
Implementing First-Class Polymorphic Delimited Continuations
by a Type-Directed Selective CPS-Transform

Tiark Rompf Ingo Maier Martin Odersky
Programming Methods Laboratory (LAMP)

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract
We describe the implementation of first-class polymorphic delim-
ited continuations in the programming language Scala. We use
Scala’s pluggable typing architecture to implement a simple type
and effect system, which discriminates expressions with control ef-
fects from those without and accurately tracks answer type modi-
fication incurred by control effects. To tackle the problem of im-
plementing first-class continuations under the adverse conditions
brought upon by the Java VM, we employ a selective CPS trans-
form, which is driven entirely by effect-annotated types and leaves
pure code in direct style. Benchmarks indicate that this high-level
approach performs competitively.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Theory

Keywords Delimited continuations, selective CPS transform,
control effects, program transformation

1. Introduction
Continuations, and in particular delimited continuations, are a ver-
satile programming tool. Most notably, we are interested in their
ability to suspend and resume sequential code paths in a controlled
way without syntactic overhead and without being tied to VM
threads.

Classical (or full) continuations can be seen as a functional ver-
sion of the infamous GOTO-statement (Strachey and Wadsworth
2000). Delimited (or partial, or composable) continuations are
more like regular functions and less like GOTOs. They do not em-
body the entire rest of the computation, but just a partial rest, up to
a programmer-defined outer bound. Unlike their undelimited coun-
terparts, delimited continuations will actually return control to the
caller after they are invoked, and they may also return values. This
means that delimited continuations can be called multiple times in
succession, and the program can proceed at the call site afterwards.
This ability makes delimited continuations strictly more powerful
than regular ones. Operationally speaking, delimited continuations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

do not embody the entire control stack but just stack fragments, so
they can be used to recombine stack fragments in interesting and
possibly complicated ways.

To access and manipulate delimited continuations in direct-
style programs, a number of control operators have been proposed,
which can be broadly classified as static or dynamic, according to
whether the extent of the continuations they capture is determined
statically or not. The dynamic variant is due to Felleisen (1988);
Felleisen et al. (1988) and the static variant to Danvy and Filinski
(1990, 1992). The static variant has a direct, corresponding CPS-
formulation which makes it attractive for an implementation using
a static code transformation and thus, this is the variant underly-
ing the implementation described in this paper. We will not go into
the details of other variants here, but refer to the literature instead
(Dyvbig et al. 2007; Shan 2004; Biernacki et al. 2006); suffice it to
note that the two main variants, at least in an untyped setting, are
equally expressive and have been shown to be macro-expressible
(Felleisen 1991) by each other (Shan 2004; Kiselyov 2005). Ap-
plying the type systems of Asai and Kameyama (2007); Kameyama
and Yonezawa (2008), however, renders the dynamic control oper-
ators strictly more expressive since strong normalization holds only
for the static variant (Kameyama and Yonezawa 2008).

In Danvy and Filinski’s model, there are two primitive opera-
tions, shift and reset. With shift, one can access the current
continuation and with reset, one can demarcate the boundary up
to which continuations reach: A shift will capture the control
context up to, but not including, the nearest dynamically enclosing
reset (Biernacki et al. 2006; Shan 2007).

Despite their undisputed expressive power, continuations (and
in particular delimited ones) have not yet found their way into
the majority of programming languages. Full continuations are
standard language constructs in Scheme and popular ML dialects,
but most other languages do not support them natively. This is
partly because efficient support for continuations is assumed to
require special provisions from the runtime system (Clinger et al.
1999), like the ability to capture and restore the run-time stack,
which are not available in all environments. In particular, popular
VM’s such as the JVM or the .NET CLR do not provide this low-
level access to the run-time stack. One way to overcome these
limitations is to simulate stack inspection with exception handlers
and/or external data structures (Pettyjohn et al. 2005; Srinivasan
2006).

Another avenue is to use monads instead of continuations to ex-
press custom-defined control flow. Syntactic restrictions imposed
by monadic style can be overcome by supporting more language
constructs in the monadic level, as is done in F#’s workflow ex-
pressions. Nevertheless, the fact remains that monads or workflows
impose a certain duplication of syntax constructs that need to be

made available on both monadic and direct style levels. Besides
that, it is common knowledge that delimited continuations are able
to express any definable monad (Filinski 1994, 1999).

In this paper we pursue a third, more direct alternative: trans-
form programs using delimited continuations into CPS using a
type-directed selective CPS transform. Whole program CPS trans-
forms were previously thought to be too inefficient to be practical,
unless accompanied by tailor-made compiler backends and run-
times (Appel 1992). However, we show that the more localized
CPS-transforms needed for delimited continuations can be imple-
mented on stock VMs in ways that are competitive in terms of per-
formance.

1.1 Contributions
To the best of our knowledge, we are the first to implement direct-
style shift and reset operators with full answer type polymor-
phism in a statically type-safe manner and integrated into a widely
available language.

We implement a simple type and effect system which discrimi-
nates pure from impure expressions, while accurately tracking an-
swer type modification and answer type polymorphism. We thereby
extend the work of Asai and Kameyama (2007) to a slightly dif-
ferent notion of purity, which identifies all uses of shift in a
program and thus is a suitable basis for applying a selective CPS
transform (Nielsen 2001). To the best of our knowledge, we are
the first to use a selective CPS transform to implement delimited
continuations.

With our implementation, we present evidence that the standard
CPS transform, when applied selectively, is a viable means to ef-
ficiently implement static control operators in an adverse environ-
ment like the JVM, under the condition that closures are available
in the host language.

1.2 Related Work
Filinski (1994) presented an ML-implementation of shift and
reset (using callcc and mutable state), which has fixed an-
swer types. Gasbichler and Sperber (2002) describe a direct imple-
mentation in Scheme48, which, of course, is not statically typed.
Dyvbig et al. (2007) presented a monadic framework for delimited
continuations in Haskell, which includes support for shift and
reset among other control operators and supports multiple typed
prompts. This framework does not allow answer type modifica-
tion, though, and the control operators can only be used in monadic
style (e.g. using Haskell’s do notation) but not in direct-style. Kise-
lyov et al. (2006) presented a direct-style implementation in (byte-
code) OCaml, which is inspired by Dyvbig et al.’s framework. The
OCaml implementation does not support answer type modification,
though, and the type system does not prevent using shift out-
side the dynamic scope of a reset. In this case, a runtime excep-
tion will occur. All of the above implementations cannot express
Asai’s type-safe implementation of printf (Asai 2007). Kiselyov
(2007) gave an adaption of Asai and Kameyama (2007)’s type sys-
tem (powerful enough to express printf) in Haskell, which is
fully type safe and provides answer type polymorphism, but can-
not be used in direct-style (in fact, due to the use of parameterized
monads (Atkey 2006), do notation cannot be used either). Asai and
Kameyama (2007) did not provide a publicly available implemen-
tation of their calculus.

On the JVM, continuations have been implemented using a form
of generalized stack inspection (Pettyjohn et al. 2005) in Kilim
(Srinivasan 2006; Srinivasan and Mycroft 2008). These continua-
tions can in fact be regarded as delimited, but there is no published
account of their delimited nature. Kilim also tracks control effects
using a @pausable annotation on methods but there are no ex-
plicit or definable answer types.

Danvy and Filinski (1989) presented a monomorphic type sys-
tem for shift and reset, which was extended by Asai and
Kameyama (2007) to provide answer type polymorphism. A type
and effect system for full continuations has been presented by Thi-
elecke (2003). None of these allow to identify all uses of shift
(including trivial ones like in shift(k => k(3))) in a given
source program. The selective CPS transform has been introduced
by Nielsen (2001), but it has not been applied in the context of de-
limited continuations.

