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ABSTRACT

Calibration of ultrasound tomography devices is a challggngroblem and of highly practical interest in medical and
seismic imaging. This work addresses the position caldmairoblem in circular apertures where sensors are ardange
on a circular ring and act both as transmitters and receiWsntroduce a new method of calibration based on the time-
of-flight (ToF) measurements between sensors when thessttimedium is homogeneous. Knowing all the pairwise
ToFs, one can find the positions of the sensors using muitedsional scaling (MDS) method. In practice, however,
we are facing two major sources of loss. One is due to theitiamasl behaviour of the sensors, which makes the ToF
measurements for close-by sensors unavailable. The attokre to the random malfunctioning of the sensors, that
leads to random missing ToF measurements. On top of thengissiries, since in practice the impulse response of the
piezoelectric and the time origin in the measurement pra@edre not present, a time mismatch is also added to the
measurements. In this work, we first show that a matrix defired all the ToF measurements is of rank at most four.
In order to estimate the structured and random missingemntutilizing the fact that the matrix in question is shown
to be low-rank, we apply a state-of-the-art low-rank mat@xnpletion algorithm. Then we use MDS in order to find
the correct positions of the sensors. To confirm the funatipnof our method in practice, simulations mimicking the
measurements of an ultrasound tomography device are pextor

INTRODUCTION

Ultrasound tomography aims to evaluate certain features of
a medium by using ultrasound waves and characterizing the
sound propagation inside the medium. This process can be di-
vided into the following stages; one requires to have

« areliable setup for obtaining the measurements.

 a proper forward model imitating the setup characteris-
tics.

¢ an accurate inverse model based on which characteriza-
tions of the medium can be estimated.

Often, the forward model might be as well used in the inverse
process].

The aforementioned forward and inverse models, are mostly
based on two different approaches: a) the full wave equation
for the forward and inverse problem2-f], b) ray model for
propagation of sound?[ 8]. In both cases, modelling the ex-
perimentalf environment is of great importance for the famv

and inverse procedures. One of the key elements of these mod-
els is the position of the ultrasound sensors in the measnem
setup. In order to obtain accurate measurements, the tamogr
phy model must be calibrated with the exact sensor locations
prior to the experiment.

One way to find the correct sensor positions is to use the time-
of-flight (ToF) of ultrasound signals, which is the time take

by an ultrasound wavefront to travel from a transmitter to a
receiver. If we have all the ToF measurements between ad pai

of sensors when the enclosed medium is homogeneous, then
we can construct a ToF matrix where each entry corresponds
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to the ToF measurement between each pair of sensors. We can
infer the positions of the sensors using this ToF matrix.

Acoustic tomography based on ToF estimation has been used
mostly in seismology to determine the sound speed distribu-
tion of the earth layers9]. Recently, investigations are also
performed on the usage of ultrasound tomography in tempera-
ture and wind estimatiorlp]. Moreover, recent studies show
the benefits of ultrasound tomography in detection and diagn
sis of breast cancefl], 12]. Accordingly, some transmission
and reflection ultrasound scanners for measuring the parame
ters in vivo have been developed. More details can be found in
the work of Carson et al1p], Johnson et al.13], and Duric et

al. [14].

The assumed model in this work is based on the circular to-
mography devices which are used 0] 14]. These devices
consist of a circular ring surrounding an object and scannin
horizontal planes. Ultrasound sensors are placed on theédnt
boundary of the ring and act as both transmitters and receive

To obtain the ToF entries appropriate for our purpose we as-
sume that no object is placed inside the ring. One can think
of this stage as the calibration procedure prior to actupéex
ments.

There are a number of challenges we are encountering in this
work, namely,

« the ToF matrices obtained in a practical setup has miss-
ing entries.
» the measured entries of the ToF matrices are corrupted
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by noise.
 there is an unkown time mismatch added to the mea-
surements.

