
Stretching BFT

Rachid Guerraoui
EPFL

Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Nikola Knežević
EPFL

Lausanne, Switzerland
nikola.knezevic@epfl.ch

Vivien Quéma
CNRS

Grenoble, France
vivien.quema@inrialpes.fr

Marko Vukolić
Institut Eurécom

Sophia-Antipolis, France
marko.vukolic@eurecom.fr

Abstract—State-of-the-art BFT protocols remain far from
the maximum theoretical throughput. Based on exhaustive eval-
uation and monitoring of existing BFT protocols, we highlight
few impediments to their scaling. These include the use of IP
multicast, the presence of bottlenecks due to asymmetric replica
processing, and an unbalanced network bandwidth utilization.

To better evaluate the actual impact of these scalability
impediments, we devised Ring, a new BFT protocol, which
circumvents them. As its name suggests, Ring uses a ring
communication topology, where, in the fault-free case, each
replica only performs point-to-point communications with two
other replicas, namely its neighbors on the ring. Moreover,
all replicas equally accept requests from clients and perform
symmetric processing.

Our experiments show that on a Fast Ethernet network Ring
achieves an aggregate throughput of 118 Mbps, which is 27%
higher than most efficient state-of-the-art BFT protocols.

Ring approaches but does not reach the throughput theoret-
ical maximum. Yet, its very performance makes it possible to
envision a new generation of BFT protocols that might reach
the actual theoretical maximum.

Keywords-BFT protocol, fault-tolerance, throughput

I. INTRODUCTION

Byzantine fault tolerance (BFT) enhances the availability
and reliability of replicated services in which faulty nodes
may behave arbitrarily. Many BFT protocols have been
recently devised [1], [2], [3], [4], [5], [6], and their perfor-
mance are usually considered acceptable, for they get close
to the performance of non-replicated systems in best-case
executions (i.e., synchronous executions with no failures).
Arguably, these best-case execution scenarios are achieved
frequently in practice.

A closer look at the performance of state-of-the-art BFT
protocols reveals however that even in a best-case execution,
their performance is far from the theoretical maximum. For
instance, our experiments show that, when deployed on a
Fast Ethernet network, the most efficient BFT protocols
achieve a throughput of 93 Mbps, which is far from the
theoretical maximum [7] (124 Mbps)1.

This throughput performance issue becomes even more
relevant with recent works on deterministic execution on

1The theoretical maximum for a replicated service is n
n−1

B, where n
is the number of replicas, and B is the maximal throughput of a single
network link (93 Mbps on the Fast Ethernet network we are using, as
reported by the netperf tool).

multicore machines [8], [9], making it possible to lever-
age multicore architectures to achieve high CPU execution
performance. Basically, the bottleneck will soon no longer
be the execution speed of the replicated service, but the
throughput of the agreement phase of the underlying repli-
cation protocol, hence the pressing need for BFT protocols
achieving higher performance. This paper is precisely about
studying whether BFT protocols can get closer to their
theoretical maximum and what would prevent them from
that.

In order to understand the feasibility of throughput-
efficient BFT protocols, we conducted an extensive study of
the most efficient state-of-the-art BFT protocols. The goal
of this study was to identify the bottlenecks of current BFT
protocols. Our study (detailed in Section III) reveals the
following limiting factors: (1) Asymmetric replica process-
ing: existing protocols do not equally balance the processing
load on different replicas (some replicas perform up to 20%
higher CPU processing than other replicas), (2) Unbalanced
network utilization: existing protocols do not equally use
available networking resources (some replicas do either not
send or receive any data), and (3) IP multicast packet
drops: most BFT protocols rely on IP multicast which is
often inefficient in highly loaded environments as it may
result in high ratios of packet drops (30% on our hardware).

To better evaluate the actual impact of these scalability
impediments, we devised a new BFT protocol, called Ring,
which circumvents them. Ring avoids IP multicast: it uses
a point-to-point ring topology for request dissemination and
ordering. Moreover, replicas in Ring are CPU symmetric,
since they perform (almost) identical processing, which
avoids bottlenecks. Notably, any replica can receive a client’s
request. Finally, there are no underutilized network link in
Ring: the load is fully balanced on all available network
links. This is a consequence of the ring topology and the
fact that each replica sends and receives the same amount
of data.

The idea of using a ring-based topology to improve the
throughput of broadcasting protocols is not new: it was
adopted for instance in LCR [7] and Ring Paxos [10].
However, LCR and Ring Paxos focus on crash failures. The
technical difficulty in designing Ring is to tolerate Byzan-
tine faults, while maintaining a ring-based communication

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


pattern. This is challenging in various aspects. For instance,
a faulty replicas may trick correct replicas into not executing
correct requests. Faulty replicas can also try to force correct
replicas to execute requests that were not issued by clients
or try to bypass replicas in the ring.

We evaluated Ring using the Emulab [11] testbed and
compared its performance to that achieved by the three
most-efficient BFT protocols, namely PBFT [1], Zyzzyva [2]
and Chain [6]. Our performance evaluation shows that
Ring significantly outperforms other protocols in terms of
throughput (+27%), and that it achieves up to 14% lower
response time than state-of-the-art protocols. Yet, we do not
claim that Ring is the ultimate protocol throughput-wise,
since our implementation does not reach (it only approaches)
the theoretical maximum (we discuss this further in Sec-
tion VII). Nevertheless, the performance of Ring makes it
possible to envision a new generation of BFT protocols that
would approach the theoretical maximum.

To summarize, this paper makes the following contribu-
tions:
• We analyze state-of-the-art BFT protocols under high

load and pinpoint their underlying scalability impedi-
ments.

• We propose a protocol called Ring, which sustains very
high throughput, and we highlight thereby the actual
impacts of those impediments.

The rest of the paper is organized as follows. In Section II,
we overview state-of-the-art BFT protocols. Section III
presents our analysis of the bottlenecks of these protocols.
Section IV contains the description of Ring. Section V
contains experimental evaluation, while in Section VI we
discuss related work. Finally, in Section VII we conclude
this paper.

II. BACKGROUND

In this section, we overview state-of-the-art BFT protocols
that we later use in the evaluation. We focus on protocols
known to provide high throughput: Chain [6], Zyzzyva [2],
and PBFT [1]. These three protocols rely on a dedicated
replica that receives requests, called the primary or the head.
This replica also assigns sequence numbers to requests and
forwards them to other replica. Note that all these protocols
require 3f +1 replicas to tolerate f faults (which is optimal
[12]). We do not describe quorum-based protocols [3], [4]2,
which are known to perform poorly under contention [13].

The communication pattern implemented in Chain [6] is
depicted in Figure 1. Chain relies on two distinct replicas:
the head and the tail. All replicas are arranged in a chain
(hence the protocol name). A client sends a request to the
head, which assigns a sequence number to the request. The
head then forwards the request to the next replica in the
chain. Each replica executes the request, appends it to its

2These protocols do not rely on a dedicated replica to order requests.

client

primary/head

replica 1

replica 2

tail

Figure 1. Communication pattern of the Chain protocol.

local history, and forwards the request until the request
reaches the tail. Finally, the tail replies to the client. The
last f + 1 replicas include the digest of their history in the
forwarded request, which the tail sends to the client. If these
digests match, the client commits the request. Otherwise, the
client resorts to a backup protocol to commit the request. We
do not describe this backup protocol as it is not used in the
normal case (synchronous network, no faults).

client

primary

replica 1

replica 2

replica 3

request
order
request spec reply

Figure 2. Communication pattern of the Zyzzyva protocol.

The communication pattern implemented in Zyzzyva [2]
is depicted in Figure 2. Zyzzyva relies on a dedicated replica,
called primary, to order requests. To issue a request, clients
in Zyzzyva send it to the primary. The primary assigns a
sequence number to the request and multicasts it to other
replicas3. All replicas (including the primary) speculatively
execute the request and reply to the client. Replicas include
the digest of their history in their reply. If the client receives
3f + 1 matching replies, it commits the request. Otherwise,
the protocol executes a slower path, in order to reconcile
replicas. This part of the protocol is not executed in the
common case (synchronous network, no faults). We do thus
not describe it in this section.

Finally, the communication pattern implemented in
PBFT [1] is depicted in Figure 3. Similarly to Zyzzyva,
PBFT relies on a dedicated replica, called primary to order
requests. To issue a request, a client sends it to the primary.
The latter appends a sequence number to the request and
broadcasts a PRE-PREPARE message to all replicas contain-
ing the ordered request. When a replica receives the PRE-
PREPARE message, it acknowledges it by broadcasting a

3Both Zyzzyva and PBFT define an optimization for large requests,
which consists in having clients multicast their requests to all replicas.
Nevertheless, on our hardware setup, this optimization drastically de-
creases performance (due to IP multicast packet drops as explained in
Section III-C).



client

primary

replica 1

replica 2

replica 3

request pre-prepare prepare commit reply

Figure 3. Communication pattern of the PBFT protocol.

PREPARE message to all other replicas. As soon as a replica
receives a quorum of 2f+1 PREPARE messages, it promises
to commit the request (at the sequence number appended by
the primary) by broadcasting a COMMIT message. When
a replica receives a quorum of 2f + 1 COMMIT messages,
it executes the request and replies to the client. A client
commits the request if it receives f + 1 matching replies.
Otherwise, the client retransmits the request. If the request
does not commit after a certain time, the protocol executes
a leader election protocol to change the primary. This
part of the protocol is not executed in the common case
(synchronous network, no faults). We do thus not describe
it in this section.

III. OBSTACLES TOWARDS HIGH THROUGHPUT

We benchmarked available implementations of PBFT [1],
Zyzzyva [2]4, and Chain in order to understand what pre-
vents them from achieving higher throughput with large
number of clients. Although we do not claim that our
list is exhaustive, we highlight main obstacles to achieving
high throughput: asymmetric replica processing, unbalanced
network utilization, and IP multicast packet drops.

We run the experiments on Emulab [11]. In each experi-
ment, we used pc3000 machines – a Dell PowerEdge 2850s
systems, with a single 3 GHz Xeon processor, 2 GB of
RAM, and 4 available network interfaces. Each machine runs
Ubuntu 8.04, with the default kernel (2.6.24-28). Replicas
are each running on a separate machine, while clients are
deployed on a total of 15 machines. In all our experiments
we use a topology where replicas belong to one Fast Ethernet
LAN, and clients communicate with replicas over a second
Fast Ethernet LAN. The reason for choosing this topology
is that it yields significantly better performance, especially
for Zyzzyva and PBFT. This is explained by the fact that
it reduces the number of IP multicast packet drops. Finally,
we use the closed-loop benchmark used to evaluate state-of-
the-art BFT protocols [1], [2], [6]. In this benchmark, a set
of clients are deployed and issue requests in a closed-loop
manner: each client issues a new request only after it has
received a reply to its current request. The benchmark allows

4We could actually not conduct experiments with the original Zyzzyva
code base, as (1) the implementation is incomplete, and (2) there are bugs
that prevent running experiments with a high input load . We did thus use
our own implementation of Zyzzyva, called ZLight [6].

modifying the size of the requests that are issued by clients
and the size of replies that are generated by the replicas.

A. Asymmetric replica processing
As we have seen in the previous section, Chain, Zyzzyva

and PBFT all rely on a dedicated replica to handle incoming
client requests. We monitored the CPU load at each replica
to detect whether these replicas have a higher CPU load than
other replicas and are thus bottlenecks.

To monitor the CPU load, we use the benchmark de-
scribed above. Requests issued by clients are 8 bytes large.
We vary the number of clients to inject different levels of
load. Each client sends 10’000 requests, and we measure the
CPU load of the different replicas with the sar utility [14].
Results are depicted in Figure 4 for 40, 120, and 200 clients,
respectively. In each protocol, the replica handling incoming
requests (primary in PBFT and Zyzzyva and head in Chain)
is replica 0.

  0

  20

  40

  60

  80

  100

  120

4
0

1
2

0

2
0

0

4
0

1
2

0

2
0

0

4
0

1
2

0

2
0

0

C
P

U
 u

ti
li

za
ti

o
n

Chain Zyzzyva PBFT

Replica#0

Replica#3

Replica#2

Replica#1

Figure 4. CPU utilization on different replicas, for different numbers of
clients.

We observe that for each protocol, the replica receiving
client requests has higher CPU load. The difference is
quite important for Chain and Zyzzyva (about 20% higher
CPU load). This can be explained by the fact that this
replica receives all client requests (and manages all client
connections) and that it performs more cryptographic op-
erations than other replicas. Regarding Chain, we can also
observe that the tail also performs more work than other
replicas, which we explain by the fact that it sends replies
to clients. Interestingly, we remark that PBFT has lower CPU
consumption than other protocols and that the CPU usage
increase observed at the primary is negligible. We explain
this behavior by the fact that, for every received message,
nodes in PBFT have 4 communication rounds involving IP
multicast. Thus, replicas in PBFT spend more time sending
requests, than actually processing them.

B. Unbalanced network utilization
Throughput inefficiency can also be caused by an un-

balanced utilization of the available network bandwidth.



More precisely, if network links are not being used equally,
some may become bottlenecks, limiting performance, while
others remain underutilized. We study a setup with four
replicas. As explained before, each replica has two network
interfaces: one for client-to-replica communications, and
one for replica-to-replica communications. We monitor the
number of bytes that are sent/received by replicas for replica-
to-replica communications. Requests issued by clients are
4 kB large. Figure 5 conveys the normalized amount of sent
and received bytes over each link. In other words, the Figure
shows how many bytes are sent (or received) for each byte
received from a client. Bars in (resp. out) denote normalized
amount of data on incoming (resp. outgoing) links to the
replica.

We observe that every protocol exhibits unbalanced net-
work utilization. In Chain, the incoming link of the head
is not used. Indeed, no replica sends messages to the head.
For similar reasons, the outgoing link of the tail is not used.
In Zyzzyva, the primary only uses its outgoing link (it does
not receive any message from other replicas), whereas all
other replicas only use their incoming link (they do not send
messages to other replicas). Finally, PBFT uses all links, but
the incoming link of the primary and the outgoing links of
all other replicas are underutilized: the slight difference with
Zyzzyva stems from PREPARE and COMMIT messages.

