
Collaborative Scoring with Dishonest Participants

Seth Gilbert
EPFL

Lausanne, Switzerland

seth.gilbert@epfl.ch

Rachid Guerraoui
EPFL

Lausanne, Switzerland

rachid.guerraoui@epfl.ch

Faezeh Malakouti Rad
Boston University
Boston MA, USA

faezeh@bu.edu

Morteza
Zadimoghaddam

MIT
Cambridge MA, USA

morteza@mit.edu

ABSTRACT

Consider a set of players that are interested in collectively
evaluating a set of objects. We develop a collaborative scor-
ing protocol in which each player evaluates a subset of the
objects, after which we can accurately predict each players’
individual opinion of the remaining objects. The accuracy of
the predictions is near optimal, depending on the number of
objects evaluated by each player and the correlation among
the players’ preferences.

A key novelty is the ability to tolerate malicious play-
ers. Surprisingly, the malicious players cause no (asymp-
totic) loss of accuracy in the predictions. In fact, our algo-
rithm improves in both performance and accuracy over prior
state-of-the-art collaborative scoring protocols that provided
no robustness to malicious disruption.

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distrib-
uted Systems; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms

Algorithms, Theory

Keywords

fault tolerance, randomized algorithms, collaborative filter-
ing, recommendation systems

1. INTRODUCTION
Imagine a group of researchers (say, a program committee)

that is attempting to evaluate a set of papers (say, SPAA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

submissions). Each researcher wants to know whether or
not she/he likes each paper. However, none of the busy re-
searchers have enough time to read all of the papers. There-
fore, each researcher is assigned some subset of the papers
to evaluate, and their scores are then used to determine, for
each researcher, his/her (supposed) opinion on the remain-
ing (unread) papers. (Notice that this differs from standard
program committees in that, in the end, every researcher
develops an opinion on every paper.) In fact, it is possi-
ble to accurately guess each committee member’s opinion
on his/her unread paper as long as there is sufficient corre-
lation among the opinions of the researchers.

This process of collecting and correlating information is
an example of collaborative scoring, which has been exten-
sively studied (e.g., [2–5, 9]). Our goal in this paper is to
design a collaborative scoring algorithm that minimizes the
number of items each player must evaluate (i.e., the num-
ber of papers that each researcher has to read), while at the
same time maximizing the accuracy of the predictions. In-
tuitively, there is an inherent trade-off between the number
of items evaluated and the accuracy of the predictions.

Dishonest players.
One of the problems with collaborative solutions is that

some of the players may violate the protocol or act dishon-
estly. For example, some researchers may be too busy and,
instead of reading their assigned papers, they may simply
choose scores at random (or based on the reputation of the
authors). Alternatively, researchers might attempt to bias
the algorithm toward their colleagues’ papers1. In either
case, some researchers may be tricked into liking a paper
that they would otherwise dislike, if they had read it (or
vice versa).

An important goal of this paper is to develop a collabo-
rative scoring protocol that is robust to malicious interfer-
ence2. Even if a reasonable fraction of the players collude in
an attempt to subvert the system, the honest players are still

1While such practices are of course rare, perhaps non-
existent, in the honest community of computer science re-
searchers, these problems remain worthy of consideration in
a broader context.
2For historical reasons, such malicious parties are often re-
ferred to as “Byzantine.”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

guaranteed near-optimal predictions as to their scores3. To
the best of our knowledge, this is the first collaborative scor-
ing algorithm that can tolerate dishonest players4. Interest-
ingly, our algorithm also improves even over state-of-the-art
algorithms that do not allow for dishonest behavior.

Correlation of preferences, accuracy of predictions.
The basic idea behind collaborative scoring is to leverage

the correlation in preferences among players. For example,
imagine that there are two researchers Alice and Bob with
very similar opinions regarding the papers to be evaluated;
in that case if Alice evaluates some paper, then Bob can
reliably predict that, for that paper, he will have the same
opinion as Alice. Thus if we have significant correlation
among the researchers, and if we can determine efficiently
which researchers share the same opinions, then we can de-
velop very accurate predictions, even if the number of papers
evaluated by each researcher is relatively small.

In fact, the accuracy of the predictions depends on the
correlation of the players’ preferences. For example, if the
preferences are entirely independent, then collaboration pro-
vides no benefit: each researcher has to read every paper
themselves. On the other hand, if there are large subsets
of the players that share the same preferences, then collab-
oration can be quite effective. The question we address in
this paper is how to discover such correlations, and how to
leverage these correlations to provide good predictions.

Our results.
Assume we have n players and n objects. (Generalizing

to more objects is straightforward.) Each player has some
unknown opinion of each object. Our goal is to determine
for each player whether she likes or dislikes each object. We
present a collaborative scoring protocol with the following
attributes:

• Optimality: Our protocol predicts each player’s pref-
erences with near-optimal levels of precision in the
following sense. Given a bound B on the number
of objects that can be evaluated by each player, and
given a particular (though unknown) level of correla-
tion among preferences, there is some minimum rate
of error that can be achieved. Our algorithm achieves
a constant-factor approximation of this minimum rate
of error, in the worst-case, while requiring each player
to evaluate O(B logO(1) n) objects. Thus, by slightly
augmenting the budget of each player, we achieve an
asymptotically optimal rate of error, despite knowing
nothing about the level of correlation among the pref-
erences.

• Fault-tolerance: We achieve this (almost) optimal rate
of error, despite up to n/(3B) of the users behaving in
a dishonest fashion.

Prior to this paper, the best known algorithm [2, 3]—which
does not tolerate dishonest players—requires each player to
examine O(B2 logO(1) n) objects, and yet achieves only a B-

3See Section 2 for more intuition on what is meant here by
optimal.
4There do exist collaborative recommendation systems that
tolerate malicious users, e.g., [5, 16], but these are solving a
somewhat different problem, as discussed in Section 4.

approximation (instead of a constant-factor approximation)
of the optimal rate of error5.

