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Abstract—Revocation of public-key certificates is an important
security primitive. In this paper, we design a fully distributed
local certificate revocation scheme for ephemeral networks - a
class of extremely volatile wireless networks with short-duration
and short-range communications - based on a game-theoretic
approach. First, by providing incentives, we can guarantee the
successful revocation of the malicious nodes even if they collude.
Second, thanks to the records of past behavior, we dynamically
adapt the parameters to nodes’ reputations and establish the
optimal Nash equilibrium (NE) on-the-fly, minimizing the social
cost of the revocation. Third, based on the analytical results, we
define a unique optimal NE selection protocol and evaluate its
performance through simulations. We show that our scheme is
effective in quickly and efficiently removing malicious devices
from the network.

Index Terms—Game Theory, Wireless Security, Ephemeral
Networks, Social Optimum

I. INTRODUCTION

The emerging availability of wireless devices able to com-
municate directly with other peers is opening new ways for
people to interact and exchange information ([1], [2], [3]).
The absence of a centrally-managed infrastructure, however,
makes it harder to cope with misbehavior. In the literature,
a considerable effort is being devoted to the analysis of
security mechanisms performed by self-interested agents [4].
In particular, the revocation of compromised public-key cer-
tificates is a very important primitive for environments where
authentication is required.

In ephemeral networks, the short-lived and heterogeneous
contacts among nodes (potentially unbeknownst to each other)
make it imperative to address the revocation issue in a
distributed and efficient way. One step in this direction has
been taken by Raya et al. [5] through their game-theoretic
local certificate revocation protocol RevoGame. Their model,
however, has some limitations. First, it is often difficult to
obtain correct estimates of crucial parameters very frequently
and thus the outcome of the revocation could be unpredictable.
Second, the dynamic kind of games used by their model
assumes that each node can observe the actions of the others
before taking its own decision, which is not always be feasible
in ephemeral environments. For example, the duration of the
related public-key operations, such as signature verification
and generation, might take an excessive amount of time.

In this paper, we design a substantially improved and
extended local certificate revocation framework for ephemeral
networks. With respect to [5], our contribution is fourfold. First

of all, we consider revocations in which nodes take actions
simultaneously, i.e. they do not know others’ decisions before
taking their own, as it might take too much time in practice
and the nodes might have already lost contact. Second, we
provide incentives that stimulate participation and guarantee
a successful revocation of malicious nodes even when they
collude or when the parameter estimations are difficult. Third,
by considering the past behavior of devices as their reputation,
we are able to allow for personalized and dynamic costs that
depend on the behavior of each node in past games. Fourth,
as each device could potentially have a different reputation,
we design a fully distributed on-the-fly NE selection protocol
that establishes, if more than one NE exist, the best course of
action for each player with the least social cost. Simulation
results finally show that our analytical framework is effective
in removing the misbehaving nodes’ certificates through the
socially optimal NE of the revocation game.

The paper is organized as follows. After discussing the
related work in Section II, we present our system model in
Section III. We describe the revocation process in Section IV
and we perform the game theoretic analysis in Section V.
We devote Section VI to the design of the socially optimal
Nash equilibrium selection protocols and we evaluate their
performance through simulations in Section VII. We conclude
the paper in Section VIII.

II. RELATED WORK

Li et al. [6] propose a key management model based on
a web of trust, where nodes sign each other’s certificates
without any trusted third party. Revocation is performed by a
single node that broadcasts the revocation request to all two-
hop neighbors, who then add the accused node’s certificate
to their blacklists. However, the communication overhead
related to blacklist exchange and the trust assumptions derived
from indirect chains of certificates could lead to security
compromises when dealing with nodes without previous first-
hand knowledge. A “virtual” CA is envisaged by Luo et al.
[7], where no single node is trusted to issue certificates on its
own, but any k trusted nodes together are allowed to issue and
revoke certificates. Assuming a system-wide fixed value for k,
new nodes wishing to enter the network are forced to migrate
in places where at least k already trusted devices are willing
to sign the public/private key pair of the newcomer.

Chinni et al. [8] propose a hierarchical trust model where
a trusted third party (CA) is responsible for the generation of
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public-key certificates but revocation is delegated to nodes.
The authors suggest a method to deal with misbehaving
devices by minimizing their trust level among the neighbors
based on the quality of service they provide but, at the
same time, they allow the trust to be regained and therefore
the certificate renewal interval can be extended. Similarly,
Arboit et al. [9] perform a game-theoretic security analysis
and compute a trust threshold value by taking into account
the reputations of both the accused and accusing nodes. An
accusation made by a node with a low reputation, i.e. a node
that has many pending accusations on itself, has a lower weight
than the accusation by a node with a higher reputation (with
fewer pending accusations). A revocation is successful if the
sum of weighted accusations is greater than a threshold value,
and the revoked certificate is completely useless for further
interactions.

