
DISTRIBUTED AND COMPONENT ORIENTED
TOOLS FOR COMMUNICATION NETWORKS

USING WEB SERVICES
Sébastien Rumley1, Christian Gaumier1, Christophe Trefois1

1Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de télécommunications,
1015 Lausanne, Station 11, Switzerland

sebastien.rumley@epfl.ch (Sébastien Rumley)

Abstract

Modern communication networks are reaching a high level of complexity. As their global
dimensioning and performance evaluation are very hard tasks, a multi-layer approach is
generally applied to divide them in smaller problems easier to tackle. Within this approach,
tools only address one or two network layers. To perform an enhanced analysis encompassing
more layers, several tools, not necessarily available in the same place when the problem
arises, are often required. This paper shows how to allow a remote access to various existing
tools using Web Services paradigm. In this way, software components modelling network
elements, layers, or computing specific functions are turned into Web Services, which are
available to remote users over the internet. Accessed through a simplified interface, they can
be used sequentially or in parallel to solve a specific task. This dispenses the user to perform a
local implementation, allows better code reuse, and offers an easy way to confront results
from distinct models. A tool accessed via a web service can be beneficial for either research
or educational purposes. Moreover, making tools available on the web increases credibility
and visibility of their authors. Calls to Web Service require transmitting and retrieving all
input and output data in a specific format. In our approach, the Multilayer Network
Description (MND) format is used to describe both input data and computed results. It offers
common basic structure while guaranteeing a large extensibility, and thus eases the
interactions between related but different tools. The viability of this approach in the context of
network planning is illustrated through two examples.

Keywords: Communication networks, Web Service, Component Oriented design,
Network planning, Collaborative Work.

Presenting Author’s biography
Sébastien Rumley received M.S. degree in telecommunications
engineering from the Swiss Federal Institute of Technology of Lausanne
(EPFL) in 2005, after undergraduate studies in Lausanne and Zurich
(ETH), and graduate studies in Lausanne and Santiago de Chile (PUC).
Since 2006, he is working as research assistant at the
Telecommunications Laboratory of the EPFL. His current research
focuses on mechanisms improving the collaborations between
geographically distributed research institutes, in the context of COST
actions 285 and 291.

1 Introduction

In the last decades, communication networks have
enormously evolved in terms of capacity and ubiquity,
but at the price of a large increase of their complexity.
Nowadays global and multi-services networks are
made of a multitude of composing parts. They are
nevertheless operational, and as in a precision watch,
each single piece is contributing, interacting with
other elements, to achieve the final goal: deliver the
information.

Thirty years ago, a description encompassing the
whole telephone network was imaginable. In contrast,
modern communications networks, due to their
immense heterogeneity, are exceptionally difficult to
consider entirely [1]. In consequence, a one time
update of all their composing parts is too risky and too
costly. To keep enhancing their performances,
engineers and researchers are studying, modelling and
eventually replacing elements separately.

Separation is not always straightforward to achieve as
elements are rarely independent and often interacts
with others in various possible ways. Tightly-coupled
ones exert a permanent mutual influence and cannot
be separated. They habitually have to be modelled and
analysed jointly. Within loosely-coupled elements on
the contrary, the mutual influence is limited. The
separation is thus possible to realise, either neglecting
the interactions, either reducing to some fixed
constraints.

Once isolated, the next step toward element
enhancement and eventual replacement is to setup a
basic model. As their realisation generally implies
several assumptions, models reproduce behaviours
with a certain margin. In the early stages of
development, basic models are enough accurate to
permit valuable enhancements of the modelled parts.
At a certain point however, weight of assumptions is
becoming too important to permit further
enhancements. In particular, as some of the
assumptions are due to the negligence of the
interactions, they have to be taken into account. This
leads to also incorporate the models of elements
concerned by these interactions.

