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ABSTRACT

A novel framework for image inpainting is proposed, relying on
graph-based diffusion processes. Depending on the construction of
the graph, both flow-based and exemplar-based inpainting meth-
ods can be implemented by the same equations, hence providing
a unique framework for geometry and texture-based approaches to
inpainting. Furthermore, the use of a variational framework allows
to overcome the usual sensitivity of exemplar-based methods to the
heuristic issues by providing an evolution criterion. The use of
graphs also makes our framework more flexible than former non-
local variational formulations, allowing for example to mix spatial
and non-local constraints and to use a data term to provide smoother
blending between the initial image and the result.

Index Terms— Inpainting, Non-local methods, Graphs

1. INTRODUCTION

Image inpainting, also known as image completion, is the problem
of finding missing parts of an image using only the available content
and some regularization constraints. The disoccluded areas should
cause few, if none, visual artifacts, which makes inpainting a dif-
ficult image processing problem involving knowledge about image
models and regularization techniques. While it has been a long time
problem for painting restoration, it has gained in importance with
the growth of the digital photography market, since it allows users
to remove disturbing elements from their pictures or repair damages
such as visible dust on the sensor of the camera or scratches in an
old digitized photograph.

Traditional approaches to inpainting try to find a good continu-
ation of the surroundings of the holes, effectively propagating lines
inside. Hence, these techniques are also known as geometry-driven
algorithms. Isophote propagation is obtained by solving partial dif-
ferential equations such as the heat flow of the Navier-Stokes equa-
tion as in [1]. Since this tend to produce blurred estimates, edge-
preserving techniques such as Total Variation minimization [2] or
curvature motion [3] were used as an alternative. However, these
models still lack a support for texture information and are conse-
quently unable to reproduce it. Geometry-based methods can thus
hardly be applied to large area inpainting without noticeable visual
disturbance.

Since textures, and especially the structured ones like brick
walls, are hard to model due to their high yet constrained variability,
people working in the texture synthesis field applied successfully
alternative exemplar-based techniques, which tackle the lack an ex-
plicit mathematical texture model. Starting with the work of Efros
and Leung [4], exemplar-based techniques take as input a source
image containing the desired texture. Then, random parts of the
source are extracted and used to fill the larger target picture, with a

special treatment to avoid visual discontinuities between neighbour-
ing overlapping patches (see [5, 6] for instance). These techniques
were quickly applied to texture inpainting [7]. They are however
sensitive to the order in which gaps are filled, that can create disturb-
ing subjective contours. Hence, the authors of [8] defined careful
heuristics for choosing which pixels to process first, and managed to
successfully inpaint large areas. This type of approach can even be
extended to the case of video inpainting [9].

Few attempts were made however to conciliate geometry-driven
and exemplar-based techniques in an unified framework. Simultane-
ous geometry and texture inpainting algorithms that were proposed
until here, such as the work in [10], separate inpainting into two
distinct steps dedicated to geometry diffusion and texture synthesis
respectively. This approach requires first to decompose the image
into a geometric part, or sketch, and a textural part, which is still an
arduous task [11]. Specifically, the texture function spaces used con-
tain only very regular oscillating patterns, which is seldom the case
for real life textures such as the bricks aforementioned.

In this work, our main goal is to take advantage of the so-
called non-local approach, successfully introduced in [12] for image
denoising, to develop a general variational framework for image
inpainting, hence embedding both geometry and texture based ap-
proaches in a single framework. While the work in [13] is also
based on the non-local approach, the constraints it provides cannot
be adapted to handle both geometric and textural inpainting in a sin-
gle framework. The remaining of this paper is organized as follows:
in section 2, we restate the inpainting task as a non-local variational
problem and present a general framework defined for both local and
non-local processing tasks. Section 3 describes the corresponding
algorithm and its implementation. We present some experimental
results in section 4, along with a discussion, before concluding in
section 5.

