
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Hersch, président du jury
Prof. R. Guerraoui, directeur de thèse

Dr A. Argyraki, rapporteur
Prof. B. Garbinato, rapporteur

Dr A.-M. Kermarrec, rapporteur

Live Streaming with Gossip

THÈSE NO 4777 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 JUILLET 2010

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Maxime MONOD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Peer-to-peer (P2P) architectures have emerged as a popular paradigm to sup-
port the dynamic and scalable nature of distributed systems. This is particularly
relevant today, given the tremendous increase in the intensity of information ex-
changed over the Internet. A P2P system is typically composed of participants
that are willing to contribute resources, such as memory or bandwidth, in the
execution of a collaborative task providing a benefit to all participants. File
sharing is probably the most widely used collaborative task, where each par-
ticipant wants to receive an individual copy of some file. Users collaborate by
sending fragments of the file they have already downloaded to other participants.

Sharing files containing multimedia content, files that typically reach the hun-
dreds of megabytes to gigabytes, introduces a number of challenges. Given typ-
ical bandwidths of participants of hundreds of kilobits per second to a couple of
megabits per second, it is unacceptable to wait until completion of the down-
load before actually being able to use the file as the download represents a non
negligible time. From the point of view of the participant, getting the (entire)
file as fast as possible is typically not good enough. As one example, Video on
Demand (VoD) is a scenario where a participant would like to start previewing
the multimedia content (the stream), offered by a source, even though only a
fraction of it has been received, and then continue the viewing while the rest of
the content is being received.

Following the same line of reasoning, new applications have emerged that rely
on live streaming : the source does not own a file that it wants to share with
others, but shares content as soon as it is produced. In other words, the content
to distribute is live, not pre-recorded and stored. Typical examples include the
broadcasting of live sports events, conferences or interviews.

The gossip paradigm is a type of data dissemination that relies on random
communication between participants in a P2P system, sharing similarities with
the epidemic dissemination of diseases. An epidemic starts to spread when the
source randomly chooses a set of communication partners, of size fanout, and
infects them, i.e., it shares a rumor with them. This set of participants, in
turn, randomly picks fanout communication partners each and infects them,
i.e., share with them the same rumor. This paradigm has many advantages
including fast propagation of rumors, a probabilistic guarantee that each rumor

iii

Abstract

reaches all participants, high resilience to churn (i.e., participants that join and
leave) and high scalability. Gossip therefore constitutes a candidate of choice
for live streaming in large-scale systems.

These advantages, however, come at a price. While disseminating data, gossip
creates many duplicates of the same rumor and participants usually receive
multiple copies of the same rumor. While this is obviously a feature when it
comes to guaranteeing good dissemination of the rumor when churn is high, it
is a clear disadvantage when spreading large amounts of multimedia data (i.e.,
ordered and time-critical) to participants with limited resources, namely upload
bandwidth in the case of high-bandwidth content dissemination.

This thesis therefore investigates if and how the gossip paradigm can be used
as a highly efficient communication system for live streaming under the following
specific scenarios: (i) where participants can only contribute limited resources,
(ii) when these limited resources are heterogeneously distributed among nodes,
and (iii) where only a fraction of participants are contributing their fair share
of work while others are freeriding.

To meet these challenges, this thesis proposes (i) gossip++: a gossip-based
protocol especially tailored for live streaming that separates the dissemination
of metadata, i.e., the location of the data, and the dissemination of the data
itself. By first spreading the location of the content to interested participants,
the protocol avoids wasted bandwidth in sending and receiving duplicates of
the payload, (ii) HEAP: a fanout adaptation mechanism that enables gossip
to adapt participants’ contribution with respect to their resources while still
preserving its reliability, and (iii) LiFT: a protocol to secure high-bandwidth
gossip-based dissemination protocols against freeriders.

Keywords Live streaming, gossip, epidemic dissemination, large-scale dis-
tributed systems, peer-to-peer, P2P, overlay, freeriding.

iv

Résumé

Les architectures pair-à-pair (P2P) représentent un paradigme parti-
culièrement populaire pour soutenir la nature dynamique, évolutive ainsi
que résister à la charge des systèmes distribués à très large échelle, charge qui a
augmenté ces dernières années de manière considérable avec l’intensification des
échanges par Internet ainsi que la taille des données échangées. Un système P2P
est généralement composé de participants disposés à fournir leurs ressources,
typiquement de la mémoire ou de la bande passante, dans l’exécution d’une
tâche collaborative offrant un bénéfice à ses participants. Le partage de fichiers
est probablement la tâche collaborative la plus utilisée actuellement, où chaque
participant cherche à recevoir une copie du fichier partagé et collabore ainsi en
échangeant avec les autres participants des fragments du fichier déjà reçus.

L’échange de fichiers contenant des données multimédias, de taille allant de
centaines de mégaoctets à des gigaoctets, introduit de nouveaux défis à relever.
Compte tenu de la bande passante des participants, plusieurs centaines de kilo-
bits par seconde à quelques mégabits par seconde, il est inacceptable d’attendre
la réception complète du fichier avant d’être en mesure de l’utiliser, étant donné
le temps que le téléchargement représente. Du point de vue du participant, obte-
nir la totalité du fichier le plus rapidement possible n’est donc généralement pas
suffisant. La vidéo à la demande (VoD de l’anglais Video on Demand) représente
un scénario typique où un participant souhaite commencer la visualisation du
contenu multimédia (le flux, stream), offert par une source, alors que seulement
une fraction de celui-ci a été reçue, puis poursuivre le visionnement pendant que
le reste du contenu est téléchargé.

Suivant cette idée, une nouvelle tâche collaborative a émergé en tant que
diffusion de flux en direct (live streaming) : la source ne possède pas un fichier
stocké qu’elle veut partager avec les autres participants, mais le contenu est
envoyé pendant qu’il est produit. En d’autres termes, le contenu à distribuer est
en direct (live) et non pas pré-enregistré ni stocké. Des applications typiques
sont la diffusion en direct d’événements sportifs, de conférences ou d’interviews.

Le paradigme du gossip, qui peut être traduit en commérage en français,
est un type de diffusion de données qui repose sur la communication au hasard
entre les participants. Ce type de diffusion est similaire à la diffusion épidémique
d’une maladie. Une rumeur ou une épidémie commence à se propager quand la

v

Résumé

source choisit au hasard un ensemble de participants, de taille fanout, et les
infecte, en partageant la rumeur avec chacun d’eux. Chaque participant de cet
ensemble, à son tour, choisit au hasard le même nombre fanout de participants et
partage avec eux cette même rumeur. Ce paradigme a de nombreux avantages
dont la propagation rapide des rumeurs, la garantie probabiliste que chaque
rumeur atteint chaque participant, la résistance à la dynamique du système (les
participants qui le joignent et le quittent) ainsi que l’extensibilité à de larges
audiences. Ce paradigme est donc particulièrement indiqué pour la diffusion de
flux en direct dans des systèmes à large échelle.

Ces avantages ont toutefois un prix. Pendant la diffusion épidémique, de nom-
breux doublons de la même rumeur sont créés et les participants reçoivent ha-
bituellement de multiples copies de la même rumeur. Bien que ceci représente
de toute évidence une caractéristique demandée lorsqu’il s’agit de garantir une
bonne diffusion de rumeurs en cas d’arrivées et de départs soudains des partici-
pants, c’est un net désavantage en cas de propagation de grandes quantités de
données multimédias sachant que les participants ont des ressources limitées, à
savoir leur bande passante dans le cas précis.

Cette thèse étudie donc la possibilité et la mise en oeuvre de l’utilisation du
paradigme du gossip en vue d’une diffusion efficace d’un flux en direct dans les
scénarios suivants : (i) lorsque les participants ont des ressources limitées, (ii)
lorsque ces ressources sont distribuées aux participants de manière hétérogène
et (iii) lorsque seule une fraction de ces participants contribuent de bonne foi
avec une partie de leurs ressources, tandis que d’autres profitent du système, en
tant que resquilleurs ou fraudeurs (freeriders).

Afin de relever ces défis, cette thèse propose (i) gossip++ : un protocole
particulièrement adapté au besoin de la diffusion de flux en direct, basé sur le
paradigme du gossip, dans lequel la rumeur propagée est composée de l’empla-
cement du contenu, contenu qui est par la suite téléchargé par les participants
intéressés, évitant ainsi de recevoir des doublons du contenu lui-même et donc
de gaspiller de la bande passante, (ii) HEAP : un mécanisme d’adaptation du
fanout, permettant au gossip d’adapter la contribution des participants (l’uti-
lisation de leurs ressources) en fonction de la quantité de leurs ressources à
disposition tout en préservant la fiabilité du gossip et (iii) LiFT : un proto-
cole pour garantir l’efficacité de gossip dans un contexte d’échanges de grandes
quantités de données en présence de fraudeurs.

Mots-clés Diffusion de flux en direct, live streaming, diffusion épidémique,
commérage, gossip, systèmes distribués à large échelle, pair-à-pair, P2P, topo-
logie de recouvrement, resquilleurs, fraudeurs, freeriding.

vi

This thesis is dedicated to Jean and Daniel, my late grandfathers,

Ulysse, Taotim and Kilian, my nephews and godsons,

and Olivia, my lovely angel.

Acknowledgments

First, I would like to thank my advisor, Prof. Rachid Guerraoui, for welcoming
me in his lab and having guided my research while at the same time, giving
me a maximum of freedom in my working method, in the directions followed or
choices made. I also thank him for the countless jogging trips, allowing us to
resolve research issues, discuss the progress of various projects and talk about
life in general. These runnings have also allowed us to know ourselves better
while preparing physically for various races, including the Marathon.

I thank Prof. Roger David Hersch for being president of the jury and Dr. Ka-
terina Argyraki, Dr. Anne-Marie Kermarrec and Prof. Benôıt Garbinato for
accepting to be members of the jury.

Thanks to Benôıt Garbinato and Jarle Hulaas who had the difficult task of
supervising the work that Jesper and I had to make in the european project
PALCOM, during Rachid’s sabbatical leave to MIT. I very much appreciated
their follow-up and their many advices that have been very beneficial throughout
this thesis. I am grateful for Jamila Sam’s professionnalism and all her help
for the smooth running of the course entitled “Introduction to Object-oriented
Programming”.

I thank every coauthor with whom I had the chance to work and in particular
Davide Frey who has shown me that apart from the Spaghetti Westerns, Italians
were also very good at Spaghetti Programming ; Kévin Huguenin for his many
invitations to his place and for making me discover duck confit and “pommes
de terre à la sarladaise”; Anne-Marie Kermarrec for having welcomed me many
times in Rennes and for her unfailing scientific and moral support; Boris Kold-
ehofe in memory of Weißbiere drunk together in Stuttgart and Vivien Quéma
for indoor football games and the many programming nights, both at EPFL or
in Grenoble.

I thank all former and current lab members: Aleksandar, Bastian, Boris,
Dan, Fabien, Giuliano, Jesper, João, Kristine, Marko, Maysam, Michal, Mihai,
Nikola, Oana, Partha, Petr, Ron, Sidath, Seb, Seth, Vincent, for the many dis-
cussions we had and also for activities we performed together, such as (day and
night) barbecues, fitness, jogging, soccer games, sailing, skiing, tennis, adven-
ture park or a flight over the Alps. I would like to especially thank Kristine for
having always been present and receptive towards many requests I had, with a

ix

Acknowledgments

very open-mind, always very patient, and for making this lab lively, by organiz-
ing various events for birthdays or births, for instance. I thank her specially for
proofreading this thesis, an example among many others of her kindness and
dedication. A special thought for her grandson Timothée, who, with his smiles
and laughs, constantly reminds us that we are finally only big children!

I thank the whole LAMP team led by Prof. Martin Odersky, and especially
Danielle, Michel, Rachele, Stéphane and Vincent, for their encouragement and
good time spent together during our trips to Sardinia or Aarhus, precisely with
Martin and Nikolay.

Thanks to Prof. Alfred Strohmeier and Prof. Jörg Kienzle for giving me the
desire to pursue research and do a PhD at EPFL.

Of course, I will never forget the unconditional support of my family: Daniel
(1922–2008); Jean (1924–2006) and Jacqueline; Francine; Jean-Da and Elisa-
beth; Guy and Lise; Cédric, Céline and Ulysse (2008–); Leslie, Christophe and
Taotim (2010–), and Françoise. Bacis to my family in Ticino: Janine, Vania
and Alan, and best greetings to my Othenin-Girard cousins: Bernard, Irina,
Alex, and Nico.

I also warmly thank the de Weck family for very good times together, by the
fireside in their chalet in Lac Noir, on the shores of Lake Neuchâtel or during
our trips to Bombay, Boston and New York.

I thank Olivier Paroz and Frédéric Bourqui for sharing with me their passion
for computer science, Marco Bonetti for reinforcing me in the idea of joining
EPFL, Pierre-Alain Dumont for giving me his confidence in the Bluepage/Actio
adventures and my first job in computer science, Lt Col Olivier Henchoz for
giving me the chance to lead a company and Cécilia Bigler & Sylviane Dal Mas
for organizing the anniversary of the School of Computer and Communication
Sciences together.

Thanks to all my friends who have contributed directly or indirectly to this
thesis and who were still satisfied with my reduced presence in our joint activi-
ties during these years: Alain & Anne, Alban, Alex “JDK”, André “le Pfist’r”,
Axel du conseil, Ban, Barben & Janice, Basile, Bastian & Laura, Bérard, Borlat,
Bouvier, Chens & Jenny and their future little boy, Christian and his “Gagg”,
Christophe “Dynafit”, Claudio, Darko, David, de Chambrier and family, Denti,
Didier, Didier “gren” and family, Diego, Duboss’, FN & Mag’, Franck, François
“The Dude”, Frey, Genton, Goss’ & Julie, Grégoire “Gel énergétique”, Guil-
laume & Maryll and their future child, Guillaume & Shahida & Juliette and
their future little girl, Jean-Michel, Jesper & Tania, Jo & Katy & Emily, José,
Juliette, Ky-Anh, Kaufmann, Landert and family, Lato “de combat 90”, Lucas
“Les Ouais”, Luyet, Marc & Caro, Martial & Carolyne, Mathieu “The Math-
iew” & Marie-Julie, Mélanie, Nicolas and Fred “aux dents blanches”, Paulo “le
cabri”, Pernet, Perret, PH, Phil & Catherine & Noémie & Rachel & Kilian,

x

Acknowledgments

Pierre “le dauphin” and family, R1 & Delphine, Renaud “frère d’arme”, Ron
& Laura, Rumley, Sacha, Sami & Carrie, Schouwey, Seb and family, Stocker &
Lili and family, Stefan, Stefano and family, Svend, Théo and family, Vincent &
Aline, Yann and family, and Yves “au taquet”. Bachelor’s parties, rallyes, via
ferratas, climbing, rafting, barbecues, Patrouille des Glaciers, Raids, skydiving,
paragliding (among other things): what memories shared with you!

Last but not least, I thank my dear and loving Olivia for sharing with me
unforgettable moments, for all her love, and support in difficult times. With
her, not only does everything become possible, but also easy! I look forward
to many moments and experiences to come; I promise to bend my knees when
skiing and try to serve better when we play tennis.

xi

Remerciements

Tout d’abord, j’aimerais remercier mon directeur de thèse, le Prof. Rachid
Guerraoui, pour m’avoir accueilli dans son laboratoire et avoir guidé mes re-
cherches tout en me laissant un maximum de liberté dans ma méthode de tra-
vail, que ce soit dans les directions suivies ou choix effectués. J’aimerais aussi le
remercier pour les innombrables sorties de jogging que nous avons faites, nous
permettant de régler différents points de recherche, parler de l’avancement des
différents projets ainsi que sur la vie en général. Ces courses nous ont aussi per-
mis de mieux nous connâıtre et de passer des moments privilégiés tout en nous
préparant physiquement pour diverses courses, notamment pour le Marathon.

Je remercie le Prof. Roger David Hersch de présider le jury, ainsi que la Dr
Katerina Argyraki, la Dr Anne-Marie Kermarrec et le Prof. Benôıt Garbinato
pour avoir accepté d’être membres de ce jury.

Merci à Benôıt Garbinato et Jarle Hulaas qui ont eu la lourde tâche de super-
viser le travail que Jesper et moi-même avons dû effectuer au sein du projet PAL-
COM pendant l’année sabbatique de Rachid au MIT. J’ai beaucoup apprécié
leur suivi et leurs nombreux conseils m’ont été très bénéfiques tout au long de
cette thèse. Je remercie Jamila Sam pour son professionnalisme et toute son
aide pour le bon fonctionnement du cours “Introduction à la Programmation
Objet”.

Je remercie tous les coauteurs avec qui j’ai eu la chance de collaborer et en
particulier Davide Frey qui m’a démontré que mis à part les western spaghettis,
les italiens étaient aussi très forts pour le code spaghetti ; Kévin Huguenin pour
ses nombreuses invitations à la maison et pour m’avoir fait découvrir ainsi le
confit de canard et les pommes de terre à la sarladaise ; Anne-Marie Kermarrec
pour m’avoir souvent accueilli à Rennes et avoir été un soutien scientifique et
moral sans faille ; Boris Koldehofe en souvenir des Weißbiere bues à Stuttgart
et Vivien Quéma pour les parties de foot indoor et les nombreuses nuits de
programmation à l’EPFL ou à Grenoble.

Je remercie tous les anciens et actuels membres du laboratoire : Aleksandar,
Bastian, Boris, Dan, Fabien, Giuliano, Jesper, João, Kristine, Marko, Maysam,
Michal, Mihai, Nikola, Oana, Partha, Petr, Ron, Sidath, Seb, Seth, Vincent,
pour les nombreuses discussions que l’on a eues et aussi pour les activités que
l’on a pratiquées ensemble, comme par exemple les barbecues (de jour comme

xiii

Remerciements

de nuit), le fitness, le jogging, les matchs de foot, de la voile, du ski, du tennis,
le parc aventure ou encore un vol au-dessus des Alpes. Je tiens à remercier tout
particulièrement Kristine pour avoir toujours été présente et réceptive à l’égard
des maintes demandes que j’ai pu lui faire, avec un grand esprit d’ouverture,
toujours positive et très patiente, et pour avoir fait vivre le laboratoire en orga-
nisant divers événements que ce soit pour les anniversaires ou les naissances, par
exemple. Je la remercie spécialement pour la relecture de cette thèse, un exemple
parmi tant d’autres de sa gentillesse et de son dévouement. Une pensée toute
particulière pour son petit-fils Timothée qui, avec ses sourires et ses rires, nous
rappelle constamment que nous ne sommes finalement que des grands enfants !

Je remercie toute l’équipe du LAMP dirigée par le Prof. Martin Odersky,
et en particulier Danielle, Michel, Rachele, Stéphane et Vincent, pour leurs
encouragements ainsi que les bons moments passés ensemble lors de nos voyages
en Sardaigne ou à Aarhus avec Martin et Nikolay justement.

Merci au Prof. Alfred Strohmeier et au Prof. Jörg Kienzle pour m’avoir donné
envie de poursuivre dans l’académique et de faire un doctorat à l’EPFL.

Bien évidemment, je n’oublierai jamais le support inconditionnel de ma fa-
mille : Daniel (1922–2008) ; Jean (1924–2006) et Jacqueline ; Francine ; Jean-Da
et Elisabeth ; Guy et Lise ; Cédric, Céline et Ulysse (2008–), Leslie, Christophe
et Taotim (2010–) et Françoise. Bacis à ma famille du Tessin : Janine, Vania et
Alan et meilleures salutations à mes cousins Othenin-Girard : Bernard, Irina,
Alex et Nico.

J’aimerais aussi remercier très chaleureusement la famille de Weck pour les
très bons moments passés ensemble, que ce soit au coin du feu dans les alpes
fribourgeoises, au bord du lac de Neuchâtel ou encore lors de nos escapades à
Bombay, Boston et New-York.

Je remercie Olivier Paroz et Frédéric Bourqui pour m’avoir transmis leur
passion pour l’informatique ; Marco Bonetti pour m’avoir conforté dans l’idée
d’aller à l’EPFL ; Pierre-Alain Dumont pour m’avoir donné toute sa confiance
dans l’aventure Bluepage/Actio ainsi que mon premier emploi dans l’informa-
tique ; le lt col Olivier Henchoz pour m’avoir donné la chance de faire face à
de grandes responsabilités en tant que cdt cp e r et Cécilia Bigler & Sylviane
Dal Mas pour l’organisation de la fête de la faculté I&C.

Merci à tous mes amis qui ont contribué de près ou de loin à cette thèse et qui
se sont satisfait de ma présence amoindrie à nos activités en commun durant ces
quelques années : Alain & Anne, Alban, Alex “JDK”, André “le Pfist’r”, Axel du
conseil, Ban, Barben & Janice, Basile, Bastian & Laura, Bérard, Borlat, Bouvier,
Chens & Jenny et le futur petit, Christian et ses “Gagg”, Christophe “Dynafit”,
Claudio, Darko, David, de Chambrier et famille, Denti, Didier, Didier “gren”
et famille, Diego, Duboss’, FN & Mag’, Franck, François “The Dude”, Frey,
Genton, Goss’ & Julie, Grégoire “Gel énergétique”, Guillaume & Maryll et leur

xiv

Remerciements

futur premier enfant, Guillaume & Shahida & Juliette et leur future petite, Jean-
Michel, Jesper & Tania, Jo & Katy & Emily, José, Juliette, Ky-Anh, Kaufmann,
Landert et famille, Lato “de combat 90”, Lucas “Les Ouais”, Luyet, Marc &
Caro, Martial & Carolyne, Mathieu “The Mathiew” & Marie-Julie, Mélanie,
Nicolas et Fred “aux dents blanches”, Paulo “le cabri”, Pernet, Perret, PH, Phil
& Catherine & Noémie & Rachel & Kilian, Pierre “le dauphin” et famille, R1 &
Delphine, Renaud “frère d’arme”, Ron & Laura, Rumley, Sacha, Sami & Carrie,
Schouwey, Seb et famille, Stocker & Lili et famille, Stefan, Stefano et famille,
Svend, Théo et famille, Vincent & Aline, Yann et famille et Yves “au taquet”.
Enterrements de vie de garçons, rallyes, via ferratas, grimpe, descente en rafting,
barbecues, Patrouille des Glaciers, Raids, saut en parachute, vol en parapente
(entre autres) : que de souvenirs inoubliables partagés avec vous !

Finalement, je remercie ma chère et tendre Olivia de partager avec moi des
moments inoubliables, pour tout son amour et son soutien dans les moments
plus difficiles. Avec elle tout devient non seulement possible, mais aussi facile !
Je me réjouis déjà des nombreux moments et expériences à venir et je lui pro-
mets de plier les genoux à ski et de me donner de la peine, au tennis, pour les
engagements.

xv

Preface

This thesis describes the PhD work done at the Distributed Programming
Laboratory, School of Computer and Communication Sciences, EPFL, under the
supervision of Prof. Rachid Guerraoui, from 2005 to 2010. During this period,
besides the work presented in this thesis, I also published the work contained in
my master’s thesis [MKR06] worked on an event-driven programming model for
mobile devices [GGH+06, GGH+07b], on an oracle for measuring and reacting
to resource usage in the same context of mobile devices [GGH+07a] and also on
distributed computing in social networks [GHKM09a,GHKM09b,GHK+b].

This thesis focuses on the problem of live streaming with a gossip-
based dissemination protocol and is a composition of published pa-
pers [BGKM07, FFM07, FGK+09b, FGK+09a, GHKM09c] and work under
submission [FGKM10,GHK+a].

Live Streaming with Gossip

[GHK+a] LiFTinG : Lightweight Freerider-Tracking Protocol in Gossip.
Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec,
Maxime Monod, and Swagatika Prusty. Under submission.

[FGKM10] Boosting Gossip for Live Streaming. Davide Frey, Rachid Guer-
raoui, Anne-Marie Kermarrec, and Maxime Monod. In Interna-
tion Conference on Peer-to-Peer Computing (P2P), 2010.

[GHKM09c] On Tracking Freeriders in Gossip Protocols. Rachid Guerraoui,
Kévin Huguenin, Anne-Marie Kermarrec, and Maxime Monod.
In International Conference on Peer-to-Peer Computing (P2P),
2009.

[FGK+09a] Heterogeneous Gossip. Davide Frey, Rachid Guerraoui, Anne-
Marie Kermarrec, Boris Koldehofe, Martin Mogensen, Maxime
Monod, and Vivien Quéma. In International Middleware Confe-
rence (Middleware), 2009.

[FGK+09b] Stretching Gossip with Live Streaming. Davide Frey, Rachid
Guerraoui, Anne-Marie Kermarrec, Maxime Monod, and Vivien
Quéma. In International Conference on Dependable Systems and
Networks (DSN), 2009.

xvii

Preface

[FFM07] A Generic Theoretical Framework for Modeling Gossip-Based Al-
gorithms. Yaacov Fernandess, Antonio Fernández, and Maxime
Monod. Operating Systems Review (OSR) 41(5) :19–27, 2007.

[BGKM07] Towards Fair Event Dissemination Sébastien Baehni, Rachid
Guerraoui, Boris Koldehofe, and Maxime Monod. In International
Workshop on Distributed Event Processing, Systems and Applica-
tions (DEPSA), co-located with the International Conference on
Distributed Computing Systems (ICDCS), 2007.

Distributed Computing in Social Networks

[GHK+b] Decentralized Polling with Respectable Participants. Rachid Guer-
raoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod,
and Ymir Vigfusson. Distributed Computing, under submission.

[GHKM09b] Decentralized Polling with Respectable Participants. Rachid Guer-
raoui, Kévin Huguenin, Anne-Marie Kermarrec, and Maxime Mo-
nod. In International Conference On Principles Of DIstributed
Systems (OPODIS), 2009.

[GHKM09a] Brief Announcement : Towards Secured Distributed Polling in So-
cial Networks. Rachid Guerraoui, Kévin Huguenin, Anne-Marie
Kermarrec, and Maxime Monod. In International Symposium on
Distributed Computing (DISC), 2009.

Event-driven Programming Model

[GGH+07a] The Weight-Watcher Service and its Lightweight Implementation.
Benôıt Garbinato, Rachid Guerraoui, Jarle Hulaas, Alexei Kou-
nine, Maxime Monod, and Jesper H. Spring. In International
Conference on Embedded Computer Systems : Architectures, Mo-
deling and Simulation (IC-SAMOS), 2007.

[GGH+07b] Pervasive Computing with Frugal Objects. Benôıt Garbinato, Ra-
chid Guerraoui, Jarle Hulaas, Maxime Monod, and Jesper H.
Spring. In Symposium on Pervasive Computing and Ad Hoc Com-
munications (PCAC), co-located with the International Confe-
rence on Advanced Information Networking and Applications
(AINA), 2007.

[GGH+06] Frugal Mobile Objects. Benôıt Garbinato, Rachid Guerraoui, Jarle
Hulaas, Maxime Monod, and Jesper H. Spring. In Euro-American
Workshop on Middleware for Sensor Networks (EAWMSN), co-
located with the International Conference on Distributed Compu-
ting in Sensor Systems (DCOSS), 2006.

xviii

Preface

Master’s Thesis Publication

[MKR06] Looking Ahead in Open Multithreaded Transactions. Maxime Mo-
nod, Jörg Kienzle, and Alexander Romanovsky. In International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), 2006.

xix

Préface

Cette thèse décrit le travail de doctorat effectué au Laboratoire de Program-
mation Distribuée, Faculté Informatique et Communications, EPFL, sous la
supervision du Prof. Rachid Guerraoui, de 2005 à 2010. Pendant cette période,
mis à part le travail présenté dans cette thèse, j’ai également publié le travail de
mon projet de diplôme [MKR06], travaillé à l’élaboration d’un modèle de pro-
grammation événementielle pour systèmes embarqués [GGH+06,GGH+07b], au
développement d’un composant servant à mesurer l’utilisation de ressources et
à y réagir dans ce même contexte des systèmes embarqués [GGH+07a] et fina-
lement sur du calcul distribué dans les réseaux sociaux [GHKM09a,GHKM09b,
GHK+b].

Cette thèse traite du problème de diffusion épidémique d’un flux en direct.
Elle est composée de travaux publiés [BGKM07, FFM07, FGK+09b, FGK+09a,
GHKM09c] et de travaux en soumission [FGKM10,GHK+a].

Diffusion Epidémique d’un Flux en Direct

[GHK+a] LiFTinG : Lightweight Freerider-Tracking Protocol in Gossip.
Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec,
Maxime Monod et Swagatika Prusty. En soumission.

[FGKM10] Boosting Gossip for Live Streaming. Davide Frey, Rachid Guer-
raoui, Anne-Marie Kermarrec et Maxime Monod. In Internation
Conference on Peer-to-Peer Computing (P2P), 2010.

[GHKM09c] On Tracking Freeriders in Gossip Protocols. Rachid Guerraoui,
Kévin Huguenin, Anne-Marie Kermarrec et Maxime Monod.
In International Conference on Peer-to-Peer Computing (P2P),
2009.

[FGK+09a] Heterogeneous Gossip. Davide Frey, Rachid Guerraoui, Anne-
Marie Kermarrec, Boris Koldehofe, Martin Mogensen, Maxime
Monod et Vivien Quéma. In International Middleware Conference
(Middleware), 2009.

xxi

Préface

[FGK+09b] Stretching Gossip with Live Streaming. Davide Frey, Rachid Guer-
raoui, Anne-Marie Kermarrec, Maxime Monod et Vivien Quéma.
In International Conference on Dependable Systems and Networks
(DSN), 2009.

[FFM07] A Generic Theoretical Framework for Modeling Gossip-Based Al-
gorithms. Yaacov Fernandess, Antonio Fernández et Maxime Mo-
nod. Operating Systems Review (OSR) 41(5) :19–27, 2007.

[BGKM07] Towards Fair Event Dissemination Sébastien Baehni, Rachid
Guerraoui, Boris Koldehofe et Maxime Monod. In International
Workshop on Distributed Event Processing, Systems and Appli-
cations (DEPSA), coorganisé avec International Conference on
Distributed Computing Systems (ICDCS), 2007.

Calcul Distribué dans les Réseaux Sociaux

[GHK+b] Decentralized Polling with Respectable Participants. Rachid Guer-
raoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod
et Ymir Vigfusson. Distributed Computing, en soumission.

[GHKM09b] Decentralized Polling with Respectable Participants. Rachid Guer-
raoui, Kévin Huguenin, Anne-Marie Kermarrec et Maxime Mo-
nod. In International Conference On Principles Of DIstributed
Systems (OPODIS), 2009.

[GHKM09a] Brief Announcement : Towards Secured Distributed Polling in So-
cial Networks. Rachid Guerraoui, Kévin Huguenin, Anne-Marie
Kermarrec et Maxime Monod. In International Symposium on
Distributed Computing (DISC), 2009.

Modèle de Programmation Evénementiel

[GGH+07a] The Weight-Watcher Service and its Lightweight Implementation.
Benôıt Garbinato, Rachid Guerraoui, Jarle Hulaas, Alexei Kou-
nine, Maxime Monod et Jesper H. Spring. In International Confe-
rence on Embedded Computer Systems : Architectures, Modeling
and Simulation (IC-SAMOS), 2007.

[GGH+07b] Pervasive Computing with Frugal Objects. Benôıt Garbinato, Ra-
chid Guerraoui, Jarle Hulaas, Maxime Monod et Jesper H. Spring.
In Symposium on Pervasive Computing and Ad Hoc Communica-
tions (PCAC), coorganisé avec International Conference on Ad-
vanced Information Networking and Applications (AINA), 2007.

xxii

Préface

[GGH+06] Frugal Mobile Objects. Benôıt Garbinato, Rachid Guerraoui, Jarle
Hulaas, Maxime Monod et Jesper H. Spring. In Euro-American
Workshop on Middleware for Sensor Networks (EAWMSN), co-
organisé avec International Conference on Distributed Computing
in Sensor Systems (DCOSS), 2006.

xxiii

Préface

Publication du Projet de Diplôme

[MKR06] Looking Ahead in Open Multithreaded Transactions. Maxime Mo-
nod, Jörg Kienzle et Alexander Romanovsky. In International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC), 2006.

xxiv

Table of Contents

Abstract iii

Résumé v

Acknowledgments ix

Remerciements xiii

Preface xvii

Préface xxi

1 Introduction 1
1.1 Context and Objectives . 1
1.2 Contributions . 5
1.3 Thesis Organization . 7

2 Fundamental Concepts & Existing Approaches 9
2.1 High-bandwidth Content Dissemination 10

2.1.1 File Sharing . 10
2.1.2 Video on Demand (VoD) 12
2.1.3 Live Streaming . 13

2.2 Communication Graph & Overlay 16
2.2.1 Communication Graph . 16
2.2.2 Overlay . 17

2.3 Existing Approaches . 19
2.3.1 Structured Overlays . 19
2.3.2 Unstructured Overlays . 22
2.3.3 Hybrid Dissemination . 24

3 High-bandwidth Content Dissemination with Gossip 27
3.1 The Gossip Paradigm . 28

3.1.1 Gossip-Based Algorithms 30
3.2 Gossip for High-bandwidth Content Dissemination 33

3.2.1 Three-phase Gossip . 34
3.3 Live Streaming with Gossip . 37

xxv

Table of Contents

3.4 Experimental setup . 39
3.4.1 Bandwidth Constraints 39
3.4.2 Metrics . 40

4 Stretching Gossip with Live Streaming 41
4.1 Gossip’s Key Parameters . 42
4.2 Evaluation . 42

4.2.1 Impact of Varying the Fanout 43
4.2.2 Proactiveness . 46
4.2.3 Performance in the Presence of Churn 48

4.3 Summary . 50

5 Boosting Gossip for Live Streaming: Gossip++ 51
5.1 Gossip++ . 52

5.1.1 Codec . 53
5.1.2 Claim . 55

5.2 Evaluation . 56
5.2.1 Metrics . 56
5.2.2 Overview . 57
5.2.3 Need for Codec . 57
5.2.4 Realistic Conditions: Need for Claim 58
5.2.5 Impact of Message Loss 60
5.2.6 Crashes . 62
5.2.7 Constrained Environments 63
5.2.8 Freeriders . 64

5.3 Summary . 68

6 Heterogeneous Gossip: HEAP 71
6.1 HEAP . 74
6.2 Evaluation . 76

6.2.1 Experimental setup . 77
6.2.2 Adaptation to Heterogeneous Upload Capabilities 77
6.2.3 Stream Quality . 80
6.2.4 Stream lag . 83
6.2.5 Resilience to Catastrophic Failures 84

6.3 Alternative Solutions . 87
6.4 Summary . 88

7 Lightweight Freerider-Tracking Protocol: LiFT 91
7.1 Freeriding . 93

7.1.1 Propose phase . 94
7.1.2 Pull Request Phase . 96
7.1.3 Serving Phase . 96
7.1.4 Summary . 96

xxvi

Table of Contents

7.2 LiFT . 97
7.2.1 Blaming Architecture . 98
7.2.2 Direct Verifications . 98
7.2.3 Fooling the Direct Cross-check (?) 101
7.2.4 A Posteriori Verifications 101
7.2.5 Communication Costs . 103

7.3 Parameterizing LiFT . 104
7.3.1 Score-based Detection . 104
7.3.2 Entropy-based Detection 109

7.4 Evaluation . 112
7.4.1 Experimental Setup . 113
7.4.2 Practical Cost . 113
7.4.3 Experimental Results . 114

7.5 Related Approaches . 115
7.6 Summary . 117

8 Conclusion 119
8.1 Summary of Results . 120
8.2 Future Work . 121

8.2.1 On Democratizing Gossip 122
8.2.2 On Networking Issues . 124
8.2.3 On Increasing Performance 129
8.2.4 On Adaptation to Heterogeneity 131
8.2.5 On a More Robust Protocol 133

Abbreviations 135

Bibliography 137

List of Figures, Algorithms and Tables 149

About the Author 153

A propos de l’Auteur 155

xxvii

Labor disgraces no man; unfortunately you occasionally find
men disgrace labor.

Ulysses S. Grant

1
Introduction

1.1 Context and Objectives

The dissemination of information is ubiquitous in our lives. From oral conver-
sations, such as coffee break discussions, meetings or (mobile) phone calls, to
visual communication, such as newspapers, television, emails, images, videos,
we are all the time exposed to, absorbing and participating in the dissemina-
tion of information, be that in a narrow one-to-one fashion with friends and
family or in a broader one/many-to-many fashion with people we hardly know,
e.g., through usage of blogs and social networks. Throughout the last decade,
the intensity of this information dissemination has increased tremendously as
the traditional communication channels have been undergoing a transformation
towards digitalization over the Internet, examples include paper-based regular
mails to emails, phone calls to Voice-over-IP (VoIP), online libraries, podcasts
and live streaming, be it radio or TV broadcasting.

This convergence towards Internet-based communication channels combined
with new habits and scale in communication patterns have put an increasing
amount of demands on the computer systems facilitating this. In such an envi-
ronment, these systems, which by nature are distributed, must be (i) dynamic:
adapt to and tolerate failures and constantly joining and leaving of communi-
cation participants, namely churn, and (ii) scalable: be able to scale as the
number of communication participants grow from a couple of users to millions
of users, and the amount of data they exchange grow from kilobytes to ter-
abytes, representing longer or higher quality content. Under these challenging

1

Chapter 1. Introduction

circumstances, these distributed systems must be able to provide the following
guarantees in order to be considered suitable for communication: (i) time and
order: the data sent must arrive to the communication partners in a timely and
orderly manner not to disrupt the communication, and (ii) reliable and secure:
the data sent must arrive to the correct communication partner and without
having been altered.

Peer-to-peer (P2P) or decentralized architectures have emerged as a popu-
lar paradigm to support the dynamic and scalable nature of such distributed
communication systems. In a P2P system, a set of participants gather on an
ad-hoc basis to participate in some collaborative tasks. What is characteristic
about a P2P system is that there is no central control. Participants can join and
leave at will, and with no central control, there are no single points of failure.
This way, at any point in time, a P2P system really represents an ever-changing
environment of collaborating participants that are ideally all willing to equally
contribute resources, such as memory or bandwidth, in the execution of the task
towards a result, providing a benefit to all participants.

File sharing is probably the most widely used collaborative task, where each
participant wants to receive an individual copy of the shared file and collaborates
by sending fragments of the file they have already downloaded to other partic-
ipants. The contribution of the participants, in terms of resources, is therefore
a fraction of their bandwidth for uploading/relaying received fragments of the
shared file, whereas their benefit is to receive all the fragments making up a
single complete copy of the shared file. From the point of view of the partici-
pant, what is typically of importance when receiving a file is to get it as fast as
possible and in its entirety. The order in which the fragments arrive is irrelevant
as the file is typically not opened before being complete.

Sharing of multimedia content represents a special case of file sharing that is
subject to a number of constraints. What characterizes files containing multime-
dia content is their size, typically easily reaching the hundreds of megabytes to
gigabytes. Compared to the bandwidths of participants (typically hundreds of
kilobits per second to a couple of megabits per second), waiting until completion
before actually being able to use the file represents a non negligible time, mean-
ing that from the point of view of the participant receiving the multimedia file,
getting the (entire) file as fast as possible is typically not good enough. Video
on Demand (VoD) represents such a scenario. In VoD, the participant receiving
the multimedia content, offered by some source, would like to start previewing
the received multimedia content (the stream), even though only a fraction of it
has been received, and then continue the viewing while the remaining parts of
the file is received.

This gives rise to timing and ordering constraints on the sharing of multimedia
files, in that (i) it would not make sense to see, say, the end of a movie before the
start, and (ii) when starting to preview the movie, one would like to continue

2

1.1. Context and Objectives

like this without any disruptive pauses due to communication hiccups. The time
the participant has to wait until the stream starts playing is called the buffering
delay. The buffering delay can span from almost nothing, i.e., the rate at which
content arrives is much larger than the rate at which it is played (usually the
case for low quality podcasts or videos) to the time needed to transfer the whole
file in the worst case, i.e., the download rate is so poor compared to the playing
speed that the client needs to wait to receive the file almost entirely before
starting to play it. Optimal buffering strategies are studied in [CE07]. At the
end of the streaming process, the played stream – representing the result of the
collaborative task – is then either trashed, such as when watching videos on
Youtube [You], or is stored locally into a file that can be played back later.