Several approaches exist to extend a model to more
than one element. One of them consists in successive
and ad-hoc integration of neighbouring elements
inside the model itself. However, as software grows in
size and importance it also grows in complexity [2], it
induces penalties in terms of development time,
stability and reliability. This approach thus lacks of
scalability. Another solution follows a Component
Oriented development [3]. In such a design, models
are still conceived independently, however their
utilisation as components inside a higher level
framework is assumed. They thus include interfaces

permitting to send and receive signals from other
models, what in turn enables to take into account
interactions with other elements. The component
oriented design offers the possibility to integrate a
component without having to implement it. It can be
used as building block for another study, as a way to
confront results from distinct models of the same
element (e.g. analytical and simulation model), as a
way to validate other components or models, or for
educational purpose [11]. In general, component
oriented design favours code reuse and shortens
development time [3].

Note that although the models, in their setup and
analysis, are main tasks for researcher, they need some
input and produce output data. Composition of the
first and interpretation of the later may be difficult,
especially if made by hand. Component oriented
design can also be applied in this sense. Tools offering
graphical interfaces (to help data edition and
visualisation), providing optimisation procedures [3]
or post-processing functions [4] can also be
considered as components, connectable with others.

In the context of communication networks, multiple
Component Oriented designs already exist.
Widespread network modelling or network simulation
environment like OPNET [5], OMNeT++ or NS-2 [6]
can be considered as component oriented frameworks,
as they permit an assembly of various devices within a
common simulation [7]. There are several private
initiatives leading to frameworks for component
integration, as COSMOS [8] or CANPC [9]. Finally,
two or more libraries, each dedicated to a particular
model, can be connected using a light and ad-hoc
framework which simply accesses them sequentially.

This paper proposes another approach based on the
Web Services (WS) paradigm. Software components,
either modelling an element, either proposing a
specific function (from now the general term "tool"
will be used to qualify both), are turned into Web
Services accessible over the internet through
simplified interfaces. The component oriented design
is thus extended to a Service Oriented Architecture
(SOA) [10]. Within this architecture, at the price of
some limitations, the advantages the components are
available, combined with others benefits. Access to
tools is free. These latter are reachable by a large
number of potential users across internet. The
provided interfaces are clear and simple. Advantages
moreover exist for the provider: a widely available
tool will reinforce his credibility (important for
researchers), may speed up the test phase (important
for commercial entities) while the code remains
hidden.

The rest of this paper is structured the following.
Section II details the architecture and relates how
human actors, others WS and/or other software
entities interact through the WS principle. Two
examples of tools are given: a wavelength assignment

algorithm to a WDM network topology (Section III)
and a tool permitting an easy graphical display of
network structures (Section IV). Key aspects of the
architecture are summarized in Section V, which also
compares it with other component based architectures.
Section VI concludes this study.

2 Web Services Based Architecture

Web Services are a client-server based architecture of
distributed computing. It can be seen as an evolution
of the Remote Procedure Call (RPC), which suits well
to a closed-world problem (awareness of the users,
resources), but becomes too rigid in an open-world
context. Web Services, as WebPages, should be
accessible from anywhere at anytime, for anybody,
and are based on purpose over mechanisms providing
higher flexibility [12], in particular XML for data
formatting and HTTP or SMTP [13] for transport.

The term Web Services defines only a concept.
Different implementations and even different
specifications exist. This paper follows the World
Wide Web consortium (W3C) definition: “a software
system designed to support interoperable machine-to-
machine interaction over a network, with interface
described in a machine-processable format,
specifically WSDL1” [14].

2.1 Server side mechanisms

To propose a Web Service, a single process listening
on a TCP port is sufficient. When a connection occurs,
it parses the request, extracts the data contained in the
SOAP message and runs its function using the
extracted data. It then forms a new message containing
the results and sends it back over HTTP (fig. 1). To
comply with the WS specifications, a WSDL file
describing the service should also be available some
where on the internet. Messages are formatted in XML
and composed according to the SOAP protocol, also
specified in [14].

Request
reading

SOAP
extraction

Parameter
extraction Internal

function
executionSOAP

encapsulation
HTTP resp.
formatting

Response
writing

Dedicated logic

TC
P

St
ac

k

1 432

1: Binary data 2: HTTP request and response 3: SOAP messages 4: Type defined data

Request
reading

SOAP
extraction

Parameter
extraction Internal

function
executionSOAP

encapsulation
HTTP resp.
formatting

Response
writing

Dedicated logic

TC
P

St
ac

k

1 432

1: Binary data 2: HTTP request and response 3: SOAP messages 4: Type defined data
Fig. 1 All-in-one implementation of a Web Service.