Our basic strategy is to discover clusters of players that
can cooperatively evaluate the objects. If we can identify,
for each player, a sufficiently large set of other players that
have similar preferences, then these players can share the
work of evaluating the objects. For instance, if there are
n objects and each player is part of a cluster containing at
least n/B other players with similar preferences, then no
player needs to evaluate more than B objects. Thus one of
the main goals of the protocol is to find such clusters of play-
ers with similar preferences. In general, standard sampling
techniques can be used to find such clusters. A key prob-
lem, however, is that the dishonest players may attempt to
disrupt the process by “hijacking” some of the clusters. In
order to compensate for this the samples would have to be
too large; thus we augment the sampling with collaborative
scoring techniques to reduce the cost.

More specifically, in order to find clusters of players with
similar preferences, we want to examine the players’ pref-
erences on a smaller subset of the objects, specifically, a
randomly chosen sample of size Θ(n log n/D), where D rep-
resents the maximum divergence of preferences. It is too
expensive, however, for each player to evaluate each of the
objects even in this smaller sample, as each player can only
evaluate B logO(1) n objects. Since the sample is chosen at
random, players that have similar preferences over the larger
set have very similar preferences on the smaller set. Thus
we can use a collaborative scoring algorithm optimized for
players with very similar preferences, first described in [2,3].
This provides a good estimate of the preferences on the small
sample, which can then be used to produce a clustering of
the players. In order to ensure that no cluster is “hijacked”
by dishonest players, we show that there are enough hon-
est players in each cluster to dominate. Finally, the work
of probing objects is divided among players in each cluster,
with sufficient redundancy to overcome the dishonest play-
ers.

Roadmap.
In Section 2, we describe the basic model and define the

problem of collaborative scoring and what it means for an
algorithm to be optimal. In Section 4, we discuss some of
the related work. In Section 5, we review some existing algo-
rithms that we will use as sub-components of our protocol.
In Section 6, we present and analyze our new algorithm in
the absence of dishonest players, and in Section 7, we show
how to cope with dishonest players. Finally, we conclude in
Section 8.

2. BASIC MODEL
We consider a world consisting of a set Π of n players and

a set Λ of n objects. (Generalizing for more objects than
players is straightforward, and omitted for clarity.) Let P be
the set of players and O the set of objects. Associated with
each player p ∈ P is a binary (0/1) vector v(p) of size n that
indicates whether player p likes or dislikes each object. We
refer to v(p) as player p’s preference vector, and it is initially
unknown. (In Section 8 we discuss some generalizations of
this model.)

5In [2, 3], B is assumed to be constant, and hence it also
claims to achieve a constant-factor approximation.

Notice that there may be some hidden structure on the
distribution of preferences, for example, certain sets of play-
ers may have correlated preferences on certain subsets of the
objects. However, we do not make any a priori assumptions
on such structure. If such structure does exist, it is unknown
to the players and must be discovered. (It is, in fact, just
such correlations between players that makes collaborative
scoring effective.)

We assume that some of the players are honest and some
of the players are dishonest. A dishonest player may ignore
the protocol, lying about its preferences and attempting to
improperly influence the output of the protocol.

The game proceeds in synchronous rounds. In each round,
each player can choose one object to probe. Every time
a player probes an object, it learns its preference for that
object. For example, when player p probes object k, it learns
whether v(p)k is equal to 0 or 1.

Players have access to a public “bulletin board” (e.g., a
distributed shared memory). In each round, the players can
update and read the bulletin board after each probe. With-
out loss of generality, we assume that each honest player
writes the result of each probe to the bulletin board. A
dishonest player cannot modify the data written by honest
players on the bulletin board.

Throughout the paper, when we say that an event occurs
with high probability, we mean with probability 1−1/n. By
increasing the probe complexity by a constant factor, we can
achieve a probability of error of 1/nc for any constant c.

3. COLLABORATIVE SCORING
The problem of B-budget collaborative scoring is defined

as follows. Each player may make up to O(B) probes. The
goal is to generate for each player p a vector w(p) that mini-
mizes |w(p)− v(p)|, i.e., the Hamming distance between the
real preference vector v(p) and the output vector w(p). The
rate of error is the maximum such difference for any player,
for any set of initial preference vectors.

Initially, in Section 6, we assume that all the players be-
have correctly, obeying the protocol. In Section 7, we show
that our protocol can tolerate up to n/(3B) of the players
behaving dishonestly.

Our goal is to devise an algorithm that, while using only
O(B logO(1) n) probes, performs asymptotically as well as
any algorithm using only B probes. (One might think of
this as a form of resource augmentation: by using somewhat
more probes, the algorithm presented here can perform al-
most as well as an optimal B-budget collaborative scoring
algorithm.) We now state more precisely what this claim
means.

We begin by providing some intuition as to why Defini-
tion 1 in fact describes the best performance that a B-budget
collaborative scoring protocol can achieve, in the worst case.
While this may seem a somewhat non-intuitive definition of
optimality, it does define a lower bound on what is achiev-
able and hence a benchmark to which we can later compare
the algorithm developed in this paper.

Given a subset of the players P , we define D(P) to be the
diameter of P : D(P) = maxp,q∈P (|v(p)−v(q)|). Assume we
have some B-budget algorithm ALG.