1.3 Overview
The rest of this paper is structured as follows. Section 2 gives
a short overview of the Scala language and the language subset
relevant to our study. Section 3 is the main part of this paper
and describes the typing rules and program transformations which
constitute the implementation of delimited continuations in Scala.
Section 4 presents programming examples, Section 5 performance
figures, and Section 6 concludes.

2. The Host Language
This section gives a quick overview of the language constructs of
Scala as far as they are necessary to understand the material in this
paper. Scala is different from most other statically typed languages
in that it fuses object-oriented and functional programming. Most
features from traditional functional languages such as Haskell or
ML are also supported by Scala, but sometimes in a slightly differ-
ent way.

Value definitions in Scala are written

val pat = expr

where pat is a pattern and expr is an expression. They corre-
spond to let bindings. Monomorphic function definitions are writ-
ten

def f(params): T = expr

where f is the function’s name, params is its parameter list, T is
its return type and expr is its body. Regular by-value parameters
are of the form x: T, where T is a type. Scala also permits by-
name parameters, which are written x: => T. It is possible to
leave out the parameter list of a function completely. In this case,
the function’s body is evaluated every time the function’s name is
used.

Definitions in Scala programs are always nested inside classes
or objects.1 A simple class definition is written

class C[tparams](params) extends Ds { defs }

This defines a class C with type parameters given by tparams,
value parameters given by params, superclasses and -traits given
by Ds and definitions given by defs. All components except the
class name can be omitted. Classes are instantiated to objects using
the new operator. One can also define an object directly with almost
the same syntax as a class:

object O extends Ds { defs }

Such an object is an instance of an anonymous class with the given
parent classes Ds and definitions defs. The object is created lazily,
the first time it is referenced.

The most important form of type in Scala is a reference to a class
C, or C[Ts] if C is parameterized. Unary function types from S to
T are type instances of class Function1[S, T], but one usually
uses the abbreviated syntax S => T for them. By-name function

1 Definitions outside classes are supported in the Scala REPL and in Scala
scripts but they cannot be accessed from outside their session or script.

types can be written (=> S) => T. Most of Scala’s libraries are
written in an object-oriented style, where operations apply to an
implicit this receiver object. For instance, a List class would
support operations map and flatMap in the following way:

class List[T] {
...
def map[U](f: T => U) = this match {
case Nil => Nil
case x :: xs => f(x) :: xs.map(f)

}
def flatMap[U](f: T => List[U]) = this match {
case Nil => Nil
case x :: xs => f(x) ::: xs.flatMap(f)

}
}

Here, :: is list cons and ::: is list concatenation. The implemen-
tations above also show Scala’s approach to pattern matching using
match expressions. Similar to Haskell and ML, pattern matching
blocks that enclose a number of cases in braces can also appear
outside match expressions; they are then treated as function liter-
als.

Most forms of expressions in Scala are written similarly to Java
and C, except that the distinction between statements and expres-
sions is less strict. Blocks { ... }, for example, can appear as
expressions, including as function arguments. Another departure
from Java is support for function literals, which are written with
an infix =>. For instance, (x: Int) => x + 1 represents the
incrementation function on integers. All binary operations in Scala
are treated as method calls. x op y is treated as x.op(y) for
every operator identifier op, no matter whether op is symbolic or
alphanumeric.

In fact, map and flatMap correspond closely to the operations
of a monad. flatMap is monadic bind and map is bind with a
unit result. Together, they are sufficient to express all monadic
expressions as long as injection into the monad is handled on a
per-monad basis. Therefore, all that needs to be done to implement
monadic unit is to provide a corresponding constructor operation
that, in this case, builds one-element lists. Similarly to Haskell and
F#, Scala supports monad comprehensions, which are called for-
expressions. For instance, the expression

for (x <- xs; y <- f(x)) yield g(x, y)

is expanded to

xs.flatMap(x => f(x).map(y => g(x, y)))

Definitions as well as parameters can be marked as implicit.
Implicit parameters that lack an actual argument can be instantiated
from an implicit definition that is accessible at the point of call
and that matches the type of the parameter. Implicit parameters
can simulate the key aspects of Haskell’s type classes (Moors et al.
2008). An implicit unary function can also be used as a conversion,
which implictly maps its domain type to its range.

Definitions and types can be annotated. Annotations are user-
defined metadata that can be attached to specific program points.
Some annotations are visible at run-time where they can be ac-
cessed using reflection. Others are consumed at compile-time by
compiler plugins. The Scala compiler has a standardized plugin
architecture (Nielsen 2008) which lets users add additional type
checking and transformation passes to the compiler.

Syntactically, annotations take the form of a class constructor
preceded by an @-sign. For instance, the type

String @cps[Int, List[Int]]

is the type String, annotated with an instance of the type cps
applied to type arguments Int and List[Int].

reset {
val x = shift { k: (Int=>Int) =>
"done here"

}
println(x)

}

No output (continua-
tion not invoked)

reset {
val x = shift { k: (Int=>Int) =>
k(7)

}
println(x)

}

Output: 7

val x = reset {
shift { k: (Int=>Int) =>
k(7)

} + 1
} * 2
println(x)

Output: 16

val x = reset {
shift { k: (Int=>Int) =>
k(k(k(7)))

} + 1
} * 2
println(x)

Output: 20

val x = reset {
shift { k: (Int=>Int) =>
k(k(k(7))); "done"

} + 1
}
println(x)

Output: “done”

def foo() = {
1 + shift(k => k(k(k(7))))

}
def bar() = {
foo() * 2

}
def baz() = {
reset(bar())

}
println(baz())

Output: 70

Figure 1. Examples: shift and reset

In this paper, we study the addition of control operators shift
and reset to this language framework, which together implement
static delimited continuations (Danvy and Filinski 1990, 1992). The
operational semantics of shift is similar to that of callcc in
languages like Scheme or ML, except that a continuation is only
captured up to the nearest enclosing reset and the capturing is
always abortive (i.e. the continuation must be invoked explicitly).
Figure 1 presents some examples to illuminate the relevant cases.

3. Implementation
Broadly speaking, there are two ways to implement continuations
(see (Clinger et al. 1999) for a more detailed account). One is to
stick with a stack-based execution architecture and to reify the cur-
rent continuation by making a copy of the stack, which is reinstated

when the continuation is invoked. This is the approach taken by
many language implementations that are in direct control of the
runtime system. Direct implementations of delimited continuations
using an incremental stack/heap strategy have also been described
(Gasbichler and Sperber 2002). In the Java world, stack-copying
has been used to implement continuations on the Ovm virtual ma-
chine (Dragos et al. 2007). For Scala, though, this is not a viable op-
tion, since Scala programs need to run on plain, unmodified, JVMs,
which do not permit direct access or modification of stack contents.
A variant of direct stack inspection is generalized stack inspec-
tion (Pettyjohn et al. 2005), which uses auxiliary data structures
to simulate continuation marks that are not available on the JVM or
CLR architectures. That approach is picked up and refined by Kilim
(Srinivasan 2006; Srinivasan and Mycroft 2008), which transforms
compiled programs at the bytecode-level, inserting copy and restore
instructions to save the stack contents into a separate data structure
(called a fiber) when a continuation is to be accessed.