Following the same line of reasoning, new applications emerged introducing
live streaming : the source does not own a file that it wants to share with others,
but shares content as soon as it is produced. In other words, the content to
distribute is live, not pre-recorded and stored. Typical examples include the
broadcasting of live sports events, conferences or interviews. As in VoD, from
the point of view of the receiving participant there is a clear incentive for playing
the received content as soon as possible. Contrary to VoD, however, data itself
is not available in advance, and hence no data can be downloaded ahead of time.

The gossip paradigm, also named epidemic dissemination [EGKM04] or rumor
mongering [KSSV00], introduced in [DGH+87], is a type of data dissemination
that relies on random communication between participants in a P2P environ-
ment. An epidemic starts to spread when a source randomly chooses a set of
communication partners, of size fanout, and infects them, i.e., it shares a rumor
with them. This set of participants, in turn, randomly picks fanout communica-
tion partners each and infects them, i.e., share with them the same rumor. This
paradigm has many advantages including (i) fast propagation of rumors, (ii)
probabilistic guarantee that each rumor reaches all participants, and (iii) high
resilience to churn and high scalability [KMG03]. Gossip therefore constitutes
a candidate of choice for live streaming in large-scale systems, as documented
in the literature [DXL+06,LCW+06,LCM+08].

These advantages, however, come at a price. By spreading around a rumor
randomly, gossip creates many duplicates of the same rumor and nodes usually
receive multiple copies of the same rumor. While this is obviously a feature when
it comes to guarantee a good dissemination of the rumor in case of churn, it is
a clear disadvantage in case of spreading large amounts of multimedia content
(i.e., time and order-critical data) with participants having limited resources,
namely upload bandwidth.

With this in mind, this thesis investigates if and how the gossip paradigm
can be used as a highly efficient communication system for a live streaming sce-
nario under the following specific scenarios: (i) where participants can only con-
tribute limited resources, (ii) when these limited resources are heterogeneously

3

Chapter 1. Introduction

distributed among nodes, and (iii) where an ideal state in the P2P environment
is not reached, meaning that participants are not contributing their fair share
of work. These scenarios represent a number of challenges:

Live Streaming with Gossip in Constrained Environment Gossip is creating
many duplicates of rumors as the dissemination spread follows a random pattern.
Nodes can therefore receive multiple copies of the same rumors resulting in a
clear waste of bandwidth in case the rumors themselves represent relatively large
content. Since gossip provides only probabilistic guarantees that each rumor will
reach every node, it is not guaranteed that each node receives every produced
rumor. In addition, with constrained bandwidth and unreliable communication
channels, rumors can also be dropped or lost. Gossip thus needs to be tailored
in such a way that the usage of bandwidth fits the constrained bandwidths of
nodes and boosted so that each node does not miss any produced rumor.

Heterogeneous Bandwidth-constrained Environment Gossip inherently asks
all nodes to contribute the same amount of upload bandwidth as they are all
supposed to send roughly the same number of rumors to the same fanout number
of partners. Gossip is namely load-balancing while large-scale systems exhibit
very heterogeneous nodes’ capabilities. Since the best efficiency in dissemination
is achieved when all contributed resources are optimally used, it seems trivial
that balancing the load equally on all nodes can only underutilize nodes with
high capabilities and overload nodes with low capabilities. Gossip therefore
needs to be able to adjust the load on each node proportionally to the amount
of resources they can actually contribute.

Presence of Freeriders Some participants might not want to contribute their
resources, for various reasons. They can have so limited resources that they
always try to benefit more than what they can actually contribute. They might
realize that a small decrease in benefit results in a greater decrease in contri-
bution and thus can save some resources for other tasks. Worse, this situation
is usually amplified when participants selfishly collaborate in order to benefit
within the coalition without contributing as expected. Participants that do not
contribute their fair share are called freeriders and colluding freeriders when
they collaborate to decrease their contribution within a coalition. Gossip must
therefore provide means to either tolerate a proportion of freeriders without im-
pacting on the benefit of honest nodes or detect and expel freeriders from the
dissemination.

4

1.2. Contributions

1.2 Contributions

The main contributions of this thesis are the following:

Live Streaming with Gossip in Constrained Environment

• We show, empirically, that in a bandwidth-constrained environment, par-
ticipants cannot arbitrarily increase the fanout parameter to increase the
reliability of the dissemination.

In bandwidth-constrained environments, participants contribute to the
system only a limited upload bandwidth, comparable to the stream rate
that the source produces. Dissemination of a clear stream, the exact copy
of the original stream, to all nodes is theoretically feasible if the average
upload bandwidth is larger than the stream rate. Theoretical works on
gossip usually show that the fanout is an obvious knob for tuning relia-
bility, in other words, the larger the fanout the higher the probability the
initial rumor has chances of reaching all nodes in the system. In practice,
our results show that there is a clear optimal range of fanout values and
that increasing the fanout too much has negative impact on the dissemi-
nation.

• We show, empirically, that the frequency at which participants change
communication partners has to be the highest possible.

Theoretical work on gossip usually assume that participants pick different
fanout partners at each gossiping period, i.e., the set of fanout partners
change at each communication step. In opposite, many recent work try
to disseminate information epidemically in a mesh, where each node has
a fixed set of communication partners and are bound to them for their
entire lifetime in the system. Keeping the dissemination simplicity of
gossip, we show that changing neighbors dynamically and continuously
provides the best results and that epidemics in mesh-based systems have
to tackle problems that are inexistent in gossip, e.g., explicitly splitting
the source stream to only name one.

• We present an extension of a gossip-based dissemination protocol, named
gossip++, in the context of high-bandwidth content dissemination, suit-
able for live streaming in large-scale systems.

The proposed solution integrates both well-known erasure coding tech-
niques, in order to circumvent the probabilistic delivery guarantees of gos-
sip, and a new retransmission technique, leveraging the many duplicates
induced by gossiping. Effectively, by gossiping information to fanout com-
munication partners chosen at random, participants can receive anything
from multiple copies of the same information to none of it. Erasure coding
ensures that the missing information can be reconstructed while the many

5

Chapter 1. Introduction

duplicates act as different sources to request information from in case of
communication problems, such as message losses or node failures. We ex-
tensively test the proposed gossip-based protocol in various scenarios and
show that it tolerates catastrophic failures very well and a reasonable frac-
tion of freeriders when the average capability of the system is larger than
the demand, i.e., when the average upload bandwidth is larger than the
stream rate.

Heterogeneous Bandwidth-constrained Environment

• We present a new heterogeneity-aware protocol, named HEAP, that adapts
the contribution of participants according to the distribution of their ca-
pabilities.

In practical systems, participants usually participate in the collaborative
task with very different devices, spanning from mobile phones to desktop
computers. Not only do the devices themselves have different characteris-
tics but their connection to the Internet also shows very different capabil-
ities be they at home behind broadband connections, at work with shared
and protected accesses or on the move with mobile connections. On top
of that, users can typically manually limit the amount of bandwidth they
want to devote to their different bandwidth-greedy applications, result-
ing in very different capabilities given to the system in the end. Gossip
has been recognized as a very practical and easy way to homogenize or
balance the overall load equally on all participants. This is a very nice fea-
ture in an homogeneous system where all nodes devote the same amount
of resources to the system but applies very poorly when participants have
heterogeneous capabilities. Indeed, some participants see their resources
underutilized, as only a very small fraction of the resources they are ready
to provide to the system are actually used whereas some other participants
cannot provide the amount of resources they are requested to. HEAP con-
sists in asking nodes to contribute proportionally to their resources, irre-
spectively of the distribution of them, as long as the average amount of
resources available is sufficient to sustain the dissemination of the stream
rate.

Presence of Freeriders

• We present a lightweight freerider-tracking protocol, named LiFT, that
detects and expels nodes that do not provide their fair share of work.

In systems where the average capabilities of participants is much higher
than the demand or where the benefit is not directly correlated to the
contribution to the system as in asymmetric, push-based systems like the
gossip-based protocols proposed, freeriders are tempted not to provide

6

1.3. Thesis Organization

their fair share of work if they perceive a limited negative impact on their
benefit. As the fraction of freeriders increases or the average capability of
the system gets closer to the demand, the negative impact of such nodes
increases until most nodes cannot actually play the stream. We analyze
the proposed gossip protocol and describe the many attacks that such
freeriding nodes can perform and propose LiFT: a protocol that provides
lightweight verification mechanisms on top of gossip, for detecting nodes
that freeride and even collude. As opposed to incentives encouraging nodes
to contribute in order to benefit from the system, the approach considered
is coercive in the sense that nodes that are caught misbehaving are ex-
pelled from the system, constituting by itself a way of encouraging nodes
to collaborate as they are supposed to. LiFT is based on accountability
in the sense that participants’ actions are logged and cross-checked. Since
communication partners change frequently and that a majority of partic-
ipants have to be honest so that the stream is correctly disseminated, the
cross-checked information converges eventually in detected misbehaving
nodes that are gradually removed from the system, resulting in both a
faster detection mechanism and a better dissemination, as it decreases the
proportion of freeriders.

1.3 Thesis Organization

The thesis is split into 8 chapters, organized as follows.

Chapter 2 reviews the fundamental concepts behind high-bandwidth content
dissemination, clearly positions the problem of live streaming, as opposed to file
sharing and Video on Demand (VoD), and presents an overview of related work
in the context of high-bandwidth content dissemination, focusing mainly on live
streaming approaches.

Chapter 3 exposes the gossip paradigm in its different variants, proposes a
gossip-based protocol designed for high-bandwidth content dissemination and
describes the experimental setup used throughout the thesis.

The proposed three-phase gossip protocol is evaluated to understand the im-
pact of its key parameters, namely the fanout and the proactiveness in the
partner selection scheme, in Chapter 4.

Chapter 5 proposes two complementary mechanisms, Claim and Codec, to
improve the protocol’s efficiency, resulting in a protocol named gossip++.

Chapter 6 enables gossip to adapt to nodes’ capabilities, that is, we propose a
new gossip protocol, called HEAP, that adapts nodes’ contribution proportion-
ally to their capabilities, namely their upload bandwidth.

Chapter 7 exposes the issues due to freeriding in high-bandwidth content

7

Chapter 1. Introduction

dissemination, how the behavior of freeriders can affect existing approaches and
proposes a protocol to limit their impact on the proposed three-phase gossip
protocol, namely a lightweight freerider-tracking protocol (LiFT) tailored for
asymmetric systems.

Finally, Chapter 8 gives a conclusion, summarizing the main results of this
work and indicating directions for future research.

8

The education of a man is never completed until he dies.

Robert E. Lee

2
Fundamental Concepts & Existing

Approaches

This chapter reviews some fundamental concepts of content dissemination in
large-scale systems and existing approaches that tackles the challenges of high-
bandwidth content dissemination. In distributed systems, broadcasting data
from a single source to a large number of clients represents a key challenge and
could be compared to the problem of sorting in the context of data management
as it is a key building block for collaborative tasks. The data to disseminate is
usually present on a single source, either produced on the go or as an existing
file, and must be distributed to a large set of clients. The size of that data can
be very small, consider temperatures that have to be disseminated in a sensor
network, or very large, consider applications, operating systems or movies that
can span from hundreds of megabytes to several gigabytes that are typically
exchanged on the Internet.

We focus on the problem of broadcasting large content in comparison to the
bandwidth capabilities of the participants, namely high-bandwidth content dis-
semination. The problem of sending data from one to many can also be named
multicast and commonly refer to IP multicast [Dee88, DC90], i.e., being able
to send packets from a source and have them delivered to anyone that needs
them. In practice, current networks cannot provide such a primitive for many
reasons [Fra, CRSZ02], including protocol complexity at the network layer and
pseudo-economical matters, e.g., Internet Service Providers (ISP) not wanting
to duplicate content in their network, especially if this content was produced in a
network managed by some other ISP. This lack of primitive at the network layer

9

Chapter 2. Fundamental Concepts & Existing Approaches

has led researchers and engineers to design protocols for high-bandwidth content
dissemination at the application layer, named end-system multicast [CRSZ02].

2.1 High-bandwidth Content Dissemination

In high-bandwidth content dissemination, the data to broadcast is either a file
that is large enough so that its transfer takes a significant time or the content to
disseminate is unbounded and represents a significant fraction of the available
bandwidth when streaming it. Unbounded content typically represents a stream
that is produced at runtime and which duration or size cannot be determined.
In that case, it is the amount of information per second produced, namely the
stream rate which has to be compared to the bandwidth capabilities of the
participants.

2.1.1 File Sharing

A file is an abstraction that represents data of various content, from programs
to documents, music or movies. From the very beginning of the Internet, clients
have always had the need to share content with each other thus sending files to
each other. Clients are usually considered impatient, i.e., they want to receive
data as soon as possible, that is, as fast as possible. The transfer speed is
limited by the network characteristics of the two communicating clients, i.e.,
the bandwidth they can dedicate to transfer the file. The duration dA→B to
transfer a file of size S from a server A to a client B, knowing the upload
bandwidth Aup of the server A and download bandwidth Bdown of the client B
is given as:

dA→B =
S

min(Aup, Bdown)
+ κA→B ,

where κA→B is the time needed to establish a connection between A and B.
Assuming S is very large compared to the upload and download bandwidths,
the delay κA→B to establish a connection becomes negligible.

Client-Server Approach A naive solution to the problem of file sharing is to
let the source send the whole data to all clients or equivalently let all interested
clients request data from the single source. Assume the server A serves n clients
with a file of size S, the duration dA→{c1,...,cn} for sharing the file from A to all
users u1, . . . , un becomes:

dA→{u1,...,un} =
n∑

i=0

dA→ui =
n∑

i=0

(
S

min(Aup, uidown
)

+ κA→ui

)
.

10

2.1. High-bandwidth Content Dissemination

Such a solution is still very common nowadays. Take the example of a server
that provides a file to download, e.g., a new version of a device driver. All
interested users connect, via HTTP or FTP, to the server and download the file.
The server can provide data to users concurrently and usually serves many files,
thus many users at the same time, decreasing the amount of bandwidth Aup

it can dedicate to each client. Assuming the upload bandwidth of the server
is the bottleneck, i.e., it is smaller than any of the download bandwidths of
the clients, serving the n clients concurrently does not decrease the duration of
the task since the upload bandwidth of A is concurrently shared between the n
clients, i.e., Aup/n, resulting in:

S

Aup/n
+

n∑
i=0

(κA→ui) = n · S

Aup
+

n∑
i=0

(κA→ui) = dA→{u1,...,un} .

Since clients want to finish their transfer as soon as possible, we say that
they compete in order to have the largest amount of bandwidth dedicated to
them. In that scenario, the server can either (i) equally share the load among
all concurrent transfers by providing an equal fraction of its upload bandwidth
Aup to all concurrent n clients (i.e., Aup/n, which in case of a very large number
of concurrent transfers, will make the clients feel like their transfer is stalled,
or (ii) allow a maximum number of concurrent clients U to which the server
can guarantee a minimum quality of service (i.e., a minimum upload bandwidth
of Aup/U) and thus deny other requests when n > U . Both solutions do not
scale with the number of concurrent clients. Additionally, the server represents
a single point of failure and in case it crashes, the service is temporarily down.

Replicating Servers with Brokers In order to partially solve the aforemen-
tioned issues, a single server can be replaced by brokers, i.e., a set of servers
where the data to share is replicated, in other words acting as mirrors. The
clients’ requests are distributed among the different replicas, themselves serving
clients with their own bandwidth. This solution does, indeed, solve the problem
of failures but only partially solve the issue of scalability. Effectively, the num-
ber of concurrent requests is increased linearly with the number of mirrors at
the cost of maintaining those multiple servers and paying the bandwidth usage
of the different serving replicas.

Until now, we considered that the clients download the file sequentially or
in-order, i.e., from the beginning of the file to the end of it. Note that in a
non congested mode, a client could be, for example, concurrently served by two
replicas: the first one serving the first half of the file and the other one serving
the second half, concurrently. This very simple example opens new ways of
sharing data since the data does not need to be downloaded in a particular
order.

11

Chapter 2. Fundamental Concepts & Existing Approaches

Peer-to-peer Approach In order to stop competing for resources, peer-to-peer
(P2P) architectures have emerged so that clients collaborate to achieve a com-
mon goal: to create a replica of the original file onto all clients’ machines. In
that sense, each client is asked to dedicate some of its resources, its upload band-
width in particular, for the good of the community, in order to itself transfer to
others the data it has already received.

In the 1990s, the P2P approach was made very popular with systems like
Napster, KaZaA or eDonkey for sharing – illegally or not – music content in the
MP3 file format. The idea is pretty simple. At the beginning of the process, the
file is present only on the source node (the server in the client-server architecture)
and split into many subparts, namely chunks. Each chunk has an identifier
corresponding, for instance, to its position in the file. Clients interested in that
file connect to the source which starts to serve them with different chunks and
also tells them who is part of the collaborative process. Since clients received
different chunks from the source, they can now also act as source of those received
chunks for the other clients and serve those that did not yet receive those chunks.
In a sense, clients do not only benefit from the upload bandwidth of the source,
but also from the upload bandwidth of the other clients, as soon as they have
received some data to share. The more data clients receive, the more they can
send until each client reaches the upload bandwidth it decided to devote to the
collaborative task.

In theory, the overall upload bandwidth of the collaborative task is simply
equal to the one of the source in a client-server architecture and can be as large
as the sum of all participants’ upload bandwidth in a P2P system.

In practice, many issues need to be solved. How do clients get to know each
other and what clients should connect to what other clients? In what order
and to whom should chunks be disseminated? What happens if clients start to
join or leave the system? After having introduced Video on Demand (VoD) and
live streaming in Sections 2.1.2 and 2.1.3 respectively, we describe how existing
approaches tackle those issues by building overlays. The additional problems of
heterogeneity in contribution and non-collaboration in existing approaches are
reviewed in Sections 6.3 and 7.5 respectively.

2.1.2 Video on Demand (VoD)

When the content to share is audiovisual, typically a movie, and the clients want
to watch the movie starting at any given point in time, the file sharing problem
specializes into Video on Demand (VoD). A file of a given size S now represents
the duration t of a movie. With S = 700MB (to typically fit onto a CD) and
t = 90 minutes = 5400 s (average duration of a movie), the audiovisual content
represents a stream rate s of roughly 1000 kbps (i.e., S/t).

12

2.1. High-bandwidth Content Dissemination

If a client is receiving the corresponding file at a rate r much larger than the
stream rate s, the client can start to watch the movie right away and the movie
will not be stopped before its end, i.e., after the duration t of the movie.

On the other hand, if the rate r at which the client is receiving the file is
smaller than the stream rate s, the client has to wait, in order to accumulate
enough data, in such a way that once it has started playing, it knows it has
enough data buffered so that it can play the movie and the rest of the movie
will be downloaded on time. The time δ the client needs to wait until it can
start playing is named the buffering delay.

Assume the client receives data at a rate r on average, and smaller than the
stream rate s (i.e., r < s). The minimal buffering delay δmin is given as:

δmin =
(

1− r

s

)
t =

(
1− r

s

)
s · S .

Assuming the download rate is three-fourths of the stream rate, the client
needs to wait at least one-fourth of the length of the movie before playing to
make sure it will not be interrupted. The calculated buffering delay is minimal
only if the download rate r is used to retrieve data in the order it is played, e.g.,
the data buffered until starting to play represents the very first δmin duration
of the movie.

In practice, clients might want to start watching a movie from a given point
in time of the movie (e.g., from the third chapter on), which makes the problem
very challenging, especially when trying to make clients collaborate. The issue is
that some clients are watching the beginning of the movie while some others are
watching the end of it, thus not needing the first part of the movie that the first
group could propose to send. We do not elaborate any further on the problem
of VoD in order to concentrate on live streaming. We refer to [DLHC05,AGR06,
LCC07,SDK+07,VGK+07] for further reading about VoD.

2.1.3 Live Streaming

The problem of live streaming shares similarities with the challenges of VoD
since the data to disseminate represents audiovisual content and that there is
thus a need for buffering data before starting to play it. It is still very different
in the sense that the data to disseminate is not available a priori but produced
at runtime. In essence, this means that clients can of course not choose at what
time of the stream they want to start playing, but it also means that the rate
at which the stream is received cannot be lower than the stream produced. In
other words, since a client does not know a priori how long it will watch the
stream (as opposed to the duration t of a movie), there exists no buffering delay
δ for watching the stream without being interrupted if the reception rate r is
smaller than the stream rate s.

13

Chapter 2. Fundamental Concepts & Existing Approaches

If the reception rate r is much larger than s, the client can also not benefit
from it to download data in advance, as this data is not produced yet.

Assuming the download capability of users is larger than their upload ca-
pability, typically the case for users behind cable or ADSL connections, the
bottleneck for the collaborative task is considered to be the upload capabilities
of nodes. In that sense, a live streaming system can be designed successfully if
and only if the sum of all upload bandwidths contributed to the system by the
source A and all users ui (n of them) is larger than or equal to the stream rate
to receive for each user (i.e., excluding the source), that is:

Aup +
n∑
ui,up ≥ s · n .

Another way of looking at this inequality is the following [KLR07]. Given a
sum of bandwidth capabilities Aup +

∑n ui,up, what is the optimal stream rate
s that can be broadcast to all nodes?

s ≤ min
(
Aup,

Aup +
∑n ui,up

n

)
The maximum stream rate is obtained by the equality but is never reached in

practice. Effectively, any protocol will induce overhead for either signaling data
or at least transporting it to different nodes. A system thus aims at having this
overhead as low as possible so that a stream of higher rate can be broadcast.

A live streaming system should aim at providing a high quality stream, i.e.,
the exact same copy of the stream produced by the source if possible, to a
maximum number of clients concurrently, and letting them start viewing the
stream as soon as possible. Effectively, for a live stream, the notion of live does
not only mean the stream is produced at runtime but also that the client would
like to experience a delay between reality and its viewing experience that is as
short as possible. We define the stream lag as the time difference between the
moment at which the stream is sent from the source and the moment at which
it is played on the client.

The challenges in a live streaming system are thus summarized as:

• Minimize the overhead of the protocol Design a lightweight system so
that the stream rate broadcast is as close as possible to the average upload
bandwidth of participants. In other words, given a stream rate s, have a
system that can both (i) adapt to the heterogeneity of upload bandwidth,
and (ii) where the average upload bandwidth of clients can be decreased
as close to s as possible,

• Maximize the stream quality: provide a stream that is as close as
possible to the original stream produced by the source. We want the
protocol to ideally provide an exact copy of the stream produced by the

14

2.1. High-bandwidth Content Dissemination

source to all participants, and if not, a stream that contains a minimum
number of missing data,

• Minimize the buffering delay Let clients start watching the stream as
soon as possible after they start receiving data,

• Minimize the stream lag Provide a stream that is as live as possible to
all nodes,

• Maximize simplicity Provide protocols that are as simple as possible to
ease their implementation and deployment over a very large scale system.

t0 t1 t2 t3

Play the stream at t0+ε
Minimize ε (stream lag)

Play the stream at tr+δ
Minimize δ (buffering delay)Maximize stream quality

?

Sent at ts
Received at tr

Figure 2.1: The concepts of live streaming: a source node produces a stream
from time t0 on and wants to broadcast it to all participants.

Figure 2.1 presents the concepts of live streaming and illustrates the notions
of stream quality, buffering delay and stream lag. Assume the source produces
the very first stream data unit at time t0, a participant will play it at time t0 +ε
where ε represents the stream lag. Given that a participant receives its very first
data unit at time tr, it will play the stream at time tr +δ where δ is the buffering
delay. Both notions of buffering delay and stream lag are interconnected but
still differ. Intuitively, the more a participant waits before playing the stream
thus increasing its buffering delay, the less the stream can be live, i.e., the more
the participant also increases its stream lag. On the other hand, imagine that
in a system, a participant can wait sufficiently long until it is directly served
only by the source. In that case, the participant has waited possibly quite a
long buffering delay but since it is served directly by the source, its stream lag
cannot is now very much reduced. Similarly, notions of stream quality, buffering
delay and stream lag are also interconnected. In order to increase the stream
quality, i.e., to reduce the amount of missing data, a participant would benefit in
increasing its buffering delay so as to have more chances to recover the missing
data, thus intuitively also increasing its stream lag.

15

Chapter 2. Fundamental Concepts & Existing Approaches

2.2 Communication Graph & Overlay

The notion of which participant is served by which other participant is encom-
passed in the concept of dissemination overlay. Before diving into the concept
of overlay, we first expose what a communication graph is since it restricts the
overlay that can be built on top of it. It is important to clearly differentiate the
overlay from the underlying communication graph. The communication graph
consists in all possible communication channels between nodes, i.e., it states if it
is possible, in the networking sense, to establish a communication between two
nodes uj and ui. The communication graph represents the underlying network
layer. The overlay represents a subset of the communication graph in such a
way that a node is given a neighborhood or a view on the system from which
it can pick nodes to communicate with. The overlay is therefore an application
connectivity graph.

With a clique communication graph (i.e., a network where it is possible for all
participants to communicate with any other participant in the system) nodes
can either have a global view on the system (i.e., their neighborhood represents
all other nodes in the system) or, in order to scale, nodes are restricted to
communicate with only a subset of all participants, that is, it has a restricted
neighborhood to which it is connected. The resulting connectivity graph is what
we name an overlay. It is thus an application-level communication graph, on
top of the communication graph.

2.2.1 Communication Graph

To model which nodes can directly communicate among each other, we use a
communication graph. The communication graph of a system model is a graph
G(V,E) that consists of the set V of n nodes, each having a unique identifier (i.e.,
address), interconnected by a set of edges E. Further, a communication channel
of bounded capability (i.e., limited upload/download bandwidth), latency and
given reliability is associated with each edge.

The communication graph can change over time. If that is the case, we denote
by G(t), V (t), and E(t) the graph, active nodes, and available communication
channels at time t, respectively. Furthermore, the characteristics of nodes and
channels can also change over time. As a summary, the most important elements
of this underlying system are:

Channels The communication channels associated with each edge e ∈ E(t) have
a limited upload/download bandwidth, latency and given reliability and
direction. Consider a wireless sensor network, some devices might be ca-
pable of bidirectional transmissions whereas smaller/others not. Another
parameter that describes the communication channels is whether the com-

16

2.2. Communication Graph & Overlay

munication is point-to-point or a node can broadcast on all its channels
in one single operation. Finally, communication channels can restrict the
message length that nodes can use to exchange information. We focus on
point-to-point communication channels where the bottleneck is the upload
bandwidth ui,up of nodes.

Network Topology The network, by its nature (e.g., wireless), can restrict the
communication patterns by allowing or not different nodes to be connected
together via the edge set E(t). Note that the above patterns can change
and evolve over time, e.g., mobile nodes that have a limited wireless trans-
mission range. We denote the possible communication partners of a node
u at time t as Wu(t) = {p : (u ∈ V (t)) ∧ ((u, p) ∈ E(t))}.

Churn Nodes can appear and disappear (become active and inactive) from the
system for application (or user-defined) reasons (e.g., join/leave) or for
technological reasons (e.g., node crash, failures) at any time. As exposed,
V (t) is the set of active nodes at time t.

2.2.2 Overlay

It is usually the case that the set of possible communication partners Wui(t) of
every node is very large. This being, for scalability reasons, it is common that
only a subset of the set Wu(t) is known and used by u. This subset represents the
neighborhood of the node in the overlay. In order not to think that neighborhood
has anything to do with location or proximity in the underlying communication
graph, the term view is preferred. The view that node u locally has of the whole
system at a certain time t is denoted viewu(t) ⊆ Wu(t) ⊆ V (t). The union
of all these views form an overlay of the underlying network topology. The
communication between nodes (i.e., which node(s) u can pick to communicate
with) is thus restricted first by the network (to the set Wu(t)) and second by
the overlay network (to the set viewu(t)).

The presence of nodes in each others’ views is not symmetric. If a node A is
present in the view of B, viewB, it does not mean B must be present in viewA,
i.e., B can initiate a communication with A (both one-way or two-way) but A
might not be able to initiate a communication with B since B might not be in
A’s neighborhood.

In the following, we assume that the communication graph is always a clique
and review how the views of nodes, namely the sets viewui(t), are used to form
an overlay. Figure 2.2 gives an overview of the classification we propose in
this thesis. The two main families are structured and unstructured overlays.
In structured overlays, the views of nodes reflect a given hierarchy or well-
defined classification or ordering, resulting in a structure that respects a specific
semantics, e.g., some nodes are chosen to be closer to the source than others or

17

Chapter 2. Fundamental Concepts & Existing Approaches

nodes are connected according to some semantics. In unstructured overlays, the
connectivity of nodes is arbitrary, i.e., nodes are assigned random views.

Unstructured overlayStructured overlay

Static overlay / Reactive repair

DHT-based systems
Trees
Multiple trees

Dynamic overlay / Proactive repair

GossipMesh-based systems

Trees over mesh

Figure 2.2: Classification of overlays.

Overlays can also be static or dynamic. If the views of nodes persist until
some nodes join or some other leave, the overlay is said to be static (i.e., ∀t :
viewui(t) = viewui as long as there is no churn). In essence, if there is no churn,
the views stay the same over time. If there is churn, the views have to adapt to
new arrivals and the resulting overlay needs to repair itself in case of departures
– it is thus a reactive repair. In a tree for instance, the term repair is illustrated
by the fact that if any node that is not a leaf node leaves the tree, a branch of
the tree (i.e., the subbranch originating from the leaving node) becomes isolated
from the rest of the tree and the dissemination is interrupted. In that case, the
structure needs reparation.

Dynamic overlays, on the other hand, have periodically changing views. While
periodically changing the neighbors of a node in a structured overlay might not
make much sense, since the overlay is usually built with a specific semantics
attributing a position to each node following a hierarchy or classification, as-
signing new neighbors arbitrarily and dynamically in unstructured overlays does
not break any semantics. We thus clearly differentiate between mesh-based
systems and gossip systems. Mesh-based systems are unstructured and static
whereas gossip systems are unstructured and dynamic. In the case of dynam-
ically changing views, churn has very limited impact as long as the randomly
and dynamically changing views themselves reflect the arrivals and departures
of nodes as fast as possible. In opposition to static overlays where the reparation
is reactive, we say the reparation process of dynamic overlays is proactive. In
essence, the overlay itself, by dynamically changing, has to automatically add
joining nodes and discard leaving ones to tolerate churn.

18

2.3. Existing Approaches

2.3 Existing Approaches

In this section, we review existing approaches implementing collaborative tasks
with the help of different types of overlays.

2.3.1 Structured Overlays

In structured overlays, there exists either a hierarchy or a well-defined classifica-
tion between nodes. For instance, a tree is a structured overlay where the source
is the root of the tree, and has a set of children with which it communicates.
The view of the source is thus a list of nodes which represent the first generation
in the tree. These nodes in turn, have children that have children themselves
until some nodes, representing the leaves of the tree, have no children to push
data to. With this type of overlay, the data flows from the source to its set
of children and from these children to theirs until data reaches the leaf nodes
which do not forward data any further, being the last to be served.

DHT-based Overlays

Distributed hash tables [RD01,RFS+01,SMK+01,ZHS+04] provide nodes with
a distributed lookup service on which different applications can be implemented,
such as file sharing, multicast or content distribution systems [AGBH03,FFM04].
The DHT thus represents an infrastructure on which another overlay is built,
typically a tree or a multiple-tree overlay [SGMZ04, BRP+05, BB05, LMSW07]
in order to implement multicast and thus streaming.

Tree-based Dissemination

A tree overlay for multicast or streaming can be built on top of a DHT or on
top of a mesh [Dee88, DC90, Fra, CRSZ02]. The challenge is to create a tree in
such a way that the data disseminated reaches all nodes, i.e., the tree must cover
the whole population of nodes, and be optimal for dissemination, e.g., minimize
delays, both stream lag and buffering delay in the case of streaming.

In a tree approach, failing nodes have a huge impact on their children since
they isolate their subbranch from the rest of the tree. A failing node that is a
child of the source isolates a larger number of nodes than a leaf or a parent of
leaves and thus has a comparatively much worse impact on dissemination. The
isolated nodes have thus to repair the structure, that is, try to reconnect to it
finding new parents and getting new children assigned. The larger the number
of those repairing nodes, the larger the load on the system is for recovering,
possibly also having an impact on the dissemination for surviving nodes too.

19

Chapter 2. Fundamental Concepts & Existing Approaches

In addition, the stream that is broadcast from the source to its children and
from these children to theirs is usually considered multiple times smaller than
their upload bandwidth. The reason is that, in order to form a tree, the stream
has to be served from a node to multiple children (e.g., at least two), which
means a node that is supposed to serve f children must have at least f · s
upload bandwidth (where s is the stream rate), e.g., [SGMZ04]. Last but not
least, the leaf nodes do not contribute any upload bandwidth to the system,
since they are not serving the stream to any children.

To illustrate this, assume every node has the same upload bandwidth of f · s,
in other words, each node can serve up to f children simultaneously. The total
upload bandwidth available in the system is therefore n(f · s) where n is the
number of nodes (including the source). With f = 2, a natural tree to build is a
binary tree, i.e., each node has at most two children. Given the binary tree has
a height h = blog2(n)c, the number of leaf nodes is in the range [2h−1 + 1; 2h].
Assuming n = 2h+1 − 1 with h a given height, the binary tree is full as every
node at level h−1 has two children. In other words, all leaf nodes are at level h.
With a full binary tree, the number of nodes that do not contribute anything to
the system is therefore 2h (roughly half of the nodes), that is, the total upload
bandwidth contributed to the system is reduced to (n− 2h)(f · s). With such a
reduced total upload bandwidth in the system, the maximum stream rate that
can be broadcast gets limited to (n − 2h)(f · s)/(n − 1), that is, the sum of
upload bandwidth of the nodes that can contribute divided by the number of
nodes that need to receive the stream, excluding the source. In essence, by not
giving a chance to the leaf nodes to contribute, the maximum stream rate gets
very much limited.

Focusing on the upload bandwidth of nodes, it seems natural to build a tree
such that all nodes serve the most number fi of children, i.e., fi = bui,up/sc.
This way, the tree grows in breadth and results in a smaller number of hops
between the source and the leaves, resulting in a reduced stream lag on average.
However, increasing the breadth of the tree, and thus decreasing its height, also
naturally increases the number of leaves in the tree which in turn reduces the
maximum stream rate that can be broadcast.

The limitations in terms of stream rate and resilience to failures have led
system designers to consider different overlays, one of them being to transform
a single tree into multiple trees, as described in the following.

Multitree-based Dissemination

By creating multiple dissemination trees on top of a DHT [CDK+03] or on top
of a mesh [SGMZ04,VYF06], a node has a very low probability of being leaf in
each of the multiple trees, thus it will contribute to some of them. In essence,
consider that the stream is split into multiple stripes (or substreams) and that

20

2.3. Existing Approaches

each stripe is sent from the source to a different set of children, possibly only
one child per set. Each of the children acts as a source for its assigned stripe,
resulting thus in different trees. In other words, a node receiving a given stripe
from the source acts as a root for this subtree but not for the other stripes for
which it can act as leaf or intermediary node. The use of different dissemination
trees results in a much better overall utilization of resources since all nodes can
effectively contribute upload bandwidth to the system. Following this approach,
the maximum stream rate s is therefore set back to

∑
i ui,up/(n− 1), put aside

the overhead of distributing multiple substreams instead of a single one.

The splitting of the stream in multiple stripes is motivated by two facts.
First, the use of different dissemination trees so that nodes that were leaf nodes
in a single tree can now also contribute resources, namely upload bandwidth,
allowing thus to broadcast a higher stream rate. And second, the multiple
stripes can represent different descriptions of the stream in such a way that
delivering only a subset of descriptions, namely stripes, roughly represents a
proportional loss in terms of quality when delivering the stream. This technique
is named multiple description coding (MDC) and was introduced in [GKAV98,
PR99,Goy01].

A condition for this approach to function, for both resilience to churn and
efficient use of bandwidth, is to ensure that the different subtrees are not built
according to the exact same semantics, i.e., each node should be placed at dif-
ferent heights in each of the trees it belongs to. Otherwise, the multiple trees
would share too many similarities by relying on the same nodes at the same
height and therefore not use the upload bandwidth of the same leaves and fi-
nally suffer just as much as a single dissemination tree. In the particular case
of SplitStream [CDK+03], the original stream is split into 16 stripes resulting
in 16 different dissemination trees. In the case of 25% of catastrophic failures,
the remaining nodes receive an average of 6 stripes for 30 seconds after the
failure and need up to 3 minutes, in the worst case, to recover the full stream,
i.e., the 16 stripes. The underlying structure is still connected after the fail-
ure and it is thanks to Pastry [RD01] and Scribe [CDKR02] that SplitStream
recovers, i.e., repairs the multiple trees for serving the surviving nodes. In
Chunkyspread [VYF06], with 10% of the nodes failing, the surviving nodes re-
cover the full stream (the 16 stripes) between 4 and 12 seconds, respectively 15
stripes out of 16 between 2 and 10 seconds and 13 stripes out of 16 between 0
and 8 seconds.

A side effect of multitree-based dissemination affects the buffering delay, thus
stream lag. Within a single tree, a leaf can experience a very low buffering
delay (dependent on the communication delay between the leaf and its parents)
but a rather large stream lag (dependent on the height of the tree). With a
multiple tree approach, on the other hand, a node that is very close to the
source for a given stripe (at a low level of the tree) should be at a higher level

21

Chapter 2. Fundamental Concepts & Existing Approaches

(possibly a leaf) for another tree. If the node wants to view a stream of high
quality (a majority of stripes, if not all), it has to wait until it receives data
from multiple trees in order to start viewing the stream. Since nodes should
be present as often at lower levels as in higher levels in different dissemination
trees, they roughly all experience the same buffering delay, thus stream lag. In
other words, multiple dissemination trees homogenize the buffering delay thus
the stream lag of participating nodes.

To summarize, multiple-tree dissemination improves the single tree approach
by enabling all nodes to contribute, including the leaf nodes, under the condi-
tions that (i) nodes have an upload bandwidth at least larger than the stream
rate of a single stripe and (ii) the sum of all nodes’ upload bandwidth is larger
than s(n− 1), that is, there is enough bandwidth to serve all nodes except the
source.

Even though some approaches seem to provide a relative simplicity in building
and maintaining the multiple trees [VYF06], the impact of churn or catastrophic
failures, be it for complex tree(s) reparation [BRP+05] or the fact that MDC
is not democratized in practice [LRLZ08], has led researchers not only to try
building dissemination trees on top of unstructured overlays in different ways,
but to use those unstructured overlays directly for the dissemination itself for
superior performance [MR07].

2.3.2 Unstructured Overlays

Unstructured overlays, also named random overlays because they usually rep-
resent a random graph [Bol01], roughly provide each node’s view with a set of
random nodes. There is no hierarchy between nodes and because of the presence
of cycles, a node can be both ancestor of a node through a node and descendant
of the same node through another node. The resulting overlay is a mesh that is
commonly static and dynamic in case of gossip protocols.

We start by reviewing mesh-based systems and hybrid ones where the mesh
is used both for dissemination and for creating a single tree or multiple-trees
and finally give a flavor of gossip systems.

Mesh-based Dissemination

Whereas splitting the stream is explicit in order to create multiple dissemi-
nation trees, the idea underlying mesh-based dissemination is that the stream
can potentially follow a different dissemination path for every single chunk of
it, in an implicit manner. In essence, each node advertises the content it has
to its view and gets pulled by its neighbors for the chunks in which they are
interested. Since nodes will not request a chunk that they already have, the

22

2.3. Existing Approaches

dissemination path for each chunk results indeed a single tree. By picking a
large enough random view set, we know it is possible to construct a random
graph that is connected with high probability [KMG03], thus the probabil-
ity that each chunk flows from the source to each node in the mesh is very
high. The dissemination pattern in a mesh is epidemic in the sense that in-
fected nodes infect their neighbors which in turn infect theirs and so on, un-
til the whole population of nodes is infected. These approaches have proven
to be analytically optimal or close to optimal in terms of bandwidth and de-
lay [ZZSY07, BMM+08, GLL08, LGL08, PM08, OKJ09]. In such systems, the
views are assigned to nodes at random and it is up to the nodes to decide what
data to serve and whom to serve in their views. In other words, in such systems
the problems to solve are (i) optimal node selection (also named peer selection)
and (ii) optimal packet selection (also named packet scheduling) in order to
maximize the efficiency of the dissemination, i.e., minimize protocol overhead,
buffering delay and stream lag and maximize stream quality towards all nodes.