Consider some particular player p. Since each player can
only probe B objects, it is easy to see that, in a sense, p
must “collaborate” with at least (n/B) − 1 other players in
order to ensure that p has information on every object. (If

p collaborates with any fewer players, then it has access to
data on less than n objects. In this case, there is some object
for which p has no information, i.e., it can only guess at
random its preference.) Notice that p may certainly examine
information from more than (n/B)−1 other players, and we
in no way restrict ALG from collecting information in any
way it chooses. However, in order to do better than random
guessing, p must use information from probes performed by
at least (n/B) − 1 other players.

Ideally, player p would collaborate with the (n/B) − 1
players that have preferences most similar to p. That is,
player p would collaborate with a set of players P with min-
imum diameter. (Again, player p may also use information
from farther away players.)

In fact, in the worst case, player p can do no better than
to collaborate with the (n/B) − 1 closest players. That is,
if P is the set containing p with minimum diameter D(P),
then no algorithm can have a rate of error less than D(P)/4.
Thus we define optimality in terms of the diameter of the
set of players closest to p.

Formally, we define the notion of optimality (much as in [2,
3]) as follows:

Definition 1. A collaborative scoring algorithm is said
to be asymptotically optimal with respect to some budget B
if there exists some constant c such that for every input set of
preferences vectors, for every player p, with high probability:

|w(p) − v(p)| ≤ min
P⊆Π, p∈P, |P |≥n/B

cD(P) .

In the worst-case, every B-budget collaborative scoring algo-
rithm may perform only as well as specified in Definition 1.
We give here a simple proof of this claim, demonstrating a
particular distribution of preferences that yields the speci-
fied rate of error.

Claim 2. For every B-budget collaborative scoring algo-
rithm ALG, there is some distribution of preferences and
some player p such that, with constant probability:

|w(p) − v(p)| ≥ min
P⊆Π, p∈P, |P |≥n/B

D(P)/4 .

Proof. Given a constant D such that n/4 > D > 2B, we
define an input distribution of preference vectors as follows.
Let P be a set of players of size n/B and let p be some
arbitrary player in P . For every player q /∈ P , assign its
preference vector v(q) at random. In addition, for player
p, assign its preference vector v(p) at random. Choose an
arbitrary special set S of D objects, and for every player
q ∈ P \ {p}, define v(q) = v(p) on every object except those
in the set S; for the objects in S, choose v(q) at random.

Since the preference vectors of every player not in P are
chosen at random (with respect to p), obviously the probes
performed by players outside of P provide no information to
p. Similarly, the probes performed by players in P provide
no information to p on objects in S. Since p probes at most
B objects, and since S contains at least D > 2B objects,
there are at least D/2 objects on which p has no information.
Thus, no algorithm can do better for p than guessing its
preferences on objects in S, and hence ALG has a rate of
error of at least D/4, in expectation. At the same time, the
diameter of P ≤ D (and every other set of size n/B is of
distance at least n/4 > D, whp), concluding the proof.

While the above proof uses a very specific distribution to
demonstrate the worst-case notion of optimality, in fact, for
a broad set of preference distributions, this notion of opti-
mality really does capture the best that any B-budget col-
laborate scoring protocol can achieve6.

In this paper, we give a new algorithm for solving the
B logO(1) n-budget collaborative scoring problem; and this
new algorithm is asymptotically optimal with respect to B.

4. RELATED WORK
The problem of determining preferences via collaborative

scoring (or “collaborative filtering”) has been widely stud-
ied. We focus here on the on-line solutions; other research
focuses on off-line solutions that examine historical data to
reconstruct preferences.

Early work in this area [1,6–9,12] defined the problem as
one of reconstructing a matrix of preferences, and brought
a series of linear algebraic techniques to bear on the prob-
lem. In [9], for example, they rely on singular-value de-
composition, which requires some strong assumptions: users
are partitioned into types that have orthogonal preferences;
and users of the “dominant” type outnumber users of “sub-
dominant” types.

Awerbuch et al. [4] and Alon et al. [2,3] relax these differ-
ent assumptions, introducing a combinatorial approach to
the problem of collaborative scoring. They define the model
that we use in this paper, and formulate precisely the prob-
lem of collaborative scoring. In [4], they introduce the algo-
rithm that we here refer to as ZeroRadius (and the associ-
ated Select protocol), optimally solving the problem of col-
laborative scoring under the assumption that there are large
clusters of users with exactly identical preferences. In [2,3],
they address the more general problem, which attempts to
leverage correlation among users where preferences are sim-
ilar, even when not identical. They develop an algorithm in
which each user makes O(B2 logO(1) n) probes, and the re-
sulting output is a B-approximation of optimal with respect
to a budget of B. (As they assume that B is a constant, they
refer to this as a constant-factor approximation of optimal.)

Another area of research has focused on the problem of
recommendation systems, a problem closely related to col-
laborative scoring. The goal of a recommendation system
is to provide each user with a small number of recommen-
dations (e.g., one per day), with the goal of maximizing
the number of “good” objects recommended. By contrast, a
collaborative scoring system attempts to determine a user’s
score for every item. As one example of this line of research,
Kleinberg and Sandler [11] develop a near optimal recom-
mendation algorithm (based on mixture models).

While there has been no prior work (to our knowledge) on
collaborative scoring robust to malicious players, there has
been research on robust recommendation systems. In [5],
Awerbuch et al. develop such a recommendation system;
their algorithm runs in O(n log n) time, and is within a
log n factor of optimal in the size of the recommendation
set. In [16], Yu et al. presents a protocol that provides a
continuous stream of recommendations (e.g., one per day),
while maximizing the percentage of good recommendations.
It too can tolerate dishonest players (known as “Sybils”),
and relies on careful reputation management to choose rec-

6Notice this same notion of optimality can be found in [2,3],
where the stretch is divided by the diameter.

ommendations. There is other work on robust recommen-
dation systems that relies on pre-existing social networks
(e.g., [14,15].