This implementation is in general not used, as it
implies to implement the full HTTP protocol
management inside the same block. Fig. 2 illustrates
another design where a Web server engine (apache
server or Microsoft’s IIS for instance) is used to parse
HTTP request and format HTTP responses. The Web

1 WSDL: Web Service Description Language

Service is associated to a certain URL and SOAP
messages are extracted and transmitted to the WS
when a request mentions this URL. This option permit
to offer the WSDL file associated to the service on the
same server, but at a different URL.

Dedicated logicWeb Server logic

Request
reading

Payload
extraction

Parameter
extraction Internal

function
execution

Response
writing

TC
P

St
ac

k

SOAP
encapsulation

HTTP resp.
formatting

Get requested file

Dedicated logicDedicated logicWeb Server logic

Request
reading

Payload
extraction

Parameter
extraction Internal

function
execution

Response
writing

TC
P

St
ac

k

SOAP
encapsulation

HTTP resp.
formatting

Get requested file

Dedicated logic

Fig. 2 Implementation using a web server engine to

pre-process HTTP request and format HTTP response.

Fig. 3 presents a third evolution where all operations
have been decoupled. Web server is still used but only
to process HTTP requests and responses. A
specialised block is responsible for SOAP messages
parsing and composition. Other architectures
(regrouping web server and soap processor) are
possible.

Web Server logic

Request
reading

Payload
extraction

Parameter
extraction Internal

function
execution

Response
writing

TC
P

St
ac

k

SOAP processor Dedicated logic

SOAP
encapsulation

HTTP resp.
formatting

Get requested file

Web Server logic

Request
reading

Payload
extraction

Parameter
extraction Internal

function
execution

Response
writing

TC
P

St
ac

k

SOAP processor Dedicated logic

SOAP
encapsulation

HTTP resp.
formatting

Get requested file

Fig. 3 maximal decoupling between function, using,
besides the web server engine, a dedicated SOAP

processing engine.

2.2 Client side mechanisms

The client side communication mechanism is in all
point similar except that operations are done in a
reverse order (starting from type defined parameter
and ending with binary serialisation of an HTTP
request over TCP). However, before sending any
request, the user on the client side should know how
to present the input data in order to be understood by
the server. He also needs to know how to interpret the
data he will receive. Client side should therefore
implement an additional mechanism to retrieve this
information.

The provider of the Web Service can release some
textual information, along with examples of SOAP
messages, on his web site. An interested human user
may later take inspiration of these examples, replacing
the parameters where it is necessary (Fig. 4a). He will
then send the obtained SOAP messages (using a
simple HTTP client), retrieve the SOAP response and
extract the information. He can even write a simple
program which automatically replaces the data inside
a message SOAP skeleton and extract the response
using a regular expression.

Alternatively, Web Services principle includes a much
more precise mechanism, which really distinguishes it
from RPC. Using the WSDL associated to the Web

Service, which completely defines the interface and
the structure of the SOAP messages, the client has all
the information he needs at disposal. As the WSDL is
a machine processable file, the logic responsible for
parameter encoding and SOAP messages composition,
for the communication with the Web Service and for
the decoding of the response can be automatically
generated (Fig. 4b).

(a) (b)

Web Service
Examples,

textual
documentation

Web ServiceWSDL

generated
logic

WS
tool

(a) (b)

Web Service
Examples,

textual
documentation

Web Service
Examples,

textual
documentation

Web ServiceWSDL

generated
logic

WS
tool

Web ServiceWSDL

generated
logic

WS
tool

Fig. 4 The manner to access a Web Service can be

learned either with examples, either using the WSDL

2.3 Integration in a component oriented design

Only atomic interactions between a user and a Web
Service have been described so far. To integrate them
inside a component oriented framework, additional
principles have to be presented. Attention must be
paid to the parameters expected by the WS and to its
response. Data contained into the SOAP messages
have been presented as “type defined data”. The type
used plays however a key importance, as it must be
supported by any actor present in the framework (user
or WS).

In the context of communication networks, the tools
that can be proposed as Web Services need two
simultaneous inputs: data representing the addressed
problem, and “configuration” data specifying the
manner to address it. The result is always related to
the addressed problem, except in case of failure of the
algorithm (fig. 5).