C. IP multicast packet drops

The last source of throughput inefficiency that we con-
sidered is the usage of IP multicast. Both Zyzzyva and
PBFT use IP multicast to send a message to a group of
replicas. This optimization might however be hazardous to
performance due to packet drops. To quantify the potential
impact of IP multicast, we run a simple experiment, where
a set of machines are simultaneously multicasting messages.
We vary the number of machines (3, 6, 9). Each machine
multicasts 4 kB packets to one machine, which only listens.
We also vary the sending rate to achieve a total aggregate
throughput in range 70-110 Mbps. We choose values higher
than the maximum throughput on the Fast Ethernet network
(100 Mbps) to model the fact that senders cannot be coordi-
nated in Byzantine environments. Figure 6 depicts the loss
rate when the sending rate of each sender increases.

We observe that the loss rate increases non-linearly when
the aggregate throughput goes over the link speed. Moreover,
the loss rate increases with the number of servers in the
group, although the rate stays constant. For example, with
3 servers sending at 36.6 Mbps, almost every 4th packet is
dropped. In contrast, with 9 senders serving a total aggregate
rate of 110 Mbps (each server sends only 12.2 Mbps),
every 3rd packet is dropped (these results are consistent with
similar experiments for Gigabit Ethernet networks presented
by Marandi et al. [10]).

The packet drops are explained by the fact that IP
multicast is an unreliable protocol: under high contention,

r3

  0.2

  0.4

  0.6

  0.8

  1

  1.2

in

o
u
t

in

o
u
t

in

o
u
t

in

o
u
t

N
o
rm

al
iz

ed
 t

o
ta

l 
b
y
te

s

r0 r1 r2

  0

(a) Chain

r3

  0.2

  0.4

  0.6

  0.8

  1

  1.2

in

o
u
t

in

o
u
t

in

o
u
t

in

o
u
t

N
o
rm

al
iz

ed
 t

o
ta

l 
b
y
te

s

r0 r1 r2

  0

(b) Zyzzyva

r3	

  0.2

  0.4

  0.6

  0.8

  1

  1.2

in

o
u
t

in

o
u
t

in

o
u
t

in

o
u
t

N
o
rm

al
iz

ed
 t

o
ta

l 
b
y
te

s

r0 r1	 r2	

  0

(c) PBFT

Figure 5. Network link utilization in the (a) Chain, (b) Zyzzyva, and (c)
PBFT protocols.



 0.1

 0.2

 0.3

 0  5  10  15  20  25  30  35  40  45

L
o
ss

 r
at

e

Rate (Mbps)

100Mbps

110Mbps

100Mbps

110Mbps

100Mbps

110Mbps

4 participants
7 participants

10 participants

Figure 6. Percentage of IP multicast packet drops.

either machines or the connecting switches drop excess
packets [10]. This leads to retransmissions, which in turn
congest the network even more. Moreover, the ratio of
new versus retransmitted messages drops, which lowers the
throughput. These effects are known as multicast storms, and
are well known to disrupt entire data centers [15], [16]5.

Note that with the network topology we use (i.e. a
different Fast Ethernet LAN for clients-to-replicas com-
munications and for replicas-to-replicas communications),
multicast problems mostly affect PBFT. Zyzzyva is not
affected as there is only a single sender in the multicast
group. In contrast, we have observed that in a configuration
with only one Fast Ethernet LAN, Zyzzyva is affected by
the clients-to-replicas traffic, which creates contention and
leads to IP multicast packet drops. Finally, let us note
that these experiments explain why we observed very poor
performance when enabling the client-multicast optimization
implemented in PBFT and Zyzzyva. Indeed, when enabling
this optimization, all clients can potentially multicast re-
quests concurrently, which yields many packet drops and
does thus drastically decrease performance.

D. Summary

Table I summarizes our analysis of the obstacles towards
achieving high throughput in state-of-the-art BFT protocols.
All protocols but PBFT suffer from asymmetric replica
processing. They all use the network in an unbalanced way.
Finally, PBFT is subject to IP multicast losses.

IV. RING PROTOCOL

Based on the observations reported in the previous section,
we devised Ring, a new BFT protocol that aims at achieving

5IP multicast losses can be reduced by carefully configuring buffer sizes,
and/or synchronizing distributed senders (as in the Spread communication
toolkit [17]). However, this is a difficult, if not impossible, task in a
Byzantine environment, as malicious replicas can simply send traffic at
high rate, disrupting complete communication in the group.

CPU Underutilized IP
asymmetry replicas multicast

PBFT -
√ √

Zyzzyva
√ √

-
Chain

√ √
-

Table I
SUMMARY OF OBSTACLES TOWARDS ACHIEVING HIGH THROUGHPUT

very high throughput. Ring, as its name indicates, uses a ring
topology for message dissemination between replicas. In this
sense, Ring shares similarities with the LCR [7] protocol. A
major difference with LCR is that Ring tolerates Byzantine
failures (of both replicas and clients), whereas LCR only
tolerates crash failures. The extension to Byzantine faults is
complex, as the protocol must ensure that: (1) no replica
in the ring can be bypassed, (2) Byzantine clients sending
malformed requests cannot corrupt the total order on correct
requests, and (3) the reply sent by the last process in the
Ring is not forged . Ring uses two modes: a fast mode that
is executed when there are no replica faults and a resilient
mode that is executed only when one or more replicas in
the Ring are faulty.

We start the section by describing the system model.
We then present an overview of the protocol, followed by
two subsections describing the fast and resilient modes,
respectively. Finally, we describe various optimizations that
we implemented to improve the performance of Ring.

A. System model

Our model and assumptions are similar to those made by
BFT protocols studied in Section II. We assume a Byzantine
failure model where (faulty) replicas or clients may behave
arbitrarily. Replicas are assumed to fail independently, and
we assume an upper bound f on the number of faulty
replicas in a given window of vulnerability. There is no
upper bound on the number of faulty clients. We assume
a strong adversary that may coordinate the actions of faulty
nodes in an arbitrary manner. However, the adversary cannot
subvert standard cryptographic assumptions about collision-
resistant hashes, encryption and digital signatures. Moreover,
we assume that the state-machine replicated using Ring
is deterministic. Finally, Ring ensures safety in an asyn-
chronous network that can drop, delay, corrupt, or reorder
messages. Liveness is guaranteed only under eventual syn-
chrony [18].

B. Protocol overview

Ring is named after the ring topology it uses for commu-
nications between replicas. Unlike most BFT protocols, Ring
does not use IP multicast: it only relies on unicast message
exchange. Each replica in Ring has exactly one predecessor,
and exactly one successor. Communication flows in one
direction over the ring, with each replica forwarding requests
to its successor.



Ring has two operational modes: a fast mode and a
resilient mode. Ring uses the ABSTRACT framework [6] to
switch between the two modes when faults are detected. The
fast mode is very efficient during executions where there
are no faulty replicas. Note that, in the fast mode, Ring
allows committing requests even if there are faulty clients.
The resilient mode ensures progress in the presence of faulty
replicas.

Ring alternates between the fast and resilient modes as
follows: it first runs in the fast mode, with high performance,
until a fault occurs. When a fault occurs on a replica, Ring
switches to the resilient mode. Since the resilient mode does
not ensure high performance, Ring stays in the resilient
mode until it processes 2k requests. Parameter k represents
the invocation number of the resilient mode. It is reset after
reaching a threshold.

C. Fast mode

The message pattern used in the fast mode is depicted
in Figure 7. A client can submit a request to any replica,
which is called the entry replica for that particular request
(for instance, replica 2 is the entry replica for the request in
the example in Fig. 7). Each submitted request is forwarded
around the ring until it reaches the predecessor of the entry
replica (replica 1 in the example). At the end of this first
round, each replica owns a copy of the request. One replica
in the Ring, called the sequencer (replica 0 in the example),
is in charge of assigning a sequence number to each new
request it receives. This sequence number is added to the
header of the message. In order for each replica to learn
this sequence number, the predecessor of the entry replica,
called the exit replica (for that particular request) generates
an acknowledgement (ACK) for the request that is forwarded
around the ring (dashed arrow in the example). The ACK
message only contains the header of the message. The ACK
message is forwarded until it reaches the exit replica (replica
1 in the example). This replica does then reply to the client.
Note that each replica executes the request only when it
receives the ACK message.

client

replica 0

replica 1

replica 2

replica 3

Figure 7. Ring communication pattern in the fast mode.

The protocol must ensure that no replica is bypassed
and that messages are not corrupted by replicas before
being forwarded around the ring. This is achieved using
Ring Authenticators (RA), which share similarities with
Chain Authenticators presented in [6] but have significant
differences due to the presence of ACK messages. Ring

Authenticators are implemented with message authentication
codes (MACs). Roughly speaking, to be able to tolerate f
faults, each replica generates (resp. verifies) f + 1 MACs
for (resp. from) its f + 1 successors (resp. predecessors).

Figure 8 depicts the flow of a request, along with involved
MAC operations. The red underlined text represents gener-
ated MACs, while the green strikedthrough text represents
verified MACs. In step 1, the client sends its request (and
chooses replica 2 as the entry replica). The client generates
two MACs, one for replica 2, and one for replica 3 (in
total, f + 1 MACs). These two MACs represent the RA
generated by the client. Replica 2 receives the message and
verifies the MAC generated by the client. In step 2, replica 2
generates its RA – containing two MACs, one for replica 3,
and one for replica 0 – and forwards the request to replica
3. Replica 3 receives the request, verifies the MAC from the
client, and one MAC from its predecessor – replica 2. Steps
3 and 4 are similar. In step 5, replica 1 (the exit replica,
i.e., the predecessor of the entry replica) generates an ACK
for the given request and forwards the acknowledgement to
its successor – replica 2. Before sending the ACK, replica
1 generates MACs for replica 2 and replica 3. Replica 2
receives the ACK and verifies the MAC from replica 0
(generated for the request the replica already received), and a
MAC from replica 1. In step 6, replica 2 forwards the ACK,
after generating MACs for replica 3 and replica 0. Steps 7
and 8 are similar. Finally, in the last step, replica 1 verifies
MACs for the ACK from replica 3 and replica 0. Replica 1
then generates one MAC for the client and sends the reply
to the client. The client receives the reply and verifies two
MACs – one from replica 0, and one from the replica 1. If
these MACs are correct, the client commits the reply.

In case a client does not receive a correct reply (see last
step in Figure 8), or in case the client does not receive
a reply at all, it sends a panic message to all replicas
after a timeout. A panic message contains the uncommitted
request that timed out without committing. The goal of the
panic message is to switch from the fast to the resilient
mode. Byzantine clients might deliberately generate fake
panic messages to force the system to switch to the resilient
mode. To prevent this attack, before switching to the resilient
mode, Ring uses the following, novel mechanism: upon
receiving a panic message from a client, a replica handles
the request on behalf of the client. It forwards the request to
the sequencer, waits until the request gets processed along
the ring, (possibly) receives the response and replies to the
client. If the replica does not receive a response, this means
that it was indeed necessary to switch to the resilient mode.
The replica does thus broadcast a message to other replicas
to ask them to switch to the resilient mode. As soon as 2f+1
replicas send such messages, Ring switches to the resilient
mode.



r2 sends: 
req, 0, [c-r3], [r2-r3],[r2-r0]
r3 receives: 
req, 0, [c-r3], [r2-r3], [r2-r0]

r3 sends: 
req, 0, [r2-r0], [r3-r0],[r3-r1]
r0 receives: 
req, 0, [r2-r0], [r3-r0], [r3-r1]

r0

r1

r2

r3

req

client

r0 sends: 
req, sn, [r3-r1], [r0-r1], [r0-r2]
r1 receives: 
req, sn, [r3-r1], [r0-r1], [r0-r2]

r0

r1

r2

r3

req

client

r1 sends: 
ack, sn, [r0-r2], {r1-r2},{r1-r3}
r2 receives: 
ack, sn, [r0-r2], {r1-r2}, {r1-r3}

r0

r1

r2

r3

ack
client

r0

r1

r2

r3

ack
client

r0

r1

r2

r3

ack

client

r0

r1

r2

r3

ack

client

r0

r1

r2

r3

reply

client

r0

r1

r2

r3

client
req

client sends: 
req, 0, [c-r2],[c-r3]

r2 receives: 
req, 0, [c-r2],[c-r3]

r2 sends: 
ack, sn, {r1-r3}, {r2-r3},{r2-r0}
r3 receives: 
ack, sn, {r1-r3}, {r2-r3}, {r2-r0}

r3 sends: 
ack, sn, {r2-r0}, {r3-r0},{r3-r1}
r0 receives:
ack, sn, {r2-r0}, {r3-r0}, {r3-r1}

r0 sends: 
ack, sn, {r3-r1}, {r0-r1}, [r0-c]
r1 receives: 
ack, sn, {r3-r1}, {r0-r1}, [r0-c]

r1 sends: 
reply,  [r0-c], [r1-c]
client receives: 
reply,  [r0-c], [r1-c]

r0

r1

r2

r3

req
client

1 2 3 4 5

6 7 8 9

client

replica

the sequencer

[c-r2] verified

[r1-c] generated

req
message sent

{r3-r1} MAC for ACK

[r3-r1] MAC for RING

Figure 8. Illustration of Ring authenticators (f=1).

D. Resilient mode

In the resilient mode, clients and replicas sign all requests,
instead of using MACs. Requests are handled as in the fast
mode but replicas verify and generate signatures rather than
MACs. The main difference in the resilient mode is the way
on behalf requests are handled. The flow of an on behalf
requests is depicted in Figure 9 (for the sake of clarity, only
the steps performed by replica 2 are represented). Replica 2
sends an on behalf request to the sequencer. The sequencer
assigns a sequence number and forwards the request to the
next f +1 replicas (replicas 1 and 2). This step is necessary
to prevent malicious replicas from blocking the request flow.
Similarly, each node in the Ring, upon receiving an on behalf
request, authenticates and forwards the request to its f + 1
successors. When the originating replica (replica 2) receives
the on behalf request with at least 2f + 1 signatures from
different replicas, it replies back to the client.