Finally, Nisgav and Patt-Shamir [13] have recently devel-
oped algorithms for partitioning users based on their pref-
erences. Their goal is not to determine preferences, but
instead to group users into sets with similar preferences. It
is possible that such a partitioning could be used as the ba-
sis for a collaborative scoring protocol (though it is unclear
how the performance would compare), and their sampling
techniques bear some similarity to the techniques used in
this paper. However they do not consider the possibility of
malicious failures.

5. BACKGROUND
In developing our algorithm, we use as building blocks

three existing algorithms from [2–4]. To be self-contained,
we briefly repeat them here. (They need little modification
to tolerate dishonest players; see Section 7.)

5.1 Choose Closest Candidate
The first building block is a protocol for selecting among

a set of candidate preference vectors. Assume a set of can-
didate vectors w1, w2, . . . , wk. Player p wants to determine
which vector is closest to v(p). The goal of the RSelect
protocol, found in Figure 1, is to identify, with high proba-
bility, the best candidate.

Theorem 3 (Theorem 6.1 [2]). Let w∗ be the vector
in w1, . . . , wk that is closest to v(p). Then, with high prob-
ability, RSelect outputs a vector w such that |v(p) − w| ≤
O(|v(p) − w∗|), using only O(k2 log n) probes.

5.2 Special Case: Zero Radius Sets
A second building block, originally from [4], implements

collaborative scoring under the assumption that for each p ∈
P , there exists a subset S(p) ⊆ Π of size n/B with the exact
same preferences as p. That is, the subset S(p) has diameter
of size 0. See Figure 1 for the pseudocode.

Theorem 4 (Theorem 3.1 [2]). Assume that at least
n/B′ players have identical preferences to player p. Then,
with high probability, ZeroRadius(·, ·, B′) outputs prefer-
ence vector v(p) with O(B′ log n) probes.

5.3 Special Case: Small Radius Sets
A third algorithm from [2,3] solves the collaborative scor-

ing problem under the assumption that for each p ∈ P ,
there exists some subset S(p) of size n/B where the diame-
ter D(S(p)) is no greater than log n. In this case, the diame-
ter D is a parameter to the algorithm. The pseudocode can
be found in Figure 1. The Select protocol is a determinis-
tic version of RSelect with slightly difference performance
guarantees.

Theorem 5 (Theorem 4.4 [2]). Assume that at least
n/B players have preferences within distance D of player p.
Then, with high probability, SmallRadius outputs a pref-
erence vector w(p) such that |w(p) − v(p)| ≤ 5D, making

O(B log nD3/2(D + log n)) probes.

algorithm RSelect(w1, . . . , wk)p;

For every pair of vectors w, w′ ∈ {w1, . . . , wk} do:

1. Let X be the set of objects on which w and w′ differ.

2. Randomly probe Θ(log n) objects from X.

3. Eliminate w′ if at least 2/3 of the probed objects agree with w, and eliminate w if at least 2/3 of the probed objects
agree with w′. Otherwise, keep both w and w′.

Output any vector that remains.

algorithm ZeroRadius(P, O, B′)p // players P , objects O, bound B′

1. If min(|P |, |O|) < O(B′ log(n)), player p probes all objects in O and outputs their values.

2. Otherwise, partition P and O randomly into two sets: place each player from P in P ′ or P ′′ with probability 1/2;
place each object from O in O′ or O′′ with probability 1/2. The same partition is chosen by all players in P .

3. Assume wlog that p ∈ P ′. Player p recursively executes ZeroRadius(P ′, O′, B′) to determine the preferences for
players in P ′ on objects in O′.

4. Let V be a set of vectors for O′′ such that each vector in V is output by at least |P ′′|/(2B′) players in P ′′. Let C be
the set of objects for which there are different votes in V .

5. While C 6= ∅ do: Choose an arbitrary object in C and probe it. Remove from V all objects that disagree with the
probe, and update C.

algorithm SmallRadius(P, O, D)p // players P , objects O, diameter D

Repeat Θ(log n) times:

1. Partition the objects O randomly into s = Θ(D3/2) disjoint subsets: O = O1 ∪ O2 ∪ · · · ∪ Os.

2. For each i ∈ {1, . . . , s}: all players execute ZeroRadius(·, ·, 5B) for the objects of Oi, allowing for 5B probes; let Ui

be the set of vectors output by at least n/(5B) players.

3. Each player p executes Select(Ui, D)p, obtaining vector ui(p) for each i ∈ {1, · · · , s}. Concatenate the vectors ui(p)
over all i, and add the result to the set V .

Each player p applies procedure Select(V, D)p and outputs the result.

Figure 1: Building Block Protocols (see [2, 3]). The pseudocode is given for player p. The procedure
Select, not included here, is a deterministic version of RSelect that takes two parameters: a set of vectors
V , and a diameter bound D such that for a least one vector v′ ∈ V , |v(p) − v′| ≤ D.

6. BASIC PROTOCOL
We now present and analyze the protocol for calculat-

ing each players’ preferences, which we refer to as Calcu-
latePreferences. The analysis in this section assumes
that all the players are honest; in Section 7, we examine the
problem of dishonest behavior.

6.1 Preliminaries
Initially, players have no knowledge about the correlation

among their preferences. Thus, we begin by “guessing” a
diameter D such that for every player p there is a set of
a least n/B other players, including p, with diameter no
greater than than D. Specifically, we execute our proto-
col ⌈log n⌉ + 1 times, parameterized with D = 1, 2, 4, . . . , n;
the protocol works correctly when D is guessed correctly.
For each player p, this process produces O(log n) candidate
vectors w1, w2, . . . , wlog n, at least one of which near-exactly
represents p’s preferences. (This is depicted in Step 1 of
Figure 2.) We then execute the RSelect(w1, . . . , wlog n)p

protocol, for each p, to determine which of these candidate
vectors is best.