Reputation mechanisms and their applications in mobile
ad hoc networks have also been studied by Michiardi et al.
[10]. Their CORE reputation scheme naturally excludes nodes
from the network, if they do not contribute to its functioning,
by lowering their reputations, whereas cooperating nodes can
operate and request more services, as their reputation is
increased for every service their provide to the community.

In [5], Raya et al. take a game-theoretic approach for
certificate revocations in ephemeral networks by extending
the possibility of revocation just by a single node’s decision,
in addition to the aggregate voting scheme. The interactions
among the well-behaving nodes are visible to all of them as
the game model is a dynamic complete information game. As
stated in Section I, the estimation of several game parameters,
such as the number of detectors and the number of required
voters, coupled with the sequential strategic behavior, are some
of the limiting factors addressed in this work.

III. SYSTEM MODEL

A. Network

We consider an ephemeral network with short-duration (1-
10 sec), short-range (10-100 m) contacts that can take place
both in licensed and unlicensed frequency bands. We only
require the wireless devices to be able to establish direct
communication among themselves.

Furthermore, we assume that all devices are powerful
enough to run public-key cryptographic algorithms. This as-
sumption is based on the evidence that most of today’s
smartphones (and future cell phones [11]) have integrated
public-key certificates for connecting to secure HTTPS servers
on the Internet or for authenticating themselves on protected
enterprise IEEE 802.11 WLAN networks.

We consider that a trusted third party (or parties) exists
in such networks and that each mobile node is pre-loaded
with public-key certificates issued by a CA, that are used both
for periodically advertising their presence (by broadcasting a
signed beacon message) and for signing all sent messages.
In order to allow for integrity and authenticity checks, we
assume that only signed messages will be considered. The
unique certificate serial number [12] serves as a unique ID

that distinguishes each device in a given revocation process.
We also assume that each node has more than one certificate
in the initial deployment phase, in order to allow for location
privacy protection and to avoid the possibility of being tracked
and identified over time ([13], [14]).

We assume that each node has a reserve containing all valid
certificates, a counter which measures the quantity of valid
certificates that can be used for revocations, and a tamper-
resistant device, such as a smart-card, where the revocation
protocols are executed. The counter and reserve can be updated
and signed either by a CA or by the protocols but not by the
device itself.

After the initial deployment, we do not assume an always-on
connection with the central authority, but we do assume that
nodes will reconnect with the CA sporadically (from every
few hours to every few days) through a direct connection or
a pre-deployed infrastructure managed by the CA. During the
successive connections, the CA will renew their credentials by
updating the counter and/or reserve, after having verified their
past behavior in an appropriate way. Nodes can thus obtain
valid certificates by either (a) buying them from the CA or (b)
by revoking malicious nodes, as a reward for the useful service
provided to the community. Note that when buying certificates,
only the reserve is updated by the CA whereas by revoking
malicious devices, both reserve and counter are updated by the
same amount. By definition, the level of the reserve cannot
be lower than the counter and when the former reaches the
latter (due to frequent pseudonym changes for instance), a
node would have to renew its certificates in order to continue
ensuring its location privacy.

It is clear that the logistic costs associated with the cer-
tificate management (by the CA) and frequent pseudonym
changes (by the nodes) could make the limited reserve of valid
certificates a critical resource.

B. Threat Model

The attacker could potentially be any wireless device with
exactly the same characteristics as the other benign nodes.
Examples of misbehavior include, for instance, disseminating
false information in the network, sending undesired advertise-
ments or hijacking other nodes with the intent to subvert them
to the attacker’s advantage. We assume that multiple attackers
can also collude in order to revoke benign nodes.

IV. REVOCATION PROCESS

The revocation procedure begins when a node detects the
presence of a misbehaving peer (node m) and decides to
accuse it. Note that for each accused node m, there is one
revocation process and each node can participate in at most
one at any given time, even though there could be many
processes running in parallel. For simplicity and without loss
of generality, in this paper we consider one revocation only.
Moreover, we focus on the reaction [15] of a set of nodes once
a malicious node has already been detected, rather than on the
detection mechanism itself. References on the latter aspect can
be found in [16], [17].
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Figure 1. Revocation process sequence of events: first, the initiator broadcasts
the accusation and his signed counter and then participants and accused node
broadcast their own counters.