The other approach is to transform programs into continuation-
passing-style (CPS) (Appel and Jim 1989; Danvy and Filinski
1992). Unfortunately, the standard CPS-transform is a whole-
program transformation. All explicit or implicit return state-
ments are replaced by function calls and all state is kept in closures,
completely bypassing the stack. For a stack-based architecture like
the JVM, of course, this is not a good fit.

On the other hand, regarding manually written CPS code shows
that only a small number of functions in a program actually need
to pass along continuations. What we are striving for is thus a se-
lective CPS transform (Nielsen 2001) that is applied only where it
is actually needed, and allows us to stick to a regular, stack-based
runtime discipline for the majority of code. As a side effect, this
by design avoids the performance problems associated with imple-
mentations of delimited continuations in terms of undelimited ones
(Balat and Danvy 1997; Gasbichler and Sperber 2002). In general,
a CPS transform is feasible only if the underlying architecture sup-
ports constant-space tail-calls, which is the case for the .NET CLR
but not yet for the JVM2. So far, we have not found this a prob-
lem in practice. One reason is that for many use-cases of delim-
ited continuations, call depth tends to be rather small. Moreover,
some applications lend themselves to uses of shift and reset
as parts of other abstractions, which allow a transparent inclusion
of a trampolining facility, in fact introducing a back-door tail-call
optimization.

3.1 Syntax-Directed Selective CPS Transform
Taking a step back, we consider how we might implement delim-
ited continuations as user-level Scala code. The technique we use
comes as no surprise and is a straightforward generalization of the
continuation monad to one that is parametric in the answer types.
On a theoretical level, parameterized monads have been studied in
(Atkey 2006).

As a first step, we define a wrapper class to hold shift blocks
and provide methods to extend and compose them. The method
flatMap is the monadic bind operation:

class Shift[+A,-B,+C](val fun: (A => B) => C) {

def map[A1](f: (A => A1)): Shift[A1,B,C] = {
new Shift((k:(A1 => B)) =>
fun((x:A) => k(f(x))))

}

def flatMap[A1,B1,C1<:B](f: (A =>
Shift[A1,B1,C1])): Shift[A1,B1,C] = {

new Shift((k:(A1 => B1)) =>

2 Tail-call support for the JVM has been proposed by JSR 292 (Rose 2008)

fun((x:A) => f(x).fun(k)))
}

}

Note the +/- variance annotations on the type parameters of class
Shift, which make the class covariant in parameters A and C and
contravariant in B. This makes Shift objects consistent with the
subtyping behavior of the parameter fun.

We go on by defining reset to operate on Shift objects, in-
voking the body of a given shift block with the identity function
to pass the result back into the body (which is the standard CPS
definition of reset):

def reset[A,C](c: Shift[A,A,C]) = c.fun(x:A => x)

With these definitions in place, we can use delimited continua-
tions by placing Shift blocks in for comprehensions, which are
Scala’s analog to the do notation in Haskell:

val ctx = for {
x <- new Shift((k:Int=>Int) => k(k(k(7))))

} yield (x + 1)

reset(ctx) // 10

This works because during parsing, the Scala compiler desugars
the for comprehension into invocations of map and flatMap:

val ctx = new Shift((k:Int=>Int) => k(k(k(7))))
.map(x => x + 1)

reset(ctx) // 10

So for all practical matters, we have a perfectly workable se-
lective CPS transform, albeit a syntax-directed one, i.e. one which
is carried out by the parser on the basis of purely syntactic cri-
teria, more specifically the placement of the keywords for and
yield. Being forced to use for comprehensions everywhere con-
tinuations are accessed does not make for a pleasant programming
style, though. Instead, we would like our CPS to be type-directed,
i.e. carried out by the compiler on the basis of expression types.

3.2 Effect-Annotated Types
The motivation for this approach is to transparently mix code that
must be transformed with code that does not. Therefore, we have
to disguise the type Shift[A,B,C] as something else, notably
something that is compatible with type A because A is the argument
type of the expected continuation (recall the definition of Shift).
Thus, we make use of Scala’s pluggable typing facilities and in-
troduce a type annotation @cps[-B,+C], with the intention that
any expression of type A @cps[B,C] should be translated to an
expression of type Shift[A,B,C].

The approach of using annotated types to track control effects
has a close correspondence to the work on polymorphic delimited
continuations (Asai and Kameyama 2007). It has been noted early
(Danvy and Filinski 1989) that in the presence of control operators,
standard typing judgements of the form Γ ` e : τ , which associate
a single result type τ with an expression e, are insufficient to
accurately describe the result of evaluating the expression e. The
reason is that evaluating e may change the answer type of the
enclosing computation. In the original type system by Danvy and
Filinski (1989), typing judgements thus have the form

Γ;α ` e : τ ;β

meaning that “if e is evaluated in a context represented by a func-
tion from τ to α, the type of the result will be β” or equivalently
“In a context where the (original) result type was α, the type of e is
τ and the new type of the result will be β”.

Asai and Kameyama (2007) present a polymorphic extension
of this (monomorphic) type system and prove a number of desir-
able properties, which include strong type soundness, existence of
principal types and an efficient type inference algorithm. A key ob-
servation is that if e does not modify its context, α and β will be
identical and if Γ;α ` e : τ ;α is derivable for any α, the expres-
sion does not have any measurable control effect. In other words,
pure expressions (e.g. values) are intuitively characterized as being
polymorphic in the answer type and not modifying it (Thielecke
2003).

Pure expressions such as lambda abstractions (or other values)
should thus be allowed to be used polymorphically in the language.
The ability to define functions that are polymorphic in how they
modify the answer type when invoked plays a crucial role e.g.
in the implementation of type-safe printf (Asai 2007). Asai
and Kameyama therefore use two kinds of typing judgements to
distinguish pure from impure expressions, and they require that
only pure expressions be used in right-hand sides of let-bindings,
in order to keep their (predicative) type system sound. The kinds of
judgements used are

Γ `p e : τ Γ;α ` e : τ ;β

for pure and impure expressions, respectively. Expressions classi-
fied as pure are variables, constants, lambda abstractions and uses
of reset. In addition, pure expressions can be treated as impure
ones that do not change the answer type:

Γ `p e : τ

Γ;α ` e : τ ;α

Instead of the standard function types σ → τ , types of the form
σ/α → τ/β are used (denoting a change in the answer type from
α to β when the function is applied).

3.3 Pure is not Pure
For our goal of applying a selective CPS transform, we need a
slightly different notion of purity. Since we have to transform
all expressions that actually access their continuation (and only
those), we have to be able to identify them accurately. Neither
the intuitive notion of purity nor the purity judgement of Asai and
Kameyama does provide this classification. For example, the ex-
pression shift(k => k(3)), which needs to be transformed,
would be characterized as pure in the intuitive sense (it is polymor-
phic in the answer type and does not modify it) but the purity judge-
ment is not applicable. The expression id(3), however, which
should not be CPS-transformed, is intuitively pure but impure as
defined by applicability of the purity judgement, as are function
applications in general.

We thus define an expression as pure if and only if it does not
reify its continuation via shift in the course of its evaluation. In
order to adapt the effect typing to this modified notion of purity we
use a slightly different formulation. We keep the standard typing
judgements of the form Γ ` e : τ , but we enrich the types
themselves. That is, τ can be either A, denoting a pure type, or A
@cps[B,C], denoting an impure type that describes a change of
the answer type from B to C. We will write A α when we talk
about both pure and impure types.