We fix the target diameter D for the remainder of the pa-
per. We assume throughout that for every player p, there

exists a set of player P ′ ⊆ P of size at least n/B, and con-
taining p, such that D(P ′) ≤ D. For at least one choice of
D, this assumption will hold. (It should be noted that [2,3]
follows this same strategy.)

We rapidly dispense with two easy cases. If the budget
B = Ω(n/ log n), then every player probes every object, and

the problem is trivially solved using O(B logO(1) n) probes.
On the other hand, if diameter D < log n, then the Small-
Radius algorithm from [2,3] solves the collaborative scoring

problem using only O(B logO(1) n) probes. For the remain-
der of this paper, we focus on the case where B = O(n/ ln n)
and D ≥ log(n).

6.2 Overview
The key idea in our algorithm is to discover clusters of

players with similar preferences that can cooperatively probe
the objects. Specifically, if we can identify, for each player,
a set of at least n/B other players that have similar prefer-
ences, then these players can each sample just B objects.

A natural approach is to rely on sampling to determine
which players have similar preferences. Consider a randomly
chosen set of objects of size Θ(n log n/D). Such a set is
large enough that it provides a good indication of whether

two players have similar preferences. Unfortunately, it is
too expensive for each player to probe each element in the
set. Fortunately, any two players that have preference dis-
tance at most D over all the objects will differ in at most
O(log n) objects on the smaller sample. Thus clusters of
diameter D in the entire object space reduce to clusters of
diameter O(log n) on this smaller sample. We can then use
the SmallRadius algorithm to efficiently determine each
player’s preference on this smaller set.

Finally, we use this information to construct a neighbor
graph in which players with similar preferences share an
edge, and we use this to group the players into clusters.
The work of probing all n objects is then divided among the
players in each cluster. The protocol is described in Figure 2.

6.3 Step 1: Selecting a Sample Set
Each object is added to set S with probability 10 ln(n)/D.

(For now: designate one player to make these random selec-
tion and publish them on the bulletin board; see Section 7
for the case of dishonest players.) We observe that the set S
provides a good estimate of the similarity (or dissimilarity)
of two players’ preferences.

Lemma 6. For every pair of players p and q:

1. If |v(p) − v(q)| < D, then they differ in their prefer-
ences for at most 20 ln n objects, whp.

2. if |v(p) − v(q)| ≥ cD, for c ≥ 3, then they differ in
their preferences for at least 5c ln n objects, whp.

Proof. Fix players p and q. Let A = {o1, o2, · · · , ok} be
the set of objects on which p and q have different preferences.
Note that k ≤ D. For part (1), the expected number of
elements in A∩S is at most 10 ln(n), and hence by a Chernoff
bound, with high probability |A∩S| ≤ 20 ln(n). For part (2),
the expected number of elements in A∩S is at least 10c ln(n),
and hence by a Chernoff bound, with high probability |A ∩
S| ≥ 5c ln(n). Taking a union bound over all pairs p, q ∈
P × P concludes the proof.

6.4 Step 2: Probing the Sample Set
Next, we use the SmallRadius algorithm to determine

each player’s preferences on the set S. By Lemma 6, we
know that each set of players with diameter D differs in
their preferences for at most 20 ln n objects in the set S.
Thus, the SmallRadius algorithm ensures that each player
correctly discovers his preferences on the set S, with high
probability.

Lemma 7. For every player p, let z(p) be the output of
the SmallRadius algorithm on set S with distance 20 ln n.
Then for every pair of players p and q:

1. If |v(p) − v(q)| ≤ D, then |z(p) − z(q)| ≤ 220 ln(n),
with high probability.

2. If |v(p) − v(q)| ≥ 84D, then |z(p) − z(q)| ≥ 220 ln(n),
with high probability.

Proof. For part (1): According to Lemma 6, the number
of differences between p and q for objects in S is at most
20 ln(n). By Theorem 5, we know that, restricted to objects
in S, |v(p) − z(p)| ≤ 100 ln n and |v(q) − z(q)| ≤ 100 ln n.
Thus, |z(p) − z(q)| ≤ (2 · 100) ln(n) + 20 ln(n) = 220 ln n.

For part (2): According to Lemma 6, the number of differ-
ences between p and q for objects in S is at least (5·84) ln(n).

By Theorem 5, we know that, restricted to objects in S,
|v(p) − z(p)| ≤ 100 ln n and |v(q) − z(q)| ≤ 100 ln n. Thus,
|z(p) − z(q)| ≥ 420 ln(n) − (2 · 100) ln(n) = 220 ln n.

6.5 Step 3: Calculating Clusters
We now use the output of the SmallRadius algorithm on

the sample set S to cluster the players in sets of size at least
n/B, where each cluster has diameter O(D). (Recall that we
have assumed that for every player p, there exists a set of size
n/B, containing p, with diameter ≤ D.) Assume that for
every player p, vector z(p) is the output from SmallRadius.
We construct a graph G = (P, E), adding an edge between
players p and q if |z(p)− z(q)| ≤ 220 ln n. We conclude as a
corollary of Lemma 7:

Lemma 8. For all players p, q: (i) p has degree at least
n/B − 1 in the neighbor graph; (ii) if (p, q) is an edge, then
|v(p) − v(w)| ≤ 84D.