If the sequencer is faulty, replicas will detect it (either
with a timeout, or with a malformed on behalf request). In
that case, they vote to switch to a new configuration with a
different sequencer. As soon as 2f + 1 replicas issued such
a vote, the order of nodes in the Ring is changed (which
changes the sequencer). After the resilient mode committed
k requests, Ring switches to the fast mode.

client

replica 0

replica 1

replica 2

replica 3

Figure 9. Processing of an on behalf request in Ring (in the resilient
mode). Only requests from replica 2 are shown. The client broadcasts the
PANIC message to all replicas. Replica 2 generates an on behalf request and
sends the request to the sequencer. From that point, each replica forwards
the request to the next f + 1 replicas. Once replica 2 receives 2f + 1 on
behalf requests signed by different replicas, it replies back to the client.

E. Optimizations

We have implemented a set of optimizations to improve
the performance of Ring. These optimizations mostly aim
at reducing the number of performed MAC operations
per request and the number of sent messages. Designing
these optimizations has been challenging because Ring
Authenticators carry dependencies on the request for the
next f + 1 communication steps. For example, consider a
request entering the system at replica 1. Replica 1 receives
the acknowledgement from the sequencer (replica 0), and
needs to authenticate the request using the MAC from both
replica 3 and replica 0. Replica 3 created the MAC for the
request without the sequence number. Replica 0 created the



MAC for the acknowledgement, with the sequence number.
Replica 1 needs to take into account both these facts when
verifying MACs. Consequently, the first two optimizations
we present (piggybacking and batching) have been quite
difficult to implement.

Piggybacking. The goal of this optimization is to reduce
the number of messages that are sent over the network. The
optimization works as follows: when a replica generates
the ACK, it takes one (or more) client request(s), and
piggybacks the ACK to the request. The replica then
generates the RAs for the union, and sends the request.
When the ACK reaches the last replica, the latter needs to
take special care to generate proper MAC for the client, and
also to generate proper MAC for the request(s) to which
the ACK was piggybacked. Note that this optimization can
be considered fragile, as malicious clients can try to disrupt
the performance of Ring by sending malformed messages,
which will be dropped at later replicas. Indeed, when an
acknowledgement is piggybacked onto a new request, and
the request authentication fails, both the ACK and the
request will be dropped. For that purpose, we decided to
disable this optimization when the number of committed
requests between two switches to the resilient mode is
below a configurable threshold.

Batching. The goal of this optimization is both to decrease
the number of messages that are sent over the network
and the number of MAC operations that are performed per
request. When a replica receives a request from a client,
the replica checks whether there are other pending requests
from other clients. If there are such requests, the replica
batches them together, generates the RAs for the union,
and forwards the batch. Note that the first f + 1 replicas
need to verify client MACs for each single request, and a
joint MAC for the whole batch. Moreover, the last f + 1
replicas need to generate MACs for the whole batch for
their successors in the Ring, and separately a MAC for
every client. Finally, note that when generating the ACK for
the batch, the replica creates a batch of ACKs, to allow for
message fragmentation. Also, using batch of ACKs eases
handling of checkpoints, and client request retransmissions.
Similarly to piggybacking, this is a fragile optimization
that we disable when the number of committed requests
between two switches to the resilient mode is below a
configurable threshold.

Read optimization. The goal of the last optimization is to
reduce the latency of read requests. Read requests do not
need to be totally ordered. Consequently, they do not need
to go twice around the ring. Consequently, read requests
exit the Ring after reaching f + 1 replicas. When a client
receives the reply to its read request, it compares the f + 1
MACs contained in the reply. If they match, the client

commits the reply. Otherwise, the client sends the read
request as a write request for it to be totally ordered.
Note that read requests can be batched with write requests.
However, that complicates authentication and verification of
requests (generation of MACs). Hence, in order to keep
the protocol implementation simple, read requests are only
batched together.

Note that we also tested the read optimization used in
state-of-the-art BFT protocols [1], [2], [5], [19], where
clients multicast their read requests to f + 1 replica and
wait for f + 1 matching replies. We observed that this
approach was not yielding good performance. The reason is
that we had a very high number of requests retransmission,
due to mismatching MACs (as different replicas on the ring
were in different states). The reason is that the pipe-lining
approach used for request propagation interferes with the
parallel approach used to send read requests.

V. EVALUATION

In this section we report the results of our performance
evaluation of Ring and of the three protocols described in
Section II: PBFT, Chain, and Zyzzyva. We implemented
Ring in C++. Replicas and clients communicate via TCP.
In order to be able to handle a large number of client
connections, we use the epoll event-notification mechanism.
Indeed, we observed that epoll is more efficient than the
select mechanism. Moreover, in order to prevent malicious
participants from exhausting all network resources, Ring
uses a token bucket [20] for establishing fairness among
TCP flows. In our implementation, the token bucket splits
incoming throughput in ration 3:1 between the predecessor
and (all) client traffic.

The section starts by a description of the experimental
setup we used. We then show that, unlike existing protocols,
Ring equally balances both the CPU utilization on the
various replicas, and the network utilization on the various
network links. Finally, we compare the performance of Ring
to that achieved by state-of-the-art protocols. More precisely,
we show that Ring significantly outperforms other protocols
in terms of throughput (+27%), and that it achieves up
to 14% lower response time than state-of-the-art protocols
when a large number of clients issue requests.

A. Experimental setup

As described in Section III, we performed experiments
on the Emulab [11] testbed. In each experiment, we used
pc3000 machines – a Dell PowerEdge 2850s systems, with
a single 3 GHz Xeon processor, 2 GB of RAM, and 2
NICs. Replicas are systematically running on their own,
separate machine, while clients are collocated on a total of
15 machines. Moreover, in all experiments we use 4 replicas
(which consists in tolerating f = 1 fault). Finally, we use
a topology where replicas belong to one LAN, and clients
communicate with replicas over a second LAN.



We use the benchmarks described in PBFT [1]: clients
perform requests in a closed-loop manner. We can vary the
size of the request issued by clients and the size of the replies
produced by the replicas. In the presented experiments,
the size of replies was set to 8 Bytes. This is motivated
by the fact that the size of the replies do not impact the
presented results because: (1) replicas and clients are located
on different LANs (with 2 NICs per replica), and (2) replies
do not circulate among replicas (they are simply sent on the
LAN connecting clients to replicas, contrarily to requests
that are exchanged between replicas). Concerning the size of
requests, we varied their size in the range [8B, 16kB]. Each
experiment was performed three times. On each graph, we
report the average of these three executions.

B. CPU utilization

Figure 10 depicts the CPU utilization for Ring, along with
the CPU utilization of other protocols (as in Figure 4 in
Section III), for comparison. We can observe that all replicas
in Ring are equally loaded. This comes from the fact that
there is no asymmetry in replica processing: all replicas
perform the same computation (the only minor difference
is that the sequencer appends a sequence number to the
requests it receives) and each replica receives the same
amount of client requests (provided clients homogeneously
balance their requests on the different replicas, which is
trivially achieved by having clients choose the entry replica
in a round-robin manner). The consequence is that no replica
is bottleneck in Ring.

  0

  20

  40

  60

  80

  100

  120

4
0

1
2

0

2
0

0

4
0

1
2

0

2
0

0

4
0

1
2

0

2
0

0

4
0

1
2

0

2
0

0

C
P

U
 u

ti
li

za
ti

o
n

Ring Chain Zyzzyva PBFT

Replica#0

Replica#3

Replica#2

Replica#1

Figure 10. CPU utilization of Ring (and of other protocols).

C. Network utilization

Figure 11 depicts the number of bytes that are
sent/received by Ring replicas for replica-to-replica com-
munications (recall that each replica has two network in-
terfaces: one for client-to-replica communications, and one
for replica-to-replica communications). Requests issued by
clients are 1 kB large. Moreover, as in Figure 5, we

represent in Figure 11 the number of bytes that are sent
(or received) for each byte received from a client. Bars in
(resp. out) denote normalized amount of data on incoming
(resp. outgoing) links to the replica.

r3

  0.2

  0.4

  0.6

  0.8

  1

  1.2

in

o
u
t

in

o
u
t

in

o
u
t

in

o
u
t

N
o
rm

al
iz

ed
 t

o
ta

l 
b
y
te

s

r0 r1 r2

  0

Figure 11. Network link utilization in the Ring protocol.

The first observation we can make is that the network
utilization is perfectly balanced on the different links: each
replica equally uses its incoming and outgoing links. The
reason comes from the fact that each replica sends/receives,
on average, the same number of messages. This is a con-
sequence of the fact that each replica acts on average the
same number of times as “entry replica” (and also as “exit
replica”). Consequently, from a “network utilization” point
of view, each replica has the same “role” in the protocol.

The second observation we can make is that for each
Byte transmitted by a client, a replica only transmits (resp.
receives) 0.78 Bytes on its outgoing (resp. incoming) link.
This is explained by the fact that there are 4 replicas-to-
replicas links, and only 3 of them are used to disseminate
request payloads (the link from the exit replica to the entry
replica is not used). As the role of “entry replica” is equally
played by replicas, for each request, each replica has the
same probability to have one of its link not used. Conse-
quently, the average number of Bytes that is transmitted on
each single link should be 3

4 = 0.75 Bytes, which is very
close to the 0.78 Bytes we observe. The slight difference
comes from the fact that messages have headers and that
an acknowledgement is produced for every message, thus
increasing the number of Bytes that transit over network
links.

D. Performance evaluation

We have seen in the previous two Sections that Ring
replicas do all perform similar processing, and do all
send/receive similar number of Bytes. In this Section, we
evaluate the impact of this balanced CPU and network
utilization on the performance of the protocol. We first
evaluate the peak throughput that can be achieved by



each protocol as a function of the message size. Then, we
evaluate the throughput when varying the number of clients
for 1 kB requests. Finally, we evaluate the response time of
the various protocols when varying the number of clients

Peak throughput as a function of request size. We
first study how the throughput of the different protocols is
impacted by the size of requests issued by clients. Results
are reported in Figure 12. Note that the X axis uses a
logarithmic scale. The first observation we can make is
that the behavior we observe is similar to that observed
using simulations in work by Singh et al [13]: PBFT and
Zyzzyva perform very similarly. We can also observe that
reported results are quite different from those reported by
Guerraoui et al [6]: we observe a much lower performance
difference between Zyzzyva and Chain with large messages.
This comes from the network setting we are using. Clients
communicate with replicas using a separate, dedicated LAN.
This drastically reduces the load on the LAN used for inter-
replica communications. The consequence is that it reduces
the number of IP multicast packet drops, which drastically
improves the performance of Zyzzyva.

 0

 20

 40

 60

 80

 100

 120

 10  100  1000  10000

T
h
ro

u
g
h
p
u
t 

(M
b
p
s)

Request size (bytes)

Ring
Chain

Zyzzyva
PBFT

Figure 12. Peak throughput as a function of the request size.

Figure 12 also shows that with small requests (below
512 B), all protocols perform similarly. With larger
requests, Ring significantly outperforms other protocols.
More precisely, state-of-the-art protocols have a peak
throughput ranging between 90 Mbps for PBFT and
93 Mbps for Zyzzyva and Chain. Ring, on the other hand,
has a peak throughput of about 118 Mbps, which represents
a 27% performance improvement over the most efficient
state-of-the-art BFT protocols. Let us note that the fact
that Ring achieves a throughput of 118 Mbps on a Fast
Ethernet network comes from the fact that Ring replicas
only send/receive 0.78 Bytes for each Byte contained in
a client requests. As a conclusion, we can say that with
large messages, the throughput of Ring is very close to

the optimal throughput [7] that can be achieved on a Fast
Ethernet LAN: 124 Mbps.

Throughput as a function of the number of clients. The
next experiment we performed was to assess the throughput
achieved by the various protocols when varying the number
of clients. Results are reported in Figure 13. The size of
requests that are issued by clients is 4 kB. Note that we do
not issue 16 kB requests (which yields the best results for all
protocols as illustrated in Figure 12) because both Zyzzyva
and PBFT were crashing when stressed with a large number
of clients (> 120) issuing 16 kB requests. We observe on
Figure 13 that with low number of clients (below 80), PBFT,
Zyzzyva and Chain outperform Ring. When the number of
clients is higher than 80, Ring clearly outperforms other
protocols. The reason is that Ring uses a pipeline pattern to
disseminate requests. To be efficient, this pipeline needs to
be fed, i.e. the link between any replica and its successor
in the Ring must be saturated. As clients issue requests in
a closed-loop manner (i.e. meaning that a client does not
invoke a new request before it commits a previous one), it
is necessary to have a sufficient number of clients to feed
the pipeline.

 0

 20

 40

 60

 80

 100

 120

 1  10  100  1000

T
h
ro

u
g
h
p
u
t 

(M
b
p
s)

Number of clients

Chain
Ring

Zyzzyva
PBFT

Figure 13. Throughput as a function of the number of clients.

Response time. The last experiment we conducted was to
assess the response time of the different protocols as a
function of the number of clients. Each client issues 4 kB
requests (for the same reasons as the one mentioned in
the previous paragraph). Results are depicted in Figure 14.
Note that both the X and Y axes use a logarithmic scale.
With a low number of clients, Zyzzyva achieves the lowest
response time. This is due to the communication pattern
it uses, which involves three one-way message delays. In
contrast, Chain and Ring have a higher response time, which
is a consequence of the pipe-lining pattern they use to
disseminate requests. Nevertheless, we observe that when
the number of clients increases (> 80), the response time



achieved by Ring becomes lower than that achieved by
other protocols (14.5% lower with 800 clients). This is
easily explained by the fact that under high contention, the
response time is impacted by the throughput: the higher the
throughput, the lower the time spent by requests in waiting
queues.

 1

 10

 100

 1000

 1  10  100  1000

R
es

p
o
n
se

 t
im

e 
(m

s)

Number of clients

Chain
Ring

Zyzzyva
PBFT

Figure 14. Response times for different benchmarks.