If one had the complete and noiseless ToF matrix without time
mismatch, the task of finding the exact positions would bg ver
simple. This problem has been address in literature as thte mu
dimensional scaling (MDS)1B]. Unfortunately, the ToF ma-
trix in such setups is never complete and many of the time-of-
flight values are missing. The missing entries can be divided
into two categories; the first category is the structuredsmis
ing entries caused by inability of the sensors to computi the
mutual time-of-flights with their close by neighbours, ahd t
second category is the random missing entries due to random
malfunctioning of the sensors or the ToF estimation soféwar
during the measurement procedure.

A good estimation of the positions of the sensors can be ob-
tained, if we have a good estimation of the missing entries of
the ToF matrix. In general, it is a difficult task to infer miss
entries of a matrix. However, it has recently been discavere
that if the matrix has low rank, a small random subset of its en
tries allow to reconstruct it exactly. This result was finsiyed

by Candes and Recht who analyzed a convex relaxation of this
low-rank matrix completion problenif]. More recently, an al-
ternative approach using a combination of spectral teclasiq
and manifold optimization was introduced ib7]. This novel
algorithm used in our work is referred as@PACE and has
been shown to be stable under noisy measuremg8tsJince

the ToF matrix, when the entries are squared ToF measure-
ments, has low rank, its missing entries can be accurately es
timated using ®TSPACE.

On top of the missing entries, we also need to deal with the
time mismatch. Since, in practice, the impulse responskeof t
piezoelectric and the time origin in the measurement praeed
are not present, an unknown time mismatch is added to the
measurements. To infer this time mismatch simultaneously a
the positions of the sensors, we propose a recursive digorit
based on ®TSPACE.

We state theoretical bounds on the performance of our pro-
posed method under mild assumptions, however all the proofs
are omitted in this paper and interested readers are rdfare
our technical report. The main focus of this work is on thepra
ticality of our proposed method. For this reason, simutatio
mimicking the measurements of an ultrasound tomography de-
vice are reported.

The organization of this paper is as follows; First, we define
the exact model of the problem and the process of dimension
reduction is introduced, the process of obtaining the tofe-
flights is discussed and the sources of missing entries are de
scribed. The next section provides the precise mathenhatica
model of the problem. Then, we explain the tSPACE algo-
rithm adapted to this problem. Afterwards, the fundamental
of the position reconstruction from the ToF matrix is dis®c

and a measure of reconstruction quality is introduced.rl_ate
the main results of this paper in terms of the position recon-
struction and the reconstruction error bounds are provéshet
finally some experimental results are presented.

CIRCULAR TOMOGRAPHY

The focus of this research is ultrasound tomography with cir
cular apertures. In this setupultrasound transmitters and re-
ceivers are installed on the interior edge of a circular eng

an object with unknown acoustic characteristics is placed i
side the ring. At each time instance a transmitter is fireddse
ing ultrasound signals with frequencies ranging from heddr
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to thousands of kHz, and all the other sensors on the ringaeco
the signal reaching to their membrane. The same process is re
peated for all the transmitters. Each on@sg&nsors on the ring

is capable of transmitting and receiving ultrasound sigrethe

aim of tomography in general is to use the recorded signals in
order to reconstruct the characteristics of the enclosgetbb
(e.g., sound speed, sound attenuation, etc.). The germral c
figuration for such a tomography device is depicted in HEig.
Employing these measurements, an inverse problem is con-
structed, whose solution provides the acoustic charatiesi

of the enclosed object.
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Figure 1: Circular setup for ultrasound tomography conside

in this work. Ultrasound transducers are distributed oretige

of a circular ring and the object with unknown characterssis

put inside. Sensors are fired each in turn and the rest of senso
record the ultrasound signals reaching them.

There are two common methods for solving the inverse prob-
lem. The solutions are either based on the wave equa®ion [
or the bent-ray theory7]. Both techniques consist of forward
modelling the system and comparing the simulation results
with the measured data. For the detailed explanation of the
methods we refer interested readeri@hd [7]. Nevertheless

In both cases, in order to simulate the forward model and rely
on the recorded data, very precise measurements of thersenso
positions are needed. In most applications (elg.19, 20Q]) it

is assumed that the sensors are positioned equidistante apa
on a circle and no later calibration is performed to find the
exact sensor positions. The main objective of this papes is t
estimate the precise positions of the sensors.