When a node delivers a chunk, that is, it pulled it from one of the nodes that
advertised it, the node starts to advertise it to its view. The node therefore needs
to send messages to its view for signaling that a given chunk is now available for
download. The signaling can of course be periodic so that a single message can
be used to advertise multiple chunks but this signaling represents an overhead
that was not present in tree or multiple tree dissemination, where the major
cost, in terms of networking overhead, was in the creation, maintenance and
reparation of the structure. This signaling cost, however, is acceptable because
negligible with respect to the stream rate. This generic approach is common to
all mesh-based systems, be it for streaming e.g., [PKT+05, ZLLY05, PPKB07,
ZZSY07, MR09b] or file sharing with the very popular BitTorrent [Coh03] on
which variations were proposed for streaming, focusing on VoD, e.g., [DLHC05].

Since views of nodes do not change (i.e., static overlay), nodes can keep TCP
connections open with each other and thus rely on its retransmission mech-
anisms for recovering dropped packets, this advantage is recognized for con-
gestion control as the streaming itself can be tuned to be TCP-friendly with
respect to other bandwidth-consuming applications that are concurrently exe-
cuted [WH01,MO07] but is also recognized as a drawback for time-critical appli-
cations like live streaming [WHZ+00,WHZ+01,ATW02]. The work in [ZZSY07]
tunes TCP’s sending buffer so that it drops packets when congested, definitely
pushing for unreliable transmission such as UDP.

The fact that views are static also means that there is a relatively high proba-
bility that some nodes get a relatively good view, i.e., nodes with low delay and
high bandwidth, whereas some other nodes might have a relatively bad view,
and this, for the whole lifetime of those nodes in the system. As opposed to
multiple-tree approaches, some nodes could thus have a very low stream lag (e.g.,
when served by nodes relatively close to the source) whereas some others might

23

Chapter 2. Fundamental Concepts & Existing Approaches

suffer a relatively high stream lag, and thus might not be able to contribute
as much as they could. Optimal bandwidth utilization and stream lag mainly
depend on node selection and chunk scheduling but also on the random overlay
that was created, that is, how nodes were distributed in the mesh. In addition,
mesh-based systems, even though they are very well connected and suffer less
from disconnection than trees or multiple-trees, they still need to repair in case
of catastrophic failures or churn. To illustrate this, the impact of the view size
is evaluated in [LGL08] when given percentage of nodes leave the system. The
remaining nodes are still well connected but suffer from 5% to 15% of missing
chunks with 10% to 50% of leaving nodes assuming large views (each node is
connected to 18% of the system) resulting in large signaling overhead. Some
mesh-based systems (e.g., [ZLLY05]) rely on gossip-based membership proto-
cols to provide them with a connected random graph and there exists protocols
dedicated to repairing mesh-based overlays [MR09a], thus answering a real need.

In the following, we first review hybrid dissemination patterns that mix
trees and mesh to reduce the signaling overhead when the system is consid-
ered healthy, i.e., in the absence of churn. And secondly, we review existing
proactive repair approaches for doing high-bandwidth content dissemination,
that is, disseminating chunks in a dynamic mesh overlay by focusing on the
gossip paradigm.

2.3.3 Hybrid Dissemination

Bullet [KRAV03] is an hybrid high-bandwidth dissemination system in the sense
that the main data dissemination is done with a tree and the remaining data
is spread on top of a mesh. The data is split into multiple blocks from which
only a subset is pushed from parents to their children, i.e., tree dissemination.
The remaining blocks are then pulled from other nodes that advertise them in
a random manner, i.e., with the help of a mesh overlay.

Mesh-based systems can also be dynamically tuned to create multiple-trees
at runtime, when the system is considered healthy [ZZSY07,LXQ+08,CJW09].
When nodes consider that they do not need to request packets from different
nodes in their views because their view does not need to repair, they can sub-
scribe to some of their neighbors asking them not only for chunks they advertise,
but for a whole substream, thus reducing the signaling overhead. In other words,
the stream is split into chunks that themselves belong to different substreams of
the original stream. The views of nodes thus gradually result into a multiple-tree
overlay on top of which the different substreams are spread. The advantage of
such a solution is that the signaling overhead is reduced but for the streaming
experience, it does not mean the quality is superior or the delay smaller. In
fact, the user could fast forward the stream to be more live since the average
dissemination delay becomes shorter in the tree than in the mesh dissemination,

24

2.3. Existing Approaches

but in practice, the advantage is only to have the buffer fuller possibly resulting
in more spare time to repair the mesh in case of catastrophic failures or churn.
This aspect still needs to be evaluated, otherwise the use of the trees on top of
the mesh brings a lot of complexity for no improvement.

Finally, [WJJ05] addresses the problem of building an optimized mesh in
terms of network proximity and latency, in the presence of guarded nodes, i.e.,
nodes that are behind a NAT or firewall. This work led to mixing application
level multicast with IP multicast whenever possible [ZWJ+06]. The core of this
research is now commercially used in [Zat] and further described in [CJW09].
In order to compensate for the limited contribution of nodes in the system,
there exists super peers (deployed on PlanetLab at the time of prototyping),
named repeater nodes that act as bandwidth provider, i.e., they are dedicated
servers that contribute data to other nodes. Complementarily, it is for instance
known that the dissemination protocol of PPLive [PPL] substantially relies on
a set of super peers and thus does not represent a purely decentralized solution
[HLL+07].

Gossip-based Dissemination

The gossip paradigm was first introduced in computer science when tackling
the problem of replicated database maintenance [DGH+87]. In essence, the
main difference between a mesh-based dissemination system and a gossip-based
dissemination system is that the underlying random graph overlay is static in a
mesh and dynamic in gossip. In a mesh, a node is given a view of fixed size that
will not change during its lifetime in the system as long as the node considers
itself well connected, meaning its view size is above a certain threshold. In
gossip, the view of a node periodically changes, resulting in a random graph
that updates its edges periodically. In order to better distinguish between mesh
and gossip systems, we usually call the dynamic view of a node in gossip the view
the node has on the system. This perfectly represents the dynamic nature of the
view since the view that a node has on the whole system periodically changes.
The fact that edges are dynamically refreshed means that nodes having crashed
or left the system will eventually be detected and not be present in any node’s
view whereas arriving nodes will populate nodes’ view very fast.

The membership maintenance problem is exactly to provide each node with
a random subset of other nodes (i.e., view) to communicate with while en-
abling arriving nodes to be present as fast as possible while removing left or
crashed nodes in the views by being lightweight and scalable. This problem is
usually solved using a random peer sampling service, itself using gossip proto-
cols [GMS04,KS04,ADH05,VGvS05,JVG+07,BGK+09].

Gossip has been widely used for disseminating small updates [DGH+87,
LOM94, BHO+99, EGH+03, KMG03]. The data to disseminate is so small

25

Chapter 2. Fundamental Concepts & Existing Approaches

that the bandwidth constraints of the nodes do not constitute a bottleneck
(e.g., [EGH+03,KMG03,BHO+99]). More recently, some work have applied the
gossip paradigm to high-bandwidth content dissemination, but in these particu-
lar cases, there was no bandwidth constraint on the nodes [DXL+06,LCW+06,
LCM+08].

CREW [DXL+06] is the first gossip protocol focusing on high-bandwidth
dissemination, file sharing in particular. BAR Gossip [LCW+06] and Flight-
Path [LCM+08] tackle the issue of live streaming in the presence of byzantine
nodes. The focus is not on providing the most efficient protocol in terms of
dissemination but on tolerating malicious nodes that can attack the protocol.
There is thus a need for research in the context of gossip, to devise a protocol
that targets efficiency and constitutes an alternative if not an improvement over
multiple-trees or static meshes.

We explain the gossip paradigm, its application to high-bandwidth content
dissemination and the resulting challenges such as parameterization, heterogene-
ity adaptiveness and freerider detection in more details in the following chapter.

26

Gossip is charming! History is merely gossip. . . But scandal is gossip made
tedious by morality.

Oscar Wilde

3
High-bandwidth Content Dissemination

with Gossip

In high-content bandwidth dissemination, the trend has definitely moved from
traditional client-server approaches to P2P approaches. With the absence of IP
multicast at the network layer, application level multicast has emerged as a real
alternative. Starting with natural and intuitive (single) tree structures, the trend
has moved to multiple-trees and then mesh-based systems. Two orthogonal
axes exist in (i) reintroducing multiple-trees on top of meshes (which could
be considered as a step back) or (ii) finding the best strategies to optimize
dissemination into meshes.

We believe that for large-scale systems where nodes can arrive and disappear
without notice, the next step is to devise algorithms for high-content bandwidth
dissemination following the gossip paradigm, with a proactive attitude towards
churn (as opposed to reactively repairing the overlay) and simplicity in mind for
ease of implementation and deployment [Ham07,Zho09].

This chapter presents the gossip paradigm along with a gossip protocol for
high-bandwidth content dissemination that is at the core of existing gossip and
mesh approaches. It is the building block that we (i) evaluate and parameterize
with bandwidth constraints (Chapter 4), (ii) improve with simple mechanisms
for efficient dissemination (Chapter 5), (iii) adapt to bandwidth heterogeneity
so that gossip can act as a real alternative to existing systems (Chapter 6), and
finally (iv) complement with a protocol for detecting and expelling nodes that
do not provide their fair share of work (Chapter 7).

27

Chapter 3. High-bandwidth Content Dissemination with Gossip

3.1 The Gossip Paradigm

The gossip paradigm was initially inspired by mathematical models that inves-
tigate everyday life phenomena: rumor mongering and epidemics. During the
last century, mathematicians developed models to predict the rate of diseases
spread, namely epidemics, using differential equations. In addition, researchers
have developed discrete mathematic models to predict what we already know:
rumors spread fast. It was thus natural to harness these models in order to
design distributed systems that mimic the basic behavior of such fast spreading
everyday life paradigms.

To begin with, gossiping and broadcasting were first described as two different
information dissemination problems for a group of individuals connected by a
communication network. More concretely, as defined in [HHL88], in the gos-
siping problem, every individual in the network initially knows a unique item
of information and needs to communicate it to everyone else in the network,
whereas the broadcasting problem is defined as the case in which one individ-
ual has an item of information which needs to be communicated to every other
individual. The authors present solutions for both problems, producing a de-
terministic sequence of unordered pairs of communication partners. Each pair
represents a phone call made between a pair of individuals, such that, during
each call, the two people involved exchange all the information they know at
that time. At the end of the sequence of calls, everybody knows all the informa-
tion that had to be spread. The survey focuses on the number of calls among n
people over arbitrary network topologies and variants of the problems.

A new variety of gossip-based algorithms have evolved as communication pat-
terns for designing simple, scalable, and efficient communication protocols in
large distributed systems. The first work proposing such gossip-based algo-
rithms is [DGH+87], proposing a family of gossip-based algorithms for main-
taining replicated database systems. Since then, gossip-based algorithms have
been proposed to solve central problems in numerous distributed systems de-
ployed over wide range of networks. These problems include, for instance,
replicated database maintenance [DGH+87], Usenet news distribution [LOM94],
ad-hoc routing [HHL06], distributed failure detection [vRMH98,DHJ+07], net-
work management [vR00], lightweight broadcast [EGH+03], peer-to-peer mem-
bership maintenance [GKM03, VGvS05, JVG+07], aggregation in large scale
networks [JMB05] or in sensor networks [DSW06], building of overlay struc-
ture [GHH+06], and topology management [JMB09].

The Gossip Overlay

Dissemination in gossip commonly follows an epidemic pattern, similarly to
mesh-based dissemination, but for different reasons. In meshes, it is because of

28

3.1. The Gossip Paradigm

the random choices of neighbors in the overlay itself that the dissemination fol-
lows a random path. In gossip, it is the communication strategy that commonly
follows a random fashion and the overlay simply needs to guarantee that a node
is capable of picking nodes at random from the set of all nodes. To achieve this,
nodes can either have knowledge of the whole system and randomly pick com-
munication partners in this set or have partial knowledge of the whole system
and make sure that this partial knowledge changes dynamically so that pick-
ing communication partners with this partial knowledge is equivalent to picking
partners at random from the set of all nodes. The local views that each node
maintains are said to be global if they contain all the possible communication
partners of the node, and partial otherwise. Note that as defined in Section 2.2
a view contains only nodes that a given node can physically contact.

Global Views Global views have been considered in previous theoretical works
in which a gossip-based approach relied on the assumption that each node lo-
cally knows every other node in the system. Consider, for example, the general
structure of a gossip-based protocol discussed in the seminal paper of Demers
et al. [DGH+87]. The system consists of a set V of n nodes interconnected by
a complete graph (clique). In other words, each node has a global knowledge
of the system, with a view that contains every other node in the system. The
choice of communication partners, usually randomized, can thus rely on this
global view of the system. In this case, the view maintained by a node u is
equal to the whole network at all times, viewu(t) = V (t), meaning that the
nature of the network assumed can only be a complete graph as each node u
can potentially contact any node in the view, thus network.

Partial Views Providing each node with a global view is unrealistic in a
large distributed system for scalability reasons. First the data structure
for storing the view should not grow linearly with the system size and sec-
ond, maintaining such information in the presence of churn incurs consid-
erable communication costs. The resulting problem is a need for protocols
that maintain partial views, keeping given desired properties of the over-
lay network (e.g., connectivity [ADH05, EGH+03]). Interestingly, the prob-
lem of overlay maintenance can itself be solved by gossip-based algorithms
(e.g., [GMS04,KS04,ADH05,VGvS05,JVG+07,BGK+09]).

Peer Sampling Service

A peer sampling service provides nodes with samples of the set V (t), which have
some probabilistic guarantees (typically, is a uniformly chosen random sample).
The sampling has to consider the churn rate experienced by the system, trying
to prevent including inactive nodes in the samples. The peer sampling service

29

Chapter 3. High-bandwidth Content Dissemination with Gossip

assumes an underlying complete communication graph such that viewu(t) ⊆
Wu(t) = V (t). We assume that each node in the system is reachable from each
other node or there exists means to circumvent firewalls and NAT, e.g., [WJJ05,
KPQS09].

3.1.1 Gossip-Based Algorithms

In this section we present the structure of a generic gossip-based algorithm and
identify its most significant parameters.

Structure of Gossip-Based Algorithms

Gossip-based algorithms have a very simple and regular structure. The code of
the gossip-based algorithm is executed by each node in rounds. Every round r,
a node performs (i) a communication phase, followed by (ii) a processing phase.

• Communication Phase In the communication phase of a round, a network
node v chooses a subset of communication partners (called neighbors) from
its local view, and exchanges with them information it holds. The message
sent by the node is synthesized from the current state of the node, and
possibly includes information from several previous exchanges.

• Processing Phase After the communication phase, a network node applies
a state transition function to its current state to obtain the new state. The
transition depends on the current state and the information obtained form
the set of neighbors that have been contacted. In the case of information
spread or broadcast, the state transition function defines (i) what infor-
mation should be delivered (i.e., if the node received new information) and
(ii) what information has to be gossiped in the next round(s).

We illustrate a common structure of a generic gossip-based algorithm in Al-
gorithm 3.1. The communication phase begins in line 2, as the neighbors set is
filled by a select method. This method implements the communication strategy
of the algorithm, defined by the underlying system parameters and adjusted by
the algorithm parameters. For each of the chosen communication partners, a
communication channel is opened and data can be exchanged (line 4 in Algo-
rithm 3.1). The gossip message is exchanged depending on the transmission
model chosen for the algorithm (lines 6, 9, 16 and 20 in Algorithm 3.1), and
after the information is received (lines 9 and 16), the communication phase is
finished, and the processing phase starts. The update method implements the
state transition function that will effectively solve the problem, delivers the in-
formation and chooses what information to gossip in the following round(s) (if
applicable) and finally does some maintenance tasks (e.g., buffer management).

30

3.1. The Gossip Paradigm

Algorithm 3.1 Generic gossip-based algorithm pseudocode. The booleans
push and pull are true in case of a pushpull transmission model.
Initialization:

1: gossipPeriod := Tg time units
2: start(GossipTimer)

upon (GossipTimer mod gossipPeriod) = 0 at node ui do
3: neighbors := selectNodes(f) communication partners from viewui

4: for all p ∈ neighbors do
5: communicateWith(p) {A communication channel is open between ui and p, data can

now be exchanged}
6: if (push) then
7: send gossip message to p {ui is pushing data to p}
8: if (pull) then
9: receive gossip message from p

10: update local state

upon communicateWith() from uj at node ui do
11: if (push) then
12: receive gossip message from uj {uj is pushing data to vi}
13: update local state
14: if (pull) then
15: send gossip message to uj {uj is pulling data from ui}

Algorithm Parameters

The above basic pseudocode of a gossip-based algorithm has to be instantiated
depending on the problem that has to be solved and the underlying available
system. Among others, this instantiation depends on the following basic param-
eters.

Transmission Model As can be observed, in Algorithm 3.1, there are two flags,
push and pull, that strongly characterize the behavior of the algorithm. They
determine if the communication of the node with the neighbors only transfers
information from the node to the neighbor, only transfers information from the
neighbor to the node, or transfers information in both directions. The first
two cases are one-way transmission. In the first, we say that information is
pushed from the node to the neighbor, while in the second we say that the
information is pulled by the node from the neighbor. In the general case of
two-way transmission, where the two nodes exchange their information, the
transmission model is named pushpull.

Communication Strategy and Fanout The communication strategy defines
how a node u chooses the subset of communication partners, i.e., its neighbors,
for the current round. The first decision the algorithm designer has to make is

31

Chapter 3. High-bandwidth Content Dissemination with Gossip

the size of the neighbors’ set, f , known as the fanout. The set of neighbors is
chosen from the viewu(tr) (tr is the time at which round r is executed), thus
neighbors ⊆ viewu(tr) ⊆Wu(tr) ⊆ V (tr). The way a set of neighbors is chosen
is usually random. Following the communication strategies defined, it is indeed
sometimes the underlying system that dictates or influences the choice of neigh-
bor(s) with whom to communicate by reflecting the nature of the underlying
network (e.g., network-driven communication strategy [LM99, KKD04]) or to
reflect a given arbitrary topology (e.g., application-driven topology [JMB09]).

Buffer Management Inherently to all gossip-based algorithms, duplication of
messages can happen. Furthermore, it is common that every message carries
several units of information, typically named events. Hence, it is highly possible
that a node receives information (events) that it already had, which is one of
the reasons gossip-based algorithms are considered fault-tolerant. With random
communication, there is a fair chance that the same neighbor is chosen more
than once. Moreover, even without repeating partners, it is possible that two
nodes p and q, which both communicated with r in the past, can now exchange
r’s information.

For scalability reasons (e.g., overall number of messages exchanged or the
size of these messages) an algorithm usually specifies that a node should not
forward all events forever and decide to stop gossiping this or that particular
event (i.e., by removing it from the gossip message) at some point. This buffer
management problem is exposed in [EGKM04] and solutions are proposed in,
e.g., [EGH+03,RHP+03].

Message Size Within the restrictions imposed by the underlying system, the
algorithm has to decide how to forward the events that it has in its buffer.
It may decide that it will forward all events forever, which means that unless
events are purged from the memory the message size will grow arbitrarily large.
Another option is to decide that only a fixed number of events will be forwarded
in each message, which implies that messages will have a fixed size, but open
the question of how to select the set of events to transmit (e.g., age-based purg-
ing [EGH+03]). Finally, it can decide to forward each event a maximum number
of times, which implies that the message size depends on the number of events to
gossip in the following round(s). In epidemic terminology, each different event
represents an infectious disease and sending or receiving messages translates to
infecting and being infected by other nodes. Once a node gets infected by a
disease, it can basically (i) decide it can only be infectious by a fixed number of
diseases and thus instantly heal other diseases (i.e., having a maximum message
size), (ii) be infectious forever (i.e., forwarding each event an infinite number
of times), or (iii) be infectious during a given time, named contagion period
(i.e., forwarding the same event a given number of times since reception of it), a

32

3.2. Gossip for High-bandwidth Content Dissemination

special case is named infect-and-die when the contagion period is 1 for a given
disease.

History Buffer Size A related issue is to manage the history of delivered events.
The history of delivered events is maintained on each node in order to decide
if a received information is new (i.e., has to be delivered in case of information
spread), or has already been received in the past (i.e., the node received a
duplicate). The management of the delivered buffer must be scalable as more
and more events are received (and delivered) over time. Modeling and analysis
of the history buffer can be found in [Kol03].

3.2 Gossip for High-bandwidth Content Dissemination

Among its various applications, gossip is also very appealing for bandwidth-
intensive applications such as file-sharing, or video streaming. In this case, the
source splits the data to share into chunks that constitute the events to be
transmitted. Then it begins dissemination using a gossip-based protocol. The
problem is that nodes generally cannot afford gossiping these chunks themselves
due to their large size. Gossip creates many duplicates and nodes usually have
limited bandwidth: sending two copies of the same chunk to the same node
would thus waste too many resources.

As a way to address this problem, the work in [CKS09] proposes a gossip
algorithm for file sharing using fountain codes. The source splits the file to
share into k chunks that are gossip-pushed to n/2 nodes, using an experimental
Time to live (TTL). It additionally and continuously encodes the file and sends
new encoded chunks with the same TTL. Once a node (i.e., including the source)
has received enough chunks to decode the file (i.e., k random chunks) it decodes
it, re-encodes the content and starts to gossip newly encoded chunks itself,
preferring nodes that are close to having k chunks, in order to increase the
number of coding sources in the system. The gossips stop once every node has
received at least k chunks.

The use of fountain codes allows the proposal in [CKS09] to exploit the first
exponential-growth phase of gossip which has been shown to be more efficient,
due to the presence of fewer duplicates, than the second shrinking phase. How-
ever, even in the first phase, a node may still receive the same chunk multiple
times, leading to inefficient bandwidth utilization. Moreover, the protocol re-
quires that some nodes, i.e., those that completed the first phase, contribute
more than others. In some cases, this may lead to freeriding behavior.

33

Chapter 3. High-bandwidth Content Dissemination with Gossip

3.2.1 Three-phase Gossip

To address the problem of bandwidth utilization more effectively, an appealing
solution is to use a three-phase gossip protocol [DXL+06, LCW+06, LCM+08]
inspired from mesh-based protocols [PKT+05, ZLLY05, ZZSY07] as exposed in
Algorithm 3.2. In short, the first phase gossips content location by sending
proposals for chunk ids to fanout nodes. The generic gossip in Algorithm 3.1
is instantiated with message being a proposal (or propose message), the unit of
information to gossip (abstracted to the notion of event) is a chunk identifier and
the gossip is configured to push only. A propose message thus contains multiple
chunk identifiers (chunk ids). This first gossip phase serves to advertise to fanout
nodes that the sender has the corresponding chunks. The second phase consists
in requesting the chunks needed and the third is a reply with the chunk itself,
in other words the payload. Using these three phases, gossip is creating many
duplicates on small size propose messages whereas the payload is received only
once. This makes the model very appealing in the context of high-bandwidth
content dissemination such as streaming.

p
propose(12,14,15)

request(12,15)

q

serve(c12,c15)
serve(c22)

serve(c18)

propose(12,15,18,22)

fanout nodes

propose(16,21,23,27,30,31)

serve(c16,c27)

serve(c21,c23,c31)

serve(c30)

fanout nodes

Figure 3.1: Three-phase gossip protocol with an infect-and-die behavior.

The three phases are depicted in Figure 3.1 and are as follows:

• Propose phase. Periodically, i.e., every gossip period Tg, each node picks
a set of f (fanout) other nodes uniformly at random. This is illustrated
in Figure 3.1, where node p proposes chunks 12, 15, 18 and 22 during the
first displayed gossip period, and chunks 16, 22, 23, 27, 30 and 32 in the
subsequent one.

• Request phase. Upon receipt of a proposal for a set of chunk identifiers,

34

3.2. Gossip for High-bandwidth Content Dissemination

Algorithm 3.2 Three-phase gossip protocol.
Initialization:

1: f := ln(n) + c {n is the system size and c a constant}
2: chunksToPropose := chunksDelivered := requestedChunks := ∅
3: start(GossipTimer)

Phase 1 – Gossip chunk ids

procedure publish(c) is
4: deliverChunk(c)
5: gossip({c.id})

upon (GossipTimer mod gossipPeriod) = 0 do
6: gossip(chunksToPropose)
7: chunksToPropose := ∅ {Infect-and-die}

Phase 2 – Request chunks

upon receive [Propose, chunksProposed] do
8: wantedChunks := ∅
9: for all c.id ∈ chunksProposed do

10: if (c.id /∈ requestedChunks) then
11: wantedChunks := wantedChunks ∪ c.id
12: requestedChunks := requestedChunks ∪ wantedChunks
13: reply [Request, wantedChunks]

Phase 3 – Push payload

upon receive [Request, wantedChunks] do
14: askedChunks := ∅
15: for all c.id ∈ wantedChunks do
16: askedChunks := askedChunks ∪ getChunk(c.id)
17: reply [Serve, askedChunks]

upon receive [Serve, chunks] do
18: for all c ∈ chunks do
19: if (c /∈ chunksDelivered) then
20: chunksToPropose := chunksToPropose ∪ c.id
21: deliverChunk(c)

Miscellaneous
function selectNodes(f) returns set of nodes is
22: return f uniformly random chosen nodes in the set of all nodes

function getChunk(chunk id) returns chunk is
23: return the chunk corresponding to the id

procedure deliverChunk(c) is
24: deliveredChunks := deliveredChunks ∪ c
25: deliver(c)

function getFanout() returns Integer is
26: return f

procedure gossip(chunk ids) is
27: communicationPartners := selectNodes(getFanout())
28: for all p ∈ communicationPartners do
29: send(p) [Propose, chunk ids]

a node determines the subset of chunks it needs, and requests them from
the sender. Clearly, the needed chunks are those that the node has not
yet received. In Figure 3.1, node p requests chunks 12 and 15 from q.

• Serving phase. When a proposing node receives a request message, it
replies with the corresponding chunks, that is by sending their actual
payloads. Nodes only serve chunks that they previously proposed. In
Figure 3.1, node q serves p with chunks c12 and c15.

35

Chapter 3. High-bandwidth Content Dissemination with Gossip

Infect-and-die Gossip In the proposed three-phase algorithm, we opted for
a number of contagion period of 1 (line 7 in Algorithm 3.2). In other words,
the gossip protocol follows an infect-and-die model, as opposed to [LCW+06,
LCM+08] where the number of contagion periods is larger, using a sliding win-
dow of chunk ids (e.g., [ZLLY05,ZZSY07]).

Theoretical results [KMG03] show that in an infect-and-die model, the fanout
has to be chosen as ln(n) + c where n is the system size and c a constant
defining the probability of the gossip protocol to result in a connected graph
as exp(− exp(−c)). In other words, f can be chosen such that all events are
gossiped to all nodes with high probability. It is rather intuitive that infecting
f nodes in one round and infecting 1 node in f rounds should be equivalent
(considering the nodes chosen in the fanout consecutive rounds are different) in
terms of reliability. To roughly achieve the same dissemination speed, the gossip
period in the second case should therefore be divided by the fanout. Infecting
fanout nodes in a time Tg is roughly equivalent to infecting fanout times 1 node
every Tg/f time.

Technically speaking and put aside the recognized disadvantages of TCP in
time-critical applications such as live streaming [WHZ+00,WHZ+01,ATW02], a
low fanout with a relative large gossip period, thus possibly exchanging a larger
set of data between the sender and the fanout nodes, is an advantage when using
TCP connections since the cost of connection establishment is amortized by the
fact that a relatively large data is sent and thus there is no need for explicit re-
transmission, but a lower fanout and a larger period definitely infects less nodes
per period of time. In order to compare with an infect-and-die model, lower-
ing the fanout also means reducing the gossip period (by a factor fanout) and
in practice with an infect-and-die model, we experienced optimal performance
with gossip periods between 200 ms and 500 ms and fanout in the order of ln(n)
(Chapter 4). It is thus hardly possible to establish TCP connections with one
or multiple nodes every 500/ln(n) ms especially when considering that the time
to exchange data should be larger than the cost of connection establishment to
be considered profitable.

In addition, assuming that increasing the number of contagion periods is
similar to increasing the fanout, Chapter 4 gives evidence that increasing the
fanout should be done with caution, indicating also that the number of contagion
periods (or sliding window size) of data to communicate should also have an
optimal range.

We therefore concentrate on the infect-and-die model throughout this work
and assume unreliable communication between nodes, using UDP.

36

3.3. Live Streaming with Gossip

3.3 Live Streaming with Gossip

In order to disseminate real audiovisual content, we designed a simple system
composed of the two following roles: being the source and being regular nodes.
On the source node, we execute a movie player (e.g., VLC [Vid]) which produces
a stream of a chosen quality. This stream feeds the source node exactly as if a
camera was filming a live event. VLC produces a MPEG transport stream with
each chunk being of size 1316 bytes. This chunk perfectly fits in a single UDP
packet as the common maximum transmission units (MTU) are almost always
above 1500 bytes. Whenever a new chunk is produced by VLC, the source
assigns a sequence number (the chunk id) and a timestamp to it, and gossips
a propose message to fanout nodes with this chunk id. When a node receives
such a propose message from the source, it requests the source for the proposed
chunk and the source replies with the chunk in a brief message (along with the
timestamp of the creation of the chunk). By gossiping to fanout nodes at every
production of a chunk, the source creates a different dissemination path for each
of the chunks. Even though the source could also be acting as a regular node
watching the stream, it is excluded from all experiments so that its extremely
good performance (negligible buffering delay and stream lag and perfect quality)
do not bias the evaluations.

Nodes execute a movie player for outputting the stream. When receiving
chunks from the source or from other nodes, a node buffers the received data
until it decides to start forwarding the data to the movie player. When it starts
forwarding data, it calculates both how live the stream is (i.e., the stream lag)
with the help of the timestamp of the source (the time on nodes is synchronized)
and the duration between reception of the very first chunk and the forwarding
has started (i.e., the buffering delay).

Every gossip period, nodes gossip the ids of the chunks they received since
the last gossip period in a propose message to fanout nodes chosen at random.
When receiving a propose message containing chunk ids, the node requests the
ones it did not receive nor request yet. Doing this, the node is ensured not
to receive duplicates of chunks and thus also not to impose a higher load on
proposing nodes than needed. Since we rely on UDP for all three types of
messages and that the gossip dissemination of chunk ids reaches all nodes with
high probability only, it is very possible for a node (i) not to receive proposals
for a given chunk, (ii) that its request is lost, or (iii) that the brief serving the
requested chunk is lost.

To overcome those effects we complement the three-phase gossip with retrans-
mission, as exposed in Algorithm 3.3, and erasure coding, i.e., Forward Error
Correction (FEC). The source groups packets in windows of k + c chunks, rep-
resenting k source chunks and c encoded chunks, meaning that a node receiving
at least k (random) chunks in a group is able to decode the whole group. Nodes

37

Chapter 3. High-bandwidth Content Dissemination with Gossip

Algorithm 3.3 Three-phase gossip protocol with retransmission.
Initialization:

1: f := ln(n) + c
2: chunksToPropose := chunksDelivered := requestedChunks := ∅
3: start(GossipTimer)

Phase 1 – Gossip chunk ids

procedure publish(c) is
4: deliverChunk(c)
5: gossip({c.id})

upon (GossipTimer mod gossipPeriod) = 0 do
6: gossip(chunksToPropose)
7: chunksToPropose := ∅ {Infect-and-die}

Phase 2 – Request chunks

upon receive [Propose, chunksProposed] do
8: wantedChunks := ∅
9: for all c.id ∈ chunksProposed do

10: if ((c.id /∈ requestedChunks) or (isBeingRetransmitted(c.id)) then
11: wantedChunks := wantedChunks ∪ c.id
12: requestedChunks := requestedChunks ∪ wantedChunks
13: reply [Request, wantedChunks]
14: if (c requested less than r times) then
15: start(RetTimer(chunksProposed)) {Schedule retransmission}

Phase 3 – Push payload

upon receive [Request, wantedChunks] do
16: askedChunks := ∅
17: for all c.id ∈ wantedChunks do
18: askedChunks := askedChunks ∪ getChunk(c.id)
19: reply [Serve, askedChunks]

upon receive [Serve, chunks] do
20: for all c ∈ chunks do
21: if (c /∈ chunksDelivered) then
22: chunksToPropose := chunksToPropose ∪ c.id
23: deliverChunk(c)
24: cancel(RetTimer(chunks)) {Cancel retransmission of delivered chunks}

Retransmission
upon (RetTimer(chunksProposed) mod retPeriod) = 0 do
25: receive [Propose, chunksProposed] {Re-request proposing node for missing chunk}

function isBeingRetransmitted(chunk id) returns boolean is
26: return true if a timer is scheduled with id, false otherwise

Miscellaneous
function selectNodes(f) returns set of nodes is
27: return f uniformly random chosen nodes in the set of all nodes

function getChunk(chunk id) returns chunk is
28: return the chunk corresponding to the id

procedure deliverChunk(c) is
29: deliveredChunks := deliveredChunks ∪ c
30: deliver(c)

procedure gossip(chunk ids) is
31: communicationPartners := selectNodes(f)
32: for all p ∈ communicationPartners do
33: send(p) [Propose, chunk ids]

try to maximize the number of chunks received. The retransmission is inspired
from ARQ [FW02] (i.e., à la TCP) where a node stubbornly requests the node
that sent a proposal until it receives the requested chunks. The requesting node

38

3.4. Experimental setup

emits up to r additional requests from the missing chunks. These changes define
the baseline protocol on top of which (i) we justify the need for FEC coding (as
well as tailor it specifically for our needs and finely parameterize) and (ii) we im-
prove the retransmission mechanism for leveraging the many duplicates created
by the first proposing/gossiping phase of the protocol (Chapter 5). Before this,
we expose the experimental setup (Section 3.4) and evaluate the impact on live
streaming of key parameters such as the fanout and the proactiveness of gossip,
that is, the frequency at which communication partners change (Chapter 4).

3.4 Experimental setup

All algorithms presented in this thesis are implemented in Java on top of a
framework we developed for deployment and execution over large testbeds such
as PlanetLab [Pla] or Grid’5000 [Gri].

Throughout this thesis, we consider that nodes can fail by crashing, or ex-
hibit freeriding behavior, that is, decrease their contribution while still ben-
efiting from the system. Byzantine attacks on the peer sampling service are
covered in [BGK+09]. Pollution attacks, i.e., nodes that inject junk content
in the system, are orthogonal to the problems we tackle and are considered
in [LCW+06,DHRS07].

3.4.1 Bandwidth Constraints

PlanetLab PlanetLab nodes, located mostly in research and educational insti-
tutions, benefit from high bandwidth capabilities. As such, PlanetLab is not
representative of a typical collaborative peer-to-peer system [SPBP06], in which
most nodes would be sitting behind ADSL connection, with an asymmetric
bandwidth and limited upload/download capabilities. We thus artificially limit
the upload capability of PlanetLab nodes so that they match the bandwidth
usually available for home users. We focus on upload as it is a well-known
fact that download capabilities are much higher than upload ones. In practice,
nodes never exceed their given upload capability, but some nodes (between 5%
and 12%), contribute way less than their capability, because of high CPU load
and/or high bandwidth demand by other PlanetLab experiments, e.g., [LGL08].
In other words, the average used capabilities of nodes is always less or equal to
their given upload capability limit.

We implemented, at the application level, two ways of limiting the bandwidth
of nodes:

1. Bandwidth Throttling. All data that is about to cross the bandwidth limit
is queued and sent as soon as there is enough available bandwidth. This

39

Chapter 3. High-bandwidth Content Dissemination with Gossip

guarantees that nodes never send bursts of data, but incurs delay in data
transmission.

2. Token Bucket Limiter. A token bucket is defined by the maximum number
of tokens it can contain, representing the maximum amount of data it can
send at once and a rate at which tokens are added, representing the upload
bandwidth of the limiter. When data is tentatively sent, the token bucket
has to contain a number of tokens greater or equal to the amount of data
sent to be effectively sent. If the bucket does not contain enough token to
send the data, the data is discarded.

Grid’5000 The use of a cluster platform like Grid’5000 allows us to have a
controlled and reproducible setting, while at the same time simulating realis-
tic network conditions. Besides the bandwidth limitation, we implemented a
communication layer that provides delays and message loss as connectivity in a
cluster is not representative of the Internet.

3.4.2 Metrics

We evaluate the performance of the considered protocols according to two met-
rics: stream lag and stream quality. We define the stream lag as the difference
between the time at which the stream was sent by the source and the time
at which a node could actually view it. Intuitively it measures how live the
stream is. We, then, define the stream quality as the percentage of nodes that
receive a completely clear stream, that is one in which 100% of the chunks can
be played correctly. The rationale behind this choice is that a stream where
more than 1% of the chunks are missing can be shown to be already very dis-
turbing [BPLCH09]. Video formats differ in the way they compress the stream
and losing data representing B-frames, for instance, can be less disturbing than
other types of frames. In practice, however, it is very difficult to prioritize data
in the stream as very few applications, if any, provide this kind of information
at the stream packet level [LCC07].

When such a 100% quality is impossible to reach, we define a maximum jitter
percentage in the stream: a 1% jittered stream means it contains at least 99%
of the original stream, i.e., at most 1% of the groups were not complete. If a
group is jittered, it does not mean the whole group is not viewable, but simply
that the node delivered less than k chunks leading to audio glitches or video
artifacts (using systematic coding, a node receiving k − 1 out of the k original
packets, experiences a (k − 1)/k% delivery in that window). When not using
FEC, the property is weaker since if there is at most 1% missing chunks, there
is no information on how scattered they can be, i.e., it simply represents the
delivery ratio defined as the percentage of chunks received [ZZSY07].

40

Pour ébranler une hypothèse, il ne faut quelquefois que la pousser aussi
loin qu’elle peut aller.

Denis Diderot

4
Stretching Gossip with Live Streaming

Gossip protocols have been shown to be effective for challenging applications
like file sharing [DXL+06] and live streaming [LCW+06, BMM+08, LCM+08].
Yet, most of the work evaluating gossip has considered ideal settings, e.g., un-
constrained bandwidth, no (or uniform) message loss, global knowledge about
the state of all nodes. Evaluations conducted through simulation [DXL+06,
MTGR07,BMM+08] also assume that key parameters of gossip, such as fanout
and gossip rate, can be arbitrarily tuned to improve robustness and to ade-
quately adapt to network dynamics. Moreover, exceptions of gossip experi-
ments in real settings assume infinite bandwidth [LCW+06, LCM+08], or con-
sider applications with low bandwidth needs, such as membership mainte-
nance [DOvNB07].

In the presence of constrained bandwidth and greedy applications, we have
no evidence that gossip will fulfill its promises. The impact of the key parame-
ters of gossip protocols in such contexts remains unexplored. For instance, the
impact of varying the fanout, an obvious knob to tune the robustness of a gossip
protocol, has never been determined.

The rate at which the gossip partners are changed reflects the proactiveness of
a gossip protocol. The impact of varying this rate has never been studied either.
At one extreme, one might consider a gossip protocol where nodes change their
neighbors at every communication step (this is the scheme typically considered
in theoretical studies). At the other extreme, nodes would never change their
communication partners unless they notice malfunctions. This is typically the
approach underlying structured or mesh-based systems where the unstructured
overlay used to create random or deterministic dissemination trees, once con-

41

Chapter 4. Stretching Gossip with Live Streaming

structed, is kept as is until the overlay connectivity is reduced (e.g., a node
has less than a given number of neighbors), or a node feels it is incorrectly
fed [LXQ+08]. A wide range of schemes can be considered between these two
extremes.

4.1 Gossip’s Key Parameters

We focus on the following two key parameters:

• Fanout The fanout is defined as the number of communication part-
ners each node contacts in each gossip operation. It has been theo-
retically shown that a fanout greater than ln(n) in an infect-and-die
model [KMG03] ensures a highly reliable dissemination. Theory also as-
sumes that increasing the fanout results in an even more robust (as the
probability to receive a chunk id increases) and faster dissemination (as the
degree of the resulting dissemination tree increases). In practice, however,
too high a fanout can negatively impact performance as heavily requested
nodes may exceed their capabilities in bandwidth constrained environ-
ments.