The action that each device can take in a revocation process
is either abstain, vote or commit self-sacrifice. By abstaining,
the node does not take any active1 role but expects the other
peers to eventually remove the accused node from the network.
Voting against the incriminated node is decisive but a single
vote is usually not sufficient for a successful revocation.
There should be at least nv votes in order to perform the
revocation. The determination of this important parameter is
performed in Section V-B. Yet another possibility is obtained
by allowing a single node to entirely revoke the certificate of
the misbehaving node [18]. At the same time, however, the
node performing the revocation has to sacrifice a considerable
amount of its own certificates as well, in order to limit abuses.
We call this powerful but expensive strategy the self-sacrifice.
We devote Section V-D to the fine tuning of the self-sacrifice
cost function.

The sequence of events encountered in each revocation pro-
cess is shown in Figure 1 and described hereafter. We assume
that there is a set of N = n +M nodes in communication
range, where n is the number of benign nodes and M is the
number of estimated malicious ones. M could also represent
the estimated power of the colluding attackers, and in this
case M/N could be set by the CA to a high value in case
of a conservative attitude and repeated collusion attacks by
malicious nodes. For instance, statistics on nodes’ behavior
can be used by the CA to set the M/N value according to the
expected power of colluding attackers. In the set n of benign
nodes there is one device, called initiator, that broadcasts 1)
the revocation request against an accused node m, 2) its signed
counter, 3) the attack-induced cost parameter c and 4) the
number M of malicious nodes to all peers, called participants,
that are in communication range with both the initiator and
the accused node. The participants respond to the request by
broadcasting their own signed counters, such that all parties
are aware of the respective amounts of valid certificates. When
the accused node receives the revocation request against it, a
signed message containing its own counter is generated by
its tamper-resistant module and broadcast as well. Once all

1By active we mean nodes that have either voted or committed self-sacrifice
in the revocation process.

Table I
LIST OF SYMBOLS.

SYMBOL DEFINITION 
N Total number of nodes in comm. range (benign + malicious) 
M Number of malicious nodes in comm. range 
b Benefit for voting 
B Benefit for self-sacrificing 
c Cost of non revocation of malicious node 

cs,i Cost of self-sacrificing for player i 
f(M/N) Risk of attack by colluding malicious nodes for self-sacrificing 
e(M/N) Risk of attack by colluding malicious nodes for voting 

k If successful revocation k = 1, otherwise k = 0 
m Subscript used for the malicious node 
nv Number of votes required for the revocation 
ui

- Counter of player i’s valid certificates for revocations 
v Cost of voting 

γ(s-i) Sum of counters of players (other than i) that vote 
 

the n benign nodes have complete knowledge of each others’
counters and M , they do not need to communicate anymore
and the off-line distributed revocation process (described in
Section VI) begins. Our protocols then define the unique
outcome and the individual actions for all devices.

In order to prevent any abuse of benign nodes and encourage
participation in revocations against malicious devices, we
need to assign costs and benefits for every action performed
by a participant in any revocation procedure (Table I). We
express these in number of certificates because they are a
vital (required to sign messages) and limited resource in our
network. For instance, we assume that for any participant i,
casting a vote has a cost of v + e(M/N), where v ≥ 0 is
a fraction of the counter set by the CA and e(M/N) ≥ 0
is a function that represents the risk of a retaliation attack
by colluding malicious peers against a node that chooses to
cast a vote. Similarly, a self-sacrifice costs cs,i + f(M/N),
where cs,i ≥ 0 is the individual cost for the self-sacrifice
action and f(M/N) ≥ 0 is a function that models the risk a
retaliation attack by colluding malicious peers against a node
that performs a self-sacrifice. The two collusion risk functions
are characterized in Section V-C.

If the revocation is successful, the CA provides rewards
for voting and committing self-sacrifice, which are b and B
respectively. The abstain strategy, on the contrary, does not
have a cost or benefit because it does not contribute the
revocation. If the revocation is not successful, the benefits
are not distributed. Moreover, a failed attempt and the wasted
effort of the community is computed by adding the attack-
induced cost value c for all participants, which is estimated
by the initiator and broadcast together with the revocation
request at the beginning of the process.

After each revocation procedure, a report - containing all
the unique IDs of nodes involved in the process together with
the associated action - is compiled by all nodes and stored.
At the next possible occasion, each participating node sends
the report to the CA who then verifies, in a suitable way,
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the past behavior of the accused node and decides whether
to permanently revoke the certificate or not. In case the
accusation was unfunded, the CA can also punish nodes that
have disseminated false accusations. Finally, depending on the
action taken by each device, the CA rewards the participants
with fresh certificates and updates the reserves and counters,
which then enable the participants to continue operating in the
network.