Homogeneous Medium

In order to estimate the sensor positions, we use the bgnt-ra
tomography technique. In this method, the region of interes
is descretized and an unknown sound spgésl associated to
each tile in the region. Once each transmitter is fired and re-
ceivers recorded the signals, the relative time-of-flighitsF)
between the pairs of transmitters and receivers will be mea-
sured. Afterwards, a non-linear set of equations is cootgd.
as below

LX) =T, €)

where_Z(X) is a nonlinear transform which relates the lengths
of the bent-rays from a transmitter to a receiver to the trave
time between them. More precisely, the input of this nonlin-
ear transform is the vecterwhosei-th entryx;, is the inverse

of the sound speed in theth tile and the output is the ToFs
between each pair of sensors.

For estimating the sensor positions, we assume that we have
the measurements for ToFs when there is no object inside the
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ring. This means thatis constant with valueg = 1/cp, where

Cop is the sound speed in a homogeneous medium (e.g., water in
the context of breast cancer detection) and entri€E oépre-
sent the time travelled by sound in a straight line betweeh ea
pair of a transmitter and receiver.

Knowing the the medium temperature and the characteristics
of the medium inside the ring, one can accurately estimate
the sound speech. Thus, it is reasonable to assume tbgats
fixed and known. Having the ToFs for a homogeneous medium
where no object is placed inside the ring, we can construct a
distance matriXD consisting of the mutual distances between
the sensors as
D:[d|]]:COT, T:[tlj]7 |]E{l,n} (2)
wheret; j is the ToF between sensdrand j andn is the total
number of sensors around the circular ring. Notice that tiy o
difference between the ToF matiTx and distance matri®, is
the constanty. This is why in the sequel our focus will mainly
be on the distance matrix rather than the actual measured ma-
trix T.

Dimensionality Reduction

Since the enclosed medium is homogeneous, the matis

a symmetric matrix with zeros on the diagonal and so is the
matrix D. Even though, the distance matiixis full rank in
general, a simple point-wise transform of its entries veidld to

a low rank matrix. More precisely, we can prove the following
lemma

Lemma 1. If one constructs the squared distance madDrias

D=DoD =[] ®3)
then the matrixD has rank at most 4 and if the sensors are
placed on a circle, the rank is exactly 3.

In reality, as we will explain in the next section, many of the
entries of the ToF matrix (or equivalently the distance mRatr
are missing and there is an unknown time mismatch added to
all the measurements.

Time of Flight Estimation

Several methods for ToF estimation have been proposed in the
signal processing community,[8]. These methods are also
known as time-delay estimation in acoustic literatits p2].

In all these methods, the received signal is compared to-a ref
erence signal (generally the sent signal), and the reldtlay

is estimated between the two signals. However, this assump-
tion is not true in our case. Normally, each transmitter éstig

an electrical short pulse and this pulse, convolved withutiie
known transfer function of the transducer, constructs #m s
signal. Unless we have measurements exactly on the tragisduc
membrane, we are not able to find the exact shape of the sent
signal. Thus, there is not any reference signal to find thee rel
tive time-of-flights.

Because of above limitations, we are forced to estimatelthe
solute ToFs. For this purpose, we will use first arrival method.
This method probes the received signal and defines the time-
of-flight as the time instant at which the received signal @ow
exceeds a predefined threshold.

In the practical screening systems, to record measurerf@nts
one fired transmitter, all the sensors are turned on simettan
ously and after some unknown transition time (which is cduse
by the system structure, different sensor responses, tte.)
transmitter is fed with the electrical signal and the reegsv
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start recording the signal. This unknown time may change for
each pair of transmitters and receivers. We will see that thi
unknown time shift plays an important role in sensor positio
estimation.