(a) (b)

ProblemTool

configuration
data

problem related
data

problem related
data

ProblemTool

configuration
data

problem related
data

failure
message

(a) (b)

ProblemTool

configuration
data

problem related
data

problem related
data

ProblemTool

configuration
data

problem related
data

failure
message

Fig. 5 a) A tool receives the input data for the problem

it addresses, plus some configuration parameters. It
only returns the output data of the problem. b) If tool

fails during its execution, it may return a failure
message instead of problem related data.

Each dataset related by a particular problem can be
specific. To obtain some coherence between all
different sets of data transmitted, the Multilayer
Network Description (MND) has been chose as
descriptor. MND offers a common basic structure
while guaranteeing a large extensibility, and thus
eases the interactions between related but different

tools [15]. It is also based on XML and fits well inside
SOAP messages. MND even permit to incorporate
output data with input data inside the same document.

Besides the concrete input of the problem, a structure
should also be specified for configuration data. As in
this case, the data and the type of data depend largely
on the acceded tool (which can be an event driven
simulators, a static network planner, etc), is it far less
evident to find shared properties that could be the
structure base. No valid answer has been found yet,
and thus the question is laid open for future
conclusions. Until now a minimal structure has been
used. Indeed, all configuration parameters have to be
given as character strings. Figure 6 summarise the
types chosen for input and output data exchange. Note
that some tool may need no MND input at all
(scenario generators) while others may produce
human destined files (HTML report pages, JPG
charts).

ProblemTool

MND

String

MND

String (error)

or… nothing

HTML
JPG
PDF

or

ProblemTool

MND

String

MND

String (error)

or… nothing

HTML
JPG
PDF

or

Fig 6: Summary of input and output types required of

produced by a tool.

Assuming the existence of one or more WS tools able
to interpret and/or produce data at the MND format,
two more steps are needed to eventually obtain a real
component oriented design: firstly ensure that the
tools, even if they can read MND structures, will
locate correctly the input data inside them. Secondly,
make the tools interact in between.

MND can be seen as an XML extension for network
problem definition. As it is still extensible, nothing
guarantees that the MND content produced by a tool
will be qualified for another. For example, a tool
expects an indication of links length, but the network
defined in a received MND document does not
mention it.

As workaround, one may develop a pre-processor that
transforms the MND document to make it qualified
(for instance, adding a length of "1" to all links). This
adaptation is unilateral since pre-processor does not
verifies if transformation makes sense. To guarantee
consistency, a provider and user must bilaterally agree
on a list of required attributes. Multilateral
agreements, involving several users and providers,
offer of course the best guarantee, but are difficult to
setup.

Regarding the interactions themselves, figure 7
presents some possible ways to implement them. a)
illustrates the basic building block: the client has been
generated or conceived from the textual description
(see fig. 4), the WS is located at a known location
over internet. In b), Web Service 1 makes itself one
(or multiple) internal call to Web Service 2. In c)
represents an application calling multiple services.
The application can be very thin and only automate
the sequential call to the WS. It may be more
complex, iterating multiple time between the WS until
reaching a solution. Finally, d) represents a Web
Service with a Web interface front-end, permitting to
the human user to launch request to the WS. Of
course, these different architectures can be mixed.

C
lie

nt
C

lie
nt

WS

A
pp

lic
at

io
n

A
pp

lic
at

io
n

C
lie

nt
C

lie
nt

C
lie

nt
C

lie
nt

WS1

WS2

C
lie

nt
C

lie
nt

WS2WS1

C
lie

nt
C

lie
nt

W
eb

 B
ro

w
se

r
W

eb
 B

ro
w

se
r

W
eb

 A
pp

lic
at

io
n

W
eb

 A
pp

lic
at

io
n

C
lie

nt
C

lie
nt WS

(a) (b)

(c) (d)

C
lie

nt
C

lie
nt

WS

A
pp

lic
at

io
n

A
pp

lic
at

io
n

C
lie

nt
C

lie
nt

C
lie

nt
C

lie
nt

WS1

WS2

C
lie

nt
C

lie
nt

WS2WS1

C
lie

nt
C

lie
nt

W
eb

 B
ro

w
se

r
W

eb
 B

ro
w

se
r

W
eb

 A
pp

lic
at

io
n

W
eb

 A
pp

lic
at

io
n

C
lie

nt
C

lie
nt WS

(a) (b)

(c) (d)
Fig 7: From the basic building block (a), different

combination can be obtained, to make the Web
Services interact.