• Proactiveness We define proactiveness as the rate at which a node modifies
its set of communication partners. We explore two ways of modifying this
set.

First, the node may locally refresh its set of communication partners and
change the output of selectNodes every X calls (line 31 in Algorithm 3.3,
page 38). In short, when X = 1 the gossip partners of the node change
at every call to selectNodes (i.e., every gossip period), whereas X = ∞
means that the communication partners of a node never change.

Second, every Y gossip periods, the node may contact f random commu-
nication partners asking to be inserted in their views. When Y = 1, a
node A sends a feed-me message to f random partners every gossip period
asking them to feed it. Each of the random f partners replaces a random
node from its current set of f partners with the node A.

4.2 Evaluation

We evaluate the impact of the fanout and proactiveness of a gossip protocol by
deploying a streaming application based on Algorithm 3.3 (page 38) over a set
of 230 PlanetLab nodes.

42

4.2. Evaluation

Bandwidth Constraints PlanetLab nodes benefit from high bandwidth capa-
bilities and therefore are not representative of nodes with limited capabilities.
We thus artificially constrain the upload bandwidths of nodes with three differ-
ent caps: 700 kbps, 1000 kbps and 2000 kbps using bandwidth throttling.

Streaming Configuration The source node generates a stream of 600 kbps and
proposes it to 7 nodes in all experiments. To provide further tolerance to message
loss (combined with retransmission), the source groups packets in windows of
110 packets, including 9 FEC encoded packets. The gossip period Tg is set to
200 ms.

4.2.1 Impact of Varying the Fanout

We start our analysis by measuring how varying the fanout impacts each of
the two metrics, stream lag and stream quality, with a proactiveness degree
of 1 (X = 1). Results are depicted in Figures 4.1–4.3. Figure 4.1 shows the
percentage of nodes that can view the stream with less than 1% jitter for various
stream lags in a setting where all nodes have their upload capabilities capped
at 700 kbps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

of
 n

od
es

Fanout

offline viewing
20s lag
10s lag

Figure 4.1: Percentage of nodes viewing the stream with less than 1% of jitter
(upload capped at 700 kbps).

Optimal Fanout Range The plot clearly highlights an optimal range of fanout
values (from 7 to 15 in Figure 4.1) that gives the best performance independently

43

Chapter 4. Stretching Gossip with Live Streaming

of the lag value considered. Lower fanout values are insufficient to achieve
effective dissemination, while larger values generate higher network traffic and
congestion, thus decreasing the obtainable stream quality.

The plot also shows that while the lines corresponding to finite lag values have
a bell shape without any flat region, the one corresponding to offline viewing
does not drop dramatically until a fanout value of 40. The bandwidth throttling
mechanism is in fact able to recover from the congestion generated by large
fanout values once the source has stopped generating new packets. For fanouts
above 40, on the other hand, such recovery does not occur.

Critical Lag Value A different view on the same set of data is provided by
Figure 4.2. For each value t, the plot shows the percentage of nodes that can
view at least 99% of the stream with a lag shorter than t. A fanout in the
optimal range (e.g., 7) causes almost all nodes to receive a high quality stream
after a critical lag value (t = 5 s for a fanout of 7). Moderately larger fanout
values cause this critical value to increase (t = 22 s for a fanout of 20), while
for fanouts above 35, no critical value is present. Rather, congestion causes
significant performance degradation. With a fanout of 40, only 20% of the
nodes can view the stream with a lag shorter than 60 s, and a lag of 90 s is
necessary to reach 75% of the nodes.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P
er

ce
nt

ag
e

of
 n

od
es

 (c
um

ul
at

iv
e

di
st

rib
ut

io
n)

Stream Lag (s)

fanout 4
fanout 5
fanout 6
fanout 7

fanout 10
fanout 20
fanout 35
fanout 40
fanout 50

Figure 4.2: Cumulative distribution of stream lag with various fanouts (upload
capped at 700 kbps).

44

4.2. Evaluation

Behavior with Less Tight Distributions The presence of an optimal fanout
value is clearly a result of operating under limited bandwidth. Figure 4.3 com-
plements the picture by showing how fanout affects performance under less
critical conditions: 1000 kbps and 2000 kbps of capped bandwidth. As available
bandwidth increases, the range of good fanout values clearly becomes larger
and larger and tends to move to the right. With an available bandwidth of
1000 kbps, which is more than 1.67 times the stream rate, it is still possible to
identify a clear region outside of which performance degrades significantly. With
2000 kbps of available bandwidth, both the 10 s-lag and the offline performance
figures appear to remain high even with very large fanout values. This behavior
may be better understood by examining how bandwidth is actually used by the
PlanetLab nodes involved in the dissemination.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

P
er

ce
nt

ag
e

of
 n

od
es

Fanout

offline viewing, 1000kbps cap
10s lag, 1000kbps cap

offline viewing, 2000kbps cap
10s lag, 2000kbps cap

Figure 4.3: Percentage of nodes viewing the stream with less than 1% of jitter
with upload caps of 1000 kbps and 2000 kbps, and different fanout values.

Bandwidth Usage with Different Fanouts Values Figure 4.4 shows the distri-
bution of bandwidth utilization over all the nodes involved in the experiments
sorted from the one contributing the most to the one contributing the least.
The plot immediately highlights an interesting property: even though all the
considered scenarios have a homogeneous bandwidth cap, the distribution of
utilized bandwidth is highly heterogeneous. This behavior is a direct result of
the three-phase protocol employed for disseminating large content.

According to Algorithm 3.3 (page 38), all nodes contribute to the gossip
dissemination by sending their proposal messages to the same fanout number of
nodes. However, the contribution of a node in terms of serve messages depends

45

Chapter 4. Stretching Gossip with Live Streaming

 0

 200

 400

 600

 800

 1000

 1200

 1400

 50 100 150 200

kb
ps

Nodes

Fanout 7, 700kbps cap
Fanout 50, 700kbps cap

Fanout 50, 1000kbps cap
Fanout 50, 2000kbps cap

Fanout 100, 2000kbps cap

Figure 4.4: Distribution of bandwidth usage among nodes with different fanout
values and upload caps.

on the probability that its proposal messages are accepted by other nodes. In
general, nodes with low-latency and reliable connections (i.e., good nodes) have
higher probabilities of seeing their proposals accepted. This is confirmed by
Figure 4.4. The plot also shows that the heterogeneity in bandwidth utilization
increases with the amount of available bandwidth. For example, the lines for
the 700 kbps bandwidth cap show an almost homogeneous distribution apart
from a small set of bad nodes. This is because the higher latencies exhibited by
good nodes when their bandwidth utilization is close to the limit causes other
nodes to work more, thus equalizing bandwidth consumption. On the other
hand, if we observe the lines corresponding to a fanout of 50 in the 1000 kbps
and 2000 kbps scenarios and to a fanout of 100 in the 2000 kbps scenario, we
see that good nodes have enough spare capability to operate without saturating
their bandwidths. As a result, the contribution of nodes remains heterogeneous.

4.2.2 Proactiveness

We present our analysis of gossip proactiveness by showing how refreshing the set
of communication partners affects application performance. Figure 4.5 presents
the results obtained by varying the view refresh rate, X, in a scenario with a
700 kbps bandwidth cap. The plot shows three lines corresponding to stream
lags of 10 s and 20 s as well as to offline viewing. In all cases, results confirm that
the best performance is obtained by varying the set of gossip partners at every
communication round. If on the other hand, the set of communication partners

46

4.2. Evaluation

remains constant for long periods of time, a small set of nodes end up having
the responsibility of feeding large numbers of nodes for as long as they keep
being selected early in the dissemination process. This means that their upload
rates remain constantly higher than their allowed bandwidth limits, ultimately
resulting in high levels of congestion, huge latencies, and message loss.

 0

 20

 40

 60

 80

 100

1 10 100 ∞

P
er

ce
nt

ag
e

of
 n

od
es

X

offline viewing
20s lag
10s lag

Figure 4.5: Percentage of nodes viewing the stream with at most 1% jitter as a
function of the refresh rate X.

In accordance with these observations, Figure 4.5 shows that the slope at
which the curves decrease with X is most negative for a lag of 10 s. This is
because longer values of lag allow the bandwidth throttling mechanism more
time to recover from the bursts generated by a constant set of communication
partners. Nonetheless, a completely static dissemination mesh invariably yields
bad performance even for offline viewing as the load becomes then concentrated
on a very small set of nodes for the entire experiment.

Requesting Nodes to Update their Views A second way to modify the proac-
tive behavior of the considered streaming protocol is for nodes to periodically
request a new set of nodes to feed them, i.e., every Y dissemination rounds.
In Figure 4.6, we show the results obtained with different values of Y . Results
show that this technique remains inferior to the simpler approach of choosing a
view refresh rate of X = 1, as discussed above. The additional messages used
by this approach may in fact be lost or delayed while the node is congested,
resulting in a larger Y than planned.

47

Chapter 4. Stretching Gossip with Live Streaming

 0

 20

 40

 60

 80

 100

1 10 100 ∞

P
er

ce
nt

ag
e

of
 n

od
es

Y

offline viewing
20s lag
10s lag

Figure 4.6: Percentage of nodes viewing the stream with at most 1% jitter as a
function of the request rate Y .

4.2.3 Performance in the Presence of Churn

Finally, we evaluate the impact of proactiveness in the presence of churn with
Y =∞. Results are depicted in Figures 4.7 and 4.8. The experiments consist in
randomly picking a percentage of nodes and make them fail simultaneously. We
compare the baseline results (e.g., when no nodes fail) together with increasing
percentages of failing nodes (from 10% to 80%). Figure 4.7 shows the percentage
of remaining nodes experiencing less than 1% jitter after the catastrophic failure,
for values of X of 1, 2, 20 and ∞.

Figure 4.7 clearly shows that a completely dynamic mesh offers the best per-
formance in terms of ability to withstand churn. With 35% of churn, a proactive-
ness of X = 1 is able to deliver an unaffected stream to 60% of the remaining
nodes, while the percentage drops to 32% for X = 2 and a stream lag of 20
seconds. The results obtained with large values of X and in particular when
X = ∞ show very high degrees of variability from experiment to experiment.
The resulting static or semi-static random graph may become completely un-
able to disseminate the stream if failing nodes are close to the source or it may
appear extremely resilient to churn if failing nodes are located at the edge of the
network. On average, performance is therefore in favor of a completely dynamic
graph (X = 1).

It should be noted that Figure 4.7 only shows how many nodes manage to
remain completely unaware of the churn event. To characterize the extent of
the performance decrease experienced by all surviving nodes, Figure 4.8 shows

48

4.2. Evaluation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

of
 n

od
es

Percentage of nodes failing

offline viewing, X=∞
20s lag, X=∞

offline viewing, X=20
20s lag, X=20

offline viewing, X=2
20s lag, X=2

offline viewing X=1
20s lag, X=1

Figure 4.7: Percentage of surviving nodes experiencing less than 1% jitter for
different values of X.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 c

om
pl

et
e

w
in

do
w

s

Percentage of nodes failing

20s lag, X=1
20s lag, X=2

20s lag, X=20
20s lag, X=∞

Figure 4.8: Average percentage of complete windows for surviving nodes.

the average percentage of decoded windows over the total number of windows
streamed by the source. With X = 1, the protocol is almost unaffected by churn,
and nodes correctly receive over 90% of the windows for all churn percentages
lower than 80%.

49

Chapter 4. Stretching Gossip with Live Streaming

4.3 Summary

The evaluations of gossip protocols for dissemination usually back up the asso-
ciated theoretical claims: gossip can be tuned to achieve reliable dissemination
in the presence of churn. In this chapter, we challenged these results, obtained
mostly through simulations in close-to-ideal settings, and evaluated a gossip-
based live streaming application in a real deployment over 230 PlanetLab nodes.

Our results show that message loss and limited bandwidth significantly restrict
the range of parameter values in which gossip can successfully operate. First,
the fanout cannot be increased arbitrarily to improve reliability and latency, but
must remain small enough to prevent bandwidth saturation. Second, the set of
communication partners should be changed frequently, at every communication
round, in order to minimize congestion and provide an effective response to
churn.

50

Better a diamond with a flaw than a pebble without.

Commonly attributed to Confucius

5
Boosting Gossip for Live Streaming:

Gossip++

In this chapter, we justify the need for both erasure coding (FEC) and retrans-
mission, propose a novel content request scheme that is specially tailored for
gossip, and show how these mechanisms can effectively complement each other
in a new gossip protocol, called gossip++.

As described in the previous chapter, the best performance of gossip-based
streaming, based on the proposed infect-and-die gossip, is achieved with fanout
values that are only slightly larger than ln(n). Such small values allow the
dissemination protocol to operate without saturating the bandwidth of nodes,
but they also limit the redundancy of data dissemination. This, coupled with
message losses during the second and third phases of the protocol, makes it
almost impossible for such a naive three-phase gossip protocol to deliver the
entirety of the available content to all participating nodes.

To exemplify this effect, we expose in Figure 5.1 a set of experiments dis-
seminating a video stream of 680 kbps to 200 nodes (Grid’5000 testbed) and
evaluate the behavior of the three phases of the initial gossip protocol (Algo-
rithm 3.2, page 35) with several fanout values. All nodes except the source have
a bandwidth cap of 800 kbps and the fanout of the source is set to 5.

On average each chunk identifier sent in the first phase of the protocol was
received by an average of 99% of the nodes, while the number of nodes receiving
all advertisements varied from 0% with a fanout of 7 to 60% with a fanout of
10. While this seems to match the theoretical results about the reliability of

51

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving the stream (real conditions)

gossip++, f=8 - clear stream
f=8 - 98% stream
f=7 - 98% stream
f=9 - 98% stream

f=10 - 98% stream

Figure 5.1: In a realistic scenario with constrained bandwidth (800 kbps band-
width cap) and additional message losses (1%), increasing the fanout of standard
gossip does not help (Chapter 4). On the other hand, gossip++ can deliver a
clear stream to all nodes.

gossip [KMG03], the situation changes dramatically if we analyze the number of
actual chunks received at the end of phase 3. In this case, the average delivery
ratio (i.e., the percentage of chunks received of the original stream) drops to
about 97% with no node being able to receive all or even 99% of the stream,
regardless of the fanout. Moreover, the best performance is achieved with a
fanout of 8, which provides 23.5% of the nodes with between 98% and 99% of
the stream with a stream lag shorter than 3 seconds as shown in Figure 5.1.

This level of performance may be sufficient for some applications (e.g., news
or query dissemination). However it is unacceptable for an application like video
streaming [BPLCH09].

5.1 Gossip++

Gossip++ is a combination of two simple mechanisms: (i) Codec, an erasure
coding scheme, and (ii) Claim, a content request scheme that leverages gossip
duplication to diversify the retransmission sources of missing information. Codec
operates by adding redundant encoded chunks to the stream so that it can
be reconstructed after the loss of a random subset of its chunks. Claim, on
the other hand, allows nodes to re-request missing content by recontacting the
nodes from which they received advertisements for the corresponding chunks,

52

5.1. Gossip++

leveraging the duplicates created by gossip. Our experiments show that neither
mechanism alone can guarantee reliable dissemination of all the streaming data
to all nodes. On the other hand, their combination is particularly effective and is
able to provide all nodes with a clear stream even in tight bandwidth scenarios,
in the presence of crashes, or up to 20% of freeriding nodes with proportional
slack in average bandwidth capability.

Intuitively this can be explained by observing that each of the two proposed
mechanisms addresses a different problem of gossip dissemination. Codec man-
ages to reconstruct the chunks that could not be delivered by gossip due to its
probabilistic guarantees. On the other hand, Claim is able to recover from mes-
sage loss occurring at any point during the last two phases of the dissemination
process, that is the request and the serve.

In order to provide reliable dissemination of streaming content, we augment
the three-phase gossip protocol with two components: Codec and Claim as de-
scribed in the following.

5.1.1 Codec

Codec is a forward error correction (FEC) mechanism which feeds information
back into the gossip protocol to decrease the overhead added by the FEC. This
mechanism increases the efficiency of the dissemination achieved by three-phase
gossip in three major ways. First, since each chunk is proposed to all nodes with
high probability, some nodes do not receive proposals for all chunks, even when
there is no message loss. FEC allows nodes to recover these missing chunks even
if they cannot actually be requested from other nodes. Second, FEC helps in
recovering from message losses occurring in all three phases. Finally, decoding
a group of chunks to recover the missing ones often takes less time (i.e., in
the order of 40 ms) than actually requesting or re-requesting and receiving the
missing ones (i.e., at least a network round-trip time).

Erasure Coding (FEC) The source of the stream uses a block-based FEC im-
plementation [Riz97] to create, for each group of k source chunks, c additional
encoded ones. A node receiving at least k random chunks from the k + c pos-
sible ones is thus able to decode the k source chunks and forward them to the
video player (step (i) in Figure 5.2). If the node received less than k chunks,
the group is considered jittered. Nevertheless, using systematic coding (i.e., the
source chunks are not altered), a node receiving j < k chunks can still deliver
the i ≤ j source chunks that it received. In other words, assuming the k source
chunks represent a duration t of audiovisual stream, the jittered group does not
inevitably represent a blank screen without sound for t time. If i is close to k,
the decreased performance can be, in the best case, almost unnoticeable to the
user (e.g., losing a B-frame).

53

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

p

i i+k-1 i+k-1

i+k+c-1

serve(c
i+4

)
G contains k chunks

Group G (size k+c)

decode(G)

ii) no need for more chunks in G

recode(G)

iii) inject reconstructed events

propose(..., i+6, i+k+c-1, ...)

i) forward to player

Figure 5.2: Codec: a node p receiving k chunks in G decodes the group to recon-
struct the k source chunks and sends them to the player (step (i)). Node p then
signals the protocol not to request any more chunks in G (step (ii)). Optionally
(step (iii)), p re-encodes the k source chunks and injects reconstructed chunks
into the protocol.

The Cost of FEC The cost of using FEC mainly consists of network costs. The
CPU cost of coding and decoding was a concern 15 years ago but is negligible
nowadays with the type of FEC we are using. On the other hand, the source
needs to send k + c chunks for each group of k. This constitutes an overhead
of c

k+c in terms of outgoing bandwidth. The remaining nodes, however, can cut
down this overhead as described in the following.

Codec Operation The key property of Codec is the observation that a node
can stop requesting chunks for a given group of k + c as soon as it is able to
decode the group, i.e., as soon as it has received k′ ≥ k of the k + c chunks
(step (ii) in Figure 5.2). The decoding process then provides the node with the
k source chunks needed to play the stream. This means that it does not need to
request more chunks in this group from other nodes. This allows the node to save
incoming bandwidth and most importantly it allows other nodes to save their
outgoing bandwidth that they can thus use for serving useful chunks to nodes
in need. Optionally (step (iii) in Figure 5.2), in order not to stop abruptly the
dissemination of the reconstructed chunks (source or encoded chunks: chunks
i+ 6 and i+ k+ c− 1 in that case), nodes can re-inject decoded chunks into the

54

5.1. Gossip++

protocol.1 The performance improvement of this step is evaluated and discussed
in Section 5.2.8.

5.1.2 Claim

While Codec can reconstruct missing chunks, it still needs at least k chunks
from each group. Claim uses retransmission to make it possible to recover these
k chunks even when message loss affects more than c chunks per group. In
doing this, it takes full advantage of the redundancy of gossip by leveraging the
duplicate proposals received for a chunk. Instead of stubbornly requesting the
same sender, the requesting node re-requests nodes in the set of proposing nodes
in a round-robin manner as presented in Figure 5.3.

p

t

t/2

propose(i)

propose(i)

propose(i)

request(i)

request(i)

q u v

request(i)

serve(c i)

Figure 5.3: Claim: Node v has proposed chunk i to node p which requested it.
Either the request or the serve was lost and p, instead of re-requesting from v,
now requests u, that also proposed chunk i. If u fails to serve ci, p requests
chunk i again to another node that proposed i. Node q finally serves p with ci.

Nodes can emit up to a number r of re-requests for each chunk. The first
re-request for a given chunk is scheduled to be sent after a timeout defined as
µ+ 3.29σ where µ and σ are respectively the average and standard deviation of

1This is possible because FEC coding is deterministic, meaning that the k source chunks
produce the exact same c encoded chunks independently of the encoding node and thus the
injection of reconstructed source or encoded chunks will be identical as the ones produced
by the source.

55

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

the roundtrip times experienced by the node.2 Further re-requests, if needed,
are scheduled to be sent each time after half of the previous timeout until a
minimum fixed timeout is reached.

5.2 Evaluation

We evaluated gossip++ on 200 nodes, deployed over 40 Grid’5000 machines.
The use of a cluster platform like Grid’5000 allows us to have a controlled
and reproducible setting, while at the same time simulating realistic network
conditions. To achieve this, we implemented a communication layer that pro-
vides bandwidth limitation, delays and message loss. Specifically, we give the
source enough bandwidth to serve 5 nodes in parallel, and we limit the up-
load bandwidth of each other node to 800 kbps unless otherwise specified using
a token-bucket mechanism with a bucket size of 200 KB. This means that all
burst of cumulated size over 200 KB are automatically dropped. On top of this,
we introduce a 1% message loss rate unless otherwise indicated. Finally, we add
a random delay between 0 and 200 ms to all sent messages.

All nodes, except the source, gossip with a fanout of 8, unless otherwise
specified. This proved to be the value providing the best performance with a
800 kbps bandwidth limit. The source, on the other hand, uses a fanout of 5
to gossip a stream fed by VLC at 679.79 kbps on average. Before gossiping,
the source encodes groups of k = 100 chunks of 1316 bytes, and creates c = 5
additional coded chunks except when otherwise specified. The average stream
sent by the source is thus 713.75 kbps, adding 5% overhead to the stream. The
gossip period is set to 200 ms and all messages are sent over UDP.

5.2.1 Metrics

In this evaluation, we particularly focus on the percentage of nodes that re-
ceive a completely clear stream, that is one in which 100% of the chunks can
be played correctly. The rationale behind this choice is that a stream where
more than 1% of the chunks are missing can be shown to be already very dis-
turbing [BPLCH09]. Video formats differ in the way they compress the stream
and losing data representing B-frames, for instance, can be less disturbing than
other types of frames. In practice, however, it is very difficult to prioritize data
in the stream as very few applications, if any, provide this kind of information
at the stream packet level [LCC07].

When using plain gossip without Codec, playing 100% of the chunks requires
receiving every single chunk disseminated by the source. When using Codec,

2Note that trying to keep track of roundtrip times from past communication partners indi-
vidually does not scale, since partners are taken at random from the set of all nodes.

56

5.2. Evaluation

on the other hand, a node can play all chunks if it receives at least k random
chunks per group of k + c chunks.

5.2.2 Overview

In the following, we present the results of our evaluation. We first show in
Section 5.2.3 that plain gossip is insufficient in video streaming applications,
thereby motivating the use of Codec. Second, we observe that when bandwidth
is limited, Codec alone is not sufficient and that it can provide satisfactory
performance only in combination with a retransmission mechanism like Claim
(Section 5.2.4). We then evaluate Claim alone as well as in combination with
Codec. Again, Claim alone proves to be insufficient, but its combination with
Codec provides all nodes with a clear stream even in highly constrained settings.
In Section 5.2.5 we evaluate the impact of different FEC percentages in com-
bination with Claim. This allows us to identify 5% FEC as the best trade off.
Finally, we push the analysis further and examine performance (i) in the pres-
ence of catastrophic crash failures (Section 5.2.6), (ii) when the bandwidth gets
more and more constrained (Section 5.2.7), and (iii) in the presence of nodes
that cannot or do not provide their fair share of work (Section 5.2.8).

5.2.3 Need for Codec

We start our analysis by motivating the need for Codec as part of our improved
gossip-based solution for live streaming. According, to the analysis in Chap-
ter 4), we know that in constrained bandwidth scenarios, it is not possible to
increase the fanout of nodes arbitrarily. Too large values end up saturating the
available bandwidth causing drops in performance. As presented in the begin-
ning of this chapter (page 51), in a network of 200 nodes, and an 800 kbps limit
on the upload bandwidth, the fanout offering the best performance is 8. Even
with this fanout, however, no node is able to obtain a perfectly clear stream and
only 23.5% of the nodes are able to experience a 1% jittered stream.

To get a better understanding of this poor performance, we ran an experiment
with a fanout of 8 in an unconstrained bandwidth scenario. Results are depicted
in Figure 5.4: without bandwidth constraints, all nodes can view 99% of the
stream but only 8.5% can receive a clear one. This is because a fanout of 8 is
too low to guarantee reliable dissemination of chunk advertisements. On the
other hand, larger values prove to be too high when bandwidth is constrained
to 800 kbps.

The natural solution to these problems is therefore the introduction of Codec.
With its use, the situation radically changes and all nodes are able to view a
completely clear stream in this ideal network scenario with a stream lag lower
than 3.3 s.

57

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving a clear stream (ideal conditions)

gossip with codec, fanout 8
plain gossip, fanout 8

plain gossip, fanout 8 (99% delivery)

Figure 5.4: In an ideal scenario where bandwidth is unconstrained and without
message loss, plain gossip delivers a clear stream to only 8.5% of nodes since
all nodes do not receive a proposal for each chunk. Adding FEC on the other
hand, 100% of the nodes can view the original stream.

Still, we recognize that in this very favored environment (i.e., no message loss
nor bandwidth cap), plain gossip is still quite efficient since all the nodes suffer at
most 1% missing chunks in their stream (dashed line in Figure 5.4), comforting
the theoretical results that each chunk proposal (followed by its actual serve)
reaches all nodes with high probability.

5.2.4 Realistic Conditions: Need for Claim

When moving to realistic conditions, however, it becomes clear that using Codec
alone is not sufficient to provide reasonable streaming performance. With a
constraint on the upload bandwidth of 800 kbps and a message loss rate of 1%,
no node is able to receive a clear stream even when Codec is used. Nonetheless,
Codec allows 64.5% of the nodes to view 99% of the original stream against a
flat 0% provided by plain gossip.

These results show that, while Codec is able to address the inability of gossip
to reach all nodes with a fanout of 8, its use is not sufficient to recover missing
chunks that were lost, because of losses in the communication layer and the
associated bandwidth constraints. The situation, instead, improves dramatically
if we add Claim to the picture. Figure 5.6 shows that Claim combined with

58

5.2. Evaluation

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the original stream

gossip with codec
plain gossip

Figure 5.5: Without FEC, no node can even receive 99% of the original stream
with constrained bandwidth and message losses. Using Codec, there is a large
improvement since 64.5% of the nodes receive at least 99% of the original stream
with a stream lag shorter than 3.3 s.

Codec is able to provide each node with a clear stream with a stream lag shorter
than 3.5 s.

Increasing the percentage of FEC should intuitively help recover an increased
proportion of missing chunks, be they not proposed or lost. We thus also show
in Figure 5.6 results for 50% coding (resp. 100% coding), i.e., 2/3 (resp. 50%) of
the received chunks are enough to decode a clear stream. We only show results
for optimal fanouts, 4 and 3 respectively. The presented results are optimal
in the sense that a lower fanout prevents gossip from disseminating proposals
(and thus possibly chunks) to a large number of nodes and that larger fanouts
create bursts such that more and more messages are dropped by the bandwidth
limiter. Still, Codec alone can provide a clear stream to only 21.5% with 50%
coding (resp. 3.5% for 100% coding).

The figure also shows that, interestingly enough, Claim alone is also unable
to provide a significant improvement over plain gossip, with only 4.10% of the
nodes receiving a clear stream. The reason is that Claim guarantees that a
node that received proposals for a chunk will eventually receive the chunk when
reclaiming it from one of the proposing nodes. However, with Claim, a node
will never be able to retrieve chunks for which it never got a proposal.

59

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving a clear stream (realistic conditions)

codec 5% + claim
2

codec 50%, fanout 4
codec 100%, fanout 3
plain gossip + claim

2

codec 5%

Figure 5.6: While Codec (5% coding) can provide a 1% jittered stream to 64.5%
of nodes (Figure 5.5) it cannot, alone, provide a clear stream to any node. Claim
improves plain gossip only a very little but significantly boosts the performance
of Codec. When applied together the two techniques provide a clear stream
to all nodes. Finally, increasing the percentage of FEC without retransmission
does not help in recovering missing chunks.

5.2.5 Impact of Message Loss

The main contribution of Codec is the ability to recover chunks for which no
proposal was received. The importance of this feature depends mainly on two
factors: the fanout, and the message loss rate of the network.

To better understand the trade-offs associated with the configuration of Codec,
we consider the performance of the combination of Codec and Claim in several
scenarios with a bandwidth cap of 800 kbps, and message loss rates ranging from
no message loss to 5% of message loss. In each of these scenarios we configured
Codec with different levels of coding: 2%, 5%, 10%, 30% and 50%.

The results, depicted in Figure 5.7, show that Codec with 2% coding is not
able to compensate the missing proposals for all nodes even in the absence
of message loss. Higher coding percentages, on the other hand, provide very
similar and good results up to 4% of message loss. With 5% of message loss,
50% coding performs slightly worse than the other percentages, providing only
94.9% of nodes with a clear stream compared to at least 98.7% for the others.

These figures can be better understood by analyzing the data in Figure 5.8.
The plot shows the cumulative distribution of stream lag for the various FEC

60

5.2. Evaluation

 80

 85

 90

 95

 100

 0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Percentage of message losses

Percentage of nodes viewing a clear stream (10s stream lag, bw cap 800kbps)

codec 2% + claim
2

codec 5% + claim
2

codec 10% + claim
2

codec 30% + claim
2

codec 50% + claim
2

Figure 5.7: Codec with 2% and 50% coding provide a clear stream to a lower
number of nodes than other Codec percentages as the percentage of message
losses increases.

percentages in the presence of 5% message loss. Codec with 50% coding is indeed
able to provide all nodes with a clear stream, but with a much longer stream
lag. The reason is that adding a large percentage of coding represents a large
overhead in terms of bandwidth meaning nodes try to send more data than they
are allowed to by their bandwidth limiter. This leads to dropped messages and
retransmissions ultimately explaining the poor results with respect to stream
lag of Codec 30% and Codec 50%.

These observations are confirmed by Figure 5.9. Here we show the bandwidth
usage of the source and the average requested bandwidth usage of nodes, before
the bandwidth limit is applied. The picture shows that only 2% and 5% coding
do not attempt to send more data than allowed to by the bandwidth limit.
This means that they are the only two versions of the protocols that will not
experience message loss as a result of the token bucket. This is confirmed by the
fact that 2% coding and 5% coding exhibit the shortest stream lag in Figure 5.8.

In practical terms, the choice of the FEC percentage should therefore fall
on the largest percentage that remains within the bandwidth constraints. This
allows Codec and Claim to combine the fast dissemination with the ability to
recover from missing proposals.

A final observation, on this set of experiments can be made by looking at
Figure 5.10. The plot shows the percentage of chunks that Codec was able to
reconstruct with each of the five coding percentages. The depicted percentage

61

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving a clear stream (5% message losses)

codec 2% + claim
2

codec 5% + claim
2

codec 10% + claim
2

codec 30% + claim
2

codec 50% + claim
2

Figure 5.8: With 5% message loss, Codec with 2% coding provides a clear stream
to a maximum of 83% of nodes. Other percentages reach at least 98.7% but with
different stream lags. The bandwidth used by Codec with 30% and 50% coding
is larger than with lower coding percentages (Figure 5.9). The traffic excess is
limited by the token bucket, which results in needing Claim to recover missing
chunks, which in turn, explains the larger stream lag.

includes both the chunks for which no proposal was received and the requests/re-
requests that were saved, i.e., the missing chunks were reconstructed before a
request/re-request was sent.

It is interesting to see that the recovery percentages grow linearly with message
loss and correspond to around half of the percentages of FEC coding being
considered. This means that the overhead added by Codec is partly recovered
and is ultimately around half of the expected overhead value. The reason is
that the more the message loss, the more the missing proposals and the need
for retransmission for chunks that were proposed. Since each retransmission is
associated with a timeout, the more the message loss and the longer the time
available to Codec to reconstruct chunks in incomplete groups before actually
sending a re-request.

5.2.6 Crashes

In this section, we consider the behavior of gossip++ in a catastrophic-failure
scenario. Figure 5.11 reports a zoomed-in view of the percentage of nodes re-

62

5.2. Evaluation

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

2.5Mbps

3Mbps

3.5Mbps

4Mbps

4.5Mbps

5Mbps

5.5Mbps

6Mbps

2% 5% 10% 30% 50%

Bandwidth usage of nodes

3
.6

 M
b

p
s

7
6

6
 k

b
p

s

3
.7

 M
b

p
s

7
8

8
 k

b
p

s

3
.9

 M
b

p
s

8
2

5
 k

b
p

s

4
.6

 M
b

p
s

1
2

2
4

 k
b

p
s

5
.3

 M
b

p
s

1
3

6
0

 k
b

p
s

source
nodes

Figure 5.9: Bandwidth usage of both source and tentative bandwidth usage of
nodes for different percentages of coding. The source bandwidth usage increases
according to the FEC overhead and the tentative bandwidth usage of nodes
quickly exceed the bandwidth cap of 800 kbps, explaining the bad performances
in Figure 5.7 for 30% and 50% coding.

ceiving or decoding each chunk around the moment at which 20% or 50% of the
nodes crash simultaneously.

The two vertical lines in the plot show respectively the minimum and the
maximum chunk ids received by the nodes in the system at the moment of the
crash. The distance between the two lines shows that the nodes fail across an
interval of 54 chunks, corresponding to 0.7 s.

The performance lines, instead, start to drop at around chunk 3570. This
is because some of the nodes that were supposed to serve that chunk and the
following were among the crashed nodes. Overall, the picture shows that the
crash only results in a minor performance glitch that lasts less than 1 s, before
the remaining nodes can continue to view the stream undisturbed.

5.2.7 Constrained Environments

We evaluate the performance of gossip++ with variable amounts of available
upload bandwidth. In doing this, we also consider a variant of Codec, decode
to player, in which nodes continue requesting the proposed chunks that they
have not yet received, even if they have been successfully decoded by the FEC
(step (i) of Codec only, i.e., without signaling to the protocol that the group has

63

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

e
v
e

n
ts

 r
e

c
o

n
s
tr

u
c
te

d

Percentage of message losses

Percentage of chunks reconstructed with FEC

codec 50% + claim
2

codec 30% + claim
2

codec 10% + claim
2

codec 5% + claim
2

codec 2% + claim
2

Figure 5.10: The percentage of chunks recovered with erasure coding increases
similarly for the different FEC values and the FEC recovery grows as the per-
centage of message losses increases.

been successfully decoded). The plot in Figure 5.12 shows that such a variant
is significantly less robust than Codec when the available bandwidth is limited.
The continual requests for already decoded chunks cause its performance to drop
when the available bandwidth is below 780 kbps. Codec, on the other hand, is
almost unaffected by the bandwidth constraint up to approximately 760 kbps.

The plot also shows the percentage of chunks reconstructed by Codec in the
same conditions. Decreasing values of available bandwidth causes an increase in
the number of messages dropped by the bandwidth limiter, which in turn causes
a larger proportion of chunks to be recovered by the Codec mechanism.

5.2.8 Freeriders

Freeriders are nodes that want to benefit from the system without contributing
their share of work or resources. In the context of gossip-based streaming we can
distinguish two classes of freeriders: (i) passive freeriders that do not propose
chunks, and (ii) active freeriders that actively discard requests.

Passive freeriders will never serve any node since they never get any requested
chunk. They can also be seen as nodes that simply cannot have outgoing com-
munication, either deliberately or because of network constraints (e.g., firewall,
closed ports). Passive freeriders benefit from the system as they receive propose
messages and thus request data from other nodes while not contributing. This

64

5.2. Evaluation

 0

 20

 40

 60

 80

 100

 3540 3560 3580 3600 3620 3640 3660 3680

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

Stream chunk id

Percentage of nodes receiving a clear stream

gossip++ with 20% crashes
gossip++ with 50% crashes

Figure 5.11: While 20% (resp. 50%) of the nodes crash between chunks 3583
and 3637 (700 ms duration), the percentage of nodes that receive each chunk
starts to drop from chunk 3570 and the drop lasts less than 1 s.

causes the average fanout of the system to be lowered since all passive freeriders
act as if they had a fanout of 0.

Active freeriders, instead, follow the protocol until they are expected to con-
tribute. Once they are requested to serve chunks, they decide not to serve what
was requested. This implies that a fraction of the many duplicates of propose
messages will not lead to subsequent serves. In other words, nodes requesting
chunks from active freeriders will not be served, just as if they requested a chunk
from a node that crashed.

In the following, we evaluate the ability of gossip++ to tolerate both types
of freeriders while providing all nodes with a clear stream. Clearly, this is only
possible if non freeriding nodes are allowed some extra bandwidth to compensate
for the bandwidth that the freeriding nodes are not using. For this reason we
ran the following experiments with a larger upload bandwidth of 1000 kbps.

Passive Freeriders Figure 5.13 shows the performance obtained by gossip++
with variable percentages of passive freeriders. In this set of experiments we
also consider a second variant of Codec, called Codec 2©. Specifically, as soon as
a node is able to reconstruct a group, Codec 2© injects the reconstructed source
chunks it did not receive regularly, and re-encodes the k source chunks into c
encoded chunks that it also injects in the dissemination process (step (iii) in
Figure 5.2).

65

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 20

 40

 60

 80

 100

 760 780 800 820 840 860 880 900
0

2

5

10

P
e

rc
e

n
ta

g
e

 o
f

n
o
d

e
s
 (

c
u

m
u

la
ti
v
e
 d

is
tr

ib
u

ti
o
n

)

P
e
rc

e
n
ta

g
e
 o

f
c
h
u

n
k
s
 r

e
c
o

n
s
tr

u
c
te

d

Bandwidth availability

Percentage of nodes viewing a clear stream with 10s stream lag

codec + claim
2

decode to player + claim
2

recovery - codec + claim
2

Figure 5.12: By decreasing the available bandwidth of nodes, nodes tend to
lose more messages due to bursts and therefore need both Codec and Claim to
deliver a clear stream. Once the available bandwidth gets below 770 kbps not
all nodes can view a clear stream with gossip++ anymore. Interestingly, Codec
is more and more effective in avoiding requests and re-requests until the system
collapses.

The plot in Figure 5.13 shows that both Codec and its variant Codec 2© are ef-
fective in managing up to 20% of freeriding nodes. However, Codec 2© is slightly
more effective with passive freerider percentages above 20%. The reason for
this performance difference is that the injection mechanism of Codec 2© is able to
compensate for the decrease in effective fanout resulting from the freeriding be-
havior. In other words, nodes injecting a reconstructed chunk into the protocol
create duplicate advertisements that would not have otherwise existed.

The third line in Figure 5.13 complements these results by showing the average
amount of data that non-freeriding nodes attempt to send. It is interesting to
observe that the slope of the line increases dramatically as soon as the line
crosses the value of 1000 kbps. At this point, the bandwidth limiter starts
dropping messages, causing Claim to issue more and more re-requests, which
in turn are more and more likely to be dropped. The data that nodes attempt
to send therefore increases without a corresponding increase in the data that is
actually sent. This causes the dramatic performance decrease occurring when
the bandwidth line crosses the 1000 kbps threshold.

It is also worth observing that approximately 20% of freeriding nodes can be

66

5.2. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30
 0

512 kbps

1Mbps

1.5Mbps

2Mbps

P
e

rc
e

n
ta

g
e

 o
f

n
o
d

e
s
 (

c
u

m
u

la
ti
v
e
 d

is
tr

ib
u

ti
o
n

)

B
a

n
d

w
id

th
 u

s
a

g
e

 o
f

n
o

n
-f

re
e
ri
d
in

g
 n

o
d

e
s

Percentage of freeriders

Percentage of nodes viewing a clear stream with 10s stream lag

codec
2
 + claim

2

decode but no propose + claim
2

bandwidth usage

Figure 5.13: Increasing the percentage of freeriders has the effect of decreasing
the average fanout. Codec 2© performs slightly better than Codec.

tolerated with approximately 20% of slack in the upload bandwidth: 1000 kbps
instead of 800 kbps. This highlights the scalability in terms of bandwidth con-
sumption of the combination Codec 2© + Claim.