The transition behaviour prevents the transducers fropored

ing to the received signal immediately after being turned on
This results in the lack of correct ToF measurements for the
sensors positioned close to each other. Therefore, nungperi
the sensors on the ring from 1 tp in the ToF matrixT, we

will not have measurements on a certain band around the main
diagonal and on the lower left and upper right parts as wedl. W
call these missing entries asuctured missing entries.

During the measurement procedure, it may also happen that
some sensors do not act correctly and give outliers. Thus, as
[23], a post processing is also performed on the measurements,
in which a smoothness criteria is defined and the measurement
which do not satisfy this criteria are removed from the ToF ma
trix. We address these entriesrasmdom missing entries. The
following figure illustrates one instance of the ToF matrixtw
these random effects, whele,. denotes the incomplete ToF
matrix and the grey entries correspond to the missing entrie

Tinc: ?

Furthermore, in practice, the measurements are corrupted b
noise.

The above mentioned problems result in an incomplete matrix
T, which cannot be used for position reconstruction, unless
the mismatch effect is removed and the unknown entries are
estimated.

PROBLEM SETTING

We observed that the distance matrix when there is only water
inside the screening aperture can be calculated ag)in\e
also saw in the previous section that the measurements For To
matrix T have three major problems : they are noisy, some of
them are missing, and the measurements are added with some
unknown time delay. For simplicity, we will assume that this
time delay is constant for all the transmitters, namely fa! t
transmitters send the electrical signal after some fixedibut
known delayty. Hence, we can rewrite the ToF matrix as fol-
lows .

T=T+tA+ 2o, 4

where T consists of ideal measurements for T, is the
noise matrix andh is defined as

A ). a”:{l if i

0 otherwise

®)

With the above considerations, the distance matrix cankaso
written as .
D=D+d)A+Z,

whereD = ¢gT, dy = cotg, andZ = cpZy.

(6)
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In our model we no longer assume that the sensors are placed
exactly on the ring. What happens in practice is that the@mens
positions deviate from the circumference and our ultimatd g

is to estimate these deviations or equivalently the copest-
tions (see Fig2). The general positions taken by sensors are
denoted by the set of vectofgs,...,Xn}.
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Figure 2: Sensors are distributed around a circle of radius
with small deviations from the circumference.

As described earlier, there are two contributions of mp&in-

tries. One is the missing measurements of close-by sensors,
which we callstructured missing entries. The other is the miss-

ing measurements due to random malfunction of sensorshwhic
we call random missing entries. First to incorporate the struc-
tured missing entries, we assume that any measurements be-
tween sensors of distance less thanare missing (see Fig-
ure 2). The number of structured missing entries depends on
the choice ofd,. In the real tomography data, we only have a
few structured missing entries per row. We are interestésn
regime where we have a small number of structured missing
entries per row in the large systems limit. Accordingly,itgb
range ofdy of interest isdn = ©(rlogn/n). A random set of
structured missing indiceS C [n] x [n] is defined from{x;}
anddn, by

S={(i,}): dij < &andi # }, )

whered; j = || —X;||. Then, the structured missing entries are
denoted by a matrix

Djj
DiS,I' = {0

Note that the matriyD® = D — DS captures the noiseless dis-
tance measurements that is not effected by structuredngissi
entries. This way, we can interpret the matbx as additive

noise in our model. Likewise, for the time mismatch we can

define
s _ JA
AISJ - {0

whereS" denotes the complementary setNext, to model
the noise we add a random noise ma##x

s Jzij if(,j)est,
Zﬁj_{olyl ( )

otherwise
We do not assume a prior distribution @nand the main the-
orem is stated for any general noise matixdeterministic

if (i.j) €S,
otherwise

®)

if (i,j)es",
otherwise

9)

(10)
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or random. One practical example Zfis an i.i.d. Gaussian
model.

Finally, to model the random missing entries, we assume that
each entry oDS +tocpAS + Z° is sampled with probabilityy.