VI. RELATED WORK

PBFT [1] was the first practical implementation of a BFT
state machine replication protocol. It was later followed by
many other protocols, e.g. Zyzzyva [2], HQ [4], Q/U [3],
Prime [19], Aardvark [5], Spinning [21], Zyzzyvark [22]
or Scrooge [23]. Each of these protocols brought some
improvement over the original design. However, none of
them reports performance results similar to that achieved
by Ring.

PBFT [1], Zyzzyva [2] and Chain [6] are known to be the
most efficient BFT protocols in terms of throughput under
high load. They have been extensively described in Sec-
tion II, and evaluated in Sections III and V. We have shown
that, unlike Ring, none of these protocols features both
symmetric CPU processing across replicas and balanced
network utilization across different links. Moreover, we have
seen that Ring achieves up to 27% higher throughput than
all these protocols.

Scrooge is a primary-based protocol similar to Zyzzyva
and PBFT, that reduces the number of replicas needed to
achieve low-latency despite faults. Scrooge has the same
performance as Zyzzyva in the best case [23].

Quorum-based protocols like HQ [4], Q/U [3], and Quo-
rum [6] offer low latency under very low load, when requests
are spontaneously ordered by the LAN. When the load
increases, these protocols fail to achieve high performance:
the spontaneous order observed by the different replicas
is often different, which requires replicas to be frequently
reconciled, thus degrading performance.

A set of so-called robust BFT protocols have been de-
signed: Aardvark [5], Prime [19], Spinning [21] and Zyzzy-
vark [22]. These protocols aim at offering good throughput
when faults occur. These protocols, unlike Ring, do thus not
optimize performance for the non-faulty case. An interesting
research challenge would be to design a robust version of
the Ring protocol.

A very recent position paper addresses the problem of
building scalable BFT protocols [24]. The idea is to improve
the throughput of replicated state machine protocols by
executing multiple times the same protocol on different
(intersecting) sets of machines. This idea is complementary
to the one presented in this paper. Indeed, to get the
most benefit out of this multiple-execution mechanism, it is
necessary to have a very efficient base protocol. We do thus
believe that it would be interesting to combine the technique
proposed in [24] with Ring.

Finally, let us also remark that some previous works have
proposed the use of ring topology in the context of total
order broadcast protocols: Ring Paxos [10] and LCR [7].
Ring is not a simple extension of these protocols. The main
difference between Ring and these protocols is actually that
Ring tolerates Byzantine faults (of both replicas and clients),
whereas Ring Paxos and LCR only tolerate crash faults,
which makes their design significantly easier. Note also that
another difference between Ring Paxos and Ring is that
the former relies on IP multicast to disseminate sequence
numbers.

VII. CONCLUDING REMARKS

It is crucial to design throughput-efficient BFT protocols.
State-of-the-art BFT protocols are far from achieving an
optimal throughput. Indeed, the most efficient BFT protocols
achieve 93 Mbps, although the theoretical maximum on such
networks is 124 Mbps [7]. We studied existing protocols
and implementations and identified impediments to their
scalability. We found three impediments: asymmetric replica
processing, unbalanced network utilization, and IP multicast
packet drops.

To evaluate the benefits of circumventing these imped-
iments, we proposed a new protocol, called Ring, which
achieves very high performance when used with large
messages and large number of clients. We have evaluated
the performance of Ring and shown that its performance
(118 Mbps on a Fast Ethernet LAN) approaches the theo-
retical maximum.

We believe that an interesting area for future work is to
design protocols achieving performance close to the theoreti-
cal maximum when clients issue small requests. With small
requests, the challenge is that cryptographic costs become
dominating. Our experience shows that batching messages
(as done in most existing BFT protocols) is not sufficient to
achieve high throughput in that context. We do thus believe
that to sustain high throughput with small messages, it will



be necessary to design protocols that are able to efficiently
leverage multicore computers (e.g. protocols that perform
cryptographic operations and network I/Os in parallel, on
distinct cores).

REFERENCES

[1] Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance.
In: Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI). (1999)

[2] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.:
Zyzzyva: speculative Byzantine fault tolerance. In: Pro-
ceedings of the Symposium on Operating Systems Principles
(SOSP), ACM (2007)

[3] Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter,
M.K., Wylie, J.J.: Fault-scalable Byzantine fault-tolerant
services. In: Proceedings of the Symposium on Operating
Systems Principles (SOSP), ACM (2005)

[4] Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.:
HQ replication: a hybrid quorum protocol for Byzantine fault
tolerance. In: Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), USENIX As-
sociation (2006)

[5] Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.:
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In: Proceedings of the Symposium on Networked
Systems Design and Implementation (NSDI), USENIX As-
sociation (2009)

[6] Guerraoui, R., Knezevic, N., Quema, V., Vukolic, M.: The
Next 700 BFT Protocols. In: Proceedings of the ACM
European conference on Computer systems (EuroSys). (2010)

[7] Guerraoui, R., Levy, R., Pochon, B., Quéma, V.: Through-
put optimal total order broadcast for cluster environments.
Transactions on Computer Systems (TOCS) 28 (2010)

[8] Aviram, A., Weng, S.C., Hu, S., Ford, B.: Efficient system-
enforced deterministic parallelism. In: Proceedings of the
Symposium on Operating Systems Design and Implementa-
tion (OSDI). (2010)

[9] Bergan, T., Hunt, N., Ceze, L., Gribble, S.D.: Deterministic
process groups in dos. In: Proceedings of the Symposium
on Operating Systems Design and Implementation (OSDI).
(2010)

[10] Jalili Marandi, P., Primi, M., Schiper, N., Pedone, F.: Ring
paxos: A high-throughput atomic broadcast protocol. In:
Proceedings of the Conference on Dependable Systems and
Networks (DSN). (2010)

[11] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad,
S., Newbold, M., Hibler, M., Barb, C., Joglekar, A.: An
integrated experimental environment for distributed systems
and networks. In: Proceedings of the Symposium on Oper-
ating Systems Design and Implementation (OSDI), USENIX
Association (2002)

[12] Lamport, L.: Lower bounds for asynchronous consensus
(2004)

[13] Singh, A., Das, T., Maniatis, P., Druschel, P., Roscoe, T.:
BFT protocols under fire. In: Proceedings of the Symposium
on Networked Systems Design and Implementation (NSDI),
USENIX Association (2008)

[14] SYSSTAT utilities. http://sebastien.godard.
pagesperso-orange.fr/ (2010)

[15] Birman, K., Chockler, G., van Renesse, R.: Toward a cloud
computing research agenda. SIGACT News 40 (2009)

[16] Vigfusson, Y., Abu-Libdeh, H., Balakrishnan, M., Birman, K.,
Burgess, R., Chockler, G., Li, H., Tock, Y.: Dr. multicast: Rx
for data center communication scalability. In: Proceedings
of the European conference on Computer systems (EuroSys),
ACM (2010)

[17] Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J., Stan-
ton, J.: The Spread Toolkit: Architecture and performance.
Technical report, Johns Hopkins University (2004)

[18] Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the
presence of partial synchrony. J. ACM 35 (1988)

[19] Amir, Y., Amir, Y., Coan, B., Kirsch, J., Lane, J.: Byzantine
replication under attack. In: Proceedings of the Conference
on Dependable Systems and Networks (DSN). (2008)

[20] Shenker, S., Wroclawski, J.: General characterization param-
eters for integrated service network elements (1997)

[21] Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: Spin
one’s wheels? Byzantine Fault Tolerance with a spinning
primary. In: Proceedings of International Symposium on Re-
liable Distributed Systems (SRDS), IEEE Computer Society
(2009)

[22] Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L.,
Dahlin, M., Riche, T.: Upright cluster services. In: Pro-
ceedings of the Symposium on Operating Systems Principles
(SOSP), ACM (2009)

[23] Serafini, M., Bokor, P., Dobre, D., Majuntke, M., Suri, N.:
Scrooge: Reducing the costs of fast byzantine replication in
presence of unresponsive replicas. In: Proceedings of the
Conference on Dependable Systems and Networks (DSN).
(2010)

[24] Kapritsos, M., Junqueira, F.P.: Scalable agreement: Toward
ordering as a service. In: Proceedings of the Sixth Workshop
on Hot Topics in System Dependability (HotDep). (2010)



APPENDIX

A. Notation

A message m sent by node p to the node q, authenticated with a MAC is denoted by 〈m〉µp,q . A node p can use vectors
of MACs (called authenticators) to simultaneously authenticate message m for multiple recipients, members of some set
S. Such message is denoted by 〈m〉αp,S , and contains MACs µp,q for every q ∈ S. In addition, we denote by D(m) the
digest of message m, while 〈m〉σp represents a digitally signed message, i.e. a message that contains D(m), signed with the
private key of node p and message m. We assume that all nodes have public keys of all other nodes in the system in order
to verify the signatures. Further, we assume that during synchronous periods there exists some time ∆, which represents the
maximal propagation delay between any two correct nodes in the system. Finally, Σ represents the set of all 3f +1 replicas.

Every instance6 of Ring has one replica designated as the sequencer, and a fixed ordering of replica IDs (called the ring
order), known to all processes. The sequencer precedes all replicas in the ring order, and the last replica in the ring order is
the sequencer’s physical predecessor on the ring. Without loss of generality, we assume that the sequencer is replica r0. To
simplify the notation, as there is a finite number of replicas, we treat the ring order as a sequence of numbers in the finite
group of modulo order 3f + 1. Thus, the successor of node ri is ri⊕1, where ⊕ is addition modulo 3f + 1. When a replica
receives a request from a client, the replica becomes the entry replica for the request. The replica which replies back to the
client is the exit replica for a given request. The exit replica is the predecessor of the entry replica (rexit = rentry 	 1).

We indicate the predecessor (resp., the successor) set of replica rj as ←−rj (resp., −→rj ). Also, we denote the sequenced
predecessor set of replica rj , by r̂j . Sequenced predecessor set of replica rj are all replicas which may have received a
request along with the sequence number from the sequencer. We will precisely define these sets in Section B. We also
reference by Σlast the set of the last f + 1 replicas in the ring order, i.e., Σlast = {rj ∈ Σ : j ≥ 2t}. Further, we denote
by Σreqlast the set of the last f + 1 replicas in the ring order, with respect to request req, i.e., Σreqlast = rj ∈ Σ : j ∈
{(req.entry 	 (f + 1) . . . req.entry 	 1}.

B. Protocol overview

In Ring, a client sends request req to any replica ri. In turn, each replica passes the request to its successor, i.e. replica rj
forwards the request to rj⊕1. Upon reaching replica r0 (the sequencer) on this path, request req gets a sequence number. When
the request reaches ri	1 (the exit replica for the request), ri	1 sends an acknowledgement for the request to its successor.
Replicas forward this acknowledgement in the same way as the original request. After ri	1 receives the acknowledgement
back, all replicas are aware of the request’s sequence number. Then, replica ri	1 replies back to the client. Each replica in
Ring accepts only messages (both requests and acknowledgements) sent by the replica’s predecessor, or the client7. Now,
we introduce a couple of definitions we use later in the text.

Ring has two operating modes: a best case execution mode, called the fast mode, and the resilient mode. The fast mode
is intended for situations where Ring should provide the best possible performance, under the assumption that there are no
faulty replicas. On the other hand, the resilient mode provides resilience (and good performance) when faulty replicas are
present in the system. In this section, for the sake of brevity, we call the fast mode Ring– , while Ring+ denotes the resilient
mode.

Definition For a given request processed at a replica, we define the distance of the request as the number of replicas the
request was processed at, since the entry replica.

Hence, a request at the entry replica has distance 0. At the time of replying to a client, the request is at the distance
2n− 1. Clearly, the distance of an acknowledgement is always greater than 3f , as we have two rounds of communication
(one to propagate the request, and the second one to acknowledge the sequence number).

Definition The predecessor set of replica rj (with respect to some request req), denoted by ←−rj represents at most f + 1
replicas which are direct predecessors of rj .

The predecessor set of replica rj is: (a) if distance(rj , req) ≤ f + 1, ←−rj = {rj	distance(rj ,req) · · · rj	1}, else (b) ←−rj =
{rj	(f+1) · · · rj	1}.

Definition The successor set of replica rj (with respect to some request req), denoted by −→rj represents at most f + 1
replicas which are direct successors of rj .

The successor set of replica rj is: (a) if distance(rj , req) ≤ 2n − f − 1, −→rj = {rj⊕1 · · · rj⊕(f+1)}, else (b) −→rj =
{rj⊕1 · · · rexit replica}.

6we refer to an ABSTRACT instance
7clients do not send the acknowledgement



Variable Purpose
RASET Set of Ring Authenticators, used by both clients and replicas

MACSET Set of MACs, authenticating the reply, generated by replicas
LH Replica’s local history

self Variable holding replica’s id
sn Sequence number associated with a request

lastreq Array indexed by a client id, holding the last request sent by the client
lastsn Array indexed by a client id, holding a last sequence number given to a request from the client

lasthist Array indexed by a client id, holding the last history sent to the client
active A boolean representing a running state of a particular ABSTRACT instance

sequencer id A variable containing the id of the sequencer in the current ABSTRACT instance
pending A list of pending requests at the replicas

OBRpending A list of pending OBR requests at the replica

Table II
LEGEND OF USED VARIABLES

Field name Purpose
o Replicated state machine command
tc Client’s timestamp for the request

cid Client’s id
entry The id of the entry replica to which the client sent the request

Table III
FIELD NAMES FOR THE REQUEST

For example, the predecessor of the exit replica has only one replica (the exit replica) in the successor set for the
acknowledgement. Likewise, the predecessor set of one replica after the entry replica, for the request, contains only the
entry replica.

Definition The sequenced predecessor set of replica rj (with respect to some request req), denoted by r̂j represents at most
f + 1 direct predecessors of rj which may have received the request with a sequence number from the sequencer.

The sequenced predecessor set of replica rj is r̂j = {ri ∈ Σ : i ≥ max(0, j − (f + 1))}.