3 A RWA Tool for WDM network
planning

The multi-hop lightpath routing problem in
Wavelength Dimension Multiplexing (WDM)
networks, also called the Routing and Wavelength
Assignment problem, is a great classic of network
optimization and design. It plays a central role in
WDM network as any further analysis on WDM
(availability analysis, traffic estimation) need the
RWA to be done.

The RWA problem has been for long time proved to
be NP-hard, which prevents the identification of the
optimal solution for large problem instances [16] but
lets a great flexibility in the design of heuristics which
try to approach the optimum. There are also a large
number of possible criterions that can be used to
determine the optimum. A great variety of RWA
algorithms thus exist [17].

The RWA heuristic presented here takes as input a
physical topology, where links are defined in number
of fibre and number of wavelength per fibre, and
logical topology (demand topology), expressed in
number of wavelengths needed between pair of points

in the network. Figure 8 presents and MND structure
containing these elements. The output of the heuristic
consists in a list of triplets (link, fibre, and
wavelength) for each wavelength demand. Figure 9
presents the MND structure with the output
incorporated to the input.
<network>
 <main_description>
 <layer id="physical" oriented="false">
 <node id="0" pos_x="623" pos_y="593"/>
 <node id="1" pos_x="494" pos_y="691"/>
 <node id="2" pos_x="683" pos_y="696"/>
 <node id="3" pos_x="527" pos_y="469"/>
 <node id="4" pos_x="756" pos_y="521"/>
 <node id="5" pos_x="797" pos_y="747"/>
 <link dest="3" orig="4" fibers="1" wavelengths="40" />
 <link dest="0" orig="4" fibers="2" wavelengths="40" />
 <link dest="2" orig="4" fibers="1" wavelengths="40" />
 <link dest="0" orig="2" fibers="2" wavelengths="40" />
 <link dest="1" orig="2" fibers="1" wavelengths="40" />
 <link dest="3" orig="1" fibers="3" wavelengths="40" />
 <link dest="1" orig="0" fibers="1" wavelengths="40" />
 <link dest="2" orig="5" fibers="1" wavelengths="40" />
 </layer>
 <layer id="logical" oriented="true">
 <link orig="0" dest="1" channels="1"/>
 <link orig="0" dest="2" channels="2"/>
 <link orig="0" dest="3" channels="1"/>
 <link orig="0" dest="4" channels="1"/>
 <link orig="0" dest="5" channels="2"/>
 <link orig="1" dest="0" channels="1"/>
 : :
 <link orig="5" dest="4" channels="2"/>
 </main_description>
</network>

Fig. 8: Input MND structure for RWA tool
<network>
 <main_description>
 <layer id="physical" oriented="false">
 <node id="0" pos_x="623" pos_y="593"/>
 <node id="1" pos_x="494" pos_y="691"/>
 <node id="2" pos_x="683" pos_y="696"/>
 <node id="3" pos_x="527" pos_y="469"/>
 <node id="4" pos_x="756" pos_y="521"/>
 <node id="5" pos_x="797" pos_y="747"/>
 <link dest="3" orig="4" fibers="1" wavelengths="40" />
 : : :
 <link dest="2" orig="5" fibers="1" wavelengths="40" />
 </layer>
 <layer id="logical" oriented="true">
 <link orig="0" dest="1" channels="1"
 mapping="[(0-1,f1,w1)]"/>
 <link orig="0" dest="2" channels="2"
 mapping="[(2-0,f1,w1)],[(2-0,f1,w2)]"/>
 <link orig="0" dest="3" channels="1"
 mapping="[(0-1,f1,w2),(1-3,f1,w2)]"/>
 : :
 <link orig="5" dest="4" channels="2"
 mapping="[(5-2,f1,w1),(4-2,f1,w1)],
 [(5-2,f1,w2),(4-2,f1,w2)]" />
 </main_description>
</network>

Fig. 9: Output MND containing the RWA result.