In the calibration data, we typically see a small number of ra
dom missing entries. Hence, in order to model it we assume
that ph = 6(1). Let E C [n] x [n] denote the subset of indices
which are not erased by random missing entries. Then a projec
tion Zg : R™N — R™N s defined as

Mij if (i,j) €E,
Pe(M); j = ’ 11
E(M)ij {0 otherwise (1)
We denote the observed measurement matrix by

NE = 2 (DS + dpAS + Z9), (12)

wheredy = tocg is a constant. Notice that the mati€ has
the same shape ds,. shown already schematically.

Goal: Given this observed matriNEgnd the missing indices
SUE", we want to estimate a matrD which is very close to
the correct distance matrR. Then by usind® we would like
to be able to estimate the sensor positions.

In order to achieve this goal, there are two obstacles we need
to overcome. First, how to estimate the missing entriel'of

and second, how to find the sensor positions given approgimat
pairwise distances. The former is done by deploying theirmatr
completion algorithm and the latter by using the multidimen
sional scaling.

MATRIX COMPLETION

OPTSPACE, introduced in 17], is an algorithm for recovering

a low-rank matrix from noisy data with missing entries. The
steps are shown in Algorithrh. Let M be a rankg matrix of
dimensionsn x n, Z the measurement noise, aBdhe set of
indices of the measured entries. Then, the measured naisy an
incomplete matrix iME = 2 (M + Z).

Algorithm 1 OPTSPACE

Input: Observed matriME = ¢ (M + Z).
Output: EstimateM.
1: Trimming: remove over-represented columns/rows;
2: Rank+g projection on the space of ramkmatrices accord-
ing to (13);
3: Gradient descent: Minimize a cost functiéi-) defined

in [17);

In the trimming step, a row or a column is over-representéd if
contains more samples than twice the average number of sam-
ples per row or column. These rows or columns can dominate
the spectral characteristics of the observed mathx and are
removed from the observed matrix. IMF be the resulting ma-

trix of this trimming step. This trimming step is presentexdtén

for completeness, but in the case whgnis larger than some
fixed constant (like in our case whepa = ©(p)), ME=M"

with high probability and the trimming step can be omitted.

In the second step, we first compute the singular value decom-
position (SVD) ofME.

“E & cE. T
M~ =Y a(NHuy
2, AN

wheregj(-) denotes theé-th singular value of a matrix. Then,
the ranke projection returns the matrix

~E d ME\ T

Zo(M%) = (1/p) 3 (M)

(13)
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obtained by setting to 0 all but tliglargest singular values.

Starting from the initial guess provided by the ramlprojec-

tion ﬂq(ME), the final step minimizes the cost functiéi-)
defined in [L7] using a gradient descent method. This last step
tries to get us as close as possible to the correct low rantomat
M.

POSITION RECONSTRUCTION

Even if we had a good estimate Bf how we would position

the sensors is not a trivial question. Multidimensionaliaga
(MDS) is a technique used in finding the configuration of ob-
jects in a low dimensional space such that the measured pair-
wise distances are preserved. If all the pairwise distanoes
measured without error then a naive application of MDS ex-
actly recovers the configuration of sensdts, [24, 25].

Algorithm 2 Classical Metric MDS 25].

Input: Dimensiond, estimated squared distance maibix
Output: Estimated positionMDSy4(D)
1: Compute(—1/2)LDL, whereL = I — (1/n)1,1];
2: Compute the best ramk-approximationudzdug of
(—1/2)LDL;
3: ReturnMDSy(D) sz):é/z.