We present typing rules for a selected subset of the Scala lan-
guage in Figure 2. Impure types are introduced by shift expres-
sions (SHIFT).3 Impure types are eliminated by reify expressions

3 The given typing of shift(f), which requires f to be a pure function, is
slightly different from the usual presentation, which would allow f to have
non-trivial control effects itself. This is no limitation, however, since the
usual definition of shift wraps its body with an implicit reset. Thus,
adding an explicit reset around the body of an impure f will make the
expression well-typed and achieve the standard behavior.

Γ ` f : (A => B) => C

Γ ` shift(f) : A @cps[B,C]
(SHIFT)

Γ ` c : A @cps[B,C]

Γ ` reify(c) : Shift[A,B,C]
(REIFY)

Γ ` f : (A => (B γ)) α
Γ ` e : A β δ = comp(α β γ)

Γ ` f(e) : B δ
(APP-VALUE)

Γ ` f : ((=>A β) => (B γ)) α
Γ ` e : A β δ = comp(α γ)

Γ ` f(e) : B δ
(APP-NAME)

Γ ` f : ((=>A @cps[C,C]) => (B γ)) α
Γ ` e : A δ = comp(α γ)

Γ ` f(e) : B δ

(APP-DEMOTE)

Γ, x : A, f : (A=>B β) ` e : B β
Γ, f : (A=>B β) ` {r} : C γ

Γ ` def f(x:A): B β = e; r : C γ

(DEF-CBV)

Γ, x : A α, f : ((=>A α)=>B β) ` e : B β
Γ, f : ((=>A α)=>B β) ` {r} : C γ

Γ ` def f(x:=>A α): B β = e; r : C γ

(DEF-CBN)

Γ ` e : A α Γ, x : A ` {r} : B β δ = comp(α β)

Γ ` val x: A = e; r : B δ

(VAL)

Γ ` s : A α Γ ` e : B β δ = comp(α β)

Γ ` {s; e} : B δ
(SEQ)

Figure 2. Typing rules for a selected subset of Scala expressions.
Lowercase letters are expressions, uppercase letters types without
annotations, greek letters are either annotations or no annotations.

comp(ε) = ε

comp(@cps[B,C]) = @cps[B,C]

comp(α) = @cps[V ,W] W <: B

comp(@cps[B,C]α) = @cps[V ,C]

(A => B) => C <: (U => V) => W

A @cps[B,C] <: U @cps[V ,W]

Figure 3. Composition of control effects and subtyping between
annotated types. Lowercase letters are expressions, uppercase let-
ters are types without annotations, ε denotes the empty sequence of
annotations, other greek letters are either annotations or no annota-
tions.

(REIFY), which allow a Scala program to directly access the Shift
object that results from CPS-transforming an expression. We show
in Section 3.4 how to express reset in terms of reify.

As opposed to the type system of Asai and Kameyama, which
provides no distinction between pure and impure functions, we can
distinguish the two cases by looking at the return type. If no @cps
annotation is present, and only then, the function is considered
pure. Functions with a single by-value parameter are of the type
A => (B β) (DEF-CBV). That the effect of applying a function
is coupled to its return type is consistent with the intuitive assump-
tion that the return type describes what happens when the function
is applied. The formal parameter is not allowed to have an effect.
This is also intuitively consistent, because for a by-value parame-
ter, any effect the evaluation of an argument might have will oc-
cur at the call site (APP-VALUE), so inside the function, accessing
the argument will be effect-free. On the other hand, functions in
Scala can also have by-name parameters. A function with a sin-
gle by-name parameter will have the type (=>A α) => (B β)
(DEF-CBN), which is consistent with the assumption that the effect
of evaluating the argument now happens inside the function body
(APP-NAME). If a function taking an impure parameter is applied
to a pure expression, the argument is demoted to impure provided
that the parameter type does not demand changing the answer type
(APP-DEMOTE). The typing rules for other kinds of expressions
(e.g. conditionals) are similar in spirit to those presented for func-
tion applications.

Since functions can be polymorphic in their answer type mod-
ification, we allow right-hand-sides of def statements to be im-
pure. We also allow impure expressions in val definitions (these
are monomorphic in Scala) that occur inside methods, but the iden-
tifier will have a pure type since the effect occurs during evaluation
of the right hand side and has already happened once the identifier
is assigned (VAL). The effect is instead accounted to the enclosing
block (SEQ). In Scala, val definitions are also used to define ob-
ject or class level fields. Contrary to those inside methods, these
val definitions are required to be pure since we cannot capture a
continuation while constructing an object.

Subtyping between impure types takes the annotations into ac-
count, with proper variances as induced by the corresponding CPS
representation (see Figure 3). There is no subtyping or general sub-
sumption between pure and impure types, but pure expressions may
be treated as impure (and thus polymorphic in the answer type)
where required, as defined by the typing rules in Figure 2. This
is a subtle difference that allows us to keep track of the purity of
each expression and prevents the loss of accuracy associated with
Asai and Kameyama’s subsumptive treatment of pure expressions
as impure ones. The CPS transform will detect these conversion
cases in the code and insert shifts where necessary to demote
pure expressions to impure ones. In addition, impure expressions
can be treated as pure ones in all by-value places, i.e. those where
the expression is reduced to a value. The expression’s effect (which
happens during evaluation) is then accounted to the enclosing ex-
pression.

And this is exactly what will drive the selective CPS conversion:
Every use of an impure expression as a pure one must reify the
context as a continuation and explicitly pass it to the translated
impure expression.

When we say “accounted to the enclosing expression”, we are
actually a bit imprecise. The correct way to put it is that every ex-
pression’s cumulated control effect (which may be none) is a com-
position of its by-value subexpressions’ control effects in the or-
der of their evaluation. For such a composition to exist, the answer
types must be compatible (according to the standard rules, also
manifest in the type constraints of the class Shift and its method
flatMap). During composition, pure expressions are treated neu-

f : (A => B) => C

[[shift(f)]] = new Shift[A,B,C](f)

(SHIFT)

c : A @cps[B,C]

[[reify(c)]] = [[c]]

(REIFY)

e : A @cps[B,C] {[[r]]} : U @cps[V ,W]

[[val x: A = e; r]] = [[e]].flatMap(x:A => {[[r]]})
(VAL-IMPURE)

e : A @cps[B,C] {[[r]]} : U

[[val x: A = e; r]] = [[e]].map(x:A => {[[r]]})
(VAL-PURE)

[[def f(x:A)= e; r]] = def f(x:A)= [[e]]; [[r]]

(DEF)

[[s; r]] = s; [[r]] [[{r}]] = {[[r]]}
(SEQ)

Figure 4. Type-directed selective CPS transform for a subset of
Scala. Lowercase italic letters denote untransformed expressions,
uppercase letters expression sequences or types. Rules are applied
deterministically from top to bottom.

trally. This is how we achieve answer type polymorphism in our
system. If no composition exists, a type error is signaled. The rules
that define the composition relation are given in Figure 3.

3.4 Type-Directed Transformation
We will define the selective CPS transform in two steps and start
with the one that comes last. A subset of the transformation rules is
shown in Figure 4.