The heuristic does not require any additional
parameters, and the request SOAP message only
contains the MND (fig. 10). Response SOAP message
is sketched in figure 11.
<?xml version="1.0" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="rwa.tool">
 <soapenv:Body>
 <ns1:call>
 <network>
 <main_description>
 :
 </main_description>
 </network>
 </ns1:call>
 </soapenv:Body>
</soapenv:Envelope>

Fig. 10: SOAP request containing the MND listed in
figure 8.

An RWA at disposal is interesting for many reasons.
Firstly, anyone can test it, compare it to other related

heuristics, and practically evaluate its qualities. It also
provides additional testing opportunities for the
authors. Finally, it spares time to other development
team who can directly embed it inside another study.
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="rwa.tool">
 <soap:Body>
 <ns1:response>
 <network>
 <main_description>
 :
 </main_description>
 </network>
 </ns1:response>
 </soap:Body>
</soap:Envelope>

Fig. 11: SOAP response

4 A visualisation tool with Web interface

As aforementioned and illustrated on figure 6, a Web
Service may also be completely dedicated to reporting
and presentation purposes. The tool presented here
completely falls into this category.

One of the goals of MND is to permit the use of a
unique graphical user interface (GUI) to represent any
type of network or structure. Traditional GUI systems
are generally platform dependant (windows native,
java/swing, GTK) which is not compatible with the
concept of unique GUI. Only web browser offer a
graphical interface common to all platforms.

Fig. 13: The Web interface integrated inside a browser

window.

Therefore, to achieve a completely platform
independent GUI, a Web Service transforming an
MND file into a set of browser displayable element
has been realised. Using the MND core parameters
[15], it builds a 2D representation of the network
contained into the MND file. Link or nodes attributes
can be consulted, added or removed. Some of them
can be used to change the appearance. Figure 13
shows a snapshot of the GUI.

For deployment, an intermediate block must be
installed between the browser and the WS, as depicted

in figure 7d. Although it would be possible for a
browser to post a HTTP request containing a SOAP
request, the Web Service returns all its output in one
pass, in a SOAP message, while the Web Browser
need these files each one after each other. Figure 14
details the scenario. A Web Application (included
inside a web server for instance) is thus needed in
between to extract the file out the SOAP envelope (3),
send the main HTML page and temporarily cache the
other files (4), and then respond to the successive
requests (5)-(6) for other files referenced in the HTML
page.

SOAP messages structure is similar to the one used in
the RWA tool.

W
eb

 B
ro

w
se

r
W

eb
 B

ro
w

se
r

W
eb

 A
pp

lic
at

io
n

W
eb

 A
pp

lic
at

io
n

C
lie

nt
C

lie
nt

WS

HTTP POST

HTML page

PNG file

Jscript file

SOAP
1 2

345

6
W

eb
 B

ro
w

se
r

W
eb

 B
ro

w
se

r

W
eb

 A
pp

lic
at

io
n

W
eb

 A
pp

lic
at

io
n

C
lie

nt
C

lie
nt

WS

HTTP POST

HTML page

PNG file

Jscript file

SOAP
1 2

345

6

Fig 14: Organisation between the WebApplication

5 Key aspects summary and comparison

To ease descriptions and comparisons, component
oriented platforms can be considered among three
aspects: in terms of component awareness and quality;
in terms of integration mechanisms between the
components; in terms of general costs, complexity
level and usability (deployment, GUI, price).

The proposed Web Services based approach is
decomposed according to these aspects. A comparison
with other approaches is then presented.

5.1 Component awareness and quality

In respect to the components themselves, the situation
is contrasted. On one side, only two components are
offered (the two presented in this paper), which is
nothing compared to the multiple libraries provided by
OPNET or NS-2, and absolutely not sufficient to be
considered as a development environment. On the
other side, it may offer in the future many components
covering many domains and subjects, if the users are
contributing to it.

The contrast also exists regarding the quality: various
components may appear with the time, but nothing
guarantees the efficiency of the reliability of each of
them. However, as a WS deployment keep the code
protected while permitting to broadcast the function,
components implementing the newest research results
may appear first as WS.