There are various types of MDS techniques, but, throughout
this paper, by MDS we refer to the classical metric MDS, which
is defined as follows. Ldt be ann x n symmetric matrix such
that

L=1Tn—(1/nLn1], (14)

wherel, € R" is the all ones vector an, is then x n iden-
tity matrix. Let MDSq(D) denote then x d matrix returned
by MDS when applied to the squared distance mdiixThe
task is to embedh objects in ad dimensional spac&Y. In
our case for instance, where we want to find the position of
sensors on a two dimensional space, we hdwve 2. Then,
in formula, given the singular value decomposition (SVD) of
a symmetric and positive semidefinite mat(ix1/2)LDL as
(-1/2)LDL=UzUT,

MDS¢(D) =Uq4Z/?
whereU 4 denotes tha x d left singular matrix corresponding
to thed largest singular values ark}; denotes thel x d diag-
onal matrix withd largest singular values in the diagonal. This
is also known as the MDSacALIZE algorithm in [L5]. Note
that since the columns & are orthogonal tdl,, by construc-
tion, it follow thatL - MDSq(D) = MDSq4(D).

It can be easily shown that when MDS is applied to the correct
and complete squared distance matrix without noise, the con
figuration of sensors are exactly recover&8][ This follows
from the following equality

- %LDL =LXXTL, (15)
whereX denotes tha x d position matrix in which thé-th row
corresponds t&;, thed dimensional position vector of sengor
Note that we only get the configuration and not the absolute po
sitions, in the sense thddDSq(D) is one version of infinitely
many solutions that matches the distance measurerBetits
tuitively, it is clear that the pairwise distances are ifsarto a
rigid transformation (a combination of rotation, reflectiand
translation) of the positionX, and therefore there are multiple
instances oK that result in the samB. For future use, we in-
troduce a formal definition of rigid transformation and teth
terms.
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Denote byO(d) the group of orthogonal x d matrices. A set
of sensor position¥ € R™ s a rigid transform ok, if there
exists ad-dimensional shift vectos and an orthogonal matrix
Q € O(d) such that

Y =XQ+1,s" .

Y should be interpreted as a result of first rotating (and/er re
flecting) sensors in positiod by Q and then adding a shift by
s. Similarly, when we say two position matricsandY are
equal up to a rigid transformation, we mean that there eagists
rotationQ and a shifts such thaty = XQ+ 1,,8". Also, we
say a functionf (X) is invariant under rigid transformation if
and only if for all X andY that are equal up to a rigid trans-
formation, we havd (X) = f(Y). Under these definitions, it is
clear thatD is invariant under rigid transformation, since for
all (i,]), Dij = |Ix — ;|| = [ Q+5) — (x;Q+s)]|, for
anyQ e O(d) ands e RY.

Let X denote am x d estimation foiX with estimated position
for sensori in thei-th row. Then, we need to define a metric
for the distance between the original position maXiand the
estimationX which is invariant under rigid transformation of
XorX.

The matrixL defined in (4) is a symmetric matrix with rank
n— 1 which eliminates the contributions of the translationr#o
precisely,

LX =L(X+1s"),

for all se RY. We can show thdt has the following properties.

Lemma2. [15, 25, 26] Let the matrixL be defined as inl@).
Moreover, letX and X be two position matrices with dimen-
sionn x d. Then, we can show that

« LXXTL is invariant under rigid transformation.

« LXXTL = LXX'L implies thatX andX are equal up
to a rigid transformation.

This naturally defines the following distance betwaeandX.

di(X,X) = %HLXXTLfL)ﬂ()ﬂ(TLHF, (16)

where|| - || denotes the Frobenius norm.

According to Lemm& this distance is invariant to rigid trans-
formation ofX andX. Furthermored; (X, X) = 0 implies that

X andX are equal up to a rigid transformation. We later state
our theoretical results in terms of the distance defined @ (

MAIN RESULTS

The main reason we cannot apply OPTSPACHENSnin (12)

is the mismatch time. Sinc& s a full rank matrix, the matrix

D D no longer has rank four. Therefore, our main concern
is to estimate the valudg and subtract it from the observed
entries ofNE. Since the measurements are noisy, one cannot
hope for estimating the exact value dy. Hence, we propose
an iterative algorithm for estimating the valuedyf

In fact, the above algorithm guarantees that after rematviag
effect of the time-mismatch, we have found best rank 4 approx
imation of the distance squared matrix. In other words, if we
remove exactly the mismataly, we will have an incomplete
version of a rank 4 matrix and after reconstruction, the mea-
sured values will be close to the reconstructed ones.