2. NON-LOCAL VARIATIONAL INPAINTING

The recent trend in non-local methods is due to the success of
the Non-Local Means denoising filter [12], although its authors
trace back their inspiration to the work of Efros and Leung [4] and
Yaroslavsky [14]. Their intuition is simple : similar-looking patches
are more likely to represent the same phenomenon, and hence should
be used when averaging pixels without considerations to their spatial
distance to obtain an efficient denoising process that also respects
image textures.

To turn the initial patch-based formulation of the non-locality
into a variational problem, the authors of [15] proposed to use graph
differential geometry. Since graphs can model any kind of inter-data
relationship, depending only on the way connections are made, they
are good candidates to derive both local and non-local regularization
frameworks.

We first build a non-local graph of all the available image data



using an image self-similarity measure. Vertices originating inside
the hole will exhibit different connections than others because of
their visual dissimilarity, and hence will cause a non-local singular-
ity. We apply an iteration of heat flow on this non-local graph to
reduce this singularity. Then, patches are back-projected to the im-
age domain to obtain a novel image where the information inside the
hole is now closer to the remaining of the image. This procedure is
iterated several times after updating the graph connectivity to diffuse
the non-local information into the gaps.

2.1. Non-local inpainting formulation

Let I be an image defined on a domain Ω ⊂ R2. Φ(x) and Φ(y) are
square patches of area d centered in x and y respectively, and also
denote the corresponding vectors obtained by stacking the values in-
side the patch in lexicographic order1. We want to infer missing
information in a subdomain ω ⊂ Ω in a plausible way. Note that
we did not make any assumptions about the shape or topology of ω,
which is of arbitrary shape and can contain holes or several discon-
nected parts.

There is a natural one-to-one correspondence between each
patch and the corresponding image pixel. Hence, Φ : Ω → Rd
defines an embedding of the image data in Rd. In this embedding,
the distance between two points is obtained by the following patch
similarity measure :

w(x, y) = w(y, x) = exp

(
−‖Φ(x)− Φ(y)‖2σ

h

)
, (1)

where ‖ · ‖2σ is the sum of squared differences between the two
patches filtered by a Gaussian neighbourhood function of standard
deviation σ :

‖Φ(x)− Φ(y)‖2σ =

(
d∑
i=1

(Φi(x)− Φi(y))2

)
? Gσ. (2)

The parameter h in Eq. (1) acts as a selectivity parameter. Large
values of h will gather dissimilar looking patches, while smaller val-
ues will be more selective. This parameter thus provides a way to
infer the missing data despite the presence of noise, which may not
be desirable, since it leads to blurry estimates. The Gaussian Gσ is
introduced to represent the finite spatial support of a patch. Finally,
note that w does not take into account the positions of x and y in the
image, and hence is non-local.

2.2. Graph-based regularization

A weighted graph G = (V,E,w) is made of a finite set of vertices
V = {v1, . . . vN} linked by edges taken in E ⊂ V × V with asso-
ciated weights computed using a similarity function wG : V × V →
R+. The vertices correspond to the actual data points. Two vertices
u and v are connected by an edge e = (u, v) if wG(u, v) > 0,
and we write u ∼ v. There is an immediate one-to-one mapping
between image pixels and graph vertices, and the function w(x, y)
defined in Eq. (1) is positive and tends to 0 when patches are highly
dissimilar, so we use it without modifications to compute the graph
weights (w = wG). Since the property w(u, v) = w(v, u) holds, G
is an undirected graph.

We build a non-local graph G as described above to obtain the
final version of the embedding Φ : V → Rd that we want to regular-
ize. Φ is d-dimensional: there is one dimension per component of a

1For color images, we stack the RGB or LAB values the same way, hence
multiplying the patch size by 3.

patch. The vertices coming from ω disrupt the non-local smoothness
of Φ measured using G, since the corresponding image patches dif-
fer from the patches of Ω\ω. The non-local inpainting formulation
can be restated to enforce the smoothness of Φ, given the immutable
data outside ω :

min
Φ:V→Rd

1

2

d∑
i=1

∑
v∈V

|∇wΦi(v)|2 +
λ

2

d∑
i=1

‖Φi − Φ0
i ‖22. (3)

The first term |∇wΦi(v)|2 ensures that we are not introducing visual
dissimilarities by controlling the smoothness of Φ. The data term can
be used to enforce some proximity with the initial image, typically
along the borders of the hole, but λ will be set to 0 inside the holes
to allow the full replacement of their content.