In this way, situation is the same as for Web Pages. A
large quantity of information is available: some
relevant, many not; some exclusive and new, many
outdated. The responsibility of trusting the
information (or a service) is let to the user. This one
makes is choice using implicit (name of the server, of
the provider) or explicit mechanisms (certificates,
authentication).

5.2 Component integration and inter-component
interactions

Regarding the integration of the components and the
handling of their interactions, everything is inherited
from the Web Services principle. The concept of “one
request/one response” over SOAP and HTTP makes
the Web Services simple to use and accessible to
anyone.

The induced overheads (HTTP header, SOAP
envelope, XML tags), which required special
processing (parsing, marshalling), increase the overall
response time of the call. This delay is however
supposed to be minimal compared to the time needed
by messages to travel between client and server
(transmission time).

SOAP also imposes transmission of ASCII data
instead of binary data. This again requires processing,
but over all reduces offered bandwidth for data
transmission [18]. If call or response contains a large
quantity of data, and if additionally, the offered
bandwidth between client and server is reduced, this
might strongly affect the overall reaction time of the
service. Remark also that WS are intrinsically
stateless: no reference passing calls are possible, and
all input and output data have to be transmitted each
time.

These limitations exclude the use of tool needing
frequent on continuous interactions with others. In
particular, it dismisses many packet-level simulation
components. The use of Web Services principle can
therefore by applied only in presence of a clear
functional decomposition [13].

Furthermore, the MND structure is not rigid enough to
permit to two arbitrary WS to communicate directly
without preliminary adaptations. On the side of
component integration, the proposed solution presents
thus more drawbacks than advantages.

5.3 Platform cost, complexity and flexibility

The benefits of the design fall in this last category.
First, contrarily to commercial simulation or analysis
frameworks like OPNET, this paper presents
component design which is free. The price can be a
criterion for small and independent research teams
(who are too small to apply for OPNET academic
license). It becomes the main criterion for students.

Second, the framework can almost be considered as
virtual because is contains no executable, no libraries,
no installation package. It is only based on a

communication principle, the Web Services, and a file
format, MND. There is no documentation to read, no
complicated calls to the framework to perform, no
platform dependent parameters to set. Once the
SOAP/WS and MND mechanisms are assimilated, all
combinations are theoretically possible. The required
competences are reduced, which also qualify it for
small team or students.

The system not either imposes specific programming
language. MND, which can be considered as too
flexible to model specific interactions, does not limit
the field of applications. It even procures some
intuition to the human reader, as it includes some
meta-data mixed with the data (the XML element
name, attributes names). Adaptation process between
one component and another is made easier.

Finally, the design is multiplatform and distributed by
essence. This two last points permits to use Web
Service on different machines, on different points,
which in turn permit an easy parallelization of tasks.
In comparison, OPNET suffers of important
restrictions regarding parallelisation [19, 20, 21].
Extensions have been developed for NS-2 but only
extremely limited features have been implemented
[21].

5.4 Comparison with existing frameworks

OPNET and NS-2 present rich component diversity
and good component quality, but a complicated and
(for OPNET) commercial framework. Library
exchange is valid for punctual integration of a reduced
number of components but offer no on-the-shelf
components, no predefined integration mechanism nor
framework. Private initiatives may provide powerful
mechanisms for inter component integrations, but
development costs of the components and of the
framework itself is prohibitive.

The Web Service based solution greatly depends on
the additional contributions in term of components. It
offers reduced integration mechanisms but high
framework flexibility and low cost.

The presented design proposed thus an alternative to
the “big ones” (OPNET, NS-2), but specifically in two
domains: first for complex but isolated function (like
RWA) which is difficult to standardise. Second for
users that cannot afford the time (small research
teams) or the money (students) needed to use main
simulation and analysis packages.

6 Conclusion

This paper proposes a component oriented approach
based on Web Services. The key principle consists in
restricting all interactions between elements to
individual requests-responses made over internet. This

guarantees the extensibility of the concept and should
keep a low complexity. Existing WS are generally
available for free over internet and this should be kept
in the proposed concept, leading to limited costs.

Our approach offers an alternative to the major
simulation and analysis frameworks addressing
dimensioning and performance analysis of
communication networks. It might be especially
useful for independent researchers, students, and may
have interesting applications in the field of multi-
machine parallelisation.