Every replica ri uses a Ring Authenticator (RA) to authenticate a message (either a request or an acknowledgement) for
all replicas in its successor set −→ri . Consequently, when a replica in Ring receives a message m, the replica verifies m, i.e.,
the replica checks whether m is correctly authenticated by the all replicas in the predecessor set.

C. Legend

Before giving the pseudo code, we list the variables we use in our algorithm, along with their explanation.

Now, we give the pseudo code for the client, and two versions for the server: one for the normal mode, and other for the
resilient mode. In Appendix E and F we give the explanation of the pseudo code.



D. Pseudo code

Algorithm A.1: Ring: client pseudo-code

(1) procedure initialization() ≡
(2) tc, entry, rreplica← 0; TRing := (2(3f + 1) + 2)∆
(3)
(4) procedure invoke(o) ≡
(5) tc ← tc + 1;
(6) entry ← any number in 0..3f ; rreplica← entry 	 1 predecessor on the ring answers
(7) req ← 〈o, tc, self as cid, entry〉
(8) send〈RING, req, nil, ∅, ∅〉σc to rentry
(9)

(10) upon received〈〈REPLY, req,MACSET 〉, LH〉 from rrreplica ≡
(11) if ∀ri : (ri ∈ ←−r entry)⇒ (MAC(ri, self, 〈req,D(LH)〉) ∈MACSET
(12) then trigger(COMMIT(req, LH)); cancel(TRing) endif
(13)
(14) upon TRing expires ≡
(15) send〈PANIC, reqσc 〉to all servers
(16)
(17) upon received〈GET-A-GRIP, h, req〉 from f + 1 different servers with the same h ≡
(18) trigger(COMMIT(req, h))
(19)
(20) upon received〈ABORT, LHi, req, ri〉 from 2f + 1 different servers, with the matching req ≡
(21) LH ← extract history(∪iLHi)
(22) trigger(ABORT(req, LH))
(23)

Algorithm A.2: Ring– : server ri pseudo-code
(1) procedure initialization() ≡
(2) pending ← ∅
(3) sn← 0
(4) active← true
(5) TOBR ← (3f + 1)∆
(7) ∀c ∈ Clients : lastreq[c]← nil; lastsn[c]← 0; lasthist[c]← nil
(8)

(10) procedure sequence request(sn′, req) ≡
(11) if i = sequencer id then sn, sn′ ← sn+ 1 endif
(12)
(14) procedure execute(sn′, req) ≡
(15) if lastreq[req.c].tc ≥ req.tc then return endif
(16) sn← sn′

(18) lasthist[req.c]← (LH ← LH ◦ 〈req〉)
(19) lastreq[req.c]← req; lastsn[req.c], snj ← sn
(21) for req′ ∈ OBRPending ∧ req′.c = req.c do
(22) if req′.tc < lastreq[req.c].tc
(23) then OBRPending ← OBRPending \ {req′}
(24) stop(TOBR

req′
)

(25) endif
(27)
(29) upon received〈RING, req, sn′, RASET,MACSET 〉σc from ri	1 ∨ client c ≡
(30) when

∧
active

(31)
∧

distance(rentry, ri) ≤ f =⇒ valid signature
(33)

∧
checkRASET(RASET, req)

(35)
∧
req.tc > lastreq[req.c].tc ∧ (sn′ 6= nil =⇒ sn′ = sn+ 1)

(36) begin
(37) pending ← pending ◦ {req}
(38) sequence(sn′, req)
(39) if sn′ 6= nil then execute(sn′, req) endif
(40) RASET ← updateRAs(RASET, req, sn′,>)
(41) if i = predecessor(req.entry)
(42) then send〈ACK, sn′,D(req), req.c, RASET, ∅〉 to ri⊕1

(43) else send〈RING, req, sn′, RASET, ∅〉 to ri⊕1

(44) endif
(45) end
(46)
(48) upon received〈ACK, sn′, D′, c, RASET,MACSET 〉 from ri	1 ≡
(49) when

∧
active

(50)
∧
∃req ∈ pending | req.c = c ∧ D(req) = D

(52)
∧

checkRASET(RASET, req)
(54)

∧
(sn′ = sn+ 1)

(56) begin
(57) if sn′ = sn+ 1 then execute(sn′, req) endif
(58) pending ← pending \ req
(59) myMACSET ← updateMACs(MACSET, req, req.c, LH,⊥)
(60) RASET ← updateRAs(RASET, req, sn,⊥)
(61) if predecessor(req.entry) = self
(62) then send〈〈REPLY, req,myMACSET 〉, LH〉 to req.c
(63) else send〈ACK, sn,D(req), RASET,myMACSET 〉 to ri⊕1 endif
(64) end



(65)
(67) upon received〈PANIC, req〉σc from client c ≡
(68) when

∧
active

(69)
∧
req.tc ≥ lastreq[req.c].tc

(70)
∧
req is valid

(71) begin
(72) OBRPending ← OBRPending ∪ {req}
(73) SIGSET ← σself (self, req.c,D(req))
(74) send〈OBR, self, req, 0, SIGSET, ∅〉σself to rsequencer id
(75) trigger(TOBRreq )
(76) end
(77)
(79) upon received〈PANIC, req〉σc from client c ≡
(80) when active = false
(81) begin
(82) send〈ABORT, LHσsi , req, self〉σself to the client req.c
(83) end
(84)
(86) upon received〈OBR, rj , reqσreq.c , sn

′, SIGSET,MACSET 〉 from rk ≡
(87) when

∧
active

(88)
∧
reqσreq.c is valid

(90)
∧
∀rj ∈

←−−
self : ∃sig ∈ SIGSET : sig = σrj (rj , req.c,D(req))

(91)
∧
req.tc ≥ lastreq[req.c]t.c

(93)
∧
i > 0 =⇒ sn′ = sn+ 1

(94) begin
(95) if req = lastreq[req.c] ∧ lastsn[req.c] 6= nil
(96) then snOBR ← lastsn[req.c]; LHOBR ← lasthist[req.c]
(97) else
(98) sequence(sn′, req)
(99) execute(sn′, req)

(100) snOBR ← sn; LHOBR ← LH
(101) endif
(102) MACSET ′ ← updateMACs(MACSET, req, rj , LHOBR,>)
(103) SIGSET ← SIGSET ∪ σself (self, req.c,D(req))
(104) if i = sequencer id	 1
(105) then send〈〈OBR, rj , reqσreq.c , snOBR, ∅,MACSET ′〉, LHOBR〉 to rj
(106) else send〈OBR, rj , reqσreq.c , snOBR, SIGSET,MACSET ′〉 to ri⊕1

(107) endif
(108) end
(109)
(111) upon received〈〈OBR, self, reqσreq.c , ∗, ∗,MACSET 〉, h〉 from rsequencer id	1 ≡
(112) when active
(113) begin
(114) if ∀rj : (rj ∈ ←−r sequencer id) =⇒ (MAC(sj , self,D(h)) ∈MACSET )
(115) then
(116) send〈GET A GRIP, h, req〉σself to req.c
(117) stop(TOBRreq ) endif
(118) end
(119)
(121) upon TOBRreq expires ≡
(122) active← false
(123) send〈STOP, LHσsi , req, self〉σself to every replica rk
(124) send〈ABORT, LHσsi , req, self〉σself to the client req.c
(125)
(127) upon received〈STOP, LH, req, rj〉 from 2f + 1 different servers with matching req ≡
(128) active← false
(129) send〈STOP, LH, req, ri〉 to every replica rk
(130)

Algorithm A.3: Ring+ : server ri pseudo-code for resilient mode (changes compared to Ring– )
(1) procedure initialization() ≡
(2) pending ← ∅
(3) sn← 0
(4) active← true
(5) stored sigs← ∅
(6) TOBR ← (3f + 1)∆
(7)
(9) upon received〈OBR, rj , reqσreq.c , sn

′, SIGSET,MACSET 〉 from rk ≡
(10) when

∧
req.tc ≥ lastreq[req.c]t.c

(12)
∧
reqσreq.c is valid

(14)
∧
i > 0 =⇒ (sn′ = sn+ 1)

(15) begin
(16) SIGS ← valid signatures in SIGSET from different servers
(17) stored← stored sigs[req]
(18) if SIGS ⊂ stored then break upon endif
(19) stored sigs[req]← stored ∪ SIGS
(20) if ‖stored‖ ≥ 2f + 1
(21) then
(22) if req = lastreq[req.c] ∧ lastsn[req.c] 6= nil



(23) then snOBR ← lastsn[req.c]; LHOBR ← lasthist[req.c]
(24) else
(25) sequence(sn′, req)
(26) execute(sn′, req)
(27) snOBR ← sn; LHOBR ← LH
(28) endif
(29) SIGSET ← SIGSET ∪ σself (self, req.c,D(req)) ∪ stored
(30) if (j = i) then send〈GET A GRIP, h, req〉σself to req.c endif
(31) send〈OBR, rj , reqσreq.c , snOBR, SIGSET,MACSET ′〉 to −→ri
(32) else
(33) SIGSET ← SIGSET ∪ σself (self, req.c,D(req)) ∪ stored
(34) send〈OBR, rj , reqσreq.c , sn

′, SIGSET,MACSET ′〉 to −→ri endif
(35) end
(36)

Algorithm A.4: Ring: misceleneous functions for server code
(2) function distance(id1, id2) ≡ return (id2 	 id1)
(4) function checkRASET(RASET, req) ≡
(5) comment: checks the well-formedness of RASET, as well as MACs
(6) RASET ′ ← sort(<(3f+1,req.entry), RASET )
(8) if ∃R,S ∈ RASET ′ : R = 〈∗, ∗, sn1, ∗〉, S = 〈∗, ∗, sn2, ∗〉,
(9) sn1 6= nil ∧ sn2 6= nil⇒ sn1 6= sn2

(10) then return false endif
(11) if ∃R,S ∈ RASET ′ : R = 〈j1, i1, sn1, ∗〉, S = 〈j2, i2, sn2, ∗〉,
(12) (j1, i1) <(3f+1,i) (j2, i2)⇒ sn1 6= nil ∧ sn2 = nil then return false endif
(14) if

∧
distance(req.entry, i) ≤ f + 1⇒

(16) ∃RA ∈ RASET | RA = 〈i, ∗, sn′,MAC′〉,MAC′ = MAC(self, req.cid, 〈req, sn′〉)
(18)

∧
∀rj ∈

←−−
self :∃RA ∈ RASET | RA = 〈i, j, sn′,MAC′〉,MAC′ = MAC(self, j, 〈req, sn′〉)

(19) then return true endif
(21) return false
(22)
(24) function updateRAs(RASET, req, sn, is.req) ≡
(25) myRASET ← RASET ; myRA← ∅
(26) for all RA ∈ RASET do
(27) RA′ ← RA
(28) if RA′ =< self, ∗, ∗, ∗ > then myRASET ← myRASET \ RA′ endif
(31) if distance(req.entry, self) ≤ 2f ∨ is.req = >
(32) then end← self ⊕ f ⊕ 1
(33) else end← req.entry 	 1 endif
(34) for j = self ⊕ 1 to end do iterate clockwise on the circle
(35) if is.req = >
(36) then myRA← myRA ∪ 〈j, self, sn,MAC(rj , self, 〈TypeREQ, req, sn〉)〉
(37) else myRA← myRA ∪ 〈j, self, sn,MAC(rj , self, 〈TypeACK , req, sn〉)〉
(38) endif
(39) myRASET := myRASET ∪myRA
(40) return myRASET
(41)
(43) function updateMACs(MACSET, req, c, LH, is.req) ≡
(44) myMACSET ←MACSET
(45) if distance(req.entry, i) > 2f ∧ is.req = ⊥
(46) then myMACSET := myMACSET ∪ MAC(c, self, 〈req,D(LH)〉) endif
(47) return myMACSET

E. Ring– algorithm steps

r0

r1

r2

r3

client
1: R1

2: R2

3: R2

4: R2

5: R2

r0

r1

r2

r3

client

6: R3

7: R3

8: R3

9: R3

10: R4b

Figure 15. A client invokes a request, by sending a message to replica r2, and afterwards receives a reply from replica r1. The number before the label
denotes the order of steps, while the label corresponds to the label in the description.

Step R1. A client can send a request to any replica (Algorithm A.1, lines 4–8)

When invoking operation o, client c first chooses i, the index of the entry replica (line 6 of Algorithm A.1). Then, client
c forms a req = 〈o, tc, c, i〉, which contains the operation in question, the identifier for the request, client’s id, and the id of



the entry replica. Next, the client creates a request (a RING message) for replica ri (line 8). The client does not fill the last
three fields (sequence number, RASET, and MACSET) of the message (line 8), as these fields are set by replicas. Finally,
the client signs and sends the message to replica ri.

Upon sending a RING message to the entry replica, the client starts the timer Tring , set to expire after period (2(3f +
1) + 2)∆ (line 2). The expiration time is set to match the maximum response delay when the system is synchronous. If the
timer expires before the client receives a response, the client will panic (line 14) and notify replicas. We assume that clients
wait for the replica’s response before issuing new requests.

Step R2. Upon receiving a request (a RING message), replica ri updates the message fields and forwards the
message to its successor (Algorithm A.2, lines 29–45)

Upon receiving (line 29 of Algorithm A.2) a 〈RING, req, sn′, RASET,MACSET 〉 message from the predecessor
(or from the client in case replica is the entry replica for the request), replica ri first checks whether ri can successfully
authenticate and accept the message. The check consists of several conditions (lines 30–35):

1) The first f + 1 replicas check whether some Ring Authenticator (RA) in the RASET contains a valid authenticator (a
signature) for the request req, generated by the client;

2) every replica ri checks whether RASET contains a RA with a valid MAC for every replica rj in the predecessor set,
←−rj , authenticating req and sn′. (Note: by definition, the predecessor set of the entry replica is empty ←−r req.entry = ∅);

3) every replica accepts a RING message only if the client’s timestamp of the request req (req.tc) is higher than the last
seen (and executed) request timestamp from that client (lastreqi[req.c].tc);

4) finally, if the sequence number sn′ of the message is either equal to nil or sni + 1, replica accepts the RING message.