Eq. (3) can be solved component-wise using gradient descent
after defining differential calculus operators on a graph. Given a
weighted graph G, one can define the directional derivative of Φi at
the vertex v in the direction given by the edge (u, v) by :

∂uΦi(v) =
√
w(u, v) (Φi(v)− Φi(u)) . (4)

The weighted gradient operator of Φi at a given vertex v is then
defined as the vector of all the directional derivatives measured at v:

∇wΦi(v) = [∂uΦi(v) : u ∼ v]T . (5)

The norm of the gradient defines the local variation of Φi at v, and
measures the regularity of Φi with respect to the graph connections.
It is computed in the usual way :

|∇wΦi(v)| =
√∑
u∼v

(Φi(u)− Φi(v))2. (6)

3. NONLOCAL INPAINTING ALGORITHM

3.1. Algorithm

We solve Eq. (3) by an iterative procedure, and denote iteration in-
dices by superscripts. The initial solution then writes Φ0

i for each
component of Φ0. Solving Eq. (3) is equivalent to minimizing the
energy:

Ewi
(
Φi,Φ

0
i , λ
)

=
1

2

∑
v∈V

|∇wΦi(v)|2 +
λ

2
‖Φi − Φ0

i ‖22, (7)

for each component i ∈ [1, d]. Since Ewi is convex, we need to solve
the system of equations :

∂Ewi (Φi,Φ
0
i , λ)

∂Φv
= 0, ∀v ∈ V, (8)

which can be done using Gauss-Jacobi iterations. Finally, the update
iterations write (see [15] for a detailed derivation) :{

Φ
(0)
i = Φ0

i

Φt+1
i (v) =

λΦ0
i (v)+

∑
u∼v 2w(u,v)Φt

i(u)

λ+
∑

u∼v 2w(u,v)
.

(9)

This leads to the following iterative algorithm, where the super-
script depicts the index of the current iteration :

1. initialize Φ0 from I ;

2. construct the non-local graph Gtnl and the current embedding
Φt from the image It;



3. compute the regularized embedding Φ̂t with respect to Gtnl by
applying Eq. (9) ;

4. back project the patches according to Φ̂t to form the image
Ît+1 ;

5. compute the updated solution It+1 as I0 in Ω\ω (outside the
hole) and Ît+1 inside ω ;

6. go back to step 2 until done.

Remark that, by replacing the non-local weights of Gnl by fixed val-
ues depending on pixel locations, we fall back to a geometry-based
diffusion process.

3.2. Implementation details

The update iterations described in Eq. (9) are straightforward to
implement. The back-projection step at the end of each iteration
leads to overlapping patches. In this case, we simply average the
corresponding values weighted by the position of the current pixel
in each of the overlapping patch. The weight of each contribution
is given by the Gaussian Gσ that defines the spatial extension of a
patch.

Using a full non-local graph requires to compute and store the
weights between all the patches of an image. To overcome this com-
putational burden, we did not build the full non-local graph, but in-
stead a k-nearest neighbour version of it, i.e. a vertex can have at
most k neighbours that are the nearest according to the function w.
In all the experiments, k is kept small (between 1 and 10), and the
neighbours are searched in a restricted (yet large) area to avoid the
exploration of the full image. This restriction is discussed in the
following section.

The choice of the parameter h is of interest. From Eq. (1), it
is clear that smaller values of h are of better choice since higher
selectivity produces less averaging between patches. In the limit,
h equals to 0 corresponds to copying only identical patches. This
case can be approximated in the implementation by looking for the
nearest neighbour of a given patch, and assigning to it a weight of 1
(see also [13] for a similar argument).

All operations are done pixel or patch-wise. Hence, it is imme-
diate to derive a parallel implementation of the iterations in Eq. (9)
to reduce the computation time.

4. INPAINTING RESULTS

4.1. Validation

First, we validate that a perfect non-local graph contains enough in-
formation for the inpainting. In this experiment (Fig. 1), we build
the graph before removing some image parts and let the non-local
diffusion iterate. As can be seen, an isotropic diffusion defined on a
non-local graph can correctly inpaint textures.

4.2. Real images

In all our experiments we chose h = 0 and k between 1 and 10, and
proceed with 10 to 50 iterations of the proposed algorithm. Note
that the nearest neighbour of a given patch is always defined. In the
worst case, if a patch is very singular, it will not be updated at once.
Instead, it will stay black for several iterations and will start evolving
when the surrounding patches will also get closer to the remaining
of the image. We did not use any additional information, such as a
confidence map [8], to improve the results, since our primary goal is
to explore the effects of the non-local diffusion.

Fig. 1. Inpainting assuming perfect knowledge of the non-local
graph. Left : input image with holes. Right : detail of the recon-
struction.

Patches need to be chosen large enough to contain an entire ex-
ample of the texture to reproduce. In our experiments, we fixed the
width of the spatial Gaussian σ to values between 1 and 3. There is
however a trade-off to be found here : bigger patches will allow to
repeat larger texture patterns, but will be averaged (in the non-local
space) to produce a flatter estimate. Hence, images containing high
frequency textures should be inpainted using small patches. This is
the case, for example, of the bungee jumper image (Fig. 2), where we
took patches of 5-by-5 pixels. Conversely, the statue image (Fig. 3)
required wider (25-by-25 pixels) patches in order to correctly repro-
duce the vegetation.

Fig. 2. Bungee jumper image. The inpainting mask is the same
as [1]. Note that some texture has been inpainted on the water. The
pink band is not a real mistake : the algorithm chose to repeat a
pattern from the legs and the shoes that was close to its initial guess.

The proposed algorithm is iterative. Hence, the final result de-
pends on the initial solution, here the input image. This explains why
our algorithms sometimes produces visually smooth but physically
impossible or unexpected results. In Fig. 2, the bungee knot was re-
placed by a texture taken from the shoes and legs because of its initial
colour and shape. This behaviour is more disturbing in Fig. 4, where
the dark dominant colour mislead the non-local nearest-neighbour
search. Consequently, the fence pattern, which is darker than the
other textures, was used to fill almost the entire designated area and
smoothly mixed to its surroundings. In a real graphics software,



Fig. 3. Statue image (user designated area in red). Note that the
algorithm successfully reproduced complex foliage texture.

such an image should be inpainted using one step for each different
texture (ground, fence, sake bottles) to circumvent this problem.

Fig. 4. Example of failure. Since initial colours were dark, the darker
texture was extended and smoothly mixed to the surrounding areas.

4.3. Is full non-locality always desirable ?

Since building the non-local graph is computationally expensive, we
restricted the search of a non-local neighbour in a smaller vicinity
around the hole. Using principal component analysis and kd-tree
sorting, it is possible to speed-up the whole process. However, our
first experiments did not show any improvement. Preliminary inves-
tigation showed that many hole pixels were mislead by the dominant
colour and chose the same neighbour, producing a flat image.

5. CONCLUSION AND FUTURE WORK

In this work, we proposed to use a graph-based variational frame-
work to tackle the problem of texture inpainting. In contrast
with previous methods, this algorithm can handlenaturally both
geometric-based and exemplar-based approaches for inpainting,
which comes from the use of graphs to implement the underlying
diffusion processes. Hence, graphs seem a natural tool to extend
the non-local methods to more complex problems than denoising,
simply by re-using previously existing diffusion-based methods.

As a future work, the described inpainting method would ob-
viously require a few refinement, such as using a confidence map.
However, as pointed out in the experiments, it is important to make a
deeper study of the non-local space induced by the patches. This will
be made possible by using fast nearest neighbour methods, such as
the PCA approach mentioned. An interesting study would be to find

an optimal patch size, or an adequate way of combining patches, that
would be suitable for both large and sharp texture synthesis. Build-
ing a patch scale-space, where patches get larger but contain less and
less high-frequency components, seems also promising.
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