To construct the clusters, we begin with graph G = (P, E),
empty sets V1, V2, . . ., and a counter j = 1. Repeat the
following until there is no p in G with degree ≥ n/B − 1:

1. Choose a player p that has degree n/B − 1 in G.

2. Add p and the (≥ n/B − 1) neighbors of p to Vj .

3. Remove p and the neighbors of p from G.

4. Increment j.

We have now constructed a sequence of sets V1, . . . , Vℓ each
of size at least n/B. Moreover, after this process, the graph
G contains no player with n/B − 1 neighbors. Let q be one
of the remaining vertices in the graph with degree less than
n/B − 1. Since previously, by Lemma 8, q had n/B − 1
neighbors, there must be some p ∈ Vj that was previously
a neighbor of q; add q to V ′

j , and remove it from G. Once
every player has been removed from G, then combine Vj and
V ′

j to create the final sequence of clusters V1, . . . , Vℓ.

Lemma 9. The clustering has the following properties:

1. Every player is contained in exactly one of the sets
V1, . . . , Vℓ.

2. For every j ∈ [1, . . . , ℓ], each set Vj contains at least
n/B players.

3. For every j ∈ [1, . . . , ℓ], the diameter D(Vj) = O(D).

Proof. The first two properties are immediate by con-
struction. The third follows from the fact that every pair of
nodes p, q ∈ Vj are within distance 4 in the initial neighbor
graph. According to Lemma 7, the total number of differ-
ences between p and q is then at most 4× 84D = 336D.

6.6 Step 4: Sharing the Work
Finally, for each cluster and for each object, we choose

Θ(log n) of the players from the cluster uniformly random,
and assign those players to probe the object. Each player
p observes the Θ(log n) values output for each object o by
the assigned players in its cluster, and sets its output w(p)o

to the value that is probed by a majority of the assigned
players.

Lemma 10. In the final phase, no player probes more than
O(B log n) objects, with high probability.

algorithm CalculatePreferencesp;

1. For d = 0 to ⌈log n⌉ do:

(a) Let D = 2d.

(b) Add each object independently with probability O(log n/D) to the sample set S.

(c) Execute SmallRadius(Π, S, 20 ln n)p on the sample set S.

(d) Construct a neighbor graph and cluster the players into sets V1, V2, . . . , Vℓ of size at least n/B and diameter at
most D.

(e) For each cluster Vi and for each object o, repeat Θ(log n) times: choose at random one of the players in Vi to
probe object o. Each player p ∈ Vi sets w(pi)d to the value that is discovered by a majority of the players that
probe o.

2. Each player p executes RSelect(w(p))p, and outputs the result.

Figure 2: High-Level Description of the CalculatePreferences Algorithm

Proof. A player p probes each object with probability at
most O(B log(n)/n), as every cluster is of size at least n/B.
The expected number of probes per player is O(B log(n)),
and hence by a Chernoff bound, with high probability no
player makes more than O(B log n) probes.

6.7 Concluding Claims.
In the absence of malicious players, ComputePrefer-

ences is asymptotically optimal with respect to a budget
of B, as it successfully identifies a cluster of size n/B with
asymptotically minimum diameter (see Lemma 9), and uses
this cluster to generate the output preference vector. We dis-
cuss this in more detail in Section 7, while considering the
behavior of malicious players. We now examine the probe
complexity of the entire protocol:

Lemma 11. In ComputePreferences, no player makes
more than O(B logO(1) n) probes, whp.

Proof. Each player repeats the protocol O(log n) times
for varying choices of diameter D. In the SmallRadius
algorithm, the diameter is 20 ln(n), and hence, by Theo-
rem 5, in each iteration, the number of probes per player is
O(B log3.5 n). In the final phase, by Lemma 10, each player
makes O(B log n) probes. Finally, the RSelect protocol re-
quires each player to make O(log3 n) additional probes.

Lastly, we argue that the protocol outputs preference vec-
tors that are near to the real preference vectors. This follows
from the observation that every cluster has diameter O(D):

Lemma 12. Let D be the minimum integer such that for
every player p there exists a set of at least n/B players,
including p, with diameter no greater than D. Then for
every player p: |w(p) − v(p)| = O(D).

Proof. Let d be the smallest integer such that 2d ≥ D.
We consider the iteration where D′ = 2d is the target diam-
eter. Fix a player p, and let Vj be the cluster produced by
the protocol containing p. Let s be the number of players in
Vj . For object oi, let xi be the number of players q where
v(q) 6= v(p). By Lemma 9, we know that Vj has diameter
O(D′), and hence Σn

i=1xi = O(sD′).
We now argue that if xi < s/3, then, with high probabil-

ity, v’s output is correct, i.e., v(p)i = w(p)i. In particular,
there are Θ(log n) objects assigned to probe object oi. If
xi < s/2, then in expectation, at least 2/3 of these probes

return the correct value for p. Thus by a Chernoff bound,
with high probability, at least a majority of the probes re-
turn the right value for p.

It remains to bound the number objects oj for which
xj ≥ s/3. Since we have Σn

i=1xi = O(sD′), by a simple
counting argument there cannot be more than O(D′) objects
for which v outputs an incorrect preference, with high prob-
ability. Thus |v(p) − w(p)d| = O(D′) = O(D). Finally, by
Theorem 3, since one of the candidate vectors w1, . . . , wlog n

is within distance O(D) of v(p), we know that the final out-
put w(p) is within distance O(D) of v(p).

7. DISHONEST PLAYERS
We now address the problem of dishonest players. The

algorithm presented in Section 6 has already been designed
to mostly prevent dishonest disruption. There are two is-
sues that must be resolved. First, the algorithm presented
in Section 6 (along with the building block algorithms in
Section 5) rely on random choices that are agreed upon by
all honest players. In Section 7.1, we discuss how to gen-
erate such randomness in the presence of dishonest players.
Second, the dishonest players may attempt to hijack the
clusters formed by the CalculatePreferences protocol.
In Section 7.2, we show that the CalculatePreferences
protocol is still asymptotically (almost) optimal even if up
to n/(3B) of the players are dishonest.