Clearly, if a device is seldom required to participate in
revocation procedures, its counter does not evolve as quickly
as that of the frequent participants and thus the CA does not
need to renew its credentials due to revocations. However, all
nodes will have to periodically renew their certificates when
the level of the reserve reaches the value of the counter, in
order to prevent eavesdroppers from tracking their location.

Although the revocation protocols are run in a tamper-
resistant device and certificates are updated by a CA, there
could still be several possible combinations of actions by
which each revocation procedure might end. Moreover, as
the costs for each node depend both on the individual action
(performed by that node) and on the outcome of the revocation
itself (whether the accused node is revoked or not), a game-
theoretic framework is well adapted to model and analyze such
strategic situations. Furthermore, if more than one solution
exist, game theory provides means for all parties to converge
to the socially optimal one, which maximizes the aggregated
benefits of the community of nodes. Sections V and VI are
devoted to the application of game theory to local revocations.

V. GAME-THEORETIC ANALYSIS

In this section, we present our game-theoretic framework
and the analytical results. First, we consider revocation games
where payoffs depend on the current strategies and game
outcome only. Afterwards, we extend the framework to include
nodes’ past behavior in the computations of payoffs, strategies
and outcomes by considering the counter as the indicator of a
node’s reputation.

We define a non-cooperative static revocation game as
Gn = {P,S,U}, where P = {Pi}ni=1 is the set of the n
wireless players as described in Section III, S = {Si}ni=1 is
the strategy set and U = {ui}ni=1 the payoff set. Moreover,
we assume the game to be of complete information, i.e. every
node has complete knowledge about the payoff functions and
the counters of all participants. This assumption is based
on the fact that the game parameters are either defined in
advance on a system-level scale or they are completely defined
by the information exchanged during the revocation process
itself. More often than not, security decisions are made on
implicit assumptions about the strength of the attacker, but
here we need to commensurate the response of benign players
to quantitative values of the current costs and benefits of the
game. Therefore, we assume such values to be known to all
participants before the actual game takes place.

a) Strategies: The strategies available for each player i
are either abstain (A), vote (V), or commit self-sacrifice (S).
Each strategy has an associated benefit and cost that depends

Table II
PAYOFF ui OF PLAYER i AFTER THE END OF A REVOCATION GAME, GIVEN

THE STRATEGY si . IF THE REVOCATION WAS SUCCESSFUL, WE HAVE
k = 1 AND OTHERWISE k = 0.

 Abstain Self-sacrifice Vote 
Cost (1-k) ∙ c cs,i + f(M/N) v + e(M/N) + (1-k) ∙ c 

Benefit  0 B k ∙ b 
Payoff ui - (1-k) ∙ c B - cs,i – f(M/N) k ∙ b – v – e(M/N) - (1-k) ∙ c 
 

on the successful or unsuccessful revocation of the certificate
as well.

b) Payoffs: The payoff function ui of player i is defined
as the difference between benefits and costs, expressed in
public-key certificates and is shown in Table II.

The quantity of valid certificates, available for revocation
purposes, is defined as u−i for each player i, whereas the
accused node m has u−m. According to Section III, we refer
to it as the counter, which is updated after each game as
the sum of the previous value of the counter and the current
payoff, i.e. u−i ← u−i + ui, such that it is accumulated over
time. The evolution of u−i depends therefore on the way nodes
participate in revocation games and on their past behavior.

c) Game Solutions: A widely adopted solution concept
in game theory is the Nash equilibrium (NE), a strategy set
s∗ = {s∗i }ni=1 from which no node has incentive to unilaterally
deviate, given that all other players conform to it. In this paper,
we focus on Nash equilibria as the rational outcome for any
revocation game Gn. Although computing any NE is PPAD
hard [19], the fine tuning performed in Section V-D allows
nodes to substantially reduce the number of such computations
by considering only efficient strategy profiles that result in a
successful revocation.

A. Revocations with Payoffs

Let Gf
n be an n-player revocation game, where benefit and

cost values of Table II are fixed for all players (cs,i = cs).
Initially, we assume that the number of votes required to
revoke a certificate is a fixed value nv . We now establish the
solutions of Gf

n by means of the NE strategies which define,
for each player, the strategy to adopt in order to achieve the
desired outcome. The proofs of the lemmas can be found in
Appendix.

Lemma 1: In Gf
n, for (B = cs) ∧ (b > v), the n-

player static game Gn has a unique pure strategy NE profile
s∗ = (V, . . . , V ), i.e. all players vote and the accused node is
revoked.

As the payoff for voting is strictly greater than for self-
sacrificing, all