5(a). In the figure, the results
for four reconstructions are presented. In5(a), the ToF matrix
is not complete, it contains the time mismatcht0, and the po-
sitions are not calibrated. The dark gray ring is caused by the
non-zero time mismatch in the ToF measurements. In5(b), the
time mismatch is resolved using the proposed algorithm, but
the sensor positions are not calibrated and the ToF matrix is
still not complete. This figure shows clearly that finding the
unknown time mismatch improves significantly the reconstruc-
tion image. Figure5(c), shows the reconstructed image when
the ToF matrix is completed and time mismatch is removed,
but the sensor positions are not yet calibrated. From this fig-
ure, it is confirmed that accurtae time-of-flights are necessary
but not sufficient to have a good reconstruction of the inclosed
object. Finally, Fig.5(d)shows the reconstruction when the po-
sitions are also calibrated. Comparing the dynamic range ofthe
reconstructed objects, shows how good is the inversion result
for the last case.
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Figure 5: Results of the inversion procedure for finding the
sound speed inside the ring with only water inside. Figure(a)
shows the case when no calibration in performed. Fig.(b) is
for the case wheret0 is removed from the ToF matrix, but the
matrix is still incomplete and the positions are not calibrated.
Fig. (c) shows the reconstruction when the matrix is also com-
pleted, but the positions are not yet calibrated. Finally, Fig.(d)
illustrates the reconstruction with completed ToF matrix and
calibrated positions. Note the difference in the dynamic range
of the last figure with the others.8 ICA 2010
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