7.1 Generating Shared Random Numbers
The CalculatePreferences protocol depends on ran-

dom choices that are known to all players. For example, in
step (1.b), the protocol selects a sample set S uniformly at
random; and in step (1.e), players are randomly assigned
objects to evaluate. If the dishonest players can bias these
random choices, then the predicted preferences output by
the protocol may be inaccurate.

Basic idea.
Consider the following simple solution. Prior to execut-

ing the CalculatePreferences protocol, the players col-
laboratively elect a leader at random via a protocol that
guarantees an honest leader with constant probability (as
discussed below). The leader then writes a set of randomly
chosen bits to the public bulletin board, and these are used
as a shared source of randomness throughout the protocol.

With constant probability, the leader is honest and these
bits are truly random.

This entire process of choosing a leader and executing
CalculatePreferences is iterated Θ(log n) times, gen-
erating Θ(log n) candidate output vectors. With high prob-
ability, at least one of these candidate vectors is generated
from an execution in which an honest participant was elected
leader. The players then execute RSelect to choose the
best vector, ensuring that the final output is sufficiently ac-
curate. (Note that RSelect is run locally at each player
and does not depend on shared randomness.)

Electing an honest leader.
There exist in the literature several Byzantine-tolerant

leader election algorithms (for shared-memory) that guar-
antee an honest leader is elected with constant probability.
Here, we focus on the leader election protocol proposed by
Feige [10] as a particularly nice solution to the problem.

The leader election protocol assumes that (1+δ)n/2 play-
ers are honest, which is the case for all B ≥ 1 as there are at
most n/(3B) dishonest players. The protocol also assumes
a full information model in which each player can broadcast
her information to all other participant; this is easily imple-
mented using the shared bulletin board. The guarantee is
that with probability Ω(δ1.65), an honest leader is elected.

The idea underlying the protocol is to model the situa-
tion as a balls-and-bins game. Each player has a ball that
it throw at random into one of the bins. The players that
choose the lightest bin proceed to the next round, while the
other players are eliminated. After repeating a sufficient
number of times, one leader remains. The key principle en-
suring correctness is that the lightest bin will have approx-
imately the same fraction of honest players as the original
set of players; the dishonest players cannot bias the fraction
of honest player too much, as if they disproportionately join
the lightest bin, it will cease to be the lightest.

7.2 Analysis with Dishonest Players
In this section, we show that the CalculatePrefer-

ences protocol achieves the same (asymptotic) rate of error,
even when there up to n/(3B) dishonest players, as long as
the shared random bits are unbiased. We assume that the
dishonest players may be colluding to bias the results.

Specifically we show that the dishonest players cannot bias
the predicted preferences for too many objects, and thus
they cannot increase the asymptotic rate of error. Recall
that each cluster assigned Θ(log n) players to probe each
object (in step (2.e)), and these players vote on the predicted
preference. If all the honest players in a cluster have the
same preference for an object, it is easy for the honest players
to “out-vote” the dishonest players since at most 1/3 of the
players in a cluster are dishonest. The hard case, however,
is when there are roughly the same number of players in
a cluster that like an objects as dislike it. In that case,
the votes of the dishonest players can bias the prediction.
The crux of the argument, then, is that within each cluster,
there are only O(D) objects in which the honest players have
significant disagreement as to the predicted preference.

Lemma 13. For each cluster constructed in step (1.d), the
dishonest players can influence the predicted preferences for
at most O(D) objects.

Proof. Consider cluster Vi. Let X be the set of dishon-
est players that are part of this cluster. We examine their
impact on step (1.e), the probing phase, focusing on a par-
ticular object o. Let A1 be the set of players in Vi that are
honest and like object o; let A0 be the set of players in Vi

that are not malicious and dislike object o. Without loss of
generality, assume that |A1| ≥ |A0|.

We now show that if |A1| > 5|A0|, then the result of the
probing phase for object o in cluster Vi is 1, with high proba-
bility. Since |Vi| ≥ n/B, as per Lemma 9, and |X| ≤ n/(3B),
we know that |A0 ∪ A1| ≥ 2|Vi|/3. Assuming |A1| > 5|A0|,
we can say that |A1| ≥ 5|Vi|/9. In step (1.e), object o is as-
signed at random (as the shared random bits are unbiased)
to c log n players (for some constant c). Hence in expectation
at least 5c log n/9 players in A1 are assigned to probe ob-
ject o. Thus, with high probability, the majority of players
probing o are in A1, and hence the dishonest players have no
impact on the prediction. The symmetric claim also holds: if
|A0| > 5|A1|, then the result of the probing phase for object
o in cluster Vi is 0, with high probability, again preventing
the dishonest players from having any impact.

We say object o is zero-strange if 5|A0| ≥ |A1| ≥ |A0|,
and one-strange if 5|A1| ≥ |A0| ≥ |A1. We now show
that there are at most O(D) zero-strange objects, using the
double counting method. (The symmetric claim about one-
strange objects follows by the same argument.) We count
the number of triples (p1, p2, o) where p1 and p2 are two hon-
est players, and o is an object on which p1 and p2 disagree
in their preferences. Since the number of differing prefer-
ences between any pair of players is O(D) (by Lemma 9),
the total number of such triples in a cluster is O(|Vi|

2D).
On the other hand, for any strange object, we know that
|A0| + |A1| ≥ 2|Vi|/3, so we have that |A1| ≥ |Vi|/3, and
|A0| ≥ |A1|/5 ≥ |Vi|/15. We conclude that the number
of triples for a given object o is |A1||A0| = Ω(V 2

i), imply-
ing that there are at most O(D) zero-strange objects. By
the same logic, there are at most O(D) one-strange objects.
We conclude that the dishonest players can only impact a
player’s preferences with respect to O(D) objects.