If these checks succeed, then replica ri proceeds to processing the request. First, every replica stores req in pending[req.c].
The sequencer increments the local sequence number sn0, and sets sn′ = sn0 (line 38). Otherwise, if replica is not the
sequencer, and sn′ is not nil, then the replica stores sn′ into the local variable sni (line 19). Moreover, if sn′ is not nil,
then every replica:

1) executes the request and stores the reply (lines 14–25),
2) appends req to its local history LHi (line 18), and
3) updates the data that reflects the execution of last request by the client req.c by storing req and sni into corresponding

data structures: lastsni[req.c], and lasthisti[req.c] (line 19).

Further, each replica updates the information about the last known request from the client, by storing the request into
lastreqi[req.c] (line 14).

After processing req, replica ri forwards the request unless ri is the exit replica. Replica ri sends the RING message
containing req and sn′, as well as updated set RASET (calculated in line 40). Replica ri updates RASET by removing all
the MACs destined to itself (line 28 of Algorithm A.4), and by adding RA authenticating the tuple {TypeREQ, req, sn′}
(line 36 of Algorithm A.4) for every replica in its successor set, −→ri . The first element of the tuple can have values of either
TypeREQ or TypeACK and serves as a protection against copy attacks. Thus no replica can forge ACK messages, by using
RA of the original RING message. Finally, replica ri sends the RING message, containing req, sn′, RASET, and ∅ in place
of MACSET (line 43).

If replica ri is the exit replica, instead of forwarding the request, the replica generates an acknowledgement – an ACK
message (line 42). The replica first updates the RASET, this time authenticating the tuple {TypeACK , req, sn′} (line 37
of Algorithm A.4). Finally, replica ri sends the ACK message to the successor. The ACK message initially contains the
following fields: D(req), req.c, sn′, RASET, and empty set (as the MACSET field).

RING message verification failure: If a verification of the received RING message fails, a correct replica ri can safely
discard the received message.

Step R3. Upon receiving an acknowledgement (an ACK message), replica ri updates the message fields and
forwards the message to its successor. (Lines 48–64 of Algorithm A.2)

Replica ri receives 〈ACK,D, sn′, c′, RASET,MACSET 〉 from the predecessor, and processes the message in a similar
fashion as the RING message. First, the replica checks whether it can successfully authenticate and accept the message
(lines 49–54). The conditions differ from the RING message case. Namely:

1) if there is no stored request req in pending list (line 50), corresponding to the ACK message, the message is discarded;
otherwise, req is taken from pending list,



2) if RASET contains a RA with a valid MAC for every replica rj in the predecessor set ←−ri , authenticating req and sn′;
otherwise, the replica discards the message,

3) finally, every replica accepts the ACK message only if the sequence number of the message (sn′) equals sni + 1
(line 54).

If the request was not executed previously by replica ri, the replica does the same steps as when handling the RING
message:

1) appends req to replica’s local history LHi, and
2) updates the data that reflects the last request by the client req.c by storing req, sni, LHi into corresponding data

structures: lastreqi[req.c], lastsni[req.c], and lasthisti[req.c]
.

After executing the request, replica ri forwards the ACK message. Beforehand, the replica updates the RASET, and the
MACSET fields of the message. The MACSET is effectively updated only by the f + 1 predecessors of the entry replica
(line 59). These replicas authenticate the pair {req,D(LHi)}, where D(LHi) denotes the digest of the replica’s local history.
If replica ri is not the the exit replica, the replica forwards the ACK message, containing D(req), sn′, req.c, RASET, and
MACSET (as seen in line 63). Otherwise, replica ri sends a REPLY message (a reply) to the client named in req.c, containing
replica’s full local history LHi (line 62).

ACK message verification failure: If any of the check conditions does not hold, the replica may safely discard the
request. At this point, there is no MAC from the client in the RASET, hence the replica may assume that some of the
predecessors are Byzantine, and simply discard the request.

Step R4a. Upon receiving the REPLY message from the exit replica before the expiration of the timer, if the
client successfully verifies the reply, the client commits the request. (Lines 10–12 of Algorithm A.1)

If client c receives the 〈〈REPLY, req, ∗, ∗, ∗,MACSET 〉, LH〉 message (line 10) from the exit replica (rentry	1), that
can be successfully verified, then the client commits request req with Ring commit history LH (line 12). A successful
verification (described at line 11) means that the set MACSET contains valid MACs from the last f + 1 replicas in the ring
order (predecessors of the exit replica), destined to client c, that authenticate the pair 〈req, d〉, where d is the digest of the
history (d = D(LH)).

r0

r1

r2

r3

client
1: R4b

3: R4b.2

r0

r1

r2

r3

client

7:R4b.3a

6: R4b.2

2: R4b.1

4: R4b.2

5: R4b.2
8:R4b.3a.1

Figure 16. A client invokes a request, but does not receive a reply. The client panics, sending a PANIC message to all replicas. Majority of replicas
successfully answer. For clarity, we present only the actions of replica r2.

Step R4b. The client does not receive the RING message from the exit replica, and/or the client can not verify
the message, before the expiration of the timer. (Lines 14–15 of Algorithm A.1)

If the client does not receive the message before timer TRing expires, or the message cannot be verified, the client panics
(line 15). Client c sends a 〈PANIC, reqσc〉 message to all replicas. The PANIC message is digitally signed by the client.
Moreover, the client periodically resends the PANIC message to the replicas, until the client commits or aborts the request.

Step R4b.1. A replica receives a PANIC message from the client, and the replica retries Ring on behalf of the
client. (Lines 67–75 of Algorithm A.2)

Replica ri, on receiving a 〈PANIC, reqσreq.c〉 message (line 67), if the message contains a valid signature, tries to
commit the request by invoking Steps R1-R4a on behalf of the client. Toward that end, replica ri acts as a client and sends
the 〈OBR, ri, reqσreq.c , snOBR = nil, RASETOBR = ∅,MACSETOBR = ∅〉µri,r0 message to the sequencer (line 74).



Subsequently, the replica starts the timer TOBRreq . If the timer expires before the replica receives a response for the OBR
request, the replica will abort the protocol (lines 121–124 of Algorithm A.2).

The OBR message is similar to the RING (and the ACK) message, albeit some differences:

• the OBR contains an additional field which the replica ri (the originator of the OBR request) populates with its own
ID.

• the RASET field is initially empty, as the client’s signature is included in the message. Note that the replica authenticates
the message with a MAC.

Finally, it is important to note that a correct replica ri sends an OBR request to the sequencer iff the request is not old
(the req.tc field of the PANIC message is greater or equal than lastreqi[req.c].tc, as seen at line 69). Moreover, replica
ri abandons waiting for the RING message from replica r3f (predecessor of the sequencer), and cancel its timer, if tri[c]
becomes greater than req.tc (suggesting there is a new request from client c).

Step R4b.2. A replica receives an OBR message and processes the message in a similar way as both the RING
(Step R2) and ACK message (Step R3.). (Lines 86–107 of Algorithm A.2)

Replica ri first checks whether it can successfully authenticate and accept a message, upon receiving the
〈OBR, rk, req, sn′, SIGSET,MACSET 〉 message from the predecessor (or from replica rk in case ri is the sequencer).
This check consists of several conditions:

1) replica ri checks whether the client’s signature matches the request (line 90);
2) replica ri checks (at line 90) whether the SIGSET contains a RA with a valid MAC for every replica rj in the predecessor

set, ←−rj , authenticating req and sn′. (Note: the predecessor set for the sequencer in this case is empty ←−r0 = ∅);
3) the replica accepts the OBR message only if the client’s timestamp of request req (req.tc) is greater or equal than the

timestamp of the last seen (and executed) request from the client (lastreqi[req.c].tc), as shown at line 91;
4) finally, every replica except the sequencer accepts the OBR message if the sequence number sn′ of the message is

equal to sni + 1.

If these checks succeed, then replica ri proceeds to the execution part of processing (line 99). The replica only executes
the request if the request is new (i.e., req.tc is higher than the last stored request from the client, line 15 of Algorithm A.2).
Otherwise, the replica takes the stored response and the sequence number, and skips the next step (line 96).

Like with the RING and the ACK messages, the sequencer updates the local sequence number sn0, and sets sn′ = sn0

(line 98). Otherwise, the replica stores sn′ into replica’s local variable sni. Moreover, every replica ri: (1) appends req to
its local history LHi (shown at line 100), and (2) updates the data that reflects the last request by the client req.c by storing
req, sni and LHi into lastreqi[req.c], lastsni[req.c], and lasthisti[req.c], respectively . Finally, every replica stores req
in pending[req.c].

Upon executing req, the replica forwards (line 106) the OBR message, unless the replica is the predecessor of the sequencer
(ri 6= r3f ). In that case (line 105), replica ri sends the reply back to replica rk (indicated as one field of the OBR message).
Beforehand, the replica updates the RASET.

Step R4b.3a. The replica commits the request on behalf of the client and forwards the commit history to the client.
(Lines 111–117 of Algorithm A.2)

If ri receives an OBR message from the predecessor of the sequencer (line 111), containing MACs for the pair 〈req,D(h)〉
for the last f + 1 replicas in the MACSET, as well as the full history h (line 114), then replica ri simply sends the
〈GET A GRIP, h, req〉µri,req.c message to client named in req.c (line 116). We say that ri commits the OBR for req with
the history h.

To counter for possible message losses, if a replica receives repeated PANIC messages for req after committing the OBR
for req, the replica replies to these messages by re-sending the GET A GRIP message to the client.

Step R4b.3a.1. The client receives f+1 GET A GRIP messages containing the same history and commits the request.
(Lines 17–18 of Algorithm A.1)

If the client received f + 1 〈GET A GRIP, h, req〉 messages from different replicas, with the same history, the client
commits the request by returning Commit(req, h).



r0

r1

r2

r3

client

1: R4b

2: R4b.3b

3: R4b.3b

3: R4b.3b

3: R4b.3b

r0

r1

r2

r3

client 6: R4b.3b.2

5: R4b.3b.1

5: R4b.3b.1

5: R4b.3b.1

4: R4b.3b.1

Figure 17. Alternative execution to one shown on Figure 16: Replica r2 cannot commit the request. The replica aborts, and stops the protocol.

Step R4b.3b. The replica does not commit the request on behalf of the client, stops processing new request, and
sends a signed history to the client. (Lines 121–124 of Algorithm A.2)

If replica ri does not receive the OBR request before the expiration of the timer, the replica: (a) stops accepting new
RING, ACK, and OBR messages, by setting a global flag which forces Ring to stop accepting requests (line 122); (b) sends
a signed local history to client req.c using an 〈ABORT,LHiσri

, req.tc, ri〉µri,req.c message (line 123); and (c) stops all
OBR timers . In addition, the replica sends 〈STOP, req〉µri,rj to every other replica (line 124). Again, to counter possible
message losses, we assume that ri periodically retransmits the STOP message.

Step R4b.3b.1. The replica receives a STOP message from some other replica, stops processing new requests, and
sends a signed history to the client. (Lines 127–129 of Algorithm A.2)

Replica ri now aborts all clients requests, similarly as in the Step R4b.3b. Replica: (a) stops accepting new RING, ACK,
and OBR messages, by setting a global flag which forces Ring to stop accepting requests; (b) sends a signed local history to
all clients referenced in the active OBR timers8, using an 〈ABORT,LHiσri

, req′.tc, ri〉µri,req′.c message; and (c) stops all
OBR timers . In addition, the replica sends 〈STOP, req〉µri,rj to every other replica. Again, to counter possible message
losses, we assume that ri periodically retransmits the STOP message.

Step R4b.3b.2. A client receives 2f + 1 matching ABORT messages, extracts the abort history, and aborts the
request. (Lines 20–22 of Algorithm A.1)

A matching ABORT message for a 〈PANIC, req〉 message is any ABORT message with a matching request identifier
req.tc. When a client receives a matching ABORT message from 2f + 1 different replicas, the client extracts the abort
history AH in the following way:
• the client generates the history AH1 such that AHj equals the value that appears at position j ≥ 1 of f + 1 different

histories LHi received in the ABORT messages. If such value does not exist for a position k, then AH1 does not
contain a value at position k or higher.

• the longest prefix AH2 of AH1 is selected such that no request appears in AH2 twice.
• if req = 〈o, tc, c〉 does not exist in AH2, the request is appended to AH2. The resulting sequence is an abort history
AH .

Then, client c aborts req by returning Abort(req,AH). To prove validity of the AH , the abort history is accompanied
by the set of 2f + 1 ABORT messages.

F. Ring+ algorithm steps

Ring+ handles the RING, the ACK, and the PANIC messages is the same way as Ring– . For clarity, we present only the
steps related to handling the OBR messages – the main difference between Ring– and Ring+ .

Step R+4b. The client does not receive the RING message from the exit replica, and/or the client can not verify
the message, before the expiration of the timer. (Lines 14–15 of Algorithm A.1)

If the client does not receive the message before timer TRing expires, or the message cannot be verified, the client panics.

8there is a timer for every outstanding OBR request req′



Client c sends a 〈PANIC, reqσc〉 message to all replicas. The PANIC message is digitally signed by the client. Moreover,
the client periodically resends the PANIC message to the replicas, until the client commits or aborts the request.

Step R+4b.1. A replica receives a PANIC message from the client, and the replica retries Ring on behalf of the
client.

Replica ri, on receiving a 〈PANIC, reqσreq.c〉 message, if the message contains a valid signature, tries to commit the
request by invoking Steps R1-R4a on behalf of the client. Toward that end, replica ri acts as a client and sends the
〈OBR, ri, reqσreq.c , snOBR = nil, RASETOBR = ∅,MACSETOBR = ∅〉σri message to the sequencer. Subsequently, the
replica starts the timer TOBRreq . If the timer expires before the replica receives a response for the OBR request, the replica
will abort the protocol.