We denote the transformation itself by [[.]], and we let Scala pro-
grams access transformed expressions with the primitive reify
(REIFY). Invocations of shift are translated to creations of
Shift objects (SHIFT). If an impure expression appears on the
right-hand-side of a value definition, which is followed by a se-
quence of expressions, then the right-hand-side is translated to a
Shift object, upon which flatMap or map is invoked with the
translated remaining expressions wrapped up into an anonymous
function (VAL-IMPURE,VAL-PURE). Whether flatMap or map is
used depends on whether the remaining expressions are translated
to a Shift object or not. The semantics of shift require to flat-
ten out nested Shift objects because otherwise, multiple nested
reset handlers would be needed to get at the result of a sequence
of shift blocks. In this case, all but the first shift would es-
cape the enclosing reset4. The use of map is an optimization.
We could as well wrap the remaining code into a stub shift
that behaves as identity and then use flatMap. But that would
introduce unnecessary “administrative” redexes, which customary
CPS-transform algorithms go to great lengths to avoid (Danvy et al.
2007). Right-hand sides of function definitions are translated inde-
pendently of the context (DEF). Finally, block expressions {...}

4 This is in fact Felleisen’s model (Felleisen 1988)

[[{r; e}]] = {[[r]]Inline; [[e]]}

[[s; r]]Inline = [[s]]Inline; [[r]]Inline

[[e]] = r; g g : A @cps[B,C]

[[e]]Inline = r; val x: A = g; x

[[f]]Inline = r; g [[e]]Inline = s; h

[[f(e)]] = r; s; g(h)
(BY-VALUE APPLY)

[[f]]Inline = r; g [[e]]Inline = s; h

[[f(e)]] = r; g({s; h}) (BY-NAME APPLY)

Figure 5. Selective ANF transform (only selected rules shown).
Lowercase italic letters denote untransformed expressions, upper-
case letters expression sequences or types.

are translated by applying the other rules to the enclosed expression
sequence, possibly skipping a prefix of non-CPS terms (SEQ).

Applying the transformation rules given in Figure 4, we can
transform code like

reset(reify {
val x = shift(k => k(k(k(7))))
x + 1

})

into the following:

reset(new Shift(k => k(k(k(7)))).map(x => x + 1))

We are still somewhat restricted, though, in that CPS expres-
sions may only appear in value definitions. Fortunately, we can
reach this form by a pre-transform step, which assigns synthetic
names to the relevant intermediate values, lifting them into value
definitions. In analogy to the selective CPS transform, we can de-
scribe this step as a selective ANF transform (administrative nor-
mal form (Flanagan et al. 1993)). We present a subset of the trans-
formation rules in Figure 5.

For the ANF pre-transform, we use two mutually recursive
functions, [[.]] and [[.]]Inline that map expressions to expression se-
quences ([[.]]Inline is extended pointwise to expression sequences).
The latter is used to lift nested CPS-expressions and insert a val
definition inline, preceding the parent expression. Since we do not
want to introduce value definitions for expressions that are already
in tail position, we use either transformation depending on the con-
text. Again, we illustrate the main principle by considering func-
tion applications. We consider application of functions with a sin-
gle by-value parameter first. The function and the argument are
nested expressions and thus transformed using [[.]]Inline , each of
them yielding a statement sequence followed by an expression.
The Scala semantics demand that the function be evaluated first, so
the result is the function’s statements, followed by the argument’s
statements, followed by applying the expressions. When consider-
ing functions with by-name parameters, by contrast, the statements
that result from transforming the corresponding argument must not
be inserted preceding the application. In this case, the whole result-
ing sequence is wrapped up in a block and passed as an argument
to the transformed function. For other kinds of Scala expressions
like conditionals, pattern matching, etc., the transformation works
accordingly, depending on the context whether the by-name or by-
value style is used.

Note that in Figure 5, the insertion of new value definitions is
triggered by a @cps annotation on the result of transforming the

expression in question. While this is a sound premise in the de-
scription at hand, we actually make sure in the implementation that
the expression itself is annotated accordingly. This is done by an
annotation checker, which hooks into the typer phase of the Scala
compiler, promoting CPS annotations outwards to expressions that
have nested CPS expressions in positions where [[.]]Inline will be
applied. In the actual implementation, the selective ANF transform
is also slightly more complex than described here. One reason is
that we have to accommodate for possibly erroneous programs.
Therefore, the actual transform takes two additional parameters,
namely an expected @cps annotation (or none if a pure expres-
sion is expected) for the current expression sequence and an actual
one, which is built up as we go along. When reaching the end of an
expression sequence, these two must either match, or, if an annota-
tion is expected but none is present, an implicit shift is inserted
that behaves as identity.

Summing up the transformation steps, we implement reset in
terms of reify, using a by-name parameter:

def reset[A,C](ctx: => A @cps[A,C]) = {
reify(ctx).fun(x:A => x)

}

Finally, we can express our working example as

reset {
shift(k => k(k(k(7)))) + 1

}

which is exactly what was intended.

4. Programming Examples
There are many well-known use cases for delimited continuations
and most of them can be implemented in Scala straightforwardly.

4.1 Type-Safe printf
As a first example, we present the Scala implementation of type-
safe printf (Danvy 1998; Asai 2007):

val int = (x: Int) => x.toString
val str = (x: String) => x

def format[A,B](toStr: A => String) = shift {
k: (String => B) => (x:A) => k(toStr(x))

}

def sprintf[A](str: =>String @cps[String,A]) = {
reset(str)

}

val f1 = sprintf[String]("Hello World!")
val f2 = sprintf("Hello " +
format[String,String](str) + "!")

val f3 = sprintf("The value of " +
format[String,Int=>String](str) +
" is " + format[Int,String](int) + ".")

println(f1)
println(f2("World"))
println(f3("x")(3))

This example is instructive for its use of both answer type
modification and answer type polymorphism. As we can see in
the code above, format takes a function that converts a value of
type A to a string. In addition, it modifies the answer type from
any type B to a function from A to B. In a context whose result
type is String, invoking format(int) will change the answer

type to Int => String; an additional integer argument has to
be provided to turn the result into a string. Unfortunately, Scala’s
local type inference cannot reconstruct all the type parameters here
so we must give explicit type arguments for uses of format.

4.2 Direct-Style Monads
Another interesting example is the use of monads in direct-style
programming (Filinski 1994, 1999). As has been shown by Filin-
ski, delimited continuations can express any definable monad. We
identify monadic types structurally by the existence of a bind op-
eration (flatMap), making use of type constructor polymorphism
(Moors et al. 2008) to describe its required signature:

type Monadic[+U, C[_]] = {
def flatMap[V](f: U => C[V]): C[V]

}

We go on by defining an adapter class that allows to reflect
monadic values, passing the current continuation to the underlying
monadic bind operation:

class Reflective[+A, C[_]](xs: Monadic[A,C]) {
def reflect[B](): A @cps[C[B], C[B]] = {
shift { k:(A => C[B]) =>
xs.flatMap(k)

}
}

}

Defining an implicit conversion for iterables, we can e.g. use the
list monad in direct-style. The unit constructor List is used here
as Filinski’s reify operation:

implicit def reflective[A](xs:Iterable[A]) =
new Reflective[A,Iterable](xs)

reset {
val left = List("x","y","z")
val right = List(4,5,6)

List((left.reflect[Any], right.reflect[Any]))
}
// result: cartesian product

The same mechanism applies to other monads, too. Using the
option monad, for example, we can build a custom exception han-
dling mechanism and the state monad could be used as an alterna-
tive to thread-local variables.

4.3 Concurrency Primitives
Using delimited continuations, we can implement a rich variety
of primitives for concurrent programming. Among others, these
include bounded and unbounded buffers, rendezvous cells, fu-
tures, single-assignment variables, actor mailboxes, and join pat-
terns. Without going into the details of the implementation, we
show how our implementation of extensible join patterns or dy-
namic functional nets (Fournet and Gonthier 1996; Odersky 2000;
Rompf 2007) can integrate join-calculus based programming into
Scala. The following code implements, with a common interface,
synchronous rendezvous cells and asynchronous reference cells
backed by a one-place buffer:

abstract class ReferenceCell[A] {
val put = new (A ==> Unit)
val get = new (Unit ==> A)

}

// synchronous reference cell (no buffering)
class SyncRefCell[A] extends ReferenceCell[A] {
join {
case put(x <== return_put)

<&> get(_ <== return_get) =>
println("exchanging " + x)
return_put() <&> return_get(x)

}
}

// asynchronous reference cell (1-place buffer)
class AsyncRefCell[A] extends ReferenceCell[A] {
val empty = new (Unit ==> Unit)
val item = new (A ==> Unit)
join {
case put(x <== return_put)

<&> empty(_ <== _) =>
return_put() <&> item(x)

}
join {
case get(_ <== return_get)

<&> item(x <== _) =>
println("exchanging " + x)
return_get(x) <&> empty()

}
spawn {
empty()

}
}

4.4 Actors
Scala Actors provide an implementation of the actor model (Agha
and Hewitt 1987) on the JVM (Haller and Odersky 2009). To
make efficient use of VM threads, actors, when waiting for incom-
ing messages, can suspend in event-based mode with an explic-
itly passed continuation closure instead of blocking the underly-
ing thread (Haller and Odersky 2006). This is accomplished by the
primitive react that takes a message handler (the continuation
closure), and suspends the current actor in event mode. The un-
derlying (pool) thread is released to execute other runnable actors.
Using react, however, imposes some restrictions on the program
structure. In particular, no code following a react is ever exe-
cuted, only the explicitly provided closure.

For example, consider implementing a communication protocol
using actors. It would be tempting to handle the connection setup
in a separate method:

def establishConnection() = {
server ! SYN
react {
case SYN_ACK =>
server ! ACK

}
}

which is then used as part of a more complex actor behavior:

actor {
establishConnection()
transferData()
...

}

But unfortunately, this does not work as is. The use of react
inside establishConnection precludes the execution of
transferData. To make this example work, one would have to

use explicit andThen combinators to chain the individual pieces
of behavior together. In the presence of complex control structures,
programming in this style quickly becomes cumbersome. In addi-
tion, the type system does not enforce the use of combinators so
errors will manifest only at runtime.

Using delimited continuations, we can simplify programming
event-based actors significantly. Moreover, we can do so without
changing the implementation of the existing primitives, thereby
maintaining the high degree of interoperability with standard Java
threads (Haller and Odersky 2009). This approach, which has been
suggested by Philipp Haller, introduces a higher-order function
proceed that can be applied to react, such that the message
handling closure is extended with the current continuation:

def proceed[A, B](fun: PartialFunction[A, Unit] =>
Nothing):

PartialFunction[A, B] => B @cps[Unit, Unit] =
(cases: PartialFunction[A, B]) =>
shift((k: B => Unit) => fun(cases andThen k))

Wrapping each react with a proceed and inserting a
reset to delineate the actor behavior’s outer bound we can ac-
tually code the above example as follows. It is worth mentioning
that leaving out the reset would cause the compiler to signal
a type error, since an impure expression would occur in a pure
context:

def establishConnection() = {
server ! SYN
proceed(react) {
case SYN_ACK =>
server ! ACK

}
}
actor {
reset {
establishConnection()
transferData()
...

}
}

Alternatively, the implementations of react and actor could
be modified to make use of the necessary control operators directly.
But using proceed is a good example of incorporating delimited
continuations into existing code in a backwards-compatible way.

4.5 Functional Reactive Programming
Functional reactive programming (FRP) is an effort to integrate
reactive programming concepts into functional programming lan-
guages (Elliott and Hudak 1997; Courtney et al. 2003; Cooper and
Krishnamurthi 2006). The two fundamental abstractions of FRP
are signals and event streams5. A signal represents a continuous
time-varying value; it holds a value at every point in time. An event
stream, on the other hand, is discrete; it yields a value only at certain
times. Signals and event streams can be composed through combi-
nators, some of which are known from functional collections, such
asmap,flatMap, orfilter.

Our implementation of a reactive library in Scala takes the basic
ideas of FRP and extends it with support for imperative program-
ming. One key abstraction to achieve this is called behaviors. A
behavior can be used to conveniently react to complex event pat-
terns in an imperative way. To give an idea how behaviors work,

5 We use different terminology than most FRP implementations, who use
the term behavior for signals. In our implementation, this term is reserved
for a different concept as discussed below.

we take an example from our user interface toolkit whose event
handling details are implemented exclusively with our reactive pro-
gramming library. The interactive behavior of a button widget can
be implemented as follows:

behavior {
next(mouse.leftDown)
showPressed(true)
val t = loop {
showPressed(next(mouse.hovers.changes))

}
next(mouse.leftUp)
t.done()
showPressed(false)
if (mouse.hovers.now) performClick()

}

The first action of the behavior above is to wait until the left
mouse button is pressed down. Method next blocks the current
behavior and returns the next message that becomes available in
a given event stream. In our case, the behavior drops that message
and then updates the button view and starts a loop. A loop is a
child behavior that is automatically terminated when the current
cycle of the parent behavior ends. The loop updates the button
view whenever the mouse enters or leaves the button area. We do
this by waiting for changes in the boolean signal mouse.hovers,
which indicates whether the mouse currently hovers over the button
widget. The call tochangesconverts that boolean signal to an event
stream that yields boolean messages. We use the event message to
determine whether the mouse button is currently over the button.
In the parent behavior, in parallel to the loop, we wait for the left
mouse button to be released. On release, we terminate the loop
by calling done, which causes the child behavior to stop after it
has processed all pending events. Note that this does not lead to
race conditions since, in constrast to actors, behaviors are executed
sequentially and should not be accessed from different threads.
Eventually, we update the button view and perform a click if the
mouse button has been released while inside the bounds of the
button widget.

The use of the CPS transform API is hidden inside behavior,
next, andloop. Methodsbehaviorandloopdelimit the continua-
tion scope while methodnext captures the continuation and passes
it to an event stream observer which invokes the continuation on
notification.

4.6 Asynchronous IO
Using a similar model, we can use scalable asynchronous IO prim-
itves in a high-level declarative programming style. Below, we con-
sider the Scala adaptation of an asynchronous webserver presented
in (Rompf 2007). The basic mechanism is to request a stream of
callbacks matching a set of keys from a selector. This stream can
be iterated over and transformed into a higher-level stream by im-
plementing the standard iteration methods (e.g. foreach) used
by Scala’s for comprehensions. A stream of sockets representing
incoming connections can be implemented like this:

def acceptConnections(sel: Selector, port: Int) =
new Object {
def foreach(body: (SocketChannel =>

Unit @suspendable)) = {
val serverSock = ServerSocketChannel.open()
for (key <- callbacks(serverSock, sel,

SelectionKey.OP_ACCEPT)) {
body(serverSock.accept())

}
}

}

Note that the client handler (the parameter body of foreach)
might capture a continuation and thus interrupt the accepting of
new connections. The annotation @suspendable expresses the
common case of a control effect that occurs in a context with an-
swer type Unit and keeps the answer type unchanged:

type suspendable = cps[Unit,Unit]

In the same way as above, we can implement a stream of events
indicating incoming data on a specific socket:

def readBytes(selector: Selector, socketChannel:
SocketChannel) =

new Object {
def foreach(body: (ByteBuffer =>

Unit @cps[Unit,Unit])) =
val buf = ByteBuffer.allocateDirect(4096)
for (key <- callbacks(socketChannel,

selector, SelectionKey.OP_READ)) {
buf.flip()
body(buf)
buf.clear()

}
}

Adapting this stream of incoming data, we can build a stream
of incoming requests, which invokes its handler only when a new,
complete request has been parsed. Using these building blocks, we
can define the main server loop:

val sel = createAsyncSelector()
for (socketChannel <- acceptConnections(sel, 80)) {
spawn {
println("Connect: " + socketChannel)

for (req <- readRequests(sel, socketChannel)) {
val res = handleRequest(req)
writeResponse(sel, socketChannel, res)

}

println("Disconnect: " + socketChannel)
}

}

Using spawn to offload handling of requests to a thread pool,
this server loop, despite its strictly sequential appearance, can han-
dle large numbers of concurrently active connections using scalable
asynchronous IO with only few native platform threads.

5. Performance
In assessing the performance of our implementation of delimited
continuations, we focus on comparing running times with other
means of implementing continuations on the JVM first. The ap-
proach of Kilim (Srinivasan 2006; Srinivasan and Mycroft 2008)
reportedly exhibits very good performance and is thus a natural tar-
get for a head-to-head comparison.

All numbers were taken on a late-2008 MacBook Pro (Intel
Core 2 Duo, 2.4GHz, 4GB RAM) running MacOS X 10.5.5 and
Java 1.6.0 07 (64 Bit). Scala code was compiled using a pre-release
build of scalac 2.8.0 with option -optimize. The Kilim version
used was 0.5. Numbers shown are median values of 5 consecutive
measurements.

5.1 Actors
On top of its byte-code transformation, Kilim also provides an im-
plementation of actors, which is known to outperform the Scala ac-
tor framework on a number of benchmarks. It must be noted how-
ever, that Kilim’s actors lack several important features of Scala’s

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

tim
e

[m
s]

problem size n

Kilim
CPS, single threaded

CPS, ReentrantLock, FJTask, exec get cont directly
CPS, ReentrantLock, FJTask, spawn get cont

Figure 6. Ping-Pong actor benchmark. Two actors, exchanging n
messages.

actors such as message pattern matching or actor linking. In our
first benchmark, we compare Kilim actors to a vastly stripped-
down reimplementation of Scala actors, where blocking reads on
mailboxes are implemented using shift. The benchmark used is
the “Ping-Pong” example included in both the Kilim and the Scala
distribution, consisting of two actors that alternatingly exchange
a fixed number of messages. The measured results are shown in
Figure 6. Test runs were done using a single-threaded actor im-
plementation without any locking and with two slightly different
thread-safe implementations using standard Java locking primitives
and the FJTask library (Lea 2000) as a thread pool. The thread-safe
implementations differ in whether the continuation of a read opera-
tion is directly executed on the calling thread if data is available or
whether it is submitted to the thread pool. The data shown in Fig-
ure 6 indicates a speedup of our thread-safe implementations over
Kilim’s of about 30%. The single-threaded case performs slightly
less than three times faster than the thread-safe one.

5.2 Generators
For the next benchmark, the aim was to exclude any effects that
might result from using multiple threads. We turn our attention
to generators, which are also included in the Kilim distribution.
Using generators, a possibly infinite sequence of values can be
generated in push mode, demand-driven by one or more clients
that seek to pull items out of the generator. An implementation
using continuations is straightforward. For every data item that is to
be generated, the continuation is captured and stored in a mutable
variable, as is the data item. The client of the generator can access
the generated value and, once it is ready to retrieve the next item,
invoke the stored continuation, which will trigger generation of the
next item.

We present performance measurements for two different styles
of generators. One will generate values using a strictly linear, tail-
recursive or iterative call pattern and thus use only constant stack
space, while the other one exhibits a tree-like call pattern with
logarithmic stack depth. The results are shown in Figures 7 and 8,
respectively. While we can see a 30% speedup in the linear case
(similar to the actors benchmark), the speedup for the tree-like case
is more significant and amounts to more than a factor of seven.

5.3 Samefringe
Another direction for performance evaluation is to assess how well
solutions using direct-style control operators perform in relation
to other solutions. We consider the samefringe-problem (Gabriel
1991) and compare Scala implementations using iterators, lists,
streams and delimited continuations in Figure 9. The task is to com-

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

tim
e

[m
s]

problem size n

Kilim
CPS

Figure 7. Generator benchmark. Generating numbers 0 . . . n lin-
early. Call depth O(1).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

tim
e

[m
s]

problem size n

Kilim
CPS

Figure 8. Generator benchmark. Generating numbers 0 . . . n re-
cursively, in a binary-search like fashion. Call depth O(log n).

pare the in-order sequences of leaves of two binary trees. For lists
and streams (which are lists where the tail is computed lazily), there
are two implementations each. The first one uses a modified tree
traversal function to propagate a partial list downwards, to which
the leaves are prepended using cons. The other one does not pass
any partially constructed information downwards, so partial struc-
tures have to be combined using append. For the continuation-
based case, there are also two implementations. One is almost iden-
tical to the generators described above and the other, purportedly
less efficient one differs in that it will not save the captured con-
tinuations directly into a mutable variable but leave it to another
shift in the client code to access them.

Regarding the results displayed in Figure 9, we see that streams
and lists using cons perform best, followed within a factor of two
by the faster continuations implementation and within a factor of
three by the slower one. Streams and lists using append perform
worse than continuations. That streams perform best here is no sur-
prise, since the way they are implemented with by-name function
arguments leads to a byte-code translation which is very similar to a
hand-optimized CPS implementation, which avoids creating inter-
mediate Shift objects as is done in the translation of the direct-
style control operators.

It is instructive, though, to do another test run with more limit-
ing memory restrictions (see Figure 10). Here we see that lists do
not scale to these conditions, even though they performed well in
the previous run. Streams and continuations are the only mecha-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

tim
e

[m
s]

problem size n

Iterator
List 1
List 2

Stream 1
Stream 2

CPS 1
CPS 2

Figure 9. Samefringe benchmark. Comparing a fully balanced bi-
nary tree of size n to itself. Leaves are integers. Run with -Xms2G
-Xmx2G.

 0

 50000

 100000

 150000

 200000

 250000

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

tim
e

[m
s]

problem size n

Iterator
List 1
List 2

Stream 1
Stream 2

CPS 1
CPS 2

Figure 10. Samefringe benchmark. Comparing a fully bal-
anced binary tree of size n to itself. Leaves are integers. Run
with -Xms128M -Xmx128M. Missing data points indicate Out-
OfMemoryErrors. For 1.5 · 106 items, the tree could no longer be
generated due to memory exhaustion.

nisms that provide a solution in this case, since all other implemen-
tations terminate prematurely with an OutOfMemoryError. The
continuation-based solutions still exhibit a running time that is not
too far off the optimal case and still perform better than streams
using append.

6. Conclusion
In this paper, we have described an efficient way of implementing
delimited continuations and the associated static control operators
shift and reset under the adverse conditions of the JVM. In
doing so, we employ a selective CPS transform, which is driven
by a type and effect system that tracks uses of control operators.
We have applied delimited continuations in several different con-
texts ranging from asynchronous IO to actor-based concurrency to
reactive programming for user interfaces. Our experiences and per-
formance evaluation indicate that the technique is practical and per-
forms adequately.

Acknowledgments
We would like to thank Philipp Haller for suggesting the use of
proceed to make Scala actors continuation aware. We also thank
the reviewers for their comments.

References
Agha, Gul, and Carl Hewitt. 1987. Concurrent programming using actors.

In Object-oriented concurrent programming, 37–53. MIT Press, Cam-
bridge, MA, USA.