For the following theorems, we assume that our estimation fo
dp is good and we can subtract the mismatch terdfnThere-
fore, the resulting matrix can be approximated by using the
matrix completion algorithm ©TSPACE.
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Algorithm 3 Finding dp.

Input: Matrix NE;
Output: Estimatedy;
1: Construct the candidate s&}f = {dé)l),...,déM)} contain-
ing discrete values faip.
2: for k=1toM do "
3 SetNG =NE—djYAF;
) NE. _ NE E .
4. SetN(k) = N(k) @ N(k)'
(k)

5. Apply OPTSPACEON ﬁﬁo and call the outpulN'";
Apply MDS and letx ) = MDS,(R™));

Find o IR 2
¢ =3 i ieens (do” + 1% =X =NF) %
8: end for
9:  Finddp satisfying
dO:d(()I), | = argmin.c®;

Theorem 1. Assumen sensors are distributed uniformly at
random around a circle with radius The resulting distance
measurement matri® is corrupted by systematic missing en-
triesD® and measurement noié. Further, the entries are ran-
domly missing with probabilityp,. Let N& = 22 (D — D°+
Z%) denote the observed matrix. Assudie= Jrlogn/n and

pn = p, whered € [1,») andp € [0, 1] are constants which do
not depend om. LetY be defined from the noise matrix such
that; j = Zﬁj +2Z; jD; j. Then, there exists constais, Cy,

andCs; such that the output of ©rspaceD achieves

1 - = >/ 0logny3 HBZE(YST)HZ
nHD l[r <Car ( n ) +C2 pn )

17)
with probability larger than 1 1/n® provided that the right
hand side is less thaByr2.

The above theorem, in great generality, holds for any noise
matrix Z, deterministic or random. The above guarantees only
hold ‘up to numerical constants’. To see how goorlTSPACE

is in practice, we need to run numerical experiments. Foemor
results supporting the robustness obP ¥ 3PACE, we refer to

[27).

Theorem 2. Applying multidimensional scaling algorithm on
D, the error on the resulting coordinates will be bounded as
follows

- dlogny3 [|Ze(Y®)||2
2
a(%.X) <Cr?(S20) 4G o (9

with probability larger than 4 1/n2.

The proofs of all the lemmas and theorems can be found in our
technical report.

EXPERIMENTAL RESULTS

In order to evaluate the theoretical results, we have alee pr
vided practical evidence. We construct a set of simulations
itating the problem setup. In the sequel, a sensing ring with
200 transducers is assumed to acquire the ultrasound signal
The ring diameter is assumed 10 cm. The setup is close to the
one used in14]. At each time instance a transmitter sends ul-
trasound signal to the enclosed field and all the other sensor
record the measurements.

In the calibration problem, we are interested in the measure
ments taken with homogeneous medium (for example water as

Proceedings of 20th International Congress on Acousi©A,2010

in [14] or homogeneous air as i1()]). A first set of simula-
tions is done under the fact that there is no noise in the ToF
measurements. In this case, the ToF matrix will correspond t
the mutual distances between the sensors up to a scalg by
the sound speed in the medium. In the simulations, the sound
speed is assumed to equal to 1500s. From the ToF matrix,
the distance matri is constructed. Afterwards, of the en-
tries are removed from the matrix (these correspond to tie ra
dom missing entries) with positions taken uniformly in tha-m
trix. Then, the measurements smaller tidaare set to zero in

D matrix (these correspond to the structured missing eitries
The value fottg is also set and all the measurements in the ma-
trix are added byotg. Afterwards, the elements of the matrix
are raised to the power 2 and the new matrix is cdDedhe re-
sultingD matrix is demonstrated in Fi§(a). As itis shown in

the resulting ToF matrix, we do not have measurements for the
ToF between close sensors, this is represented by blacls band
in the diagonal and the corners of the matrix. Due to the ran-
dom malfunction of the sensors, some measurements in other
regions of the matrix are also removed in the post-procgssin
phase of data acquisition.