Active Freeriders Figure 5.14 shows instead the performance obtained by gos-
sip++ in the presence of variable percentages of active freeriders. Interestingly
enough, in this case the performances of Codec and Codec 2© exhibited no dif-
ferences. However, the plot shows a distinction between Claim and a standard
retransmission mechanism such as ARQ [FW02], labeled as “retransmission”
in the plot (Algorithm 3.3, page 38). Specifically, while Claim’s retransmission
mechanism chooses to contact any of the nodes that offered a propose message
for the desired chunk, the standard approach repeatedly requests a single node
for each missing chunk. This means that, if the proposing node is a freerider,
the standard mechanism will be unable to obtain the chunk which will instead
be quickly obtained by Claim.

The results confirm this reasoning. The standard retransmission mechanism
is unable to tolerate any amount of active freeriders despite the slack in avail-
able bandwidth. On the other hand, it keeps using the baseline bandwidth of
approximately 800 kbps regardless of the percentage of freeriders. This causes
its performance to drop to 0 with as little as 4% of active freeriding nodes.

67

Chapter 5. Boosting Gossip for Live Streaming: Gossip++

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30
 0

512 kbps

1Mbps

1.5Mbps

P
e

rc
e

n
ta

g
e

 o
f

n
o
d

e
s
 (

c
u

m
u

la
ti
v
e
 d

is
tr

ib
u

ti
o
n

)

B
a

n
d

w
id

th
 u

s
a

g
e

 o
f

n
o

n
-f

re
e
ri
d
in

g
 n

o
d

e
s

Percentage of freeriders

Percentage of nodes viewing a clear stream with 10s stream lag

codec + claim
2

bandwidth usage (claim
2
)

codec + retransmission
bandwidth usage (retransmission)

Figure 5.14: While increasing the percentage of freeriders, Claim is able to
shift the contribution that freeriders should provide to non-freeriding nodes,
providing good performance as long as their bandwidth usage remains under
the bandwidth cap. A simple retransmission mechanism, on the other hand, is
not able to shift the load to non-freeriding nodes. Its bandwidth usage therefore
remains constant and significantly lower than the allowed bandwidth.

Claim on the other hand is very effective in having non-freeriding nodes com-
pensate for up to 25% of freeriding nodes. The plot shows that the desired
bandwidth increases quasi linearly until it reaches the threshold of 1000 kbps,
i.e., the bandwidth cap. After the threshold is hit, there is first a short plateau
during which performance decreases only slightly and then a sudden increase
in required bandwidth which causes an equally sudden decrease in performance
because the desired bandwidth is above the available limit.

5.3 Summary

In this chapter we presented gossip++, an integration to gossip consisting of
Codec, a FEC encoding mechanism, and Claim, a retransmission approach lever-
aging gossip duplication. Gossip++ significantly improves the performance of
plain gossip, making gossip-based video streaming possible in realistic scenarios.

Our experiments showed that plain gossip is not efficient in delivering large
content in large-scale systems, especially in scenarios where bandwidth is con-

68

5.3. Summary

strained and in presence of message loss. Gossip++ on the other hand is able to
provide nodes with a clear stream in the presence of up to 5% message loss, and
up to 20% of freeriding nodes with a proportional slack in the average bandwidth
capability.

The work we presented in this chapter aims to bring clarity in the design of re-
liable gossip-based streaming systems for real-world environments. By means of
thorough experiments we demonstrated that gossip alone is unable to offer sat-
isfactory performance in the context of video streaming applications. Moreover,
we showed that applying FEC or retransmission separately is far from being an
effective solution to the streaming problem. Rather, the two mechanisms must
be carefully combined in order to provide a scalable streaming solution.

We also introduced a novel retransmission mechanism called Claim, which is
explicitly designed to leverage the redundancy that is inherent in gossip dis-
semination. We showed that, when combined with Codec, Claim is effective in
building a scalable streaming system in which correctly operating nodes are able
to compensate for the presence of a significant percentage of freeriders.

Still, the proposed mechanisms do not account for heterogeneity in capabili-
ties, since all nodes have to contribute the same amount. We have shown that
gossip++ is able to accommodate freeriding behaviors in a proportion that is
similar to the slack of bandwidth. Nonetheless, if there exists slack in band-
width, we would like to use it in order to increase the stream quality rather
than potentially not using it in the absence of freeriders, and gossip++ cannot
do anything in the case of scarce bandwidth, i.e., when the stream rate is very
close to the average outgoing capability. Therefore, the following chapters will
focus on (i) devising an algorithm that can adapt to heterogeneous capabilities
and (ii) complementing the gossip dissemination algorithm with a protocol for
detecting and expelling freeriders so that no available bandwidth is wasted.

69

One of the strangest things about life is that the poor, who need money
the most, are the very ones that never have it.

Finley Peter Dunne

6
Heterogeneous Gossip: HEAP

The variety of devices available today leads to the creation of systems com-
posed of highly heterogeneous nodes. One aspect of this heterogeneity is the
upload bandwidth available to nodes. Nodes on corporate networks generally
have much wider bandwidths than nodes using cheaper home-based connections.
Similarly, the bandwidth available to mobile devices such as Internet-enabled
mobile phones depends on the cells available in the area as well as on the number
of users connected to those cells. In essence, assuming that the download band-
width of each node is larger than the stream rate s, the collaborative task that
seeks to provide the stream to all nodes must adapt to the upload bandwidth
heterogeneity of participating nodes.

Assume a stream of rate s produced by the source A and n nodes to broad-
cast the stream to, we have seen in Chapter 2 that s is upper bounded by
(Aup +

∑n ui,up) /n when Aup is large enough not to be considered the bot-
tleneck. In a system where the n nodes can devote very different amounts of
resources to the system, e.g., u1,up � ui,up � un,up, load-balancing, i.e., asking
each node (except the source) to contribute the same amount s will overload
the nodes with capabilities lower than s and underutilize the nodes with higher
capabilities.

Given a stream rate s and m < n nodes with an upload bandwidth smaller
than s, the total contribution Cn of the n nodes is therefore Cn = (n −m)s +∑
ui,up (∀ui,up < s). Since all nodes need to receive the stream, the total

demand is D = Dn = ns, whereas the total contribution including the source is
C = Cn +Aup. A problem arises as soon as C becomes smaller than D, that is,

71

Chapter 6. Heterogeneous Gossip: HEAP

when the source is not able to compensate for the lack of contribution of the m
nodes or the underutilization of the n−m nodes.

To be very conservative, s can be chosen as s = min(ui,up) so that all nodes
can contribute such a rate, thus C = Cn +Aup with Cn = ns. The contribution
C of the source and all nodes is thus always larger than the demand Dn = ns.
Choosing s this way is thus very far from the optimal rate (Aup +

∑n ui,up) /n.

In order to maximize s, the nodes must therefore all contribute an amount that
is proportional to their upload bandwidth, breaking the inherent load-balancing
property of gossip where all nodes have the same gossip period and fanout, and
therefore are expected to contribute similarly to the system.

A Case for Adaptation Consider a stream of 600 kbps produced by a single
source and disseminated to 270 PlanetLab nodes. We present the results with
two different distributions: dist1 is composed of 5% of nodes with 3 Mbps upload
bandwidth, 10% of nodes with 1 Mbps upload bandwidth and 85% of nodes
with 512 kbps upload bandwidth whereas with dist2, all nodes have an upload
bandwidth of 691 kbps (similar to the average of dist1). Several fanouts are
tested given the two distributions of upload capabilities, in Figure 6.1.

The major reason for the mixed behavior of gossip in a heterogeneous setting
is its homogeneous and load-balanced nature. All nodes are supposed to dis-
seminate the same number of messages for they rely on the same fanout and
gossip period. However, this uniform distribution of load ignores the intrinsic
heterogeneous nature of large-scale distributed systems where nodes may ex-
hibit significant differences in their capabilities. Interestingly, and as conveyed
by our experiments (Section 4.2.1, Section 6.2 and pointed out in [DXL+06]), a
gossip protocol does indeed adapt to heterogeneity to a certain extent. Nodes
with high bandwidth gossip rapidly, thus get pulled more often and can indeed
sustain the overload to a certain extent. Nevertheless, as the bandwidth distri-
bution gets tighter (closer to the stream rate) and more skewed (rich nodes get
richer whereas poor nodes get poorer), there is a limit on the adaptation that
standard homogeneous gossip can achieve.

Heterogeneous Gossip Echoing recent work, including [BRS06, DXL+06,
SBR06,VYF06,VF07,LXQ+08], we recognize the need to account for the hetero-
geneity between nodes in order to achieve a more effective dissemination. This
poses important technical challenges in the context of a gossip-based stream-
ing application. First, an effective dissemination protocol needs to dynamically
track and reflect the changes of available bandwidth over time. Second, the ro-
bustness of gossip protocols heavily relies on the proactive and uniform random
selection of new target nodes: biasing this selection could impact the average
quality of dissemination and the robustness to churn. Finally, gossip is simple

72

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

f=7 dist1
f=15 dist1
f=20 dist1
f=25 dist1
f=30 dist1

f=7 dist2
f=15 dist2
f=20 dist2

Figure 6.1: When constraining the upload capability in a heterogeneous man-
ner (dist1), the stream lag of all nodes significantly deteriorates. Adjusting the
fanout (e.g., between 15 and 20) slightly improves the stream lag but a blind
fanout increase (e.g., if it goes over 25) degrades performance. Moreover, the
good fanout range in this case (fanouts of 15, 20 in dist1) reveals being in-
adequate with a different distribution (dist2) having the same average upload
capability. With dist2, a fanout of 7 is optimal and much more effective than
fanouts of 15 and 20.

and thus easy to deploy and maintain; sophisticated extensions that account
for heterogeneity could improve the quality of the stream but would render the
protocol more complex and thus less appealing [Ham07,Zho09].

We propose a new gossip protocol, called HEAP, HEterogeneity-Aware Gossip
Protocol, whose simple design is the result of two observations. First, mathemat-
ical results on epidemics and empirical evaluations of gossip protocols convey
the fact that the robustness of the dissemination is ensured as long as the av-
erage of all fanouts is in the order of ln(n) [KMG03] (assuming the source has
at least a fanout of 1). This is crucial because the fanout is an obvious knob to
adapt the contribution of a node and account for heterogeneity. A node with
an increased (resp. decreased) fanout will send more (resp. less) information
about the chunks it can provide and in turn will be pulled more (resp. less)
often. Second, using gossip dissemination, one can implement an aggregation
protocol [vRBV03, JMB05] to continuously provide every node with a pretty
accurate approximation of its relative bandwidth capability. Using such a pro-
tocol, HEAP dynamically leverages the most capable nodes by increasing their
fanouts, while decreasing by the same proportion those of less capable nodes.

73

Chapter 6. Heterogeneous Gossip: HEAP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

99% delivery

Figure 6.2: With the same constrained and heterogeneous distribution (dist1),
HEAP significantly improves performance over a traditional homogeneous gos-
sip.

HEAP preserves the simplicity and proactive (churn adaptation) nature of tra-
ditional homogeneous gossip, while significantly improving its effectiveness.

Applying HEAP in the PlanetLab context of Figure 6.1, i.e., assuming a het-
erogeneous bandwidth distribution conveying users using ADSL, we significantly
improve the stream lag and quality using HEAP (Figure 6.2) with an average
fanout of 7: 50% of nodes receive 99% of the stream with 13.3 s lag, 75% with
14.1 s and 90% with 19.5 s. More generally, we report on an exhaustive evalua-
tion which shows that, when compared to a standard gossip, HEAP: (i) matches
better the contribution of nodes to their bandwidth capabilities; (ii) enables a
better usage of the overall bandwidth thus significantly improving the stream
quality of all nodes and; (iii) significantly improves the resilience to churn.

6.1 HEAP

HEAP addresses the limitations of standard gossip by preventing congestion at
low capability nodes through the adaptation of each node’s workload. Consider
two nodes ui and uj with upload capabilities ui,up and uj,up. HEAP adapts
the contribution of each node to its capability and thus causes the upload rate
resulting from node ui’s serve messages to be ui,up/uj,up times as large as that
of node uj .

74

6.1. HEAP

Key to HEAP’s adaptation mechanism is the fact that, in a non-congested set-
ting, each propose message has roughly the same probability p to be accepted
(thereby generating a subsequent serve message) regardless of the bandwidth
capability of its sender1. HEAP exploits this fact to dynamically adapt the
fanouts of nodes so that their contribution to the stream delivery remains pro-
portional to their available bandwidth. Specifically, because the average number
of proposals accepted in each gossip round can be computed as p · f , f being
the fanout of the proposing node, we can derive that the fanout fui of node ui

should be ui,up/uj,up times the fanout of node uj .

fui =
ui,up

uj,up
· fuj (6.1)

Preserving Reliable Dissemination Interestingly, Equation (6.1) shows that
determining the ratios between the fanouts of nodes is enough to predict their
average contribution. However, simply setting the fanouts of nodes to arbitrary
values that satisfy Equation (6.1) may lead to undesired consequences. On the
one hand, a low average fanout may hamper the ability of a gossip dissemination
to reach all nodes. On the other hand, a large average fanout may unnecessarily
increase the overhead resulting from the dissemination of propose messages and
create undesired bursts (Chapter 4).

HEAP strives to avoid these two extremes by relying on theoretical results
showing that the reliability of gossip dissemination is actually preserved as long
as a fanout value of f = ln(n) + c, n being the size of the network, is ensured
on average [KMG03], regardless of the actual fanout distribution across nodes.
To achieve this, HEAP exploits a simple gossip-based aggregation protocol (see
Algorithm 6.1) which provides an estimate of the average upload capability b
of network nodes. A similar protocol can be used to continuously approximate
the size of the system [JMB05]. For simplicity, we consider here that the ini-
tial fanout is computed knowing the system size in advance. The aggregation
protocol works by having each node periodically gossip its own capability and
the freshest received capabilities. We assume a node’s capability b = ui,up is
either (i) a maximal capability given by the user at the application level (as
the maximal outgoing bandwidth the user wants to give to the streaming ap-
plication) or (ii) computed, when joining, by a simple heuristic to discover the
nodes upload capability, e.g., starting with a very low capability while trying to
upload as much as possible in order to reach its maximal capability as proposed
in [ZWJ+06]. Each node aggregates the received values and computes an esti-
mate of the overall average capability. Based on this estimate, each node, ui,

1In practice, proposals from low capability nodes incur in higher transmission delays and thus
have a slightly lower probability of acceptance, but this effect is negligible when dealing
with small propose messages in a non-congested setting.

75

Chapter 6. Heterogeneous Gossip: HEAP

regulates its fanout, fui , according to the ratio between its own and the average
capability, i.e., fui = f · b/b.

HEAP thus consists in adding to Algorithm 3.3 a fanout adaptation mecha-
nism and an aggregation protocol, as exposed in Algorithm 6.1.

Algorithm 6.1 HEAP protocol details.
Initialization:
1: capabilities := ∅
2: b := own available bandwidth
3: start(AggregationTimer)

Fanout Adaptation

function getFanout() returns Integer is
4: return b/b · f

Aggregation Protocol

upon (AggregationTimer mod aggPeriod) = 0 do
5: commPartners := selectNodes(f)
6: for all p ∈ commPartners do
7: fresh = 10 freshest values from capabilities
8: send(p) [Aggregation, fresh]

upon receive [Aggregation, otherCap] do
9: merge otherCap into capabilities

10: update b using capabilities

The fanout (function getFanout(), line 4 in Algorithm 6.1) is computed as
b/b · f where f is the average fanout of nodes, i.e., the original fanout of Al-
gorithm 3.3, roughly ln(n) + c. The aggregation protocol consists in gossiping
to f partners a set of capability values so that the average capability b of the
system can be computed on each node. Note here that the regular f is chosen
(and not the adapted fanout), so that every node is uniformly represented in
other nodes’ capabilities set for computing the average capability b.

6.2 Evaluation

We evaluate HEAP on a testbed of 270 PlanetLab nodes. This includes a
head-to-head comparison with a standard homogeneous gossip protocol, i.e.,
Algorithm 3.3. In short, we show that, when compared to a standard gossip
protocol: (i) HEAP adapts the actual load of each node to its bandwidth ca-
pability (Section 6.2.2), (ii) HEAP consistently improves the streaming quality
of all nodes (Section 6.2.3), (iii) HEAP improves the stream lag from 40% to
60% over standard gossip (Section 6.2.4), (iv) HEAP resists to extreme churn
situations where standard gossip collapses (Section 6.2.5).

76

6.2. Evaluation

6.2.1 Experimental setup

The source generates chunks of 1316 bytes at a stream rate of 551 kbps on
average. Every window is composed of 9 FEC encoded chunks and 101 original
stream chunks resulting in an effective rate of 600 kbps.

The gossiping period of each node is set to 200 ms, which leads to grouping
an average of 11.26 chunk ids per propose message. The fanout is set to 7 for
all nodes in the standard gossip protocol, while in HEAP, the average fanout
f is 7 across all nodes. The aggregation protocol gossips the 10 freshest local
capabilities every 200 ms, costing around 1 KB/s and is thus completely marginal
compared to the stream rate.

We consider three different distributions of upload capabilities, depicted in
Table 6.1 and inspired from the distributions used in [ZZSY07]. The capability
supply ratio (CSR, as defined in [ZZSY07]) is the ratio of the average upload
bandwidth over the stream rate. We only consider settings in which the global
available bandwidth is enough to sustain the stream rate. Yet the lower the
capability ratio, the closer we stand to that limit. The ms-691 distribution was
referred to as dist1 in the beginning of this chapter.

Fraction of nodes

Name CSR Average 2 Mbps 768 kbps 256 kbps

ref-691 1.15 691 kbps 0.1 0.5 0.4

ref-724 1.20 724 kbps 0.15 0.39 0.46

Name CSR Average 3 Mbps 1 Mbps 512 kbps

ms-691 1.15 691 kbps 0.05 0.1 0.85

Table 6.1: The reference distributions ref-691 and ref-724, and the more skewed
distribution ms-691.

Each distribution is split into three classes of nodes. The skewness of an
upload distribution is characterized by the various percentages of each class of
nodes: in the most skewed distribution we consider (ms-691), most nodes are
in the poorest category and only 15% of nodes have an upload capability larger
than the stream rate.

In the following, we first show that HEAP adapts the contribution of nodes
according to their upload capability, and then we show that HEAP provides
users with a good quality stream.

6.2.2 Adaptation to Heterogeneous Upload Capabilities

We evaluate how HEAP and a standard homogeneous gossip adapt to hetero-
geneous upload capabilities in all three configurations. In ref-691, ref-724 and
ms-691, resp. 60%, 54% and 15% of the nodes have an available bandwidth

77

Chapter 6. Heterogeneous Gossip: HEAP

larger than the one required on average for the stream rate. We report on ref-
691 in Figure 6.3, on ref-724 in Figure 6.4, and on ms-691 in Figure 6.5. The
figures depict the breakdown of the contributions among the three classes of
nodes. For example, the striped bar for standard gossip in Figure 6.3 means
that nodes having an upload capability of 768 kbps use 97.17% of their available
bandwidth.

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

Standard-Gossip HEAP

256kbps

768kbps

2Mbps

Average Bandwidth Usage by Bandwidth Class

1
0

0
%

9
7

.1
7

%

6
9

.8
1

%

8
3

.5
9

%

9
2

.5
8

%

90.63%256kbps
768kbps

2Mbps

Figure 6.3: Bandwidth consumption, ref-691.

Figure 6.3 and Figure 6.4 show similar results as standard homogeneous gos-
sip seems to be able to adapt to some extent. It is indeed interesting to observe
that nodes contribute somewhat proportionally to their upload capabilities even
in standard gossip. This is because of the correlation between upload capability
and latency: chunk ids sent by high-capability nodes are received before those
sent by lower-capability ones. Consequently, the former are requested first and
serve the stream to more nodes than the latter. In addition, nodes with low ca-
pabilities are overloaded faster and therefore naturally serve fewer nodes (either
because they are slower or because they are subject to more packet drops). Yet,
despite this natural self-adaptation, we observe that high-capability nodes are
underutilized in standard gossip.

HEAP balances the load on all nodes proportionally to their upload band-
width, by correctly adapting their gossip fanout: all nodes approximately con-
sume 90% of their bandwidth. This highlights how the bandwidth consumption
of standard gossip and HEAP on Figure 6.3 are caused by opposite reasons:
congestion of low-capability nodes in standard gossip and fanout adaptation,
which prevents congestion, in HEAP.

78

6.2. Evaluation

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

Standard-Gossip HEAP

256kbps

768kbps

2Mbps

Average Bandwidth Usage by Bandwidth Class

8
7

.5
3

%

7
7

.0
5

%

5
6

.1
3

%

7
3

.8
8

%

7
3

.6
4

%

7
1

.7
7

%

256kbps
768kbps

2Mbps

Figure 6.4: Bandwidth consumption, ref-724.

 0

512 kbps

1Mbps

1.5Mbps

2Mbps

2.5Mbps

3Mbps

Standard-Gossip HEAP

512kbps

1Mbps

3Mbps

Average Bandwidth Usage by Bandwidth Class

9
9

.8
9

%

9
1

.5
6

%

4
8

.4
4

%

9
4

.3
7

%

9
0

.5
8

%

87.56%

512kbps
1Mbps
3Mbps

Figure 6.5: Bandwidth consumption, ms-691.

Figure 6.5 conveys the limits of the self-adaptation properties of standard
gossip with an upload distribution in which only 15% of the nodes have an
upload capability higher than the stream rate (ms-691). We observe that with

79

Chapter 6. Heterogeneous Gossip: HEAP

standard gossip, the 5% of nodes with high capabilities only use 48.44% of their
bandwidth because their limited fanout does not allow them to serve more nodes.
In HEAP, on the other hand, the 5% of high-capability nodes can serve with
up to 87.56% of their bandwidth, lowering the congestion of the low-capability
nodes and providing a much better performance than standard gossip in terms
of quality as we show in next section.

6.2.3 Stream Quality

Our next experiment compares the percentages of jitter-free windows received by
nodes in the three considered scenarios. Results are depicted in Figures 6.6, 6.7
and 6.8. For instance, the black bar in Figure 6.6 for standard gossip indicates
that nodes with low capabilities in ref-691 have only 18% of the windows that are
not jittered (considering chunks received with a stream lag of up to 10 s). The
same figure also shows that HEAP significantly improves this value, with low-
capability nodes receiving more than 90% of jitter-free windows. This reflects
the fact that HEAP allows high-capability nodes to assist low-capability ones.
Results in Figure 6.7 are even more dramatic: high-capability nodes receive less
than 33% of jitter-free windows in standard gossip, whereas all nodes receive
more than 95% of jitter-free windows with HEAP.

Figure 6.8 clearly conveys the collaborative nature of HEAP when the global
available bandwidth is higher (ref-724). The whole system benefits from the fact
that nodes contribute according to their upload capability. For instance, the
number of jitter-free windows that low-capability nodes obtain increases from
47% for standard gossip to 93% for HEAP. These results are complemented by
Table 6.2, which presents the average delivery ratio in the jittered windows for
both protocols, for each class of nodes in the three considered distributions.
Again, results show that HEAP is able to provide good performance to nodes
regardless of their capability classes. It should be noted, however, that the table
provides results only for the windows that are jittered, jitter that appears more
in standard gossip than in HEAP. This explains the seemingly bad performance
of HEAP in a few cases such as for high-bandwidth nodes in ref-724.

Standard gossip HEAP

upload capability 256 kbps 768 kbps 2 Mbps 256 kbps 768 kbps 2 Mbps

ref-691 63.4% 87.1% 89.3% 80.4% 77.1% 89.8%

ref-724 75.6% 88.6% 89.6% 87.9% 87.7% 64.4%

upload capability 512 kbps 1 Mbps 3 Mbps 512 kbps 1 Mbps 3 Mbps

ms-691 42.8% 56.5% 64.5% 83.7% 80.7% 90.9%

Table 6.2: Average delivery rates in windows that cannot be fully decoded.

Figure 6.9 conveys the cumulative distribution of the nodes that view the
stream as a function of the percentage of jitter. For instance, the point (x = 0.1,

80

6.2. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
jit

te
r-

fr
e

e
 s

tr
e

a
m

Jitter-free percentage of the stream by Bandwidth Class

256kbps
768kbps

2Mbps

Figure 6.6: Stream quality (ref-691).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
jit

te
r-

fr
e

e
 s

tr
e

a
m

Jitter-free percentage of the stream by Bandwidth Class

512kbps
1Mbps
3Mbps

Figure 6.7: Stream quality (ms-691).

y = 85) on the HEAP - 10 s lag curve indicates that 85% of the nodes experience
a jitter that is less than or equal to 10%. Note that in this figure, we do not
differentiate between capability classes. We consider standard gossip and HEAP
in two settings: offline and with 10 s lag. We present offline results in order to
show that, with standard gossip, nodes eventually receive the stream. However,
with a 10 s lag, standard gossip achieves very poor performance: most windows

81

Chapter 6. Heterogeneous Gossip: HEAP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Standard-Gossip HEAP

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
jit

te
r-

fr
e

e
 s

tr
e

a
m

Jitter-free percentage of the stream by Bandwidth Class

256kbps
768kbps

2Mbps

Figure 6.8: Stream quality (ref-724).

are jittered. In contrast, HEAP achieves very good performance even with a
10 s lag.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Percentage of jitter

Cumulative distribution of nodes as a function of the experienced jitter

standard gossip - 10s stream lag
standard gossip - offline viewing

HEAP - 10s stream lag
HEAP - offline viewing

Figure 6.9: Cumulative distribution of experienced jitter (ref-691). With HEAP
and a stream lag of 10 s, 93% of the nodes experience less than 10% jitter.

82

6.2. Evaluation

6.2.4 Stream lag

Next, we compare the stream lag required by HEAP and standard gossip to
obtain a non-jittered stream. We report the results for ref-691 and ms-691 on
Figures 6.10 and 6.11, respectively. In both cases, HEAP drastically reduces
the stream lag for all capability classes. Moreover, as shown in Figure 6.11,
the positive effect of HEAP significantly increases with the skewness of the
distribution.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Standard-Gossip HEAP

S
tr

e
a

m
 L

a
g

 (
s
)

Average stream lag to obtain a jitter-free stream

256kbps
768kbps

2Mbps

Figure 6.10: Stream lag (ref-691).

Figures 6.12 and 6.13 depict the cumulative distribution of nodes viewing
the stream as a function of the stream lag, without distinguishing capability
classes. We compare standard gossip and HEAP in two configurations: without
jitter and with less than 1% of jitter. Sporadically, some PlanetLab nodes
seem temporarily frozen, due to high CPU load and/or suffer excessive network
problems explaining why neither protocol is able to deliver the stream to 100% of
the nodes. Still, both plots show that HEAP consistently outperforms standard
gossip. For instance, in ref-691, HEAP requires 12 s to deliver the stream to
80% of the nodes without jitter, whereas standard gossip requires 26.6 s.

Table 6.3 complements these results by showing the percentage of nodes that
can view a jitter-free stream for each bandwidth class and for the three de-
scribed distributions. In brief, the table shows that the percentage of nodes
receiving a clear stream increases as bandwidth capability increases for both
protocols. However, HEAP is able to improve the performance experienced by
poorer nodes without any significant decrease in the stream quality perceived
by high-bandwidth nodes.

83

Chapter 6. Heterogeneous Gossip: HEAP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Standard-Gossip HEAP

S
tr

e
a

m
 L

a
g

 (
s
)

Average stream lag to obtain a jitter-free stream

512kbps
1Mbps
3Mbps

Figure 6.11: Stream lag (ms-691).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream lag (s)

Cumulative distribution of nodes as a function of stream lag

standard gossip - no jitter
standard gossip - max 1% jitter

HEAP - no jitter
HEAP - max 1% jitter

Figure 6.12: Cumulative distribution of stream lag values (ref-691).

6.2.5 Resilience to Catastrophic Failures

Finally, we assess HEAP’s resilience to churn in two catastrophic-failure scenar-
ios where 20% and 50% respectively of the nodes fail simultaneously 60 s after
the beginning of the experiment. The experiments are based on the ref-691
bandwidth distribution, while the percentage of failing nodes is taken uniformly

84

6.2. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 (

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
)

Stream lag (s)

Cumulative distribution of nodes as a function of stream lag

HEAP - no jitter
HEAP - max 1% jitter

standard gossip - no jitter
standard gossip - max 1% jitter

Figure 6.13: Cumulative distribution of stream lag values (ms-691).

Standard gossip HEAP

bandwidth 256 kbps 768 kbps 2 Mbps 256 kbps 768 kbps 2 Mbps

ref-691 (10 s lag) 0 29.80 86.67 65.93 79.61 96.55

ref-724 (10 s lag) 0 67.52 97.73 61.95 74.34 93.02

bandwidth 512 kbps 1 Mbps 3 Mbps 512 kbps 1 Mbps 3 Mbps

ms-691 (20 s lag) 0 0 0 84.58 89.66 85.71

Table 6.3: Percentage of nodes receiving a jitter-free stream by capability class.

at random from the set of all nodes, i.e., keeping the average capability supply
ratio unchanged. In addition, we configure the system so that surviving nodes
learn about the failure an average of 10 s after it happened.

Figure 6.14 depicts, for each encoded window in the stream, the percentage
of nodes that are able to decode it completely, i.e., without any jitter. The
plot highlights once more the significant improvements provided by HEAP over
standard gossip-based content dissemination. The solid line showing HEAP with
a 12 s lag shows that the percentage of nodes decoding each window is always
close to 100% (or to the 80% of nodes remaining after the failure) except for the
chunks generated immediately before the failure. The reason for the temporary
drop in performance is that the failure of a node causes the disappearance of
all the chunks that it has delivered but not yet forwarded. Clearly, windows
generated after the failure are instead correctly decoded by almost all remaining
nodes. The plot also shows two additional lines depicting the significantly worse
performance achieved by standard gossip-based dissemination.

85

Chapter 6. Heterogeneous Gossip: HEAP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 r

e
c
e

iv
in

g
 e

a
c
h

 w
in

d
o

w

Stream time

Failure of 20% of the nodes at t=60s

HEAP - 12s lag
standard gossip - 20s lag
standard gossip - 30s lag

Figure 6.14: Resilience in the presence of 20% of nodes crashing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s
 r

e
c
e

iv
in

g
 e

a
c
h

 w
in

d
o

w

Stream time

Failure of 50% of the nodes at t=60s

HEAP - 12s lag
standard gossip - 20s lag
standard gossip - 30s lag

Figure 6.15: Resilience in the presence of 50% of nodes crashing.

The number of nodes receiving the stream with a 20 s lag in standard gossip
is, in fact, much lower than that of those receiving it with only 12 s of lag in
HEAP. Only after 30 s of lag is standard gossip able to reach a performance that
is comparable to that of HEAP after 12 s. The figure also highlights that the
number of chunks lost during the failure is higher in standard gossip than in
HEAP (the width of the drop is larger). The reason is that in standard gossip

86

6.3. Alternative Solutions

upload queues tend to grow larger than in HEAP. Thus chunks that are lost
as a result of nodes that crash span a longer time interval in standard gossip
than they do in HEAP. Finally, the continuous decrease in the 20 s lag line for
standard gossip shows that the delay experienced by chunks in standard gossip
increases as time elapses: this is a clear symptom of congestion that is not
present in HEAP.

Figure 6.15 provides similar information for a scenario in which 50% of the
nodes fail simultaneously. HEAP is still able to provide the stream to the
remaining nodes with a lag of less than 12 s. Conversely, standard gossip achieves
mediocre performance after as many as 20 s of lag.

6.3 Alternative Solutions

The approaches of [BRS06,SBR06] propose a set of heuristics that account for
bandwidth heterogeneity (and node uptimes) in tree-based multicast protocols.
This leads to significant improvements in bandwidth usage. These protocols
aggregate global information about the implication of nodes across trees, by
exchanging messages along tree branches, in a way that relates to our capability
aggregation protocol.

Multi-tree dissemination schemes split streams over diverse paths to enhance
their reliability. This comes for free in gossip protocols where the neighbors
of a node continuously change. In a sense, a gossip dissemination protocol
dynamically provides different dissemination paths for each chunk, providing
the ultimate splitting scheme. Chunkyspread accounts for heterogeneity using
the SwapLinks protocol [VF06]. Each node contributes in proportion to its
capacity and/or willingness to collaborate. This is reflected by heterogeneous
numbers of children across the nodes in the tree.

Mesh-based systems are similar to gossip in the sense that their topology
is unstructured. Some of those, namely the latest version of Coolstreaming
[LXQ+08] and GridMedia [ZZSY07] dynamically build multi-trees on top of
the unstructured overlay when nodes perceive they are stably served by their
neighbors. Typically, every node has a view of its neighbors, from which it picks
new partners if it observes malfunctions. In the extreme case, a node has to
seek for more or different communication partners if none of its neighbors is
operating properly. Not surprisingly, it was shown in [LXQ+08, LGL08] that
increasing the view size has a very positive effect on the streaming quality and
is more robust in case of churn. Gossip protocols like HEAP are extreme cases
of these phenomena because the views they rely on keep continuously changing.

87

Chapter 6. Heterogeneous Gossip: HEAP

6.4 Summary

We presented HEAP, a new gossip protocol which adapts the dissemination load
of the nodes to account for their heterogeneity. HEAP preserves the simplic-
ity and proactive (churn adaptation) nature of traditional homogeneous gossip,
while significantly improving its effectiveness. Experimental results on Plan-
etLab convey the improvement of HEAP over a standard homogeneous gossip
protocol with respect to stream quality, bandwidth usage and resilience to churn.
When the stream rate is close to the average available bandwidth and the ca-
pability distribution is more skewed, the improvement is even more significant.

We considered bandwidth as the main heterogeneity factor, as it is indeed
crucial in the context of streaming. Other factors might reveal being important
in other applications (e.g., node interests, available CPU). We believe HEAP
could easily be adapted to such factors by modifying the underlying aggregation
protocol accordingly. Also, we considered the choice of the fanout as the way to
adjust the load of the nodes. One might also explore the dynamic adaptation
of the gossip targets, the frequency of the dissemination or the memory size
devoted to the dissemination.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s
 (

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n
)

Stream Lag (s)

Percentage of nodes receiving at least 99% of the stream

HEAP, ref-691
HEAP, ms-691

biased source, ref-691
biased source, ms-691

Figure 6.16: Biasing the source improves the overall stream lag by an average
of 3.6 s for ref-691 and 2.3 s in ms-691.

A natural way to further improve the efficiency of the dissemination is to
increase the upload capability of the source itself [PM08] or add multiple
sources in the system [LXQ+08, CJW09]. A complementary way is to bias
the neighbor selection towards rich nodes in the early steps of dissemina-
tion [KSSV00, CGN+04, PPKB07]. Our experiments reveal that this can be

88

6.4. Summary

beneficial at the first step of the dissemination (i.e., from the source) but re-
veals not being trivial if performed in later steps. In Figure 6.16, the source
picks its gossip target from the 50% highest capability nodes in the system. We
observe that the overall perceived stream lag is significantly improved. High-
capability nodes may see their load increase, however, they are more likely to
be fed directly by the source and this significantly improves their stream lag.
In addition, all nodes benefit from this bias as they have a higher probability of
being fed by high capability nodes.

There are some limitations to adaptation and these provide interesting re-
search tracks. While adapting to heterogeneity, a natural behavior is to elevate
certain wealthy nodes to the rank of temporary super peers, which could poten-
tially have a relatively large impact in case of failures. Moreover, an attacker
targeting highly capable nodes could degrade the overall performance of the
protocol. Likewise, the very fact that nodes advertise their capabilities may
trigger freeriding vocations, where nodes would pretend to be poor in order not
to contribute to the dissemination. This last point is the subject of the next
chapter, on detecting freerider behaviors in gossip protocol.

89

Love all, trust a few.

William Shakespeare

7
Lightweight Freerider-Tracking

Protocol: LiFT

The various gossip-based protocols presented in this thesis are asymmetric:
nodes propose chunk identifiers to a dynamically changing random subset of
other nodes. These, in turn, request packets of interest, which are subsequently
pushed by the proposer. The nodes proposing and finally pushing content have
no immediate return of contribution from the nodes they serve.

The efficiency of such protocols highly relies on the willingness of participants
to collaborate, i.e., to devote a fraction of their resources, namely their upload
bandwidth, to the system. Yet, some of these participants might be tempted
to freeride [AH00, KSTT04, LCW+06, LCM+08], i.e., not contribute their fair
share of work, especially if they could still benefit from the system. Freeriding
is common in large-scale systems deployed in the public domain [AH00] and
may significantly degrade the overall performance in bandwidth-demanding ap-
plications such as streaming [KSTT04]. In addition, freeriders may collude, i.e.,
collaborate to decrease their individual and common contribution to the system
and cover each other up to circumvent detection mechanisms.

By using the Tit-for-Tat (TfT) incentives (inspired from file-sharing sys-
tems [Coh03]), TfT-based content dissemination solutions (e.g., [LCW+06,
PPKB07,LCM+08]) force nodes to contribute as much as they benefit by means
of balanced symmetric exchanges. As we review in related approaches (Sec-
tion 7.5), those systems do not perform as well as asymmetric systems in terms
of efficiency and scalability.

91

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

In practice, many proposals (e.g., [DXL+06,VYF06,ZZSY07,LXQ+08]) con-
sider instead asymmetric exchanges where nodes are supposed to altruistically
serve content to other nodes, i.e., without asking anything in return, where the
benefit of a node is not directly correlated to its contribution but rather to
the global health of the system. The correlation between the benefit and the
contribution is not immediate. However, such correlation can be artificially es-
tablished, in a coercive way, by means of verification mechanisms that ensure
that nodes which do not contribute their fair share do not benefit anymore from
the system. Freeriders are then defined as nodes that decrease their contribution
as much as possible while keeping the probability of being expelled low.

We consider a generic three-phase gossip protocol (Algorithm 3.3) where data
is disseminated following an asymmetric push scheme. In this context, we pro-
pose LiFT, a lightweight mechanism to track freeriders. To the best of our knowl-
edge, LiFT is the first protocol to secure asymmetric gossip protocols against
possibly colluding freeriders.

At the core of LiFT lies a set of deterministic and statistical distributed ver-
ification procedures based on accountability (i.e., each node maintains a digest
of its past interactions). Deterministic procedures check that the content re-
ceived by a node is further propagated following the protocol (i.e., to the right
number of nodes within short delay) by cross-checking nodes’ logs. Statistical
procedures check that the interactions of a node are evenly distributed in the
system using statistical techniques. Interestingly enough, the high dynamic and
strong randomness of gossip protocols, that may be considered as a difficulty
at first glance, happens to help tracking freeriders. Effectively, LiFT exploits
the very fact that nodes pick neighbors at random to prevent collusion: since a
node interacts with a large subset of the nodes, chosen at random, this drasti-
cally limits its opportunity to freeride without being detected, as it prevents it
from deterministically choosing colluding partners that would cover up its bad
behavior.

LiFT is lightweight as it does not rely on heavyweight cryptography and incurs
only a low overhead in terms of bandwidth. This overhead can be dynamically
adjusted and potentially reduced to zero when the system is healthy. In addi-
tion, LiFT is fully decentralized as nodes are in charge of verifying each others’
actions and monitoring each others’ behavior. Finally, LiFT provides a good
probability of detecting freeriders while keeping the probability of false positive,
i.e., inaccurately classifying a correct node as a freerider, very low.

To evaluate LiFT, we give analytical results backed up with simulations, pro-
viding means to set up the parameters of LiFT in a real environment. Addition-
ally, we deployed LiFT on PlanetLab, where a stream of 674 kbps is broadcast
to 300 PlanetLab nodes having their upload bandwidth capped to 1000 kbps. In
the presence of freeriders, the health of the system (i.e., the proportion of nodes
able to receive the stream in function of the stream lag) degrades significantly

92

7.1. Freeriding

compared to a system where all nodes follow the protocol. Figure 7.1 shows a
clear drop between the plain line (no freeriders) and the dashed line (25% of
freeriders). With LiFT and assuming that freeriders keep their probability of
being expelled lower than 50%, the performance is close to the baseline.

In this context, LiFT incurs a maximum network overhead of only 8%. When
freeriders decrease their contribution by 30%, LiFT detects 86% of the freeriders
and wrongly expels 12% of honest nodes, after only 30 seconds. Most of wrongly
expelled nodes deserve it, in a sense, as their actual contribution is smaller than
required. However, this is due to poor capabilities, as opposed to freeriders that
deliberately decrease their contribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60fr
ac

ti
on

of
n
o
d
es

v
ie

w
in

g
a

cl
ea

r
st

re
am

stream lag (s)

No freeriders
25% freeriders

25% freeriders (LiFTinG)

Figure 7.1: System efficiency in the presence of freeriders.

Gossip protocols are almost not impacted by crashes [KMG03, EGH+03].
However, high-bandwidth content dissemination with gossip clearly suffers more
from freeriders than from crashes (Chapter 5). When content is pushed in a sin-
gle phase, a freerider is equivalent to a crashed node. In three-phase protocols,
crashed nodes do not provide upload bandwidth anymore but they do not con-
sume any bandwidth either, as they do not request content from proposers after
they crash. On the contrary, freeriders decrease their contribution, yet keep
requesting content.

7.1 Freeriding

Nodes are either honest or freeriders. Honest nodes strictly follow the protocol,
including the verifications of LiFT. Freeriders allow themselves to deviate from

93

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

the protocol in order to minimize their contribution while maximizing their
benefit. In addition, freeriders may adopt any behavior not to be expelled,
including lying to verifications, or cover up colluding freeriders’ bad actions.
Note that under this model, freeriders do not wrongfully accuse honest nodes.
Effectively, making honest nodes expelled (i) does not increase the benefit of
freeriders, (ii) does not prevent them from being detected, i.e., detection is based
solely on the suspected node’s behavior regardless of other nodes’ behaviors
(details in Section 7.3.1), and finally (iii) leads to an increased proportion of
freeriders, degrading the benefit of all nodes. This phenomenon is known as the
tragedy of the commons [Har68]. We denote by m the number of freeriders.

Freeriders may deviate from the gossip protocol in three ways: (i) bias the
partner selection, (ii) drop messages they are supposed to send, or (iii) modify
the content of the messages they send. In the sequel, we exhaustively list all
possible attacks in each phase of the protocol, discuss their motivations and
impacts, and then extract and classify those that may increase the individual
interest of a freerider or the common interest of colluding freeriders. Attacks
that require or profit to colluding nodes are denoted with a ‘?’. The analysis
on the possible freeriding attacks to the three-phase protocol is at the core of
LiFT.

7.1.1 Propose phase

During the first phase, a freerider may (i) communicate with less than f nodes,
(ii) propose less chunks than it should, (iii) select as communication partners
only a specific subset of nodes, or (iv) reduce its proposing rate.

(i) Decreasing fanout By proposing chunks to f̂ < f nodes per gossip period,
as illustrated in Figure 7.2, the freerider trivially reduces the potential
number of requests, and thus the probability of serving chunks. Therefore,
its contribution in terms of the amount of data uploaded is decreased.
Setting f̂ to 0 corresponds to the passive freeriders of Chapter 5.

f nodes

propose

...

(a) Honest node

f̂ < f nodes

propose

...

(b) Freerider

Figure 7.2: A freerider communicates with f̂ < f partners.

(ii) Invalid proposal A proposal is valid if it contains every chunk received in

94

7.1. Freeriding

the last gossip period. Proposing only a subset of the chunks received in
the last period, as illustrated in Figure 7.3, obviously decreases the num-
ber of requested chunks. However, a freerider has no interest in proposing
chunks it does not have since, contrarily to symmetric TfT-based proto-
cols, uploading chunks to a node does not imply that the latter sends
chunks in return. In other words, proposing more (and possibly fake)
chunks does not increase the benefit of a node and does thus not need to
be considered.

propose(a, b, c)

serve(a, c)

serve(b)

(a) Honest node

propose(a, b)

serve(a, c)

serve(b)

(b) Freerider

Figure 7.3: A freerider deliberately removes some chunks (c here) from its
proposal.

(iii) Biasing the partners selection (?) Considering a group of colluding nodes,
a freerider may want to bias the random selection of nodes to privilege its
colluding partners, so that the group’s benefit increases, as illustrated in
Figure 7.4.

all nodes

pick partners
(uniform)

(a) Honest node

all nodes

freeriders
pick partners
(biased)

(b) Colluding freeriders

Figure 7.4: An honest node picks communication partners uniformly at
random from the set of all nodes whereas a freerider biases the partner
selection to pick mainly colluding nodes.

(iv) Increasing the gossip period A freerider may increase its gossip period Tg,
leading to less frequent proposals advertising more, but “older”, chunks
per proposal as illustrated in Figure 7.5. This implies a decreased interest
of the requesting nodes and thus a decreased contribution for the sender.
This is due to the fact that an old chunk has a lower probability of being
of interest as it becomes more replicated over time.

95

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

propose(a, b)

serve(a)

serve(b)

propose(c, d, e)

serve(c, e)

serve(d)

gossip period

gossip period

(a) Honest node

propose(a, b, d)

serve(a)

serve(b)

serve(c, e)

serve(d)

> gossip period

> gossip period

(b) Freerider

Figure 7.5: With a larger gossip period, some proposed chunks are unlikely to
be requested (e.g., a and b here).

7.1.2 Pull Request Phase

Nodes are expected to request only chunks that they have been proposed. A
freerider would increase its benefit by opportunistically requesting extra chunks
(even from nodes that did not propose these chunks). The dissemination pro-
tocol itself prevents this misbehaving by automatically dropping such requests,
i.e., a node only pushes chunks that it effectively proposed.

7.1.3 Serving Phase

In the serving phase, freeriders may (i) send only a subset of what was requested
or (ii) send junk. The first attack obviously decreases the freeriders’ contribution
as they serve fewer chunks than they are supposed to. However, as we mentioned
above, in the considered asymmetric protocol, a freerider has no interest in
sending junk data, since it does not receive anything in return of what it sends.
The freeriders that do not respond to requests at all correspond to the active
freeriders described in Chapter 5.

7.1.4 Summary

Analyzing the basic gossip protocol in detail allowed to identify the possible at-
tacks. Interestingly enough, these attacks share similar aspects and can thus be
gathered into three classes that dictate the rationale along which our verification
procedures are designed.

The first is quantitative correctness that characterizes the fact that a node ef-
fectively proposes to the correct number of nodes (f) at the correct rate (1/Tg).
Assuming this first aspect is verified, two more aspects must be further con-
sidered: causality that reflects the correctness of the deterministic part of the

96

7.2. LiFT

protocol, i.e., received chunks must be proposed in the next gossip period, and
statistical validity that evaluates the fairness (with respect to the distribution
specified by the protocol) in the random selection of communication partners.

7.2 LiFT

LiFT is a Lightweight protocol for Freerider-Tracking that encourages nodes,
in a coercive way, to contribute their fair share to the system, by means of
distributed verifications. LiFT consists of (i) direct verifications and (ii) a pos-
teriori verifications. Verifications, that require more information than what is
available at the verifying node and the inspected node, are referred to as cross-
checking. In order to control the overhead of LiFT, the frequency at which such
verifications are triggered is controlled by a parameter pcc, as described in Sec-
tion 7.2.2. Verifications can either lead to the emission of blames or to expulsion,
depending on the gravity of the misbehavior.

Direct verifications are performed regularly while the protocol is running:
the nodes’ actions are directly checked. They aim at checking that all chunks
requested are served and that all chunks served are further proposed to a cor-
rect number of nodes, i.e, they check the quantitative correctness and causality.
Direct verifications are composed of (i) direct checking and (ii) direct cross-
checking.

A posteriori verifications are run sporadically. They require each node to
maintain a log of its past interactions, namely a history. In practice, a node
stores a trace of the events that occurred in the last h seconds, i.e., corresponding
to the last nh = h/Tg gossip periods. The history is audited to check the
statistical validity of the random choices made when selecting communication
partners, namely entropic check. The veracity of the history is verified by cross-
checking the involved nodes, namely a posteriori cross-checking.

We present the blaming architecture in Section 7.2.1 and present direct ver-
ifications in Section 7.2.2. Since freeriders can collude not to be detected, we
expose how they can cover up each other’s misbehaviors in Section 7.2.3 and
address this in Section 7.2.4. We analyze the message complexity of LiFT in Sec-
tion 7.2.5. The different attacks and corresponding verifications are summarized
in Table 7.1.

Attack Type Detection

fanout decrease (f̂ < f) quantitative direct cross-check

partial propose (P) causality direct cross-check

partial serve (|S| < |R|) quantitative direct check

bias partners selection (?) entropy entropic check, a posteriori cross-check

Table 7.1: Summary of attacks and associated verifications.

97

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

7.2.1 Blaming Architecture

In LiFT, the detection of freeriders is achieved by means of a score assigned to
each node. When a node detects that some other node freerides, it emits a blame
message containing a blame value against the suspected node. Summing up the
blame values of a node results in a score. For scores to be meaningful, blames
emitted by different verifications should be comparable and homogeneous. In
order to collect blames targeting a given node and maintain its score, each
node is monitored by a set of other nodes named managers, distributed among
the participants. Blame messages towards a node are sent to its managers.
When the score of a node p drops beyond a fixed threshold (the design choice
of using a fixed threshold is explained in Section 7.3.1), the managers spread –
through gossip – a revocation message against p making the nodes of the system
progressively remove p from their view. A representation of blame messages sent
to p’s managers and revocation messages gossiped from those managers to other
participants in case p’s score goes beyond a threshold is synthesized in Figure 7.6.

The blaming architecture of LiFT is built on top of the AVMON [MG09]
monitoring overlay. In AVMON, nodes are assigned a fixed-size set of M ran-
dom managers consistent over time which make it very appealing in our setting,
namely a dynamic peer-to-peer environment subject to churn with possibly col-
luding nodes. The fact that the number M of managers is constant makes
the protocol scalable as the monitoring load at each node is independent of
the system size. Randomness prevents colluding freeriders from covering each
other up and consistency enables long-term blame history at the managers. The
monitoring relationship is based on a hash function and can be advertised in a
gossip-fashion by piggybacking node’s monitors in the view maintenance mes-
sages (e.g., exchanges of local views in the distributed peer-sampling service).
Doing so, nodes quickly discover other nodes’ managers – and are therefore able
to blame them if necessary – even in the presence of churn. In addition, nodes
can locally verify (i.e., without the need for extra communication) whether the
mapping, node to managers, is correct by hashing the nodes’ IP addresses, pre-
venting freeriders from forging fake or colluding managers. In case a manager
does not map correctly to a node, a revocation against the concerned node is
sent.

7.2.2 Direct Verifications

In LiFT, two direct verifications are used. The first aims at ensuring that every
requested chunk is served, namely a direct check. Detection can be done locally
and it is therefore always performed. If some requested chunks are missing, the
requesting node blames the proposing node by f/ |R| (where R is the set of
requested chunks) for each chunk that has not been delivered.

98

7.2. LiFT

p

p’s managers (AVMON)

update/check p’s score
(LIFTING)

(3-PHASE GOSSIP)

push content

push content

check p’s actions
(LIFTING)

check p’s actions
(LIFTING)

blame

blame

blacklist pblacklist p

(GOSSIP REVOCATION)(GOSSIP REVOCATION)

Figure 7.6: Overview of LiFT.

The second verification checks that received chunks are further proposed to
f nodes within the next gossip period. This is achieved by a cross-checking
procedure that works as follows: a node p1 that received a chunk ci from p0

acknowledges to p0 that it proposed ci to a set of f nodes. Then, p0 sends confirm
requests (with probability pcc) to the set of f nodes to check whether they
effectively received a propose message from p1 containing ci. The f witnesses
reply to p0 with answer messages confirming or infirming p1’s acknowledgment
sent to p0.

propose(i)

request(i)

serve(ci)

serve(ci)

ack[i](p2, p3)

answer: yes/no

(pcc)? confirm[i](p1)

t

k · Tg

p0 p1 p2 p3

Figure 7.7: Cross-checking protocol.

Figure 7.7 depicts the message sequence composing a direct cross-checking
verification (with a fanout of 2 for the sake of readability). The blaming mech-
anism works as follows: (i) if the ack message is not received, the verifier p0

99

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

blames the verified node p1 by f , and (ii) for each missing or negative answer
message, p0 blames p1 by 1.

Since the verification messages (i.e., ack, confirm and confirm responses) for
the direct cross-checking are small and in order to limit the subsequent over-
head of LiFT, direct cross-checking is done exclusively with UDP. The blames
corresponding to the different attacks are summarized in Table 7.2.

Attacks Blame values
fanout decrease (f̂ < f) f − f̂ from each verifier
partial propose 1 (per invalid proposal) from each verifier
partial serve (|S| < |R|) f · (|R| − |S|)/ |R| from each requester

Table 7.2: Summary of attacks and associated blame values.

Blames emitted by the direct verification procedures of LiFT are summed into
a score reflecting the nodes’ behaviors. For this reason, blame values must be
comparable and homogeneous. This means that two misbehaviors that reduce
a freerider’s contribution by the same amount should lead to the same value of
blame, regardless of the misbehaviors and the verification.

We consider a freerider pf that received c chunks and wants to reduce its
contribution by a factor δ (0 ≤ δ ≤ 1). To achieve this goal, pf can: (i) propose
the c received chunks to only f̂ = (1−δ) ·f nodes, (ii) propose only a proportion
(1− δ) of the chunks it received, or (iii) serve only (1− δ) · |R| of the |R| chunks
it was requested. For the sake of simplicity, we assume that f̂ , c · δ, c/f and
δ · |R| are all integers. The number of verifiers, that is, the number of nodes
that served the c chunks to pf is called the fanin (fin). On average, we have
fin ' f and each node serves c/f chunks [GKM03].

We now derive, for each of the three aforementioned misbehaviors, the blame
value emitted by the direct verifications.

(i) Fanout decrease (direct cross-check): If pf proposes all the c chunks to
only f̂ nodes, it is blamed by 1 by each of the fin verifiers, for each of
the f − f̂ missing “propose target”. This results in a blame value of
fin · (f − f̂) = fin · δ · f ' δf2.

(ii) Partial propose (direct cross-check): If pf proposes only (1− δ) · c chunks
to f nodes, it is blamed by f by each of the nodes that provided at least
one of the missing chunks. A freerider has therefore interest in removing
from its proposal chunks originating from the smallest subset of nodes.
In this case, its proposal is invalid from the standpoint of δ · fin verifiers.
This results in a blame value of δ · fin · f ' δ · f2.

(iii) Partial serve (direct check): If pf serves only (1 − δ) · |R| chunks, it is
blamed by f/ |R| for each of the δ · |R| missing chunks by each of the f

100

7.2. LiFT

requesting nodes. This again results in a blame value of f ·(f/ |R|)·δ·|R| =
δ · f2.

The blame values emitted by the different direct verifications are therefore
homogeneous and comparable on average since all misbehaviors lead to the
same amount of blame for a given degree of freeriding δ. Thus, they result in a
consistent and meaningful score when summed up.

7.2.3 Fooling the Direct Cross-check (?)

Considering a set of colluding nodes, nodes may lie to verifications to cover
each other up. Consider the situation depicted in Figure 7.8a, where p1 is a
freerider. If p0 colludes with p1, then it will not blame p1, regardless of p2’s
answer. Similarly, if p2 colludes with p1, then it will answer to p0 that p1 sent a
valid proposal, regardless of what p1 sent. Even when neither p0 nor p2 collude
with p1, p1 can still fool the direct cross-checking thanks to a colluding third
party by implementing a man-in-the-middle attack as depicted in Figure 7.8b.
Indeed, if a node p7 colludes with p1, then p1 can tell p0 it sent a proposal to
p7 and tell p2 that the chunk originated from p7. Doing this, both p0 and p2

will not detect that p1 sent an invalid proposal. The a posteriori verifications
presented in the next section address this issue.

p0 p1 p2
serve propose

confirm

yes/no

(a) Direct cross-checking

p0 p⋆
1

p⋆
7

p2
serve propose

confirm

yes

confirm

yes/no

(b) Man-in-the-middle attack

Figure 7.8: Direct cross-checking and attack. Colluding nodes are denoted with
a ‘?’.

7.2.4 A Posteriori Verifications

As stated in the analysis of the gossip protocol, the random choices made in the
partners selection must be verified. In addition, the example described in the
previous section, where freeriders collude to circumvent direct cross-checking,
highlights the need for statistical verification of a node’s past communication
partners.

The history of a node that biased its partner selection contains a relatively
large proportion of colluding nodes. If only a small fraction of colluding nodes

101

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

is present in the system, they will appear more frequently than honest nodes in
each other’s histories and can therefore be detected. Based on this remark, we
propose an entropic check to detect the bias induced by freeriders on the history
of nodes, illustrated in Figure 7.9.

p1, p3, p5

p0, p4, p7

p2, p3, p5

nh entries

history

Fh = {p0, p1, p2, p3, p3, p4, p5, p5, p7}

d̃h =

fr
eq
u
en
cy

node0 1 2 3 4 5 6 7

H(d̃h)
?
> γ

entropy

Figure 7.9: Entropic check on proposals (f = 3).

Every h seconds, each node picks a random node and verifies its local his-
tory. When inspecting the history of p, the verifier computes the number of
occurrences of each node in the set of proposals sent by p during the last h sec-
onds. Defining Fh as the multiset of nodes to whom p1 sent a proposal during
this period (a node may indeed appear more than once in Fh), the distribu-
tion d̃h of nodes in Fh characterizes the randomness of the partners selection.
We denote by d̃h,i the number of occurrences of node i (i ∈ {1, . . . , n}) in Fh

normalized by the size of Fh. Assessing the uniformity of the distribution d̃
of p1’s history is achieved by comparing its Shannon entropy to a threshold γ
(0 ≤ γ ≤ log2(nhf)).

H(d̃h) = −
∑

i

d̃h,i log2(d̃h,i) (7.1)

The entropy is maximum when every node of the system appears at most
once in Fh (assuming n > |Fh| = nhf). In that case, it is equal to log2(nhf).
Since the peer selection service may not be perfect, the threshold γ must be
tolerant to small deviation with respect to the uniform distribution to avoid
false positives (i.e., honest nodes being blamed). Details on how to dimension
γ are given in Section 7.3.2.

An entropic check must be coupled with an a posteriori cross-checking ver-
ification procedure to guarantee the validity of the inspected node’s history.
Cross-checking is achieved by polling all or a subset of the nodes mentioned
in the history for an acknowledgment. The inspected node is blamed by 1 for
each proposal in its history that is not acknowledged by the alleged receiver.
Therefore, an inspected freerider replacing colluding nodes by honest nodes in
its history in order to pass the entropic check will not be covered by the honest
nodes and will thus be blamed accordingly.

Because of the man-in-the middle attack presented in Section 7.2.2, a com-
plementary entropic check is performed on the multi-set of nodes F ′h that asked

102

7.2. LiFT

the nodes in Fh for a confirmation, i.e., direct cross-checking. On the one hand,
for an honest node p0, F ′h is composed of the nodes that sent chunks to p0 –
namely its fanin. On the other hand, for a freerider p?

0 that implemented the
man-in-the-middle attack, the set F ′h of p?

0 contains a large proportion of collud-
ing nodes – the nodes that covered it up for the direct cross-checking – and thus
fail the entropic check. If the history of the inspected node does not pass the
entropic checks (i.e, fanin and fanout), the node is expelled from the system.

Local history auditing verifications are sporadically performed by the nodes
using TCP connections. The reasons for using TCP are that (i) the overhead
of establishing a connection is amortized since local history auditing happens
sporadically and carries out a large amount of data, i.e., proportional to h, and
(ii) local auditing is very sensitive to message losses as it can lead to expulsion
from the system.

7.2.5 Communication Costs

In this section, we evaluate the overhead incurred by LiFT. To this end, we com-
pute the maximum number of verification and blame messages sent by a node
during one gossip period. The overheads of the verifications are summarized in
Table 7.3. Note that we do not consider statistical verifications in this section
as it does not imply a regular overhead but only sporadic message exchanges,
the a posteriori verifications are evaluated in practice in Section 7.4.

Direct Check Verifying that what was requested is actually served does not
require any exchange of verification messages as direct check consists only in
comparing the number of chunks requested by the verifier to the number of
chunks it really received. However, direct check may lead to the emission of
f blames, i.e., a blame for each sender (to M managers). The communication
overhead caused by direct checking is therefore O(M · f) messages.

Cross-checking In order to check that the chunks it sent during the previous
gossip period are proposed further on, the verifier polls the f partners of its f
partners with probability pcc, i.e., sending confirm messages. Similarly, a node
is polled by pcc · f2 nodes per gossip period on average and therefore sends
pcc · f2 answers to confirm messages. Finally, a node sends the list of its current
partners (i.e., ack messages) to the f nodes (on average) that served chunks to
it in the last gossip period, i.e., sending of the ack messages. In addition, since a
node inspects its f partners, direct cross-checking may lead to the emission of a
maximum of f blames (to M managers). The communication overhead caused
by direct cross-checking is therefore O(pcc · f2 + pcc ·M · f + f) messages. The
number of messages sent by LiFT is O(M · f + f2). This has to be compared to

103

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

the number of messages sent by the three-phase gossip protocol itself, namely
f(2 + |S|), where S is the set of served chunks, the two additional messages
being the proposal and the request. The overhead of LiFT is negligible when
taking into account the size of the chunks sent by a node, which is several orders
of magnitude larger than the verification and blame messages. Note that M is
a system parameter defining the number of managers of a node and does not
depend on the size of the system. Finally, since f ∼ ln(n), both the three-phase
protocol and LiFT scale with the number of nodes.

direct verifications (messages) 0

direct verifications (blames) O(M · f) for the verifier

direct cross-check (messages)
O(pccf

2) for the verifier (confirm messages)
O(pccf) for the inspected node (ack messages)
O(pccf

2) for each witness (answer messages)
direct cross-check (blames) O(pcc ·M · f) for the verifier

Table 7.3: Overhead of verifications.

7.3 Parameterizing LiFT

This section provides a methodology to set LiFT’s parameters. With this aim,
the performance of LiFT with respect to detection is analyzed theoretically.
Closed form expressions of the detection and false positive probabilities function
of the system parameters are given. Theoretical results allow the system designer
to set the system parameters, e.g., detection thresholds.

This section is split in two. First, the design of the score-based detection
mechanism is presented and analyzed taking into account message losses. Sec-
ond, the entropy-based detection mechanism is analyzed taking into account the
underlying peer-sampling service. Both depend on the degree of freeriding and
on the favoring factor, i.e., how freeriders favor colluding partners.

The principal notations used in this section are summarized in Table 7.4
(page 113).

7.3.1 Score-based Detection

Due to message losses, a node may be wrongfully blamed, i.e., blamed even
though it follows the protocol. Freeriders are additionally blamed for their
misbehaviors. Therefore, the score distribution among the nodes is expected to
be a mixture of two components corresponding respectively to those of honest
nodes and freeriders. In this setting, likelihood maximization algorithms are
traditionally used to decide whether a node is a freerider or not. Such algorithms

104

7.3. Parameterizing LiFT

are based on the relative score of the nodes and are thus not sensitive to wrongful
blames. Effectively, wrongful blames have the same impact on honest nodes and
freeriders.

However, in the presence of freeriders, two problems arise when using relative
score-based detection: (i) freeriders are able to decrease the probability of being
detected by wrongfully blaming honest nodes, and (ii) the score of a node joining
the system is not comparable to those of the nodes already in the system. For
these reasons, in LiFT, the impact of wrongful blames, due to message losses, is
automatically compensated and detection thus consists in comparing the nodes’
compensated scores to a fixed threshold η. In short, when the compensated
score of a node drops below η, the managers of that node broadcast a revocation
message expelling the node from the system using gossip.

Considering message losses independently drawn from a Bernoulli distribution
of parameter pl (we denote by pr = 1−pl the probability of reception), we derive
a closed-form expression for the expected value of the blames applied to honest
nodes by direct verifications during a given timespan. Periodically increasing
all scores accordingly leads to an average score of 0 for honest nodes. This
way, the fixed threshold η can be used to distinguish between honest nodes and
freeriders. To this end, we analyze, for each verification, the situations where
message losses can cause wrongful blames and evaluate their average impact.
For the sake of the analysis, we assume that (i) a node receives at least one
chunk during every gossip period (and therefore it will send proposals during
the next gossip period), and (ii) each node requests a constant number |R| of
chunks for each proposal it receives. We consider the case where cross-checking
is always performed, i.e., pcc = 1.

Direct Check (dc) For each requested chunk that has not been served, the
node is blamed by f/ |R|. If the proposal is received but the request is lost (i.e.,
pr(1 − pr)), the node is blamed by f ((a) in Equation 7.2). Otherwise, when
both the proposal and the request message are received (i.e., p2

r), the node is
blamed by f/ |R| for each of the chunks lost (i.e., (1− pr) |R|) ((b) in Equation
7.2). The expected blame applied to an honest node (by its f partners), during
one gossip period, due to message losses is therefore:

b̃dc = f ·
[(a)︷ ︸︸ ︷
pr(1− pr) · f+

(b)︷ ︸︸ ︷
p2

r · (1− pr) |R| · f|R|
]

= pr(1− p2
r) · f2 (7.2)

Cross-checking (cc) On average, a node receives f proposals during each gos-
sip period. Therefore a node is subject to f direct cross-checking verifications
and each verifier asks for a confirmation to the f partners of the inspected node.
Let p1 be the inspected node and p0 a verifier. First, note that p0 verifies p1

105

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

only if it served chunks to p1, which requires that its proposal and the associated
request have been received (i.e., p2

r). If at least one chunk served by p0 or the ack
has been lost (i.e., 1−p|R|+1

r), p0 will blame p1 by f regardless of what happens
next, since all of the f proposals sent by p1 are invalid from the standpoint of
p0 ((a) in Equation 7.3). Otherwise, that is, if all the chunks served and the ack
have been received (i.e., p|R|+1

r), p0 blames p1 by 1 for each negative or missing
answer from the f partners of p1. This situation occurs when the proposal sent
by p1 to a partner, the confirm message or the answer is lost (i.e., 1 − p3

r) ((b)
in Equation 7.3).

b̃cc = f · p2
r

[(a)︷ ︸︸ ︷
(1− p|R|+1

r) · f +

(b)︷ ︸︸ ︷
f · p|R|+1

r (1− p3
r)
]

= p2
r(1− p|R|+4

r) · f2 (7.3)

A Posteriori Cross-checking (apcc) This procedure asks the nodes that ap-
pear in the inspected node’s history for confirmation which can cause wrongful
blames. Effectively, if a proposal sent by the inspected node has not been
received by the destination node, due to message losses, the latter will not
acknowledge reception when asked. This leads again to wrongful blames. How-
ever, since the nodes are polled using TCP, the polling message and the answer
are not subject to message losses. On average, only pr · nhf proposals in the
inspected node history are confirmed by the destination leading to an average
blame of:

b̃apcc = (1− pr) · nhf (7.4)

Similarly to direct verifications, the wrongful blames applied by the local
auditing must be compensated. However, this should be done only sporadically,
i.e., only when a node is effectively audited, since these verifications are not
triggered at each gossip period.

From the previous analysis, we obtain a closed-form expression for the ex-
pected value of the blame b applied to an honest node by direct verifications
due to message losses:

b̃ = b̃dc + b̃cc = pr(1 + pr − p2
r − p|R|+5

r) · f2 . (7.5)

Following the same line of reasoning, a closed-form expression for the standard
deviation σ(b) of b can be derived.

Figure 7.10 depicts the distribution of scores after one gossip period in a
simulated network of 10, 000 honest nodes in steady state (where both direct
verifications and direct cross-checking are performed with pcc = 1). The message
loss rate pl has been set to 7%, the fanout f to 12 and |R| = 4. The scores of
the nodes have been increased by −b̃ = 72.95, according to Formula (7.5). We
observe that, as expected, the average score (dotted line) is close to zero (< 0.01)

106

7.3. Parameterizing LiFT

which means that the wrongful blames have been successfully compensated. The
experimental standard deviation is σ(b) = 25.6.

0

0.005

0.01

0.015

-250 -200 -150 -100 -50 0 50

fr
ac

ti
on

of
n
o
d
es

score

av
er

ag
e

honest nodes

Figure 7.10: Impact of message losses.

A node can be expelled from the system either when its score drops beyond
a fixed threshold (η) or upon a local auditing procedure. We now evaluate
the ability of LiFT to detect freeriders (probability of detection α) and the
proportion of honest nodes wrongfully expelled from the system (probability of
false positives β) in both situations.

As mentioned above, the score-based detection mechanism uses a fixed thresh-
old η to which the scores of the nodes are compared. With this aim, the score
of each node is adjusted (to compensate wrongful blames) and normalized by
the number of gossip periods r the node spent in the system. At the t-th gossip
period, the normalized score of a node writes:

s = −1
r

r∑
i=0

(bt−i − b̃) , (7.6)

where bi is the value of the blames applied to the node during the i-th gossip
period. From the previous analysis, we get the expectation and the standard
deviation of the blames applied to honest nodes at each round due to message
losses, therefore, assuming that the bi are i.i.d. (independent and identically dis-
tributed) we get E[s] = 0 and σ(s) = σ(b)/

√
nT . Using Bienaymé-Chebyshev’s

inequality, we derive an upper bound for the probability of false positive:

β = P (s < η) ≤ P (|s| > −η) ≤ σ(b)2

r · η2
.

107

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

The probability α to catch a freerider depends on its degree of freeriding that
characterizes its deviation to the protocol. Formally, we define the degree of
freeriding as a 3-uple ∆ = (δ1, δ2, δ3), 0 ≤ δ1, δ2, δ3 ≤ 1, so that a freerider
contacts only (1− δ1) · f nodes per gossip period, proposes the chunks received
from a proportion (1 − δ2) of the nodes that served it in the previous gossip
period, and serves (1 − δ3) · |R| chunks to each requesting node. The gain in
terms of the upload bandwidth saved is therefore 1− (1− δ1)(1− δ2)(1− δ3).

Following the same line of reasoning as in the previous section, we can derive a
closed-form expression for the expected blame applied to a freerider as a function
of ∆:

b̃′(∆) = (1− δ1) · pr

(
1− p2

r(1− δ3)
) · f2 + δ2 · f2

+ (1− δ2) · p2
r ·
[
p|R|+1

r (1− p3
r(1− δ1)) + (1− p|R|+1

r)
]
· f2 .

Similarly to the expression σ(b), a closed-form expression for the standard
deviation σ(b′(∆)) of b′(∆) can be obtained. The probability of detection α,
similarly to the probability of false positives β, can be lower bounded:

α ≥ 1− σ(b′(∆))2

r · (b̃′(∆)− η)2
.

Note that under the assumption that losses are independently drawn from a
Bernoulli distribution the performance of LiFT increases over time. Effectively,
as the detection threshold is fixed and the standard deviations of the score
distributions tend to zero when the time spent in the system increases, the
probability of detection α increases to one and the probability of false positive
β decreases to zero.

Figure 7.11 depicts the distribution of normalized scores in the presence of
1, 000 freeriders of degree ∆ = (0.1, 0.1, 0.1) in a 10, 000-node system after r = 50
gossip periods. We plot separately the distribution of scores among honest nodes
and freeriders. As expected, the probability density function (Figure 7.11a) is
split into two disjoint modes separated by a gap: the lowest (i.e., left most) mode
corresponds to freeriders and the highest one to honest nodes. Figure 7.11b
depicts the cumulative distribution function of scores and illustrates the notion
of detection and false positives for a given value of the detection threshold (i.e.,
η = −9.75).

We set the detection threshold η to −9.75 so that the probability of false
positive is lower than 1%, we assume that freeriders perform all possible attacks
with the same probability (δ1 = δ2 = δ3 = δ) and we observe the proportion of
freeriders detected by LiFT for several values of δ. Figure 7.12 plots α and β as
functions of δ. For instance, we observe that for a node freeriding by 5%, the
probability of being detected by LiFT is 65%. Beyond 10% of freeriding, a node

108

7.3. Parameterizing LiFT

0

0.025

0.05

0.075

0.1

-50 -40 -30 -20 -10 0 10

fr
ac

ti
on

of
no

de
s

score

honest nodes
freeriders

(a) probability density function (pdf)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -40 -30 -20 -10 0 10

fr
ac

ti
on

of
no

de
s

score

threshold

false positives (β)

detection (α)

honest nodes
freeriders

(b) cumulative distribution function (cdf)

Figure 7.11: Distribution of normalized scores in the presence of freeriders (∆ =
(0.1, 0.1, 0.1)).

is detected over 99% of the time. It is commonly assumed that users are willing
to use a modified version of the client application only if it increases significantly
their benefit (resp. decreases their contribution). In FlightPath [LCM+08], this
threshold is assumed to be around 10%. With LiFT, a freerider achieves a gain
of 10% for δ = 0.035 which corresponds to a probability of being detected of
50% (Figure 7.12).

7.3.2 Entropy-based Detection

For the sake of fairness and in order to prevent colluding nodes from covering
each other up, LiFT includes an entropic check assessing the statistical validity

109

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

0

0.2

0.4

0.6

0.8

1

fr
ac

ti
on

of
fr

ee
ri
d
er

s

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

fr
ac

ti
on

of
u
p
lo

ad
b
an

d
w

id
th

degree of freeriding (δ)

detection

gain

Figure 7.12: Proportion of freeriders detected by LiFT.

of the partner selection. To this end, the entropy H of the distribution of
the inspected node’s former partners is compared to a threshold γ, which is
a parameter of the system. The distribution of the entropy of honest nodes’
histories depends on the peer sampling algorithm used and can be estimated
by simulations. Figure 7.13a depicts the distribution of entropy for a history
of nhf = 600 partners (nh = 50 and f = 12) of a 10, 000-node system using
a full membership-based partner selection. The observed entropy ranges from
9.11 to 9.21 for a maximum reachable value of log2 (nhf) = 9.23. Similarly, the
entropy of the fanin multi-set F ′h, e.g., nodes that selected the inspected node as
partner, is depicted in Figure 7.13b. The observed entropy ranges from 8.98 to
9.34. Note that the size of F ′h can be greater than nhf (but is nhf on average)
and therefore the bound log2 (nhf) does not apply to the entropy of fanin.

The presented results show that the probability of wrongfully expelling an
inspected node during local auditing is negligible when the threshold γ is set to
8.95. This threshold is used for both fanout and fanin entropic check.

We now analytically determine to what extent a freerider can bias its partner
selection without being detected by local auditing, given a threshold γ and a
number of colluding nodes m′. A first requirement to be able to detect colluding
nodes is that the number of proposals in a node’s history must be greater than
the number of colluding freeriders. Otherwise, by proposing chunks only to
other freeriders in a round-robin manner, a node may still be able to achieve a
maximized entropy. We therefore set h so that nhf � m′. Consider a freerider
that biases partner selection in order to favor colluding freeriders by picking a
freerider as partner with probability pm and an honest node with probability

110

7.3. Parameterizing LiFT

0

0.02

0.04

0.06

0.08

0.1

0.12

8.8 8.9 9 9.1 9.2 9.3 9.4

fr
ac

ti
on

of
n
o
d
es

entropy

honest nodes

(a) entropy of fanout

0

0.02

0.04

0.06

0.08

0.1

0.12

8.8 8.9 9 9.1 9.2 9.3 9.4

fr
ac

ti
on

of
n
o
d
es

entropy

honest nodes

(b) entropy of fanin

Figure 7.13: Distribution of the entropy H of the nodes’ histories using a full
membership-based partner selection.

1− pm. We seek the maximum value p?
m for pm, function of γ and m′. Defining

the probability law of the partner selection among colluding nodes (resp. honest
nodes) by X (resp. by Y), the entropy of its fanout writes:

H(Fh) = −
∑

p(n) log2(p(n))

= −
∑
n∈X

p(n) log2(p(n))−
∑
n∈Y

p(n) log2(p(n))

= −
∑
n∈X

pmpX(n) log2(pmpX(n))

−
∑
n∈Y

(1− pm)pY (n) log2((1− pm)pY (n))

= −pm

∑
n∈X

(pX(n) log2(pX(n)) + pX(n) log2(pm))

− (1− pm)
∑
n∈Y

(pY (n) log2(pY (n)) + pY (n) log2(1− pm))

= −pm

log2(pm)
∑
n∈X

pX(n)︸ ︷︷ ︸
=1

+
∑
n∈X

(log2(pX(n)) · pX(n))︸ ︷︷ ︸
=−H(X)

− (1− pm)

log2(1− pm)
∑
n∈Y

py(n)︸ ︷︷ ︸
=1

+
∑
n∈Y

(log2(pY (n)) · pY (n))︸ ︷︷ ︸
−H(Y)

111

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

= −pm log2 pm − (1− pm) log2 (1− pm) + pmH(X) + (1− pm)H(Y) .

Since X and Y are independent, this quantity is maximized when X and Y
are the uniform distribution. Therefore, to maximize the entropy of its history,
a freerider must choose uniformly at random its partners in the chosen class,
i.e., honest or colluding. Therefore, given a threshold γ and a maximum number
of colluding nodes m′, we calculate H(X) knowing the number of occurrences
of each m′ colluding freeriders in the freerider fraction (p?

m · nh · f) of history is
pm·nh·f

m′ , the probability to have a freerider is p?
m·nh·f

m′ /(p?
m · nh · f) = 1/m′. We

have H(X) and H(Y) defined as:

H(X) = −
∑
m′

1
m′

log2

(
1
m′

)
H(Y) = −

∑
nh·f(1−p?

m)

1
nh · f(1− p?

m)
log2

(
1

nh · f(1− p?
m)

)

= − log2

(
1

nh · f(1− p?
m)

)
.

We can therefore calculate γ as:

γ = −p?
m log2 p

?
m − (1− p?

m) log2 (1− p?
m)− p?

m log2

(
1
m′

)
+ (1− p?

m)(− log2

(
1

nh · f(1− p?
m)

)
= −p?

m log2

(
p?

m

m′

)
− (1− p?

m) log2

(
1

nh · f
)

, (7.7)

where p?
m is the maximum value for pm that a freerider can use without being

detected. Inverting numerically Formula (7.7), we deduce that for γ = 8.95
a freerider colluding with 25 other nodes can serve its colluding partners 15%
of the time, without being detected. In this setting, a freerider can therefore
decrease its contribution by 15%.

7.4 Evaluation

We now evaluate LiFT on top of the gossip-based streaming protocol described
in Algorithm 3.3, over the PlanetLab testbed.

112

7.4. Evaluation

Notations Descriptions

n, m number of nodes / freeriders

|R|, |S| number of chunks requested, resp. served

f fanout

nh size of history

Fh,F ′
h multi-set of fanout / fanin in history

pcc probability to trigger cross-checking

pl probability of message loss (pr = 1− pl)

b̃ average value of wrongful blames

σ(b) standard deviation of wrongful blames

r number of gossip periods spent in the system

s normalized score

∆ = (δ1, δ2, δ3) degree of freeriding (3-uple)

δ = δ1 = δ2 = δ3 degree of freeriding

b̃(∆) average value of blames (freeriders)

σ(b′(δ)) standard deviation of blames (freeriders)

η detection threshold (blame-based detection)

α probability of detection (blame-based detection)

β probability of false positive (blame-based detection)

γ detection threshold (entropy-based detection)

Table 7.4: Summary of principal notations.

7.4.1 Experimental Setup

We have deployed and executed LiFT on a 300 PlanetLab node testbed, broad-
casting a stream of 674 kbps in the presence of 10% of freeriders. The freeriders
(i) contact only f̂ = 6 random partners (δ1 = 1/7), (ii) propose only 90% of
what they receive (δ2 = 0.1) and finally (iii) serve only 90% of what they are
requested (δ3 = 0.1). The fanout of all nodes is set to 7 and the gossip period is
set to 500 ms. The blaming architecture uses M = 25 managers for each node.

7.4.2 Practical Cost

We report on the overhead measurements of direct and a posteriori verifications
(including blame messages sent to the managers) for different stream rates.

Direct Verifications Table 7.5 gives the bandwidth overhead of the direct ver-
ifications of LiFT for three values of pcc. Note that the overhead is not null
when pcc = 0 since ack messages are always sent. Yet, we observe that the
overhead is negligible when pcc = 0 (i.e., when the system is healthy) and re-
mains reasonable when pcc = 1 (i.e., when the system needs to be purged from
freeriders).

113

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

direct verifications a posteriori verif.
pcc = 0 pcc = 0.5 pcc = 1

674 kbps stream 1.07% 4.53% 8.01% 3.60%
1082 kbps stream 0.69% 3.51% 5.04% 2.89%
2036 kbps stream 0.38% 2.80% 2.76% 1.74%

Table 7.5: Practical overhead

A Posteriori Verifications A history message contains nh entries. Each entry
consists of f nodes identifiers and the chunk ids that were proposed. Both the
fanout and fanin histories are sent upon a posteriori verification.

Besides the entropic checks, a posteriori cross-checking is performed on a
subset of the fanout or fanin entries. We measured the maximum overhead, that
is when the whole fanout and fanin histories are cross-checked. The overhead
incurred by a posteriori verifications in our experimental setup (i.e., a history
size nh = 50, a gossip period of 500 milliseconds, a fanout of f = 7 and a
posteriori verification period of h = 25 seconds) is given in Table 7.5.

7.4.3 Experimental Results

We have executed LiFT with pcc = 1 and pcc = 0.5. Figure 7.14 depicts the
scores obtained after 25, 30 and 35 seconds when running direct verifications and
cross-checking. The scores have been compensated as explained in Section 7.3.1,
assuming a loss rate of 4% (average value observed on PlanetLab).

The two cumulative distribution functions for honest nodes and freeriders
are clearly separated. The threshold for expelling freeriders is set to −9.75 (as
specified in the analysis). In Figure 7.14b (pcc = 1, after 30 s) the detection
mechanism expels 86% of the freeriders and 12% of the honest nodes. In other
words, after 30 seconds, 14% of freeriders are not yet detected and 12% represent
false positives, mainly corresponding to honest nodes that suffer from very poor
connection (e.g., limited connectivity, message losses and bandwidth limitation).
These nodes do not deliberately freeride, but their connection does not allow
them to contribute their fair share. This is acceptable as such nodes should not
have been allowed to join the system in the first place. As expected, with pcc

set to 0.5 the detection is slower but not twice as slow. Effectively, with nodes
freeriding with δ3 > 0 (i.e., partial serves) the direct checking blames freeriders
without the need for any cross-check. This explains why the detection after only
35 seconds with pcc = 0.5 (Figure 7.14f) is comparable with the detection after
30 seconds with pcc = 1 (Figure 7.14b).

As stated in the analysis, we observe that the gap between the two cumulative
distribution functions widens over time. However, the variance of the score does
not decrease over time (for both honest nodes and freeriders). This is due to

114

7.5. Related Approaches

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(a) After 25 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(b) After 30 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(c) After 35 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(d) After 25 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(e) After 30 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(f) After 35 seconds.

Figure 7.14: Cumulative distribution functions of scores with pcc = 1 (above)
and pcc = 0.5 (below).

the fact that we considered in the analysis that the blames applied to a given
node during distinct gossip periods were independent and identically distributed
(i.i.d.). In practice however, successive gossip periods are correlated. Effectively,
a node with a poor connection is usually blamed more than nodes with high
capabilities, and this remains true over the whole experiment.

7.5 Related Approaches

Since its successful application in BitTorrent the Tit-for-Tat (TfT) incentives
have become a de facto standard for dealing with freeriders in large scale content
distribution systems. BAR Gossip – and by extension FlightPath – is the most
successful and complete application including TfT to ensure fair collaboration of
participants in the context of gossip protocols. However, it suffers from several
issues that drastically limit both its efficiency and its practicality in a large-scale
content dissemination system.

First, BAR Gossip makes intensive use of both symmetric and asymmetric
cryptography. Beyond the fact that this adds a non negligible overhead to
the protocol, both in terms of message exchange and computation, it requires a
trusted third party to issue identification certificates, namely a public key infras-
tructure. In addition to requiring prior registration, asymmetric cryptography
techniques generate a high load, proportional to the size of the network, on the

115

Chapter 7. Lightweight Freerider-Tracking Protocol: LiFT

centralized server. Further, it is shown in [HJVR08] that BAR Gossip collapses
when the system grows beyond a given size.

Second, similarly to TfT-based protocols, BAR Gossip relies on altruistic
nodes and opportunistic pushes where nodes upload pieces of data without re-
ceiving anything in exchange. This component is essential for TfT to work in
a real life setting mainly to ensure that nodes joining the system can gain bar-
gaining power (i.e., pieces to exchange) to initiate symmetric exchanges but also
to ensure that nodes with low upload capacities are unchoked (which is unlikely
in bidirectional exchanges, as nodes with high upload bandwidth are preferred).
This component is used without any protection against freeriders despite the fact
that most attacks to TfT actually exploit it [LMSW06, SPCY07]. This shows
that protocols using TfT are still sensitive to freeriders and that the problem of
designing incentives for the wide class of epidemic dissemination protocols (to
which the opportunistic pushes belong) is of the utmost importance in fighting
against freeriders. In BAR Gossip this issue is addressed by forcing the nodes
that are opportunistically unchoked to send the exact same amount of data
they received, should they send junk data if they have nothing of interest. This
results in a waste of bandwidth and seems inappropriate in a context where
the upload bandwidth of nodes is precisely the resource that needs to be used
optimally.

Third, protocols such as BAR Gossip are extremely vulnerable to the pres-
ence of colluding nodes. The first reason for this is that the game theory at
the core of BAR Gossip does not handle teams of players, but an even larger
problem is that the opportunistic component is alone sufficient for achieving
very good performance when exploited by a coalition. Assuming a set of col-
luding freeriders (potentially hosted on a high speed network or even on the
same machine [Dou02]) that take advantage of the opportunistic component to
obtain pieces for free (or against a small amount of junk data) and then share
these pieces among the coalition, the stream can be downloaded with a small
contribution in return. This situation where nodes collude is not captured by
the BAR model which considers rational nodes to be nodes willing to contribute
as long as this generates profit in return without attention to the nodes with
which they collaborate.

Trying to solve these issues, the BitTorrent file sharing community has tried
to promote private trackers that account for the ratio upload/download of regis-
tered users and force them to have a ratio above a certain limit (typically above
0.5). Doing so, the private trackers constrain users to seed files, i.e., to altruisti-
cally serve content to other registered users. This solution is in fact naive, since
the reporting of upload/ratio to the trackers is not secured anyway and thus, a
modified client can report arbitrarily large upload to its tracker, promoting its
ratio and thus benefit from regular seeders. Interestingly, regular seeders blindly
contribute in order to boost their ratio. In the end, freeriders benefit even more

116

7.6. Summary

from regular seeders as regular seeders are forced to seed and even compete to
contribute the most possible so that their ratio increases.

PeerReview [HKD07] deals with malicious nodes following an accountability
approach. Nodes maintain signed logs of their actions that can be checked using
a reference implementation running in addition to the application. When com-
bined with CSAR [BDHU09], PeerReview can be applied to non-deterministic
protocols. However, the intensive use of cryptography and the sizes of the logs
maintained and exchanged drastically reduce the scalability of this solution. In
addition, the validity of PeerReview relies on the fact that messages are always
received which is not the case over the Internet.

The case of malicious participants was considered in the context of generic
gossip protocols, i.e., consisting of state exchanges and updates [JMB04]. This
system relies on cryptography for signing messages between nodes and does not
consider malicious behaviors that stem from the partner selection, i.e., biasing
the random choices. In addition, they do not tackle the problem of collusion.

The approaches that relate the most to LiFT are the distributed auditing
protocol proposed in [HJVR08] and the passive monitoring protocol proposed
in [KKU08]. In the first protocol, freeriders are detected by cross-checking their
neighbors’ reports. The latter focuses on gossip-based search in the Gnutella
network. The nodes monitor the way their neighbors forward/answer queries in
order to detect freeriders and query droppers. Yet, contrarily to LiFT – which is
based on random peer selection – in both protocols the nodes’s views are static,
forming a fixed mesh overlay. In fact, the ideas to enforce fairness proposed
in [PvS10] are indeed to promote long-term collaboration between nodes so that
they can decide if they should give their fixed neighbors access to their resources
or not based on past collaboration. These techniques thus cannot be applied
to gossip protocols. In addition, the situation where colluding nodes cover up
each other’s misbehavior (not addressed in these work) makes such monitoring
protocols vain.

7.6 Summary

We presented LiFT, a protocol for tracking freeriders in gossip-based asymmetric
data dissemination systems. Beyond the fact that LiFT deals with the inherent
randomness of the protocol, LiFT precisely relies on this randomness to make
robust its verification mechanisms against colluding freeriders with a very low
overhead. We provided a theoretical analysis of LiFT that allows system design-
ers to set its parameters to their optimal values and characterizes its performance
backed up by extensive simulations. We reported on our experimentations on
PlanetLab which prove the practicability and efficiency of LiFT.

117

We can only see a short distance ahead, but
we can see plenty there that needs to be
done.

Alan Turing

8
Conclusion

In this thesis, we have investigated live streaming with gossip. In particular, we
have investigated if and how a simple gossip-based algorithm can efficiently be
used in scenarios (i) where participants can only contribute limited resources,
(ii) when these limited resources are heterogeneously distributed among partic-
ipants, and (iii) where an ideal state in the P2P environment is not reached,
meaning that participants are not contributing their fair share of work.

The gossip paradigm provides many features required by high-bandwidth con-
tent dissemination such as fast propagation of rumors, probabilistic guarantee
that each rumor reaches all participants, and high resilience to churn and high
scalability. Its inherent redundancy, however, limits its usage, as it stands, to
the dissemination of small updates.

The gossip-based protocol presented in Chapter 3 takes full potential of gos-
sip’s advantages by limiting its usage to the gossiping of content location. The
content is subsequently pulled without duplicates, avoiding gossip’s limitation
in the context of high-bandwidth content dissemination. We therefore conclude
that:

• Gossip can indeed be used for high-bandwidth content dissemination, and
that it furthermore appears as an appealing approach for live streaming.

The remaining chapters of the body of work give specific answers to how gossip
can be used for live streaming. Chapter 4 and Chapter 5 address scenario (i)
by showing how such a gossip must be used in a scenario where nodes have
limited resources. In Chapter 6, we present HEAP, a fanout adaptation mech-
anism to let gossip adapt to nodes’ capabilities when they are heterogeneously

119

Chapter 8. Conclusion

distributed among nodes as answer to scenario (ii). Finally, Chapter 7 proposes
to complement gossip with LiFT for detecting and expelling freerider nodes that
are not contributing their fair share of work, scenario (iii).

Below, we first summarize our contributions in the thesis. Thereafter, we then
outline a few open issues and directions for future investigations.

8.1 Summary of Results

The summary of the results of this thesis centers around three axes:

Live Streaming with Gossip in Constrained Environment In bandwidth-
constrained environments, the upload bandwidth of nodes is considered the
bottleneck for collaborative tasks. Its usage must thus be made with parsi-
mony (Chapter 2). The gossip paradigm, presented in Chapter 3, is therefore
used to disseminate the location of content which is then pulled by interested
nodes, thus avoiding to waste bandwidth in receiving duplicates of payload.

We have shown in Chapter 4 that in such a constrained environment, increas-
ing the fanout does not help nodes to receive a better quality stream and that
the proactiveness of the protocol, namely how frequently a node picks different
fanout partners to communicate with, should be the highest possible. In other
words, a node should pick a different subset of fanout partners every gossip
period.

• Increasing the fanout does not incur an intolerable load because of the
duplicate propose messages, but it gives nodes the possibility to be re-
quested by a larger number of nodes than usual. This means that nodes
have possibly to serve a large number of nodes (possibly as large as fanout
of them) at the same time and thus exceed their bandwidth with bursts.

• Regarding proactiveness, the reasons are different, but the problem re-
mains the same in that nodes have a tendency to exceed their bandwidth.
The less proactive the protocol is, the more a node close to the source
remains longer close to the source and has content that is interesting for
its chosen fanout partners. This node therefore needs to serve a relatively
large number of them for a long period of time, exceeding its bandwidth
constraint, whereas nodes far from the source keep under-utilizing their
bandwidth.

In Chapter 5, we have proposed two mechanisms to complement the dissem-
ination protocol, namely Codec and Claim, resulting in the gossip++ protocol.
A node can receive many proposals for a given chunk but can also receive no
proposal at all, be it because of message loss or simply because of the prob-
abilistic nature of gossip. The fact that messages are lost, because of nodes

120

8.2. Future Work

exceeding their bandwidth and dropping them or because of lossy links, repre-
sents a problem that also, and principally, needs to be tackled in the second and
third phases of the protocol, namely the request and the serve. Codec aims at
being able to recover missing chunks because no proposal was received for them,
while Claim leverages the possibly many duplicates of gossip in content location
to re-request different nodes in case a request or a serve was dropped or lost.

Heterogeneous Bandwidth-constrained Environment Chapter 6 showed that
the inherent load-balancing properties of gossip is not effective in the case where
the upload capability distribution of nodes is heterogeneous. Considering that
the average upload capability of the distribution is sufficient to sustain the
stream rate, we proposed a novel way to account for heterogeneity in gossip
protocols. With the computation of an average bandwidth capability, which
aggregation is efficiently done with gossip, we proposed a way of locally adapting
the fanout of nodes in such a way that their contribution is proportional to their
upload capabilities and moreover, we ensured that the reliability of gossip in
disseminating the content location was unaltered. Effectively, the contribution
of a node highly depends on its fanout and not only should a node increase
its fanout if it is considered rich and decrease it if it is considered poor but
the amount of this local increase or decrease must result in a system that still
guarantees efficiency, globally.

Presence of Freeriders In Chapter 7, we proposed LiFT, a protocol to secure
high-bandwidth gossip-based dissemination protocols against freeriders. When
sharing large content, participants can be tempted not to contribute their fair
share of work if they have the feeling that their benefit is unaltered whatever
their contribution. This behavior is common in asymmetric systems where the
nodes’ benefit is not directly correlated with their contribution. A node serving
another for a given amount is not guaranteed that this very same node will
eventually serve it back with the same amount. LiFT ensures that nodes closely
follow the dissemination protocol and detects nodes that freeride by means of
cross-checking previous interactions and statistical verifications. It does not
use any cryptography and relies only on the fact that given its randomness,
gossip will always reach a proportion of honest nodes willing to help detecting
freeriders.

8.2 Future Work

The work in this thesis opens directions for both new research and enhance-
ments to overcome limitations in gossip in general and in gossip++, HEAP or
LiFT. We start by research in general in the field of gossip in Section 8.2.1, dis-

121

Chapter 8. Conclusion

cuss networking problems in Section 8.2.2 and then discuss about performance
in live streaming in Section 8.2.3. Section 8.2.4 discusses how adaptation to
upload capabilities and knowledge about the distribution of capabilities could
be used in order to further enhance the HEAP dissemination protocol. Finally,
Section 8.2.5 reviews future work in the field of LiFT.

8.2.1 On Democratizing Gossip

Gossip has produced quite a number of very interesting scientific research pa-
pers but little is known about its usage in the industry. The only proof we
have that gossip is used in commercial products is its presence as a membership
service (i.e., a failure detector) in Amazon’s Simple Storage Service (Amazon
S3) [DHJ+07]. Following discussions with many researchers met during these
past years, although it appears that there is a clear classification between struc-
tured and unstructured overlays, maybe ironically, there is no well-defined clas-
sification in the field of unstructured overlays. Gossip is sometimes viewed as
just another mesh overlay, sometimes as flooding and sometimes as some kind
of random process. These different perceptions, even though they are a bit
reductive, not to say uncomplimentary, are correct in some sense:

• Gossip is indeed very close to mesh overlays since they are unstructured
and random, but in contrary to mesh overlays, the overlay in gossip is
highly dynamic.

• Gossip is a way of implementing the broadcast primitive with probabilistic
guarantee, and the way it disseminates information in practice is close to
flooding, except that the flood is indeed controlled.

• Gossip is inherently random, either in the underlying overlay construction
or in the way it uses it to convey information.

The rare use of gossip in practice can be explained by two facts.

(i) Gossip has mainly been used for disseminating small updates and has
only rarely been considered as an alternative for high-bandwidth content
dissemination scenarios.

Because it creates many duplicates, gossip, in its simplest form, is not
a good candidate for high-bandwidth content dissemination where the
bandwidth usage of nodes is of utmost importance. Gossip is therefore
restrained to propagating small updates, which it does very well, and
therefore reduced to act as a side protocol, e.g., detecting failures, but not
at the core of the collaborative task, except when the task itself deals with
small updates, e.g., aggregation in sensor networks. A clear example of
gossip acting as a side protocol in practice is its usage as a membership
service in the Dynamo storage system of Amazon [DHJ+07].

122

8.2. Future Work

(ii) Gossip represents a large signaling overhead as it creates many duplicates
because of its random and proactive nature and this signaling overhead
has not yet shown to provide added value to the protocol.

The trend moving from client-server to P2P architectures first moved to
structured overlays such as trees. The main goal of trees is that once
constructed and assuming there is no churn, the signaling overhead is
reduced to a minimum as content can simply be pushed from the root
to the leaves: the tree structure itself ensures that nodes will not receive
duplicate information and that all nodes will eventually receive the data.
Moving from trees to multiple-trees convinced most researchers that it was
of the utmost importance to give a chance to all nodes to contribute to the
system for improved overall performance. The next step, that is, moving
from a structured overlay to an unstructured overlay, has already lost
some researchers that wanted to stick to tree-like overlays for their reduced
signaling overhead. Some research has indeed even turned back from mesh
overlays to multiple-trees (on top of meshes), e.g, GridMedia [ZZSY07] and
the last version of Coolstreaming [LXQ+08]. Nonetheless and maybe also
thanks to BitTorrent, mesh overlays are very appealing alternatives to
trees, especially in case of catastrophic failures and churn.

What we consider the next step is indeed moving from mesh overlays to
dynamic unstructured overlays, namely gossip. This next step has also
lost some researchers on the way, e.g., the ones convinced by trees, the
ones convinced by mesh overlays then coming back to multiple trees and
the ones convinced by mesh overlays as such. To some extent, gossip might
also have suffered from the rather bad publicity made about flooding, when
it was used for propagating requests in the early Napster P2P system.

It is easy to show that the gossip approach is very simple, and by extension,
much simpler than any other structured or unstructured approach. But if
the practical issues of complicated approaches have already been solved,
simplicity is not an argument of choice anymore. The signaling overhead
from trees to meshes and from meshes to gossip has constantly increased
and this could be seen as a waste of bandwidth exactly as memory is
wasted by newer computer programs, namely software bloats.

Showing that the signaling overhead of gossip is not a waste but a feature
is a research topic on its own and needs future attention. A clear example
is the use of Claim showing that the possibility to request the same content
from different nodes is a clear added value in the presence of freeriders or
failures, known to happen in large-scale systems. There is thus much to
bet that in an online Internet-based TV broadcasting system, not only will
users freeride or fail, but they will also probably switch channels frequently
leading to dynamic join and leave in the different streams corresponding

123

Chapter 8. Conclusion

to these channels [CRC+08]. A dynamic approach such as gossip seems
rather adequate in this situation.

8.2.2 On Networking Issues

TCP-Friendliness Using gossip, the set of communication partners of a node
changes every gossip period and since messages sent are small, it is quite natural
to transfer them via UDP. Nevertheless, doing so can have a negative impact on
other applications competing for bandwidth. In other words, none of the proto-
cols proposed in this thesis are TCP-friendly. Our gossip-based protocol might
simply take priority over other applications, similarly to most commercial voice-
over-IP protocols. Making protocols using multiple incoming streams TCP-
friendly is quite difficult assuming the serving nodes are static [WH01, MO07].
Doing the same for ever changing partners, such as with gossip, is therefore a
problem on its own and needs further research.

Guarded Nodes Even though the Internet was imagined as an end-to-end con-
nectivity model where each node could contact each other node in the network,
the IPv4 soon reaches its limit in the address space and one way of limiting
the use of public addresses is to hide many computers behind a single public
address, namely IP masquerading. This is usually done with Network Address
Translation (NAT) in such a way that a whole private network is hidden behind
a router acting as a bridge between the private network and the Internet. This,
with the emergence of software firewalls makes nodes harder to reach as they
are guarded. The problem of limited reachability is solved in three very different
ways: an explicit way and two transparent ways.

Explicit Port Forwarding In the router, the ports used by the application have
to be manually opened and correctly forwarded to the corresponding com-
puter. This is the most common way of benefiting fully from applica-
tion and is especially the norm in applications such as BitTorrent clients
(e.g., [Bit]), Wuala [Wua], or eMule [eMu]. These programs and the follow-
ing procedures for opening and forwarding the correct ports to the correct
computers demands certain skills that the common users do not have or,
for good reasons, simply do not want to hear about.

NAT-traversal There exist techniques for punching holes in the router trans-
parently [FSK05, RMMW08, MMR10] or creating a mesh in the presence
of guarded peers [WJJ05]. Although these techniques work very well for
single end-to-end communication such as VoIP (e.g., Skype [Sky]), it is not
clear how these techniques behave in case each node eventually communi-
cates with each other node in the network, such as in a gossip protocol.

NAT-avoidance At the application level, recent work [DOvNB07, KPQS09,

124

8.2. Future Work

LvRR10] shows how to avoid traversing NAT by relying on gateway nodes
(themselves possibly forming a route of hole-punched gateways [KPQS09])
to direct the traffic to guarded nodes, providing that there exists gateways
able to reach those nodes. Considering small updates, the load on gate-
ways is negligible and the increase in their load stays reasonable. For
high-bandwidth content dissemination, however, these proposals might
not scale since gateways are loaded proportionally to the number of hosts
for which they need to act as gateways. A solution could be to consider
these gateways as being themselves source of content dissemination and
thus create a sub-gossip in the private network for which they act as gate-
way, possibly reducing their load by a non negligible factor. However, their
role resembles the role of supernodes and their impact in case of failure
might be the disconnection of the whole private network.

In a live streaming application targeting the mass, it is not possible to ask
every user to manually open its host on a router. There is therefore a need
(i) at the network level, to traverse NAT in an efficient way even for a very
large number of possibly communicating hosts, and if this proves to be impossi-
ble (ii) at the application level, research for achieving high-bandwidth content
dissemination, possibly via gateway nodes.

Head-to-head Comparison with Trees and Mesh-based Systems In order to
convince gossip-skeptical researchers that gossip is a clear alternative to trees
and meshes for high-bandwidth content dissemination, there is a need to extend
the work proposed in this thesis to do a head-to-head comparison with tree-
based and mesh-based systems. Such a comparison is very challenging for many
reasons.

Testbed We need a testbed that can show protocols scale, that is realistic,
where experiments are reproducible and controlled. PlanetLab is the most
realistic testbed since hosts are distributed over the Internet and thus its
topology is inherently the one of the Internet. Although one can argue
that hosts in Universities, institutions and research labs are connected to
Internet backbones, the delays are realistic and it is the closest to reality
that we can have as long as the bandwidth utilization of nodes is manually
capped.

Unfortunately, PlanetLab nodes suffer from a heterogeneous and possibly
very high load, mainly induced by ongoing experiments. The scale of
the testbed is thus very much reduced when trying to deploy bandwidth-
demanding applications. In addition, its load varies from time to time
not providing reproducible experiments in the long run. The only viable
option would be to run the different head-to-head applications at the same
time with reduced bandwidth demand, which is of course not an optimal
solution.

125

Chapter 8. Conclusion

Simulations give reproducible results but when done with a realistic com-
munication layer, the scale of the experiments is reduced to hundreds of
nodes, not unleashing performance and possible issues of protocols with
respect to scalability.

The best solution might be to run experiments on clusters, e.g.,
Grid’5000 [Gri], with a realistic Internet-like topology such as Model-
Net [BCG+] and thoroughly measure the bandwidth usage of nodes and
make it comparable, be the protocols based on UDP with explicit retrans-
mission such as Claim, or relying on TCP and its implicit retransmission,
that indeed also uses measurable bandwidth.

Protocols Picking the correct protocols to compare with, reimplementing them
or introducing in them a common evaluation metrics and deploying them
is a very challenging task on its own. Thanks to Harry Li and Meng Zhang,
we have the code of BAR Gossip/FlightPath [LCW+06,LCM+08] written
in Python and of GridMedia [ZZSY07] written in C++ whereas all our
code is written in Java. Comparing these approaches is not equitable since
some are targeting performance while the others are targeting resilience
to Byzantine nodes, showing a good example in the difficulty of picking
competitors. In addition, some competitors are closed-source, e.g., Zat-
too [Zat], PPLive [PPL], and reimplementing them ourselves is not only
time-consuming but may be far from reality, knowing the many tricks pro-
grammers have sometimes to use to boost performance, possibly making
the code cryptic. Beyond the fact that the programming language could
have some impact on the execution of the experiments, it is very hard to
dive into thousands of lines of code in different languages, add hooks for
measuring common metrics and finally be able to deploy and run experi-
ments on a testbed, hoping that the hooks themselves do not change the
behavior nor performance of the implementation. The various parameters
of the protocols might not have optimal values or optimal values depend-
ing on the experiment, e.g., the view size of mesh-based protocols in the
presence of churn [LGL08].

Evaluation Metrics We defined our notion of stream quality and stream lag
and used them as the two metrics throughout this thesis. Our notion of
stream quality differs from the average delivery ratio used in [ZZSY07] or
the continuity index used in [LXQ+08]. There is yet no common evaluation
metric in streaming, making it difficult to compare approaches quantita-
tively without adding hooks in the code and redo experiments. Whereas
all researchers agree that receiving the maximum percentage of the original
stream is optimal, opinions on how scattered the losses should be differ.
The solution would be to force each system to provide a clear stream to all
nodes and measure its minimum stream lag, similarly to file sharing where
the common metrics is the time needed to receive the complete file. Unfor-
tunately, this option seems unrealistic in a constrained environment in the

126

8.2. Future Work

presence of catastrophic failures or churn where nodes might periodically
not receive a clear stream, be it on time or at all.

Experimental Setups It is difficult to give optimal values to protocols’ param-
eters in the absolute, but it might be even harder to find optimal values
for different experimental setups, e.g., different stream rates, upload band-
widths, number of nodes, characteristics of churn or percentage of failures
and when they happen. It is clear that for relative low-bandwidth content
dissemination, the cost of signaling in mesh-based or gossip systems will
be very high compared to trees relative to the stream rate, whereas for
high-bandwidth content dissemination, it will be considered in both cases
negligible, but what is today or in the future a reasonable stream rate
for watching TV over the Internet? For a free online system, low qual-
ity might be enough (and forced by the business model anyway), but for
replacing regular TV broadcasting, broadcasters should aim at HDTV or
even higher quality already.

How would one or the other solution compare with different upload capa-
bility distributions? What is indeed a realistic upload capability distribu-
tion and for how long?

If streaming is a free online system or replacement for regular TV broad-
casting, the infrastructures and guarantees provided to clients are very
different. But clients behaviors might also be very different in one or the
other case, resulting in possibly very different churn or catastrophic failure
scenarios. There exists traces of clients’ behaviors in P2P systems result-
ing in synthetic but realistic traces, mainly for file sharing [SR06,GSS06].
Recent studies [ZZSY07, CRC+08] in the context of television might also
eventually result in synthetic traces. But would such traces make sense
for a free online TV systems with one channel? Are these traces realistic
in free online systems with multiple channels? And finally in substitution
of regular TV broadcasting? According to what has happened in the con-
text of file sharing, it seems there needs to be a working system first, e.g.,
Gnutella, with many studies and with lessons learned, new systems can
emerge, e.g., BitTorrent. The same behavior might also happen in the
context of television, and we might need to wait for traces coming from
commercial products such as PPLive [PPL] or Zattoo [Zat] to evaluate
new systems such as gossip-based ones.

There is thus a lot to do in the context of comparison between existing ap-
proaches. Before even thinking about realistic conditions, we still lack a common
platform and metrics for evaluating the different approaches. The first step to-
wards this might be the creation of a simple benchmark, fixing once and for
all common experimental conditions such as the stream (defining its length and
stream rate), the upload bandwidth of the source, the number of nodes and their
upload capabilities (defining the upload capabilities distribution) and imposing

127

Chapter 8. Conclusion

that all nodes must receive a clear stream (since there are no catastrophic failures
nor churn). Starting from this common configuration, then define catastrophic
failures, churn and observe from real demand if configurations depend on the
end usage, e.g., free online service or replacement for regular TV broadcasting.
Such a common benchmark is what unexpectedly happened in the field of image
processing with the Lenna standard test image [Mun96,Ros] or more generally
and commonly with the usage of SPEC benchmarks [SPE].

Network, Social and Byzantine Awareness Gossip is relying on an ever chang-
ing, dynamic random graph for establishing communications between nodes.
With random communications, a node in Lausanne might infect a node in China
which in turn might infect another node back in Lausanne. This unawareness
of geographic location can be a real issue in systems where routing is not possi-
ble or very expensive, e.g., sensor networks. Even though the communications
between nodes are usually short, as opposed to mesh-based systems, they can
still represent a waste of resources in terms of network usage, basically used for
routing purposes. We see at least two ways to resolve this issue:

Smart routing with smart routers We could imagine that with the emergence
of new kinds of software-enabled routers [DEA+09], it could be possible
that a subset of what multicast was supposed to offer at the network layer
could be implemented. We can imagine that some kinds of well-defined
packets could be stored for a short amount of time in different routers
level and that requests might not need to cross different continents before
reaching a node, or a router that has the needed data. In short, when
the first node in Lausanne serves the node in China, the data could be
temporarily stored in a router close to Lausanne, and as soon as the node
in China would need to serve the second node in Lausanne, the request of
this second node would be intercepted by the router and directly served.
Besides obvious scalability issues that would need to be solved, there exists
in this case a clear incentive for ISPs to implement such a service since
the data stays in their domain.

Network-aware Peer Sampling Service To favor collaboration between well-
interconnected nodes, e.g., large bandwidth and low delay, random peer
sampling services could be biased to favor networking neighbors in the
partial views of nodes. By doing so, one has to keep in mind that not only
should the gossip random graph stay connected but also that random-
ness is a key point in distributing the load (equally or heterogeneously)
among the whole set of nodes. Disrupting this randomness should be done
with caution so that different well-connected neighborhoods can still eas-
ily infect other neighborhoods, for instance, with the use of a hierarchical
gossip [KMG03], or at least that a dedicated amount of their fanout is
always reserved for unbiased partners.

128

8.2. Future Work

The peer sampling service could also be aware of social links between nodes. In
fact, nodes might be tempted to be more altruistic (or maybe less selfish) when
collaborating with their friends. Friend-to-Friend (F2F) computing [PCT04,
LD06] is already popular in file-sharing as modifications of BitTorrent [GADK10,
IPKA] and a F2F-aware peer sampling service might also be tempting in order
to possibly increase performance and reduce the impact of freeriders.

The peer sampling service might also need to be tolerant to Byzantine at-
tacks, such as the Brahms peer sampling service, proposed in [BGK+09] but no
practical implementation of such systems exists yet. It might be that a F2F-
aware peer sampling service is enough not to suffer from Byzantine attacks, but
since some part of the peer sampling service needs to provide nodes with other
completely random other nodes anyway, designing an enhanced peer sampling
service (either in terms of network-awareness or F2F-awareness or both), resist-
ing to Byzantine attacks and being practically implementable constitutes a real
research challenge.

8.2.3 On Increasing Performance

Chunk Priorities Video content is composed of an audio track synchronized
with a series of pictures, called frames that are compressed using different tech-
niques. There exists typically three types of frames, I-frames, P-frames and
B-frames. I-frames are the least compressible and do not require other video
frames to decode, whereas P-frames can use data from previous frames to de-
code and B-frames can use data from both previous and forward frames to
decode. B-frames are therefore subject to the highest amount of compression.
From this simple classification, one can easily deduce that I-frames are more
important than others, because they contain more information than I-frames
and B-frames.

The fact that there exists an importance in the classification of frame types
could be given to the protocol in order to favor certain chunks over the others.
In other words, priorities could be given to chunks depending on their content
importance in such a way that important packets could be advertised more, or
retransmitted more stubbornly and with higher priority. This idea is partially
present in NEEM [PRM+03], where nodes keep long-lived TCP connections
with the nodes in their partial views, forming a mesh. When nodes are forced
to drop packets because of congestion, they choose them according to their
semantics. Unfortunately, there exists currently no application bundling this
priority information at the chunk level, e.g., in the MPEG transport stream
packets [LCC07].

Dissemination Tree Prediction As pointed out in [ZLLY05,ZZSY07], the epi-
demic dissemination process results in a dissemination tree when nodes do not

129

Chapter 8. Conclusion

explicitly request content they already have. Gossip can therefore easily be
used to build trees [LPR07, CPOR07] to achieve multicast. Even though such
approaches rely on a gossip protocol keeping the random graph connected in
case of churn, the use of a tree for dissemination suffers from reconstruction
in case of failures or churn, and it is not clear the dissemination would behave
better than with multiple-trees during reconstruction [CDK+03]. In addition,
creating a single tree trivially suffers from not asking leaf nodes to contribute.

While gossip makes the implicit dissemination trees ever changing, we could
let communication partners request content from other nodes before they ac-
tually received the content. Since the dissemination protocol works in three
phases, nodes could propose chunk ids of chunks they were proposed and have
requested before they actually have delivered them. The goal is basically to
reduce the time between reception of a chunk and the actual sending of it to
another node.

By proposing the chunks they have requested before having received them,
nodes have no guarantee that they will actually receive the requested chunk
and thus eventually serve requesting nodes. While this proposal might improve
dissemination in a rather static overlay, assuming it is possible to tune the
retransmission mechanism to increase the retransmission timeouts in a smart
way, it is not clear how it would affect performance in case of churn.

Additionally, in order to save a roundtrip communication time before the
serve (i.e., the time to send a propose and receive the corresponding request),
the source could directly push content to fanout nodes instead of proposing it
first. While this can intuitively only improve performance, a failure detection
feature is lost. In fact, since the source trivially knows that each of its proposals
is of interest, the fact that a propose does not result in a request clearly means
that the non-requesting node is overloaded, has crashed or left and therefore
not a good candidate for being a forwarder at this stage of the dissemination.
This simple feature is making sure that the first hop nodes chosen by the source
are indeed capable of forwarding the produced content and could be used as a
feedback mechanism in the peer sampling service.

Push then Pull It is well known that spreading a rumor first follows an expo-
nential growth where a very large proportion of nodes rapidly learns about it,
and then a shrinking phase where a little proportion of nodes has to wait longer
until they can learn about it, with very few nodes possibly never learning about
it.

It is therefore appealing to take advantage of the first exponential growth
phase by disseminating content rapidly to a very large proportion of nodes and
avoid the shrinking phase by (i) letting the missed content be reconstructed

130

8.2. Future Work

with error coding [CKS09] or (ii) letting the nodes pull the content that they
did not yet receive, e.g., [KRAV03,BHO+99].

It would be interesting to see if both exponential growth and shrinking
phases could be implemented by a push-based gossip for the first phase [CKS09,
BHO+99] and a pull-based gossip for the second phase [KRAV03]. Because it
is intuitively hard to know when a node should stop pushing content and when
it should start pulling content and from whom, it is similarly hard to know if
a node has the right to pull or if it was still supposed to push content. Such a
fuzziness in the protocol could potentially encourage nodes to freeride: a node
could simply try to pull as much data as it can by acting as if it is always in the
shrinking phase.

A possible solution would be to gossip content in two waves. The first regular
wave consists in proposing to fanout other nodes the content that nodes have just
received (or requested, following the above proposition) and a second wave re-
proposing the same content a bit later (possibly with a lower fanout to decrease
signaling overhead) so that nodes in the shrinking phase have the possibility
to pull content from nodes having proposed it, that is, without pulling totally
randomly and blindly. It is clear that such waves allow nodes not to serve
content that was not proposed and that a verification protocol such as LiFT can
be adapted to verify that nodes effectively execute the second wave.

8.2.4 On Adaptation to Heterogeneity

Source Decisions according to the Average Capability Thanks to a gossip-
based aggregation, HEAP is able to adapt nodes’ contribution according to their
capabilities. The average capability is in fact not used by the source except
for possibly biasing its partner selection towards rich nodes (as described in
Section 6.4, page 88). In fact, we have seen that the maximum stream rate that
can be disseminated is upper bounded by the average capability. The fact that
the source has a very good approximation of this average capability can be used
in different ways, such as:

Adapt Source Coding The source could gracefully increase or decrease the
quality of the stream dynamically, by adapting its coding [WHZ+00], ac-
cording to the average capability measured.

Restrict Joins Assuming a fixed stream rate, the source could select which
nodes can join and which ones cannot, depending on their capabilities.
A very rich node joining would help dissemination and a very poor one
might possibly break it.

Different Adaptation Mechanisms In HEAP, we decided that all nodes should
contribute in a way that is directly proportional to their capabilities. We can

131

Chapter 8. Conclusion

imagine that system designers would like that (i) the load distribution follows
a different pattern or even that (ii) this pattern depends on the distribution of
capabilities itself. To illustrate both solutions, we can imagine (i) that all nodes
having an upload bandwidth smaller than the stream rate have to contribute as
much as they can while richer nodes simply have to compensate as little as they
need or oppositely that rich nodes contribute as much as possible in order to
increase the dissemination speed and poor ones as little as possible, and (ii) the
expected contribution of poor nodes can depend on their proportion, e.g., the
more they are, the closer to their maximum capabilities they need to contribute.

We concentrated on the upload bandwidth of nodes in order to adapt their
fanout and therefore their contribution. The gossiping period is another obvious
knob to adapt contribution of nodes according to heterogeneity in capabilities.
Other capabilities might be interesting to consider for other kinds of appli-
cations, such as storage quantity or memory in a distributed file system, for
instance.

In fact, measuring capabilities is a problem on its own. Measuring free storage
space seems rather easy but measuring available upload bandwidth is not, since
it depends on many factors, such as when the node communicates, with whom,
for how long or even how much bandwidth is used by other applications on the
same machine or other devices on the same network. This is the reason why
most P2P applications do not depend on the available upload bandwidth but
simply give the users the possibility to limit the maximum bandwidth they want
to let the application use, e.g., [Bit,eMu]. Accurate measurement of certain ca-
pabilities is therefore a very challenging issue which could help system designers
take resources and their heterogeneity among nodes better into account.

Assuming we could accurately measure capabilities, gossip, in contrary to
meshes, gives nodes the possibility of eventually communicating with every other
node in the system. For scalability reasons, it is not possible to keep track of
statistics with each other node in the system. Another challenge would therefore
be to group nodes into classes according to their capabilities in such a way that
(i) efficiency could be improved by biasing the dissemination from the source to
richer nodes first and poorer nodes last by bringing some kind of structure into
the random communication graph, and (ii) it could help the protocol be more
network-aware, so that nodes that are close route-wise can make use of these
properties (possibly using partial native multicast routes [ZWJ+06,Fra]).

Finally, we have seen that there is usually a clear correlation between large
bandwidth and low average communication delay, the reason why traditional
gossip can adapt to a certain extent (Section 4.2.1 page 43, Section 6.2 page 76,
and pointed out in [DXL+06]). In order to take this phenomenon into account we
can define the probability of acceptance pacc as the ratio of the number of chunks
requested to the number of chunks proposed and modulate the fanout adaptation
of HEAP with this information. The probability of acceptance will be larger for

132

8.2. Future Work

a node with low average communication delay than for a node with high average
communication delay. Taking pacc into account requires aggregating the average
probability of acceptance instead of the average bandwidth capability or both
together so that the fanout is computed as f = f(b/b)(pacc/pacc).

8.2.5 On a More Robust Protocol

Punishing Freeriders Instead of simply expelling freeriders, we can imagine a
system where freeriders benefit only if all honest notes have already benefited
correctly from the system. The idea is rather intuitive: all honest nodes are
served in priority and if there is some contribution left that can be distributed
to freeriders, then they compete to have some benefit. Assuming gossip dissem-
ination can be structured in such a way that some nodes can be placed closer to
the source than others, e.g., by biasing the peer sampling service, putting nodes
that cannot contribute a lot of resources or that deliberately do not contribute
at the end of the dissemination acts as an incentive to encourage freeriders to
indeed start to contribute. Effectively, since streaming has time constraints, a
node that is always far from the source will suffer from an increased stream lag.

LiFT in a Heterogeneous Environment LiFT, in its current version, assumes
that all nodes have the same fanout. However, put in the context of HEAP,
nodes need to verify that other nodes use a fanout value that corresponds to
their advertised capability. Admitting that this can be only an implementation
detail in the case of static capabilities, the problem is a real challenge in the
case where capabilities of nodes vary over time.

LiFT with Privileged Verifiers Nodes in LiFT have all the same roles of both
managers and verifiers for each other. We can imagine injecting special nodes
in the dissemination or picking some trusted nodes for a special role, namely
spying. Spies in the dissemination are trusted by the source but act as normal
nodes for every other node. The detection of freeriders could be facilitated as all
obvious misbehaviors detected by spies could be taken for granted. Following
the same line of reasoning, nodes could have more trust in their social friends
than in other random nodes.

Oracle Measuring the Health of the System We have described in Chapter 7
that the pcc parameter adapts the performance of LiFT and modulates its over-
head accordingly. Assuming an oracle could measure the health of the system,
it could dynamically increase (resp. decrease) this parameter in order to detect
freeriders faster, increasing (resp. decreasing) the overhead of LiFT accordingly.
Imagine that the source uses the average capability to have a measure of this

133

Chapter 8. Conclusion

health, it is clear that the source could instruct nodes to increase or decrease
pcc publicly, but the announcement of a decrease should be done only when the
average capability is far above the stream rate, so that nodes starting to freeride
after this announcement have only a very limited impact on the dissemination.
Unfortunately, the presence of freeriders when the average capability is close to
the stream rate is exactly where pcc should be set to its maximum resulting in
turn in a maximum overhead of LiFT.

There is thus possibly a need for a time-varying detection scheme, such as
purging freeriders very fast at some stage, and then possibly release pressure on
the nodes without letting nodes start to freeride once they know detection is
relaxed.

LiFT without AVMON Managers in LiFT are assigned and maintained us-
ing the AVMON protocol [MG09]. Whereas AVMON provides every property
needed by LiFT, we believe an architecture providing weaker properties would
perfectly fit LiFT’s needs. A simple example is AVMON’s verifiability property.
The fact that nodes can verify that a manager is indeed a regular and authorized
manager of its managed nodes is not needed by LiFT. The weaker property we
need is that there exists at least a single manager of a node (in its m man-
agers) that is not colluding with the managed node. This property ensures that
there exists at least one manager regularly maintaining the score of the node
and ready to expel it if needed. In essence, we believe that there must exist a
protocol matching LiFT’s requirements, which compared to AVMON, would be
simpler, provide weaker guarantees, and possibly achieve better performance.

LiFT & TfT Beyond gossip protocols, LiFT could be used to secure the asym-
metric component of TfT-based protocols, namely opportunistic unchoking,
which is considered to constitute their Achile’s heel [LMSW06, SPCY07]. We
can consider for instance a gossip protocol, secured by LiFT, to disseminate fresh
chunks in the system, coupled with a protocol based on symmetric exchanges
to complete the dissemination using traditional swarming with TfT incentives.

♦♦♦

134

Abbreviations

A ADSL Asymmetric Digital Subscriber Line
Amazon S3 Amazon Simple Storage Service (see [DHJ+07])
apcc A posteriori Cross-checking (LiFT, Chapter 7)
ARQ Automatic Repeat reQuest (see RFC3366 [FW02])

C CPU Central Processing Unit
CSR Capacity Supply Ratio (see [ZZSY07])

D dc Direct Check (LiFT, Chapter 7)
DHT Distributed Hash Table (see [RD01,RFS+01,SMK+01,ZHS+04])

F F2F Friend-to-Friend (see [PCT04,LD06,GADK10, IPKA])
FEC Forward Error Correction (see [Riz97])

H HDTV High Definition TV, typically 1080p format
HEAP HEterogeneity-Aware gossip Protocol

I IP Internet Protocol
IPv4 Fourth revision in the development of the Internet Protocol
ISP Internet Service Provider

L LiFT Lightweight Freerider-Tracking Protocol

M MDC Multiple Description Coding (see [GKAV98,PR99,Goy01])
MP3 MPEG-1 Audio Layer 3
MPEG Moving Picture Experts Group
MPEG TS MPEG Transport Stream
MTU Maximum Transmission Unit

N NAT Network Address Translation

P P2P Peer-to-Peer

R RFC Request For Comment

T TCP Transmission Control Protocol
TfT Tit-for-Tat (see [Coh03])
TTL Time to live

U UDP User Datagram Protocol

V VLC VideoLAN Client (see [Vid])
VoD Video on Demand
VoIP Voice over Internet Protocol

135

Bibliography

[ADH05] André Allavena, Alan Demers, and John E. Hopcroft. Correctness
of a Gossip Based Membership Protocol. In PODC, 2005.

[AGBH03] Luc Onana Alima, Ali Ghodsi, Per Brand, and Seif Haridi. Mul-
ticast in DKS(N, k, f) Overlay Networks. In OPODIS, 2003.

[AGR06] Siddhartha Annapureddy, Christos Gkantsidis, and Pablo Ro-
driguez. Providing Video-on-Demand using Peer-to-Peer Net-
works. In IPTV, 2006.

[AH00] Eytan Adar and Bernardo Huberman. Free riding on Gnutella.
First Monday, 5(10), 2000.

[ATW02] John G. Apostolopoulos, Wai-tian Tan, and Susie J. Wee. Video
Streaming: Concepts, Algorithms, and Systems. Technical report,
HP Laboratories Palo Alto, 2002.

[BB05] Stefan Birrer and Fabian E. Bustamante. The Feasibility of DHT-
based Streaming Multicast. In MASCOTS, 2005.

[BCG+] David Becker, Jeff Chase, Diwaker Gupta, Dejan Kostić, Priya
Mahadevan, Amin Vahdat, Kashi Vishwanath, Kevin Walsh, and
Ken Yocum. Modelnet. http://modelnet.sysnet.ucsd.edu.

[BDHU09] Michael Backes, Peter Druschel, Andreas Haeberlen, and Do-
minique Unruh. CSAR: A Practical and Provable Technique to
Make Randomized Systems Accountable. In NDSS, 2009.

[BGK+09] Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot,
and Alexander Shraer. Brahms: Byzantine Resilient Random
Membership Sampling. Computer Networks, 53:2340–2359, 2009.

[BGKM07] Sébastien Baehni, Rachid Guerraoui, Boris Koldehofe, and
Maxime Monod. Towards Fair Event Dissemination. In ICDCSW,
2007.

[BHO+99] Kenneth Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai
Budiu, and Yaron Minsky. Bimodal Multicast. TOCS, 17(2):41–
88, 1999.

[Bit] BitTorrent, Inc. µTorrent. http://www.utorrent.com/.

137

Bibliography

[BMM+08] Thomas Bonald, Laurent Massoulié, Fabien Mathieu, Diego
Perino, and Andrew Twigg. Epidemic Live Streaming: Optimal
Performance Trade-offs. In SIGMETRICS, 2008.

[Bol01] Béla Bollobás. Random Graphs. Cambridge University Press, 2001.

[BPLCH09] Fadi Boulos, Benôıt Parrein, Patrick Le Callet, and David Hands.
Perceptual Effects of Packet Loss on H.264/AVC Encoded Videos.
In VPQM, 2009.

[BRP+05] Ashwin R. Bharambe, Sanjay G. Rao, Venkata N. Padmanabhan,
Srinivasan Seshan, and Hui Zhang. The Impact of Heterogeneous
Bandwidth Constraints on DHT-Based Multicast Protocols. In
IPTPS, 2005.

[BRS06] Michael Bishop, Sanjay Rao, and Kunwadee Sripanidulchai. Con-
sidering Priority in Overlay Multicast Protocols under Heteroge-
neous Environments. In INFOCOM, 2006.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh
Nandi, Antony I. T. Rowstron, and Atul Singh. SplitStream: High-
bandwidth Multicast in Cooperative Environments. In SOSP,
2003.

[CDKR02] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and
Antony I. T. Rowstron. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. JSAC, 20(8):100–110,
2002.

[CE07] Niklas Carlsson and Derek L. Eager. Peer-Assisted On-Demand
Streaming of Stored Media Using BitTorrent-Like Protocols. In
Networking, 2007.

[CGN+04] Yang-hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao,
Kunwadee Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early
Eexperience with an Internet Broadcast System Based on Overlay
Multicast. In ATEC, 2004.

[CJW09] Hyunseok Chang, Sugih Jamin, and Wenjie Wang. Live Streaming
Performance of the Zattoo Network. In IMC, 2009.

[CKS09] Mary-Luc Champel, Anne-Marie Kermarrec, and Nicolas Le
Scouarnec. FoG: Fighting the Achilles’ Heel of Gossip Protocols
with Fountain Codes. In SSS, 2009.

[Coh03] Bram Cohen. Incentives Build Robustness in BitTorrent. In P2P
Econ, 2003.

[CPOR07] Nuno Carvalho, José Pereira, Rui Carlos Oliveira, and Lúıs Ro-
drigues. Emergent Structure in Unstructured Epidemic Multicast.
In DSN, 2007.

138

Bibliography

[CRC+08] Meeyoung Cha, Pablo Rodriguez, Jon Crowcroft, Sue Moon, and
Xavier Amatriain. Watching Television Over an IP Network. In
IMC, 2008.

[CRSZ02] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang.
A Case for End System Multicast. JSAC, 20(8):1456–1471, 2002.

[DC90] Stephen E. Deering and David R. Cheriton. Multicast Routing in
Datagram Internetworks and Extended LANs. TOCS, 8(2):85–110,
1990.

[DEA+09] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon
Chun, Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar
Manesh, and Sylvia Ratnasamy. RouteBricks: Exploiting Par-
allelism To Scale Software Routers. In SOSP, 2009.

[Dee88] Stephen E. Deering. Multicast Routing in Internetworks and Ex-
tended LANs. In SIGCOMM, 1988.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
Epidemic Algorithms for Replicated Database Maintenance. In
PODC, 1987.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Alex Pilchin, Swaminathan Sivasubramanian, Pe-
ter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In SOSP, 2007.

[DHRS07] Prithula Dhungel, Xiaojun Hei, Keith W. Ross, and Nitesh Saxena.
The Pollution Attack in P2P Live Video Streaming: Measurement
Results and Defenses. In P2P-TV, 2007.

[DLHC05] Chris Dana, Danjue Li, David Harrison, and Chen-Nee Chuah.
BASS: Bittorrent Assisted Streaming System for Video-on-
Demand. In MMSP, 2005.

[Dou02] John R. Douceur. The Sybil Attack. In IPTPS, 2002.

[DOvNB07] Niels Drost, Elth Ogston, Rob van Nieuwpoort, and Henri Bal.
ARRG: Real-World Gossiping. In HPDC, 2007.

[DSW06] Alexandros G. Dimakis, Arnand D. Sarwate, and Marting J. Wain-
wright. Geographic Gossip: Efficient Aggregation for Sensor Net-
works. In IPSN, 2006.

[DXL+06] Mayur Deshpande, Bo Xing, Iosif Lazardis, Bijit Hore, Nalini
Venkatasubramanian, and Sharad Mehrotra. CREW: A Gossip-
based Flash-Dissemination System. In ICDCS, 2006.

[EGH+03] Patrick T. Eugster, Rachid Guerraoui, Sidath B. Handurukande,
Petr Kouznetsov, and Anne-Marie Kermarrec. Lightweight Prob-
abilistic Broadcast. TOCS, 21(4):341–374, 2003.

139

Bibliography

[EGKM04] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec,
and Laurent Massoulié. Epidemic Information Dissemination in
Distributed Systems. Computer, 37(5):60–67, 2004.

[eMu] eMule. The eMule Project. http://www.emule-project.net.

[FFM04] Michael J. Freedman, Eric Freudenthal, and David Mazières. De-
mocratizing content publication with Coral. In NSDI, 2004.

[FFM07] Yaacov Fernandess, Antonio Fernández, and Maxime Monod. A
Generic Theoretical Framework for Modeling Gossip-Based Algo-
rithms. OSR, 41(5):19–27, 2007.

[FGK+09a] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Boris
Koldehofe, Martin Mogensen, Maxime Monod, and Vivien Quéma.
Heterogeneous Gossip. In Middleware, 2009.

[FGK+09b] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, Maxime
Monod, and Vivien Quéma. Stretching Gossip with Live Stream-
ing. In DSN, 2009.

[FGKM10] Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maxime Monod. Boosting Gossip for Live Streaming. In P2P,
2010.

[Fra] Paul Francis. Yoid: Extending the Internet Multicast Architec-
ture. http://www.icir.org/yoid/.

[FSK05] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-Peer Com-
munication Across Network Address Translators. In ATEC, 2005.

[FW02] Gorry Fairhurst and Lloyd Wood. Advice to link designers on link
Automatic Repeat reQuest (ARQ). RFC 3366, Network Working
Group, 2002.

[GADK10] Wojciech Galuba, Karl Aberer, Zoran Despotovic, and Wolfgang
Kellerer. Leveraging social networks for increased BitTorrent ro-
bustness, 2010.

[GGH+06] Benôıt Garbinato, Rachid Guerraoui, Jarle Hulaas, Maxime
Monod, and Jesper H. Spring. Frugal Mobile Objects. In
EAWMSN (DCOSS Workshops), 2006.

[GGH+07a] Benôıt Garbinato, Rachid Guerraoui, Jarle Hulaas, Alexei Kou-
nine, Maxime Monod, and Jesper Honig Spring. The Weight-
Watcher Service and its Lightweight Implementation. In IC-
SAMOS, 2007.

[GGH+07b] Benôıt Garbinato, Rachid Guerraoui, Jarle Hulaas, Maxime
Monod, and Jesper H. Spring. Pervasive Computing with Frugal
Objects. In PCAC, 2007.

140

Bibliography

[GHH+06] Rachid Guerraoui, Sidath B. Handurukande, Kévin Huguenin,
Anne-Marie Kermarrec, Fabrice Le Fessant, and Etienne Rivière.
GosSkip, an Efficient, Fault-Tolerant and Self Organizing Over-
lay Using Gossip-based Construction and Skip-Lists Principles. In
P2P, 2006.

[GHK+a] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec,
Maxime Monod, and Swagatika Prusty. LiFTinG: Lightweight
Freerider-Tracking Protocol in Gossip. Under submission.

[GHK+b] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec,
Maxime Monod, and Ymir Vigfusson. Decentralized Polling with
Respectable Participants. Distributed Computing. Under submis-
sion.

[GHKM09a] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, and
Maxime Monod. Brief Announcement: Towards Secured Dis-
tributed Polling in Social Networks. In DISC, 2009.

[GHKM09b] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, and
Maxime Monod. Decentralized Polling with Respectable Partici-
pants. In OPODIS, 2009.

[GHKM09c] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, and
Maxime Monod. On Tracking Freeriders in Gossip Protocols. In
P2P, 2009.

[GKAV98] Vivek K. Goyal, Jelena Kovacevic, Ramon Arean, and Martin Vet-
terli. Multiple Description Transform Coding of Images. ICIP,
1998.

[GKM03] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Mas-
soulié. Peer-to-Peer Membership Management for Gossip-Based
Protocols. TC, 52(2):139–149, 2003.

[GLL08] Yang Guo, Chao Liang, and Yong Liu. Adaptive Queue-based
Chunk Scheduling for P2P Live Streaming. In Networking, 2008.

[GMS04] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random
Walks in Peer-to-peer Networks. In INFOCOM, 2004.

[Goy01] Vivek K. Goyal. Multiple Description Coding: Compression Meets
the Network. SPM, 18(5):74–94, 2001.

[Gri] Grid’5000. The ADT ALADDIN-G5K Initiative. http://www.
grid5000.fr.

[GSS06] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing
churn in distributed systems. In SIGCOMM, 2006.

[Ham07] James Hamilton. On Designing and Deploying Internet-Scale Ser-
vices. In LISA, 2007.

141

Bibliography

[Har68] Garrett Hardin. The Tragedy of the Commons. Science, 162:1243–
1248, 1968.

[HHL88] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Li-
estman. A survey of gossiping and broadcasting in communication
networks. Networks, 18(1):319–349, 1988.

[HHL06] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. Gossip-Based Ad
Hoc Routing. TON, 14(3):479–491, 2006.

[HJVR08] Maya Haridasan, Ingrid Jansch-Porto, and Robbert Van Renesse.
Enforcing Fairness in a Live-Streaming System. In MMCN, 2008.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerRe-
view: Practical Accountability for Distributed Systems. In SOSP,
2007.

[HLL+07] Xiaojun Hei, Chao Liang, Jian Liang, Yong Liu, and Keith Ross.
A Measurement Study of a Large-Scale P2P IPTV System. TMM,
9(8), 2007.

[IPKA] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas
Anderson. OneSwarm. http://oneswarm.cs.washington.edu.

[JMB04] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Detection
and Removal of Malicious Peers in Gossip-Based Protocols. In
FuDiCo, 2004.

[JMB05] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-
Based Aggregation in Large Dynamic Networks. TOCS, 23(3):219–
252, 2005.

[JMB09] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-
Man: Gossip-based fast overlay topology construction. ComNet,
53(13):2321–2339, 2009.

[JVG+07] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie
Kermarrec, and Maarten van Steen. Gossip-based Peer Sampling.
TOCS, 25(3):1–36, 2007.

[KKD04] David Kempe, Jon Kleinberg, and Alan Demers. Spatial Gossip
and Resource Location Protocols. JACM, 51(6):943–967, 2004.

[KKU08] Murat Karakaya, İbrahim Körpeoğlu, and Özgür Ulusoy. Counter-
acting Free-riding in Peer-to-Peer Networks. ComNet, 52(3):675–
694, 2008.

[KLR07] Rakesh Kumar, Yong Lin, and Keith Ross. Stochastic Fluid The-
ory for P2P Streaming Systems, 2007.

[KMG03] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi Ganesh.
Probabilistic Reliable Dissemination in Large-Scale Systems.
TPDS, 14(3):248–258, 2003.

142

Bibliography

[Kol03] Boris Koldehofe. Buffer management in probabilistic peer-to-peer
communication protocols. In SRDS, 2003.

[KPQS09] Anne-Marie Kermarrec, Alessio Pace, Vivien Quéma, and Valerio
Schiavoni. NAT-resilient Gossip Peer Sampling. In ICDCS, 2009.

[KRAV03] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vah-
dat. Bullet: High Bandwidth Data Dissemination Using an Over-
lay Mesh. In SOSP, 2003.

[KS04] Valerie King and Jared Saia. Choosing a Random Peer. In PODC,
2004.

[KSSV00] Richard Karp, Christian Schindelhauer, Scott Shenker, and
Berthold Vöcking. Randomized Rumor Spreading. In FOCS, 2000.

[KSTT04] Ramayya Krishnan, Michael Smith, Zhulei Tang, and Rahul
Telang. The Impact of Free-Riding on Peer-to-Peer Networks.
In HICSS, 2004.

[LCC07] Jin Li, Yi Cui, and Bin Chang. PeerStreaming: design and im-
plementation of an on-demand distributed streaming system with
digital rights management capabilities. MultiSys, 13(3):173–190,
2007.

[LCM+08] Harry Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke
Robinson, Lorenzo Alvisi, and Mike Dahlin. FlightPath: Obedi-
ence vs. Choice in Cooperative Services. In OSDI, 2008.

[LCW+06] Harry Li, Allen Clement, Edmund Wong, Jeff Napper, Indrajit
Roy, Lorenzo Alvisi, and Michael Dahlin. BAR Gossip. In OSDI,
2006.

[LD06] Jinyan Li and Frank Dabek. F2F: reliable storage in open net-
works. In IPTPS, 2006.

[LGL08] Chao Liang, Yang Guo, and Yong Liu. Is Random Scheduling
Sufficient in P2P Video Streaming? In ICDCS, 2008.

[LM99] Meng-Jang Lin and Keith Marzullo. Directional gossip: Gossip in
a wide area network. In EDCC, 1999.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In HotNets, 2006.

[LMSW07] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In DISC, 2007.

[LOM94] Kurt Lidl, Josh Osborne, and Joseph Malcolm. Drinking from the
Firehose: Multicast USENET News. In UWC, 1994.

[LPR07] João Leitão, José Pereira, and Lúıs Rodrigues. Epidemic Broadcast
Trees. In SRDS, 2007.

143

Bibliography

[LRLZ08] Jiangchuan Liu, Sanjay G. Rao, Bo Li, and Hui Zhang. Oppor-
tunities and Challenges of Peer-to-Peer Internet Video Broadcast.
Proc. of the IEEE, 96(1), 2008.

[LvRR10] João Leitão, Robbert van Renesse, and Lúıs Rodrigues. Balancing
Gossip Exchanges in Networks with Firewalls. In IPTPS, 2010.

[LXQ+08] Bo Li, Susu Xie, Yang Qu, Gabriel Y. Keung, Chuang Lin,
Jiangchuan Liu, and Xinyan Zhang. Inside the New Coolstream-
ing: Principles, Measurements and Performance Implications. In
INFOCOM, 2008.

[MG09] Ramsés Morales and Indranil Gupta. AVMON: Optimal and Scal-
able Discovery of Consistent Availability Monitoring Overlays for
Distributed Systems. TPDS, 20(4):446–459, 2009.

[MKR06] Maxime Monod, Jörg Kienzle, and Alexander Romanovsky. Look-
ing Ahead in Open Multithreaded Transactions. In ISORC, 2006.

[MMR10] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. Traver-
sal Using Relays around NAT (TURN): Relay Extensions to Ses-
sion Traversal Utilities for NAT (STUN). RFC 5766, Internet
Engineering Task Force, 2010.

[MO07] Lin Ma and Wei Ooi. Congestion Control in Distributed Media
Streaming. In INFOCOM, 2007.

[MR07] Nazanin Magharei and Reza Rejaie. Mesh or Multiple-Tree: A
Comparative Study of Live P2P Streaming Approaches. In INFO-
COM, 2007.

[MR09a] Nazanin Magharei and Reza Rejaie. Overlay Monitoring and Re-
pair in Swarm-based Peer-to-Peer Streaming. In NOSSDAV, 2009.

[MR09b] Nazanin Magharei and Reza Rejaie. PRIME: Peer-to-Peer
Receiver-Driven Mesh-Based Streaming. TON, 17(4):1052–1065,
2009.

[MTGR07] Laurent Massoulié, Andrew Twigg, Christos Gkantsidis, and Pablo
Rodriguez. Randomized Decentralized Broadcasting Algorithms.
In INFOCOM, 2007.

[Mun96] David C. Munson. A Note on Lena. TIP, 5(1):3, 1996.

[OKJ09] Anis Ouali, Brigitte Kerherve, and Brigitte Jaumard. Toward Im-
proving Scheduling Strategies in Pull-based Live P2P Streaming
Systems. In CCNC, 2009.

[PCT04] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum.
Safe and Private Data Sharing with Turtle: Friends Team-Up and
Beat the System. In SPW, 2004.

144

Bibliography

[PKT+05] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Samba-
murthy, and Alexander E. Mohr. Chainsaw: Eliminating Trees
from Overlay Multicast. In IPTPS, 2005.

[Pla] PlanetLab. The Trustees of Princeton University. http://www.
planet-lab.org.

[PM08] Fabio Picconi and Laurent Massoulié. Is There a Future for Mesh-
based Live Video Streaming? In P2P, 2008.

[PPKB07] Fabio Pianese, Diego Perino, Joaqúın Keller, and Ernst W. Bier-
sack. PULSE: An Adaptive, Incentive-Based, Unstructured P2P
Live Streaming System. TOM, 9(8):1645–1660, 2007.

[PPL] PPLive. Pplive. http://www.pplive.com.

[PR99] Rohit Puri and Kannan Ramchandran. Multiple Description
Source Coding through Forward Error Correction Codes. In AC-
SSC, 1999.

[PRM+03] José Orlando Pereira, Lúıs Rodrigues, M. João Monteiro, Rui Car-
los Oliveira, and Anne-Marie Kermarrec. NEEM: Network-
Friendly Epidemic Multicast. In SRDS, 2003.

[PvS10] Guillaume Pierre and Maarten van Steen. Handbook of Research
on P2P and Grid Systems for Service-Oriented Computing: Mod-
els, Methodologies and Applications, chapter Enforcing Fairness in
Asynchronous Collaborative Environments. IGI Global, 2010.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale Peer-
to-Peer Systems. In Middleware, 2001.

[RFS+01] Sylvia Ratnasamy, Paul Francis, Scott Shenker, Richard Karp,
and Mark Handley. A Scalable Content-Addressable Network. In
SIGCOMM, 2001.

[RHP+03] Luis Rodrigues, Sidath Handurukande, Jose Pereira, Rachid Guer-
raoui, and Anne-Marie Kermarrec. Adaptive gossip-based broad-
cast. In DSN, 2003.

[Riz97] Luigi Rizzo. Effective Erasure Codes for Reliable Computer Com-
munication Protocols. CCR, 27(2):24–36, 1997.

[RMMW08] Jonathan Rosenberg, Rohan Mahy, Philip Matthews, and Dan
Wing. Session Traversal Utilities for NAT (STUN). RFC 5389,
Network Working Group, 2008.

[Ros] Chuck Rosenberg. The Lenna Story. http://www.lenna.org.

[SBR06] Yu-Wei Sung, Michael Bishop, and Sanjay Rao. Enabling Con-
tribution Awareness in an Overlay Broadcasting System. CCR,
36(4):411–422, 2006.

145

Bibliography

[SDK+07] Kyoungwon Suh, Christophe Diot, Jim Kurose, Laurent Massoulié,
Christoph Neumann, Donald F. Towsley, and Matteo Varvello.
Push-to-peer video-on-demand system: Design and evaluation.
JSAC, 25(9):1706–1716, 2007.

[SGMZ04] Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui
Zhang. The Feasibility of Supporting Large-Scale Live Stream-
ing Applications with Dynamic Application End-Points. In SIG-
COMM, 2004.

[Sky] Skype Limited. Skype. http://www.skype.com.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. In SIGCOMM, 2001.

[SPBP06] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Us-
ing Planetlab for Network Research: Myths, Realities, and Best
Practices. OSR, 40(1):17–24, 2006.

[SPCY07] Michael Sirivianos, Jong Park, Rex Chen, and Xiaowei Yang. Free-
riding in BitTorrent with the Large View Exploit. In IPTPS, 2007.

[SPE] SPEC. Standard Performance Evaluation Corporation. http://
www.spec.org/.

[SR06] Daniel Stutzbach and Reza Rejaie. Understanding Churn in Peer-
to-Peer Networks. In IMC, 2006.

[VF06] Vivek Vishnumurthy and Paul Francis. On Heterogeneous Overlay
Construction and Random Node Selection in Unstructured P2P
Networks. In INFOCOM, 2006.

[VF07] Vivek Vishnumurthy and Paul Francis. A Comparison of Struc-
tured and Unstructured P2P Approaches to Heterogeneous Ran-
dom Peer Selection. In ATEC, 2007.

[VGK+07] Nevena Vratonjić, Priya Gupta, Nikola Knežević, Dejan Kostić,
and Antony I. T. Rowstron. Enabling DVD-like Features in P2P
Video-on-demand Systems. In P2P-TV, 2007.

[VGvS05] Spyros Voulgaris, Daniela Gavidial, and Maarten van Steen. CY-
CLON: Inexpensive Membership Management for Unstructured
P2P Overlays. JNSM, 13(2):197–217, 2005.

[Vid] VideoLAN - VLC media player. The VideoLAN Team. http:
//www.videolan.org.

[vR00] Robbert van Renesse. Scalable and secure resource location. In
HICSS, 2000.

[vRBV03] Robbert van Renesse, Kenneth Birman, and Werner Vogels. Astro-
labe: A Robust and Scalable Technology for Distributed System

146

Bibliography

Monitoring, Management, and Data Mining. TOCS, 21(2):164–
206, 2003.

[vRMH98] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-
style failure detection service. In Middleware, 1998.

[VYF06] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis.
Chunkyspread: Heterogeneous Unstructured Tree-Based Peer-to-
Peer Multicast. In ICNP, 2006.

[WH01] Jörg Widmer and Mark Handley. Extending Equation-based Con-
gestion Control to Multicast Applications. In SIGCOMM, 2001.

[WHZ+00] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Hung-Ju Lee, Ti-
Hao Chiang, Ya-Qin Zhang, and H. Jonathan Chao. On End-
to-End Architecture for Transporting MPEG-4 Video Oover the
Internet. TCSVT, 10(6):923–941, 2000.

[WHZ+01] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin Zhang, and
Jon M. Peha. Streaming Video over the Internet: Approaches and
Directions. TCSVT, 11:282–300, 2001.

[WJJ05] Wenjie Wang, Cheng Jin, and Sugih Jamin. Network Overlay Con-
struction Under Limited End-to-End Reachability. In INFOCOM,
2005.

[Wua] Wuala. Wuala by LaCie. http://www.wuala.com.

[You] Youtube. Youtube, LLC. http://www.youtube.com.

[Zat] Zattoo. Zattoo. http://www.zattoo.com.

[Zho09] Lidong Zhou. Building reliable large-scale distributed systems:
when theory meets practice. SIGACT News, 40(3):78–85, 2009.

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John D. Kubiatowicz. Tapestry: A Resilient
Global-scale Overlay for Service Deployment. JSAC, 22:41–53,
2004.

[ZLLY05] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-shing Peter Yum.
Coolstreaming/DONet: A Data-driven Overlay Network for Peer-
to-Peer Live Media Streaming. In INFOCOM, 2005.

[ZWJ+06] Beichuan Zhang, Wenjie Wang, Sugih Jamin, Daniel Massey, and
Lixia Zhang. Universal IP multicast delivery. ComNet, 50(6):781–
806, 2006.

[ZZSY07] Meng Zhang, Qian Zhang, Lifeng Sun, and Shiqiang Yang. Un-
derstanding the Power of Pull-Based Streaming Protocol: Can We
Do Better? JSAC, 25(9):1678–1694, 2007.

147

List of Figures, Algorithms and Tables

Figure 2.1 The concepts of live streaming: a source node pro-
duces a stream from time t0 on and wants to broadcast
it to all participants. 15

Figure 2.2 Classification of overlays. 18

Algorithm 3.1 Generic gossip-based algorithm pseudocode. 30
Algorithm 3.2 Three-phase gossip protocol. 34
Figure 3.1 Three-phase gossip protocol with an infect-and-die be-

havior. 34
Algorithm 3.3 Three-phase gossip protocol with retransmission. . . . 37

Figure 4.1 Percentage of nodes viewing the stream with less than
1% of jitter (upload capped at 700 kbps). 43

Figure 4.2 Cumulative distribution of stream lag with various
fanouts (upload capped at 700 kbps). 44

Figure 4.3 Percentage of nodes viewing the stream with less
than 1% of jitter with upload caps of 1000 kbps and
2000 kbps, and different fanout values. 45

Figure 4.4 Distribution of bandwidth usage among nodes with
different fanout values and upload caps. 46

Figure 4.5 Percentage of nodes viewing the stream with at most
1% jitter as a function of the refresh rate X. 47

Figure 4.6 Percentage of nodes viewing the stream with at most
1% jitter as a function of the request rate Y 48

Figure 4.7 Percentage of surviving nodes experiencing less than
1% jitter for different values of X. 49

Figure 4.8 Average percentage of complete windows for surviving
nodes. 49

Figure 5.1 Gossip++ delivers a clear stream to all nodes. 52
Figure 5.2 Codec details. 54
Figure 5.3 Claim details. 55
Figure 5.4 In ideal conditions, Codec alone is enough to provide

a clear stream to all nodes. 58
Figure 5.5 Codec alone is not sufficient. 59
Figure 5.6 Codec and Claim provide a clear stream to all nodes. . 60

149

List of Figures, Algorithms and Tables

Figure 5.7 Codec with 2% and 50% coding provide a clear stream
to a lower number of nodes than other Codec percent-
ages as the percentage of message losses increases. . . 61

Figure 5.8 5% of FEC is optimal. 62
Figure 5.9 Bandwidth usage with different percentages of FEC. . 63
Figure 5.10 FEC recovery grows as the percentage of message

losses increases. 64
Figure 5.11 In the presence of failures, nodes are affected by them

only up to 1 s. 65
Figure 5.12 Codec and Claim together deliver a good stream in a

constrained environment. 66
Figure 5.13 Increasing the percentage of freeriders has the effect

of decreasing the average fanout. Codec 2© performs
slightly better than Codec. 67

Figure 5.14 Claim is able to sustain good performance in the pres-
ence of freeriders. 68

Figure 6.1 Using the same fanout with two different capability
distribution results in very different performance. . . . 73

Figure 6.2 With the same constrained and heterogeneous distri-
bution (dist1), HEAP significantly improves perfor-
mance over a traditional homogeneous gossip. 74

Algorithm 6.1 HEAP protocol details. 76
Table 6.1 The reference distributions ref-691 and ref-724, and

the more skewed distribution ms-691. 77
Figure 6.3 Bandwidth consumption, ref-691. 78
Figure 6.4 Bandwidth consumption, ref-724. 79
Figure 6.5 Bandwidth consumption, ms-691. 79
Table 6.2 Average delivery rates in windows that cannot be fully

decoded. 80
Figure 6.6 Stream quality (ref-691). 81
Figure 6.7 Stream quality (ms-691). 81
Figure 6.8 Stream quality (ref-724). 82
Figure 6.9 Cumulative distribution of experienced jitter (ref-

691). With HEAP and a stream lag of 10 s, 93% of
the nodes experience less than 10% jitter. 82

Figure 6.10 Stream lag (ref-691). 83
Figure 6.11 Stream lag (ms-691). 84
Figure 6.12 Cumulative distribution of stream lag values (ref-691). 84
Figure 6.13 Cumulative distribution of stream lag values (ms-691). 85
Table 6.3 Percentage of nodes receiving a jitter-free stream by

capability class. 85
Figure 6.14 Resilience in the presence of 20% of nodes crashing. . 86
Figure 6.15 Resilience in the presence of 50% of nodes crashing. . 86

150

List of Figures, Algorithms and Tables

Figure 6.16 Biasing the source improves the overall stream lag by
an average of 3.6 s for ref-691 and 2.3 s in ms-691. . . 88

Figure 7.1 System efficiency in the presence of freeriders. 93
Figure 7.2 A freerider communicates with f̂ < f partners. 94
Figure 7.3 A freerider deliberately removes some chunks (c here)

from its proposal. 95
Figure 7.4 An honest node picks communication partners uni-

formly at random from the set of all nodes whereas
a freerider biases the partner selection to pick mainly
colluding nodes. 95

Figure 7.5 With a larger gossip period, some proposed chunks are
unlikely to be requested (e.g., a and b here). 96

Table 7.1 Summary of attacks and associated verifications. . . . 97
Figure 7.6 Overview of LiFT. 99
Figure 7.7 Cross-checking protocol. 99
Table 7.2 Summary of attacks and associated blame values. . . . 100
Figure 7.8 Direct cross-checking and attack. Colluding nodes are

denoted with a ‘?’. 101
Figure 7.9 Entropic check on proposals (f = 3). 102
Table 7.3 Overhead of verifications. 104
Figure 7.10 Impact of message losses. 107
Figure 7.11 Distribution of normalized scores in the presence of

freeriders (∆ = (0.1, 0.1, 0.1)). 109
Figure 7.12 Proportion of freeriders detected by LiFT. 110
Figure 7.13 Distribution of the entropy H of the nodes’ histories

using a full membership-based partner selection. . . . 111
Table 7.4 Summary of principal notations. 113
Table 7.5 Practical overhead . 114
Figure 7.14 Cumulative distribution functions of scores with pcc =

1 (above) and pcc = 0.5 (below). 115

151

About the Author

Maxime Monod (full name Ducimetière Alias Monod) was born on May 6th
1981 in Lausanne of mother Francine Bonfils (born Perret) and father Jean-
Daniel Ducimetière Alias Monod. He joins a family composed of his brother
Cédric Monod (1974) and his sister Leslie Monod-Mounoud (1977). His family
originates from Corsier-sur-Vevey and Saint-Saphorin-sur-Morges. After the
divorce of his parents, Maxime is also raised by Guy Bonfils, fondly considered
as his second father.

Besides drama classes, piano, guitar, karate and tennis, it is after the buying
of a Commodore 64 that Maxime is infected for good by the virus of computer
science.

After having graduated from the Gymnase Auguste Piccard (CESSrive high
school), where he obtained a baccalauréat ès sciences and a maturité fédérale
(Science bias), he studies computer science at the Swiss Federal Institute of
Technology in Lausanne (EPFL). He graduates in 2004 with an Engineering
Diploma, after completing his diploma project (Master’s thesis) at McGill Uni-
versity, Montréal under the supervision of both Prof. Alfred Strohmeier (Soft-
ware Engineering Laboratory, EPFL) and Prof. Jörg Kienzle (Software Engi-
neering Laboratory, McGill University). After completing the Officier Candidate
School in the armored forces in Thun, he joins the Distributed Programming
Laboratory of EPFL, led by Prof. Rachid Guerraoui in the beginning of 2005.

He first works two years towards the elaboration of an event-based program-
ming model in the context of mobile devices for the European project PAL-
COM, and then begins his PhD in the context of large-scale distributed systems,
partially funded by the SNF. He supervised several semester projects, master
projects, and internships. He also acted four years as a teaching assistant for
the Introduction to Object-oriented Programming course, given to undergraduate
students in computer and communication sciences.

After several years playing basketball in Pully, Maxime enjoys playing tennis,
running, hiking, alpine skiing, ski touring, biking, bike touring and participates
in various races and competitions, in particular: 20 km de Lausanne, Lausanne
Marathon, Morat-Fribourg, Sierre-Zinal, Swiss Raid Commando, Lombardia
Raid, Monaco Raid, Patrouille des Glaciers or Cyclotour du Léman.

153

A Propos de l’Auteur

Maxime Monod (nom de famille complet Ducimetière Alias Monod) est né le
6 mai 1981 à Lausanne de mère Francine Bonfils (née Perret) et de père Jean-
Daniel Ducimetière Alias Monod. Il rejoint une famille composée de son frère
Cédric Monod (1974) et de sa soeur Leslie Monod-Mounoud (1977). Il est origi-
naire de Corsier-sur-Vevey et Saint-Saphorin-sur-Morges. Après le divorce de ses
parents, Maxime est aussi élevé par Guy Bonfils, qu’il considère affectueusement
comme son deuxième père.

A côté de cours de théâtre, de piano, de guitare, de karaté et de tennis, c’est
probablement après l’achat d’un Commodore 64 que Maxime a définitivement
attrapé le virus de l’informatique.

Après avoir obtenu son baccalauréat ès sciences et sa maturité fédérale au
Gymnase Auguste Piccard (anciennement CESSrive), en section scientifique, il
étudie l’informatique à l’Ecole Polytechnique Fédérale de Lausanne. Il obtient en
2004 le diplôme d’Ingénieur en Informatique en effectuant son projet de diplôme
à McGill University, Montréal sous la supervision du Prof. Alfred Strohmeier
(Laboratoire de Génie Logiciel, EPFL) et du Prof. Jörg Kienzle (Software Engi-
neering Laboratory, McGill University). Après l’école d’officiers dans les troupes
blindées à Thoune, il rejoint début 2005 le Laboratoire de Programmation Dis-
tribuée de l’EPFL, dirigé par le Prof. Rachid Guerraoui.

Il travaille tout d’abord deux ans à l’élaboration d’un modèle de program-
mation événementielle dans le contexte des environnements mobiles au sein du
projet européen PALCOM, puis commence sa thèse sur les systèmes distribués
à large échelle pour l’obtention de son doctorat, partiellement financé par le
FNS. Il a supervisé plusieurs projets de semestre, projets de master ou encore
encadré des stagiaires. Pendant quatre ans, il a aussi été assistant pour le cours
Introduction à la Programmation Objet, donné aux étudiants de première année
des sections informatique et systèmes de communications.

Après plusieurs années de basket à Pully, Maxime pratique le tennis, la course
à pied, la randonnée, le ski alpin, la peau de phoque, le vélo, le cyclotourisme
et participe à différentes courses et compétitions, notamment les 20 km de Lau-
sanne, le marathon de Lausanne, Morat-Fribourg, Sierre-Zinal, le Swiss Raid
Commando, le Lombardia Raid, le Monaco Raid, la Patrouille des Glaciers ou
encore le Cyclotour du Léman.

155

“That’s all folks!”