Appel, Andrew W. 1992. Compiling with continuations. Cambridge
University Press, New York, NY, USA.

Appel, Andrew W., and Trevor Jim. 1989. Continuation-passing, closure-
passing style. In Proc. POPL’89, 293–302.

Asai, Kenichi. 2007. On typing delimited continuations: Three new solu-
tions to the printf problem. Tech. Rep. OCHA-IS 07-1, Department of
Information Science, Ochanomizu University, Tokyo, Japan. Available
from: http://pllab.is.ocha.ac.jp/˜asai/papers/.

Asai, Kenichi, and Yukiyoshi Kameyama. 2007. Polymorphic delimited
continuations. In Proc. APLAS’07, vol. 4807 of LNCS, 91–108.

Atkey, Robert. 2006. Parameterised notions of computation. In Proc.
MSFP’06, 31–45. Electronic Workshops in Computing, British Com-
puter Society.

Balat, Vincent, and Olivier Danvy. 1997. Strong normalization by run-time
code generation. Tech. Rep. BRICS RS-97-43, Department of Computer
Science, University of Aarhus, Denmark.

Biernacki, Dariusz, Olivier Danvy, and Chung-chieh Shan. 2006. On the
static and dynamic extents of delimited continuations. Science of Com-
puter Programming 60(3):274–297.

Clinger, William D., Anne H. Hartheimer, and Eric M. Ost. 1999. Imple-
mentation Strategies for First-Class Continuations. Higher-Order and
Symbolic Computation 12(1):7–45.

Cooper, Gregory H., and Shriram Krishnamurthi. 2006. Embedding dy-
namic dataflow in a call-by-value language. In Proc. ESOP’06, 294–
308.

Courtney, Antony, Henrik Nilsson, and John Peterson. 2003. The Yampa
arcade. In Proc. ACM SIGPLAN workshop on Haskell, 7–18.

Danvy, Olivier. 1998. Functional unparsing. J. Funct. Program. 8(06):621–
625.

Danvy, Olivier, and Andrzej Filinski. 1989. A Functional Abstraction of
Typed Contexts. Tech. Rep., DIKU University of Copenhagen, Den-
mark.

———. 1990. Abstracting control. In Proc. LFP’90, 151–160.

———. 1992. Representing Control: A Study of the CPS Transformation.
Mathematical Structures in Computer Science 2(4):361–391.

Danvy, Olivier, Kevin Millikin, and Lasse R. Nielsen. 2007. On one-pass
CPS transformations. J. Funct. Program. 17(6):793–812.

Dragos, Iulian, Antonio Cunei, and Jan Vitek. 2007. Continuations in the
Java Virtual Machine. In Proc. ICOOOLPS’07.

Dyvbig, R. Kent, Simon Peyton-Jones, and Amr Sabry. 2007. A monadic
framework for delimited continuations. J. Funct. Program. 17(6):687–
730.

Elliott, Conal, and Paul Hudak. 1997. Functional reactive animation. In
Proc. ICFP’97.

Felleisen, Matthias. 1991. On the expressive power of programming lan-
guages. Science of Computer Programming 17(1-3):35–75.

Felleisen, Matthias, Mitch Wand, Daniel Friedman, and Bruce Duba. 1988.
Abstract continuations: a mathematical semantics for handling full
jumps. In Proc. LFP’88, 52–62.

Felleisen, Mattias. 1988. The theory and practice of first-class prompts. In
Proc. POPL’88, 180–190.

Filinski, Andrzej. 1994. Representing monads. In Proc. POPL’94, 446–
457.

———. 1999. Representing layered monads. In Proc. POPL’99, 175–188.

Flanagan, Cormac, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
1993. The essence of compiling with continuations. In Proc. PLDI’93,
vol. 28(6), 237–247.

Fournet, Cédric, and Georges Gonthier. 1996. The reflexive CHAM and the
join-calculus. In Proc. POPL’96, 372–385.

Gabriel, Richard P. 1991. The design of parallel programming languages. In
Artificial intelligence and mathematical theory of computation: papers
in honor of john mccarthy, 91–108. Academic Press Professional, San
Diego, CA, USA.

Gasbichler, Martin, and Michael Sperber. 2002. Final shift for call/cc::
direct implementation of shift and reset. In Proc. ICFP’02, 271–282.

Haller, Philipp, and Martin Odersky. 2006. Event-based programming
without inversion of control. In Proc. JMLC’06, vol. 4228 of LNCS,
4–22.

———. 2009. Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci 410(2-3):202–220.

Kameyama, Yukiyoshi, and Takuo Yonezawa. 2008. Typed dynamic control
operators for delimited continuations. In Proc. FLOPS’08, vol. 4989 of
LNCS, 239–254.

Kiselyov, Oleg. 2005. How to remove a dynamic prompt: static and
dynamic delimited continuation operators are equally expressible. Tech.
Rep. TR611, Department of Computer Science, Indiana University.

———. 2007. Genuine shift/reset in haskell98. Announcement and
explanations posted on the Haskell mailing list on 12/12/2007. Imple-
mentation available from:
http://okmij.org/ftp/Haskell/ShiftResetGenuine.hs.

Kiselyov, Oleg, Chung-chieh Shan, and Amr Sabry. 2006. Delimited dy-
namic binding. In Proc. ICFP’06, 26–37.

Lea, Doug. 2000. A Java fork/join framework. In Proc. ACM Java Grande,
36–43.

Moors, Adriaan, Frank Piessens, and Martin Odersky. 2008. Generics of a
higher kind. In Proc. OOPSLA’08, 423–438.

Nielsen, Anders Bach. 2008. Scala compiler phase and plug-in initializa-
tion. Available from:
http://lampsvn.epfl.ch/svn-repos/scala/lamp-sip/
compiler-phase-init/sip-00002.xhtml.

Nielsen, Lasse R. 2001. A selective CPS transformation. Tech. Rep. RS-
01-30, BRICS, Department of Computer Science, Aarhus University.

Odersky, Martin. 2000. Functional Nets. In Proc. European Symposium on
Programming Languages and Systems, 1–25.

Pettyjohn, Greg, John Clements, Joe Marshall, Shriram Krishnamurthi,
and Matthias Felleisen. 2005. Continuations from generalized stack
inspection. SIGPLAN Not. 40(9):216–227.

Rompf, Tiark. 2007. Design and implementation of a programming lan-
guage for concurrent interactive systems. Master’s thesis, Institute
of Software Technology and Programming Languages, University of
Lübeck, Germany. Available from:
http://vodka.nachtlicht-media.de/docs.html.

Rose, John. 2008. JSR 292: Supporting dynamically typed languages on
the Java platform.
http://jcp.org/en/jsr/detail?id=292.

Shan, Chung-chieh. 2004. Shift to control. In Proc. ACM SIGPLAN
workshop on Scheme and functional programming, 99–107.

———. 2007. A static simulation of dynamic delimited control. Higher-
Order and Symbolic Computation 20(4):371–401.

Srinivasan, Sriram. 2006. A thread of one’s own. In New horizons in
compilers workshop, hipc, bangalore.

Srinivasan, Sriram, and Alan Mycroft. 2008. Kilim: Isolation-typed actors
for Java. In Proc. ECOOP’08, 104–128.

Strachey, Christopher, and Christopher P. Wadsworth. 2000. Continuations:
A mathematical semantics for handling full jumps. Higher-Order and
Symbolic Computation 13(1):135–152.

Thielecke, Hayo. 2003. From control effects to typed continuation passing.
In Proc. POPL’03, 139–149.