As a final remark, it is relatively easy to see that the dis-
honest players cannot significantly impact the ZeroRadius
and SmallRadius routines that are used as building blocks:
in each case, all that matters is that there are sufficiently
many honest players that participate to ensure a good out-
come. We can now conclude with the main theorem of the
paper:

Theorem 14. The CalculatePreferences protocol is
a O(B logO(1) n)-budget collaborative scoring algorithm that
is asymptotically optimal with respect to a budget of B.

8. CONCLUSION
In this paper, we have presented an algorithm for collabo-

rative scoring that can tolerate some fraction of the players
acting dishonestly. Moreover, the protocol is almost optimal
in the sense that, given a budget of O(B logO(1) n), it per-
forms asymptotically as well as any algorithm with a budget
of B, in the worst case.

There are several interesting open questions. One obser-
vation is that we have proposed a relatively restricted defi-
nition of collaborative scoring in order both to simplify the
presentation and to make the analysis tractable. For exam-
ple, players are restricted to binary preferences; in reality,

players may rate items on a numerical scale. As a related
example, we use the Hamming distance to measure the sim-
ilarity of two players’ preferences; in a real system (with
non-binary preferences), other metrics may be more useful.
We believe that many of the techniques developed in this
paper generalize to these more realistic settings: the basic
idea of using sampling to cluster players does not rely on
these particular assumptions.

Another interesting scenario concerns the situation where
different players have different budgets. For example, some
players may be willing to probe a large number Bbig of ob-
jects, while other players may be willing to probe only a
small number Bsmall of objects. Again, the techniques in
this paper should generalize to such a scenario: each clus-
ter must be chosen to contain a sufficient total number of
queries among all the members.

Another aspect to collaborative scoring is the communi-
cation complexity. Here, we assume a shared bulletin board
which is, effectively, free to access. In reality, there are costs
to sharing information, either via sending messages or ac-
cessing a shared memory. It remains an open question to
minimize the underlying communication costs.

More technically, there are two obvious gaps. First, do
we really need the augmented budgets to achieve asymp-
totic optimality? That is, can we develop an algorithm that
uses only O(B) queries, and yet is still asymptotically opti-
mal with respect to a budget of B? Second, can we show,
formally, a stronger lower bound on the worst-case perfor-
mance? The notion of optimality in this paper is worst-case:
there is a distribution of preferences for which it is impossi-
ble to do better. Yet we conjecture that there is a stronger
notion of optimality: for every distribution of preferences, a
player p can do no better than, say, the median distance to
the closest n/B others.

Finally, there remains the question of tolerating a larger
number of dishonest players. The key requirement, here, is
that not too many malicious players are included in any one
cluster. By preventing the malicious players from biasing
the selection of clusters, it seems possible to adapt the tech-
niques developed here to tolerate more dishonest players.

9. REFERENCES

[1] D. Achlioptas and F. McSherry. Fast computation of
low rank approximations. In Proceedings of the 33rd
Annual Symposium on Theory of Computing, pp,
611–618, 2001.

[2] N. Alon, B. Awerbuch, Y. Azar, and B. Patt-Shamir.
Tell me who I am: An interactive recommendation
system. In Proceedings of the 18th Annual Symposium
on Parallelism in Algorithms and Architectures, pp.
1–10, 2006.

[3] N. Alon, B. Awerbuch, Y. Azar, and B. Patt-Shamir.
Tell me who I am: An interactive recommendation
system. Theory of Computing Systems, 45(2):
261–279, August, 2009.

[4] B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-Shamir, and
M. Tuttle. Collaborate with strangers to find own
preferences. In Proceedings of the 17th Annual
Symposium on Parallelism in Algorithms and
Architectures, pp. 263–269, 2005.

[5] B. Awerbuch, B. Patt-Shamir, and D. Peleg. Improved
recommendation systems. In Proceedings of the 16th
Annual Symposium on Discrete Algorithms, pp.
1174–1183, 2005.

[6] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia.
Spectral analysis of data. In Proceedings of the 33rd
Annual Symposium on Theory of Computing, pp.
619–626, 2001.

[7] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V.
Vinay. Clustering in large graphs and matrices. In
Proceedings of the 10th Annual Symposium on
Discrete Algorithms, pp. 291–299, 1999.

[8] P. Drineas and R. Kannan. Fast monte-carlo
algorithms for approximate matrix multiplication. In
Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, p. 452, 2001.

[9] P. Drineas, I. Keredinis, and P. Raghavan.
Competitive recommendation systems. In Proceedings
of the 34th Annual Symposium on Theory of
Computing, pp. 82–90, 2002.

[10] U. Feige. Non-cryptographic selection protocols. In
Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, p. 142, 1999.

[11] J. Kleinberg and M. Sandler. Using mixture models for
collaborative filtering. In Proceedings of the 36th
Annual Symposium on Theory of Computing, pp.
569–578, 2004.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, and A.
Tomkins. Recommender systems: A probablistic
analysis. In Proceedings of the 39rd Annual Symposium
on Foundations of Computer Science, p. 664, 1998.

[13] A. Nisgav and B. Patt-Shamir. Finding similar users
in social networks. In Proceedings of the 21st Annual
Symposium on Parallelism in Algorithms and
Architectures, pp. 169–177, 2009.

[14] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao.
SybilLimit: A near-optimal social network defense
against sybil attacks. In Proceedings of the Symposium
on Security and Privacy, pp. 3–17, 2008.

[15] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: Defending against sybil attacks via social
networks. Transactions on Networking, 16(3):576–589,
June 2008.

[16] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F.
Xiao. DSybil: Optimal sybil-resistance for
recommendation systems. In Proceedings of the 30th
Annual Symposium on Security and Privacy, pp.
283–298, 2009.