7 Acknowledgment

The authors wish to thank the Swiss Secretariat for
Education and Research for supporting this work
within the COST Actions 285 and 291.

8 References

[1] V. E. Paxson. Measurements and Analysis of
End-To-End Internet Dynamics. Doctoral Thesis,
University of California at Berkeley, 1998.

[2] B. Boehm, C. Abts, S. Chulani. Software
development cost estimation approaches - A
survey. ACM Annals of Software Engineering,
vol. 10, issue 1-4, 2000.

[3] M. Lackovic, C. Bungarzeanu. A Component
Approach to Optical Transmission Network
Design. Modelling and Simulation Tools for
Emerging Telecommunications Networks.
Springer, 2006.

[4] M. Pustisek, D. Savic, F. Potorti. Packaging
Simulation Results With CostGlue. Modelling and
Simulation Tools for Emerging
Telecommunications Networks. Springer, 2006.

[5] http://www.opnet.com/solutions/brochures/Model
er.pdf

[6] N. Kubinidze, I. Ganchev, M. O'Droma. Network
Simulator NS2: Shortcomings, Potential
Development and Enhancement Strategies.
Modelling and Simulation Tools for Emerging
Telecommunications Networks. Springer, 2006.

[7] B. P. Zeigler, S. Mittal. Final Summary Report of
the Workshop on Modeling and Simulation of
Ultra-Large Networks: A Framework For New
Research Directions. November 2001.

[8] M. Lackovic, R. Inkret. Network Design,
Optimization and Simulation Tool Cosmos. In
Proceedings of the 2nd International Workshop

on All-Optical Networks, Zagreb, Croatia, June
2001.

[9] D. Tarongì, J. Ehrensberger, S. Kessler, C.
Bungarzeanu. Computer Aided Network Planning
Cockpit CANPC. In Proceedings of the 2nd
International Workshop on All-Optical Networks,
Zagreb, Croatia, June 2001.

[10] J. Bih. Service oriented architecture (SOA): a new
paradigm to implement dynamic e-business
solutions. ACM Ubiquity vol. 7, Issue 30, August
2006.

[11] W. Chen. Web services - what do they mean to
Web-based education? In Proceedings of the
International Conference on Computers in
Education, December 2002.

[12] http://webservices.xml.com/pub/a/ws/2002/02/06/
rest.html.

[13] S. Chandrasekaran, G. Silver, J. A. Miller, J.
Cardoso, A. P. Sheth. Web Service Technologies
and their Synergy with Simulation. In
Proceedings of the 2002 Winter Simulation
Conference.

[14] http://www.w3.org/TR/ws-arch/

[15] S. Rumley, C. Gaumier. Multilayer Description of
Large Scale Communication Networks. In
Proceedings of the COST 285 final symposium,
Mars 2007.

[16] S. Even, A. Itai, A. Shamir. On the Complexity of
Timetable and Multicommodity Flow Problems.
SIAM Journal of Computing, vol. 5, 1976.

[17] H. Zang, J. P. Jue, B. Mukherjee. A review of
routing and wavelength assignment approaches
for wavelength-routed optical WDM networks.
Optical Networks Magazine, vol. 1, no. 1, January
2000.

[18] K. Chiu, M. Govindaraju, R. Bramley.
Investigating the Limits of SOAP Performance for
Scientific Computing. In Proceedings of the 11th
IEEE International Symposium on High
Performance Distributed Computing, 2002.

[19] H. Wu, R. M. Fujimoto, G. Riley. Experiences
Parallelizing a Commercial Network Simulator. In
Proceedings of the 2001 Winter Simulation
Conference.

[20] M. Thoppian, H. Vu, S. Venkatesan, R. Prakash,
N. Mittal, J. Anderson. Improving Performance of
Parallel Simulation Kernel for Wireless Network
Simulations. In Proceedings of Milcom, 2006.

[21] H. Ohsaki, S. Yoshida, M. Imase. On Network
Nodel Division Method Based on Link-to-Link
Traffic Intensity for Accelarating Parallel
Distributed Simulation. In Networking - ICN
2005, Lecture Notes in Computer Science, vol.
3420, Springer, 2005.