The OBR message is similar to the RING (and the ACK) message, albeit some differences:
• the OBR contains an additional field which the replica ri (the originator of the OBR request) populates with its own

ID.
• the RASET field is initially empty, as the client’s signature is included in the message. Note that the replica authenticates

the message with the signature.
Finally, it is important to note that a correct replica ri sends an OBR request to the sequencer iff the request is not old

(the req.tc field of the PANIC message is greater or equal than lastreqi[req.c].tc). Moreover, replica ri abandons waiting
for the RING message from replica r3f (predecessor of the sequencer), and cancel its timer, if tri[c] becomes greater than
req.tc (suggesting there is a new request from client c).

Step R+4b.2. A replica receives an OBR message and processes the message, possibly executing the request. The
replica then forwards the message to f + 1 successors. (Lines 9–34 of Algorithm ??)

Replica ri first checks whether it can successfully authenticate and accept a message, upon receiving the
〈OBR, rk, req, sn′, RASET,MACSET 〉 message from one of its predecessors (or from replica rk in case ri is the
sequencer). This check consists of several conditions:

1) replica ri checks whether the client’s signature matches the request (line 12);
2) the replica accepts the OBR message only if the client’s timestamp of request req (req.tc) is greater or equal than the

timestamp of the last seen (and executed) request from the client (lastreqi[req.c].tc, shown at line 10);
3) finally, every replica except the sequencer accepts the OBR message if the sequence number sn′ of the message is

equal to sni + 1 (line 14).
If these checks succeed, then replica ri collects all signatures in the OBR message, and verifies each in turn (line 16). If

at least one of the signatures has not been seen previously, then the replica continues processing the request. Otherwise, the
replica drops the request (line 18).

If there are more than 2f + 1 valid signatures, the replica proceeds to the execution part of processing (line 20). The
replica only executes the request if the request is new (i.e., req.tc is higher than the last stored request from the client). In
this case, the sequencer updates the local sequence number sn0, and sets sn′ = sn0, while other replicas just store sn′ into
replica’s local variable sni (line 25). Otherwise, if the request is old, the replica takes the stored response and the sequence
number, and skips the execution step.

Each replica executes the request, if the request is new. Every replica ri: (1) appends req to its local history LHi, and
(2) updates the data that reflects the last request by the client req.c by storing req, sni and LHi into lastreqi[req.c],
lastsni[req.c], and lasthisti[req.c], respectively . Finally, every replica stores req in pending[req.c].

Upon executing req, replica adds its own signature to the message (line 29). Then, the replica forwards the request to
f + 1 successor (line 31).

If there were less than 2f + 1 valid signatures in the request, the replica adds its own signature, and forwards the updated
request to f + 1 successor (lines 33–34).

Step R+4b.3a. The replica commits the request on behalf of the client and forwards the commit history to the client.
(Lines 29–31)

If ri receives an OBR message with at least 2f + 1 valid signatures from other replicas, then the replica simply sends
the 〈GET A GRIP, h, req〉µri,req.c message to client named in req.c (line 30). We say that ri commits the OBR for req
with the history h.



To counter for possible message losses, if a replica receives repeated PANIC messages for req after committing the OBR
for req, the replica replies to these messages by re-sending the GET A GRIP message to the client.

Step R+4b.3a.1. The client receives f+1 GET A GRIP messages containing the same history and commits the request.
(Lines 17–18 of Algorithm A.1)

If the client received f + 1 〈GET A GRIP, h, req〉 messages from different replicas, with the same history, the client
commits the request by returning Commit(req, h).

Step R+4b.3b. The replica does not commit the request on behalf of the client, stops processing new request, and
sends a signed history to the client. (Lines 121–124 of Algorithm A.2)

If replica ri does not receive the OBR request with at least 2f + 1 valid signatures from other replicas, before the
expiration of the timer, the replica: (a) stops accepting new RING, ACK, and OBR messages, by setting a global flag
which forces Ring+ to stop accepting requests (line 122); (b) sends a signed local history to client req.c using an
〈ABORT,LHiσri

, req.tc, ri〉µri,req.c message (line 123); and (c) stops all OBR timers . In addition, the replica sends
〈STOP, req〉µri,rj to every other replica (line 124). Again, to counter possible message losses, we assume that ri periodically
retransmits the STOP message.

Step R+4b.3b.1. The replica receives a STOP message from some other replica, stops processing new requests, and
sends a signed history to the client. (Lines 127–129 of Algorithm A.2)

Replica ri now aborts all clients requests, similarly as in the Step R+4b.3b. Replica: (a) stops accepting new RING, ACK,
and OBR messages, by setting a global flag which forces Ring to stop accepting requests; (b) sends a signed local history to
all clients referenced in the active OBR timers9, using an 〈ABORT,LHiσri

, req′.tc, ri〉µri,req′.c message; and (c) stops all
OBR timers . In addition, the replica sends 〈STOP, req〉µri,rj to every other replica. Again, to counter possible message
losses, we assume that ri periodically retransmits the STOP message.

Step R+4b.3b.2. A client receives 2f + 1 matching ABORT messages, extracts the abort history, and aborts the
request. (Lines 20–22 of Algorithm A.1)

A matching ABORT message for a 〈PANIC, req〉 message is any ABORT message with a matching request identifier
req.tc. When a client receives a matching ABORT message from 2f + 1 different replicas, the client extracts the abort
history AH in the following way:
• the client generates the history AH1 such that AHj equals the value that appears at position j ≥ 1 of f + 1 different

histories LHi received in the ABORT messages. If such value does not exist for a position k, then AH1 does not
contain a value at position k or higher.

• the longest prefix AH2 of AH1 is selected such that no request appears in AH2 twice.
• if req = 〈o, tc, c〉 does not exist in AH2, the request is appended to AH2. The resulting sequence is an abort history
AH .

Then, client c aborts req by returning Abort(req,AH). To prove validity of the AH , the abort history is accompanied
by the set of 2f + 1 ABORT messages.

Both operational modes of Ring are an implementation of ABSTRACT , each with their own Non-Triviality property.
Non-Triviality property in ABSTRACT model defines the conditions under which a protocol should commit client requests.

For the sake of brevity, we will call the normal mode Ring the Ring– , while the resilient mode will be called Ring+ .
Next, we present the properties every ABSTRACT instance should satisfy, followed with the correctness proofs for Ring– and
Ring+ .

Definition (Ring– Non-Triviality)
If (a) a correct client c invokes a request m, (b) there are no replica failures, and (c) the set of replicas (Σ) is synchronous,

then client c commits m.

Definition (Ring+ Non-Triviality)

9there is a timer for every outstanding OBR request req′



If (a) a correct client c invokes a request m, (b) the sequencer is not faulty, and (c) the set of replicas (Σ) is synchronous,
then client c commits m.

1) (Validity) In every commit/abort history, no request appears twice and every request is a valid request, or an element
of a valid init history.

2) (Termination) If a correct client c invokes a valid request m, then c eventually commits or aborts m.
3) (Non-Triviality) If a correct client c invokes a valid request m and some predicate NT holds, then c commits m.
4) (Init Order) Any common prefix10 of valid init histories is a prefix of any commit or abort history.
5) (Commit Order) Let h and h′ be any two commit histories: either h is a prefix of h′ or vice versa.
6) (Abort Order) Every commit history is a prefix of every abort history.
7) (Switching Monotonicity) For every Abstract instance i, i < next(i).
In addition, we say that correct replica rj executes req at position pos if snj = pos when rj executes req. Before proving

ABSTRACT properties, we first prove a set of auxiliary lemmas.

Definition (Ring order) The ring order defines the total order of replicas on the ring. We say that this ordering starts at a
particular replica rj , and define total order operation such that: j < j + 1 < · · · < j + 3f .

Figure 18 shows Ring’s circular topology. For the ring order which starts at replica r0, we have the following relation:
r0 < r1 < r2 < r3. On the other hand, if the order starts at r2, we would have: r2 < r3 < r0 < r1.

r0

r1

r2

r3

Figure 18. Ring circular topology

G. Ring– correctness proof

In this section, we prove that Ring– implements ABSTRACT with Ring– Non-Triviality. To do so, we need to show that
Ring– satisfies properties listed in Section F. First, we prove some necessary lemmas.

Lemma A.1: Let rj be a correct replica and LHreq
j the state of LHj when rj executes req. Then, LHreq

j remains a
prefix of LHj forever.

Proof: A correct replica rj modifies its local history LHj only in Step R2 or Step R3 or Step R4b.2 by sequentially
appending requests to LHj . Hence, LHreq

j remains a prefix of LHj forever.
Lemma A.2: If a correct replica ri accepts a request req (via the RING message), at time t1, then all correct replicas

rj (req.entry ≤ j < i)11 accepted the request before t1. Note that we do not discuss execution of the request. If replica
accepts a request, it means that the replica verified the request, and stored it in some internal structure.

Proof: By contradiction, assume the lemma does not hold and fix rj to be the first correct replica that accepts req,
such that there is a correct replica rx (x < j) that never accepts req. We say that rj animates req. Since RING messages
are authenticated using RAs, rj accepts req only if rj receives a RING message with MACs authenticating req from all
replicas from ←−rj , i.e., only after all correct replicas from ←−rj have accepted req. If rx ∈ ←−rj , rx must have accepted req —
a contradiction. On the other hand, if rx /∈ ←−rj , then rj is not the first replica which animates req, since any correct replica
(at least one) from ←−rj animates req — a contradiction.

Lemma A.3: If a correct replica ri accepts a request req, then the request was invoked by a client.
Proof: By contradiction, assume that some correct replica accepted a request not invoked by any client and let rj be the

first correct replica to accept such a request req′ in Step R2. In case j ∈ {req′.entry . . . req′.entry ⊕ (f + 1)}, rj accepts
the req′ only if rj receives a RING message with a signature from the client, i.e., only if some client invoked req, or if req
is contained in some valid INIT history. On the other hand, if j is not in that set, Lemma A.2 yields a contradiction with
our assumption that rj is the first correct replica to accept req′.

10In this paper, unless explicitly stated otherwise, “prefix” refers to a non-strict prefix.
11If not stated otherwise, we use the ring order.



Lemma A.4: If a correct replica receives a non-nil sequence number (sn) for a request req, either through a RING, an
ACK, or OBR message, that sn was generated by the sequencer.

Proof: By construction. The guard conditions in Step R2, and R3 prevent such case, along with the check of Ring
Authenticators.

Lemma A.5: If a correct replica ri executes a request req, at position sn, at time t1, then all correct replicas rj (0 ≤ j < i)
executed the request at position sn before t1. Note that we refer to the ring order.

Proof: By contradiction, assume the lemma does not hold and fix rj to be the first correct replica that executes req
(at position sn), such that there is a correct replica rx (x < j) that never executes req. We say that rj is the first replica
for which req skips. Since RING (and ACK) messages are authenticated using RAs, rj executes req at position sn only if
replica rj receives a RING (or an ACK) message with MACs authenticating the pair 〈req, sn〉12 from all replicas from ←−rj ,
i.e., only after all correct replicas from ←−rj have accepted req. If rx ∈ ←−rj , rx must have accepted req — a contradiction.
On the other hand, if rx /∈ ←−rj , then rj is not the first replica at which req skips, since at any correct replica (at least one)
from ←−rj req skips — a contradiction. The similar reasoning applies to handling an OBR request.

Note that the sequence number sn associated by the sequencer is indeed equivalent to the position at which a replica
executes req, since (1) if the replica is the sequencer, sn is incremented by one, and (2) if the replica is not the sequencer,
the replica accepts req with associated sn′, only if sn′ = sn+ 1 (Step R2, R3, and R4a)

Lemma A.6: If a correct replica ri receives an ACK for request req, at position sn and time t1, then all correct replicas
rj (req.entry ≤ j < i) executed request req at position sn, before t1. Note that we use the ring order, which starts at
req.entry.

Proof: If replica ri receives a valid ACK, that means that all correct replicas have received the request (execution
condition in Step R3, and Lemma A.2). From Step R3, and Lemma A.5, we have that all correct replicas rj (0 ≤ j < i)
executed the request. Let fix the ring order, so that the sequence starts from 0, and ends at 3f . We consider two cases:

1) if 0 ≤ req.entry < i, then the claim follows immediately from Lemma A.5;
2) if 0 ≤ i < req.entry, from Step R2, we get that ACK was generated at req.entry	1. It holds that 0 ≤ i ≤ req.entry	1.

From Step R3, by construction, we have that all correct replicas rx (x ∈ req.entry 	 1 . . . i) have received the ACK.
From the previous case, we have that request is executed on all correct replicas rk (req.entry ≤ k < 0), and from
Lemma A.5 we have that request is executed on all correct replicas rj (0 ≤ j < i).

Lemma A.7: If a benign client c commits request req with history h (at time t1), then all correct replicas in Σreqlast execute
req (before t1) and the state of their local history upon executing req is h.

Proof: To prove this lemma, notice that a correct replica rj ∈ Σreqlast generates a MAC for the client authenticating req
and D(h′) for some history h′ (Step R2, or Step R3): (1) only after rj executes req and (2) only if the state of LHj upon
execution of req equals h′. Moreover, by Step R2/R3, no correct replica executes the same request twice. By Step R4a, a
benign client (resp., a replica) cannot commit req with h unless it receives a MAC authenticating req and D(h′) from every
correct replica in Σlast. From Lemma A.5 we get the claim. By Step R4b.3a.1, a benign client (resp., a replica), cannot
commit req with h unless it receives a GET A GRIP message with a MAC authenticating req and D(h′) from every correct
replica in Σlast. Again, from Lemma A.5, we get the claim.

Well-formed commit indications. By Step R4a, in order to commit a request the client needs to receive MACs authenticating
DigestLH = D(h′) for some history h′ and a reply digest from all replicas from Σreqlast, including at least one correct replica.
By Step R3, the digest of the reply sent by a correct replica is D(rep(h′)). Hence, h′ is exactly the commit history h and
is uniquely defined due to our assumption of collision-free digests.

Moreover, since a correct replica executes an invoked request before sending an ACK message in Step R3 (or a
GET A GRIP message in Step R4b.3a), it is straightforward to see that if req is committed with a commit history hreq,
then req is in hreq .