In order to complete this matrix and find the time mismatch at
the same time, we use the algorithm presented in AlgorBhm
We force the rank oD to 4. The value fortg is found as
4us which is exactly as set in the simulation. The output of
OpTSPACEalgorithm is the completeD matrix which is shown

in Fig. 3(b).

50 100 150 200
(a) Incomplete distance squared Matrix

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
50 100 150 200 °

(b) Completed distance squared Matrix

Figure 3: Input and output of @rSPACE algorithm. Figure
(a) shows the incomplete distance squared mdixvith € =
0.05,tp = 4us andd = 7cm. Figure(b) shows the completed
matrix with estimatedg = 4us. The modified @TSPACE al-
gorithm in this case can find the time mismatch correctly.

Using the completed distance squared matrix, the MDS algo-
rithm 2 is used to estimate the sensor positions. As discussed
in aforementioned section, the positions are estimatea @p t
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certain translation, reflection and rotation, but the keypprty
which is their order of appearance is preserved in this Ece
Thus, to be consistent in the figures and comparisons, the est
mated positions are translated and rotated so that senser nu
ber one has the same angle as for the uncalibrated correspond
ing sensor. Note that in the tomography setup the positiods a
the orientation of the ring does not affect the inverse imggi
procedure and all the positions are relative. Then, theuaiést

of the sensors from the center of the circle is calculated and
plotted in Fig.4. From the figure it is obvious that in contrary
to the uncalibrated positions, in fact, sensors are off itotec

:
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Figure 4: Distance of each sensor from the center of the cir-
cle before calibration and after calibration. In practices ias-
sumed that the sensors are placed on the circle and thus the
distance from circle for all of them would be assumed equal
to 10 cm in this case, whereas, in reality, they deviate frioen t
circle.

In order to check how much the calibration problem affects th
final inversion procedure, another test is performed. Thus,
the next phase of the experiments, the estimated positiens a
fed to the inverse imaging algorithm. This test basicalliede
mines how accurate are the estimated coordinates. Edientia
if the positions were accurate, after the reconstructiothef
inside object-which is water in this case- the ring shoultl no
appear in the reconstructed image. However, if the position
are not correct, the time-of-flights do not correspond dyaat

the positions and this causes a ring to appear in the recanstr
tion. This effect is shown in Fig(a) In the figure, the results
for four reconstructions are presented5ii@), the ToF matrix

is not complete, it contains the time mismatghand the po-
sitions are not calibrated. The dark gray ring is caused by th
non-zero time mismatch in the ToF measurement5(li), the
time mismatch is resolved using the proposed algorithm, but
the sensor positions are not calibrated and the ToF matrix is
still not complete. This figure shows clearly that finding the
unknown time mismatch improves significantly the recorgstru
tion image. Figurés(c), shows the reconstructed image when
the ToF matrix is completed and time mismatch is removed,
but the sensor positions are not yet calibrated. From this fig
ure, it is confirmed that accurtae time-of-flights are neasss
but not sufficient to have a good reconstruction of the iredios
object. Finally, Fig5(d) shows the reconstruction when the po-
sitions are also calibrated. Comparing the dynamic rangjeeof
reconstructed objects, shows how good is the inversioritresu
for the last case.
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Figure 5: Results of the inversion procedure for finding the
sound speed inside the ring with only water inside. Figaje
shows the case when no calibration in performed.(B)gs
for the case wherg) is removed from the ToF matrix, but the
matrix is still incomplete and the positions are not calieda
Fig. (c) shows the reconstruction when the matrix is also com-
pleted, but the positions are not yet calibrated. Finalig,(H)
illustrates the reconstruction with completed ToF matiix a
calibrated positions. Note the difference in the dynamigea

8 of the last figure with the others. ICA 2010
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