�
Validity. For any request req to appear in an abort (resp., commit) history h, at least f + 1 replicas must have sent h (resp.,
a digest of h) in Step R3 (or in Step R4b.3a.1), such that req ∈ h. Hence, at least one correct replica executed req.

Directly from Lemma A.6 we observe that all correct replicas execute only requests invoked by clients.
Moreover, by Step R2 or Step R3 or Step R4b.1, no replica executes the same request twice (every replica maintains a list

of last seen identifiers — tj [c]). Hence, no request appears twice in any local history of a correct process, and consequently,

12where sn is not nil



no request appears twice in any commit history. In the case of abort histories, no request appears twice by construction.
�

Termination. By assumption of a quorum of 2f +1 correct replicas and fair-loss links: (1) correct replicas eventually receive
a PANIC message sent by a correct client c (in Step R4b) and (2) c eventually receives 2f + 1 abort messages from correct
replicas (sent in Step R4.2b). Hence, if correct client c panics, the client eventually aborts invoked request req, in case c
does not commit req beforehand.

Moreover, to see that a committed request req must be in its commit history hreq, notice that the client needs to receive
a MAC for the same local history digest D(hreq) from all f + 1 replicas from Σreqlast including at least one correct replica
rj . By Step R2/R3, rj executes req and appends the request to the replica’s local history LHj before authenticating the
digest of LHj ; hence, req ∈ hreq. By Step R4b.2, replica rj executes req and appends the request to replica’s local history
LHj . Further, the replica embeds the history in the OBR message. Only after these steps, replica rj authenticates the digest
of LHj , prior to sending the GET A GRIP message to the client. Hence, req ∈ hreq .

�
Commit Order. Assume, by contradiction, that there are two committed requests req (by a benign client c) and req′ 6= req (by
a benign client c′) with different commit histories hreq and hreq′ such that neither is the prefix of the other. By Lemma A.7,
all correct replicas in Σreqlast (resp. Σreq

′

last ) executed request req (resp. req′) with history hreq (resp. hreq′ ). Let rreq be the
first correct replica in Σreqlast, and let rreq

′
be the first correct replica in Σreq

′

last . There are two distinct cases:

• these replicas are the same (rreq = rreq
′
). A contradiction with Lemma A.1.

• one preceeds the other, in ring order which starts from the sequencer. Without loss of generality, we assume rreq < rreq
′
.

By Lemma A.5, rreq executed all requests rreq
′

has had executed, at the same position. A contradiction. �

Abort Order. Assume, by contradiction, that there is a committed request reqC (by some benign client) with commit history
hreqC and an aborted request reqA (by some benign client) with commit history hreqA , such that hreqC is not a prefix of
hreqA . By Lemma A.7 and the assumption of at most f faulty replicas, all correct replicas (at least one) from ΣreqClast execute
reqC and their state upon executing reqC is hreqC . Let rj ∈ ΣreqClast be a correct replica with the highest (w.r.t. the ring order
which starts at reqC .entry) index among all replicas in ΣreqClast . By Lemma A.6, all correct replicas rk (reqC .entry ≤ k < j)
execute all the requests in hreqC at the same positions these requests have in hreqC .

In addition, a correct replica executes all requests in hreqC before sending any ABORT message (Step R4b.3b.1); indeed,
before sending any ABORT message, a correct replica must stop further execution of requests. Therefore, for every local
history LHj that a correct replica sends in an ABORT message, hreqC is a prefix of LHj .

Finally, by Step R4b.3b.2, a client that aborts a request waits for 2f + 1 ABORT messages including at least f + 1
from correct replicas. By construction of the abort history every commit history, including hreqC is a prefix of every abort
history, including hreqA , a contradiction.

�
Init Order. Under the constraint that, if a replica’s local history is empty, the first request to which the sequencer can assign
the sequence number, and the first request a replica may execute, must be an INIT request, then we get that replicas initialize
their local histories before sending any RING, ACK or ABORT request.

Since any common prefix CP of all valid init histories is a prefix of any particular init history IH , CP is a prefix of
every local history sent by a correct replica in an RING or ABORT message. Init Order for commit histories immediately
follows. In the case of abort histories, notice that at least out of 2f + 1 ABORT messages received by a client on aborting
a request in Step R4.2b.2, at least f + 1 are sent by correct processes and contain local histories that have CP as a prefix.
Hence, by Step R4.2b, CP is a prefix of any abort history.

�
Non-Triviality. Non-Triviality relies on the fact that client’s timer triggered in Step R1 is set such that it does not expire in
case when the set of replicas, including the client, is synchronous.

Assume by contradiction that there is a correct client c that panics and denote the first such time by tPANIC . Client c
has invoked request req at t = tPANIC − (2(3f + 1) + 2)∆. Since no client panics by tPANIC all replicas execute all
requests they receive by tPANIC . Then, it is not difficult to see, since there are no link failures, that: (i) by t+ ∆ the entry
replica receives req and takes Step R2, and (ii) by time t+ 3f∆ < tPANIC all replicas take Step R2 for req, and (iii) by
time t + (2(3f + 1) − 1)∆ < tPANIC all replicas take Step R3. Since the sequencer is correct then all replicas execute
all requests received before tPANIC in the same order (established by the sequence numbers assigned by the sequencer).
Hence, by t+ (2(3f + 1) + 2)∆ = tPANIC , c receives f + 1 identical replies (Step R4a), commits request req and never
panics. A contradiction.



In addition, a correct replica ri executes Step R4b.1b and stops appending new requests, only if ri fails to commit an
OBR request for a RING message signed by some client. Since such an OBR request cannot raise a verification failure,
ri can fail to commit such request only in case asynchrony in the set of replicas, or in case some replica fails.

�

H. Ring+ correctness proof

In this section, we prove that Ring+ implements ABSTRACT with Ring+ Non-Triviality. First, we prove a couple of auxilary
lemmas.

Lemma A.8: If a correct replica ri receives a request req (via the OBR message), at time t1, then all correct replicas rj
(0 ≤ j < i) received the request before t1.

Proof: By contradiction, assume the lemma does not hold and fix rj to be the first correct replica that receives req, such
that there is a correct replica rx (x < j) that never receives req. We say that rj is the first replica for which req obr-skips.
Correct replica sends a request to its f + 1 successors. Hence, If rx ∈ ←−rj , rx must have received req — a contradiction. On
the other hand, if rx /∈ ←−rj , then rj is not the first replica for which req obr-skips, since any correct replica (at least one)
from ←−rj obr-skips req — a contradiction.

Lemma A.9: When processing OBR requests, after at most min(f + 1, 4) communication steps from the time the non-
malicious sequencer receives an OBR request, all replicas will receive the message.

Proof: By contradiction, assume that it takes more than four steps for all replicas to receive the request. Let R1 be the
last replica in the ring order, to receive the request in the first step. Similarly, let R2 (resp. R3, R4, R5) be the last replica
to receive the request in the second (resp. third, fourth, fifth) step. Let d0 be the distance between r0 and R1. Likewise, let
d1 be the distance between R1 and R2, d2 be the distance between R2 and R3, etc. . . We have the following equations:

d0 + d1 + d2 + d3 + d4 < 3f + 1 (1)
1 ≤ d0, d1, d2, d3, d4 ≤ f + 1 (2)

f + 1 ≤ d0 + d1 (3)
f + 1 ≤ d1 + d2 (4)
f + 1 ≤ d2 + d3 (5)
f + 1 ≤ d3 + d4 (6)

2f + 1 ≤ d0 + d1 + d2 (7)
2f + 1 ≤ d1 + d2 + d3 (8)
2f + 1 ≤ d2 + d3 + d4 (9)

Equation 1 states that after five communication steps we reach all correct nodes on the ring (at most 3f+1). Equations 3-6
state that a replica reached in two steps, could not have been reached in a single step. Similarly, Equations 7-9 state that
a replica reached in three steps could not have been reached in less steps. From Equations 7 and 6 we get a contradiction
with Equation 1:

(d0 + d1 + d2) + (d3 + d4) ≥ 3f + 2 (10)

When f = 1 or f = 2, we take less equations into consideration. In case f = 1, only d0, d1, and d2 exist. Similarly,
when f = 2, only d0–d3 exist.

Lemma A.10: When processing OBR requests, after at most min(2f + 2, 8) communication steps from the time the
non-malicious sequencer receives an OBR request, all replicas will receive the message with 2f + 1 correct signatures.

Proof: When processing OBR requests, a replica memorizes the set of previously seen signatures for the request (Line 19,
for Algorithm A.3). If we treat all replicas which receive an OBR request in the last round as sources (i.e. the sequencer),
then directly from Lemma A.8 and Lemma A.9, we get the claim.

Well-formed commit indications. The proof is the same as for the Ring– case.

Validity. The proof is similar as the proof for the Ring– case.

Init Order. The proof is the same as for the Ring– case.



Termination. The proof is the same as for the Ring– case.

Commit Order. Assume, by contradiction, that there are two committed requests req (by a benign client c) and req′ 6= req
(by a benign client c′) with different commit histories hreq and hreq′ such that neither is the prefix of the other. Clients
commit requests either as a response to an RING, or a PANIC message. There are three possible cases:

• Both committed requests are a direct response to RING messages. By Lemma A.7, all correct replicas in Σreqlast (resp.
Σreq

′

last ) executed request req (resp. req′) with history hreq (resp. hreq′ ). Let rreq be the first correct replica in Σreqlast,
and let rreq

′
be the first correct replica in Σreq

′

last . There are two distinct cases:
– these replicas are the same (rreq = rreq

′
). A contradiction with Lemma A.1.

– one preceeds the other, in ring order which starts from the sequencer. Without loss of generality, we assume rreq <
rreq

′
. By Lemma A.5, rreq executed all requests rreq

′
has had executed, at the same position. A contradiction.

• Both committed requests are a direct response to OBR messages. From Step R+4b.3a.1, a client commits a request, if there
are f + 1 matching GET A GRIP messages. By Step R+4b.3a, a replica executes a request and sends a GET A GRIP
message if there are at least 2f + 1 correct signatures. Thus, each client commits a request, after receiving a message
executed by at least f+1 correct replica. These two sets (carried in GET A GRIP messages) of correct replicas intersect
on one correct replica, which executed both requests. A contradiction by Lemma A.1.

• One committed request is a direct response to a RING message, while the other is a direct response to an OBR message.
Without loss of generality, let assume client c committed req as a direct response to the RING message, while client
c′ committed req′ as a direct response to the OBR message. By Lemma A.7, all correct replicas in Σreqlast executed
req. Let rreq be the first correct replica in Σreqlast. By Lemma A.5, all correct replicas in the range {rreq.entry . . . rreq}
executed request, and there are at least f + 1 correct replicas in that range (as rreq belongs to the last f + 1 replica in
the ring orders starting from req.entry). Similarly to the previous case, client c′ commits the request after receiving
f + 1 matching GET A GRIP messages. Every replica which sent the GET A GRIP message executed the request,
after receiving an OBR message with at least 2f + 1 signature. Thus, the set of correct replicas which executed req,
and set of replicas which executed req′ intersect on at least one correct replica. A contradiction by Lemma A.1.

Abort Order. Assume, by contradiction, that there is a committed request reqC (by some benign client) with a commit
history hreqC and an aborted request reqA (by some benign client) with commit history hreqA , such that hreqC is not a
prefix of hreqA . There are two different cases:

• reqC was committed without client sending a PANIC message. By Lemma A.7 and the assumption of at most f faulty
replicas, all correct replicas (at least one) from ΣreqClast execute reqC and their state upon executing reqC is hreqC . Let
rj ∈ ΣreqClast be a correct replica with the highest (w.r.t. the ring order which starts at reqC .entry) index ind among
all replicas in ΣreqClast . By Lemma A.6, all correct (at least f + 1) replicas rk (reqC .entry ≤ k < j) execute all the
requests in hreqC at the same positions these requests have in hreqC .

• reqC was committed during handling of the PANIC message sent by the client. By Lemma A.10, and Step R+4b.3a,
all correct replicas (at least 2f + 1 replicas) execute reqC .

In addition, a correct replica executes all the requests in hreqC before sending any ABORT message (Step R+4b.3b.1);
indeed, before sending any ABORT message, a correct replica must stop further execution of requests. Therefore, for every
local history LHj that a correct replica sends in an ABORT message, hreqC is a prefix of LHj .

Finally, by Step R+4b.3b.2, a client that aborts a request waits for 2f + 1 ABORT messages including at least f + 1
from correct replicas. By construction of the abort history every commit history, including hreqC is a prefix of every abort
history, including hreqA , a contradiction.

�
Non-Triviality. Non-Triviality relies on the fact that replica’s timer triggered in Step R+4b.1 is set such that it does not expire
in case when the set of replicas, including the client, is synchronous.

Assume by contradiction that there is a correct replica r that stops and denote the first such time by tSTOP . Replica r
has sent the OBR message m at t = tSTOP − ((2f + 1) + 1)∆. Since no client panics by tPANIC all replicas execute
all requests they receive by tPANIC . Then, it is not difficult to see, since there are no link failures, that: (i) by t + ∆ the
sequencer receives m and takes Step R+4b.2, and (ii) by time t + (f + 1 + 1)∆ < tSTOP all correct replicas take Step
R+4b.2 for m, and (iii) by time t+ ((2f + 1) + 1)∆ < tSTOP all correct replicas take Step R+4b.3a. Since the sequencer is
correct then all correct replicas execute all requests received before tSTOP in the same order (established by the sequence
numbers assigned by the sequencer). Hence, by t+ ((2f + 1) + 1)∆ = tSTOP , r receives a message with at least 2f + 1
signatures (Step R+4b.3a), commits request req (associated with m) and does not abort. A contradiction.



In addition, a correct replica ri executes Step R+4b.3b and stops appending new requests, only if ri fails to commit an
OBR request for a RING message signed by some client. Since such an OBR request cannot raise a verification failure,
ri can fail to commit such request only in case asynchrony in the set of replicas, as per Lemma A.10 if the sequencer is
correct, a malicious replica cannot prevent correct replicas from receiving the OBR message.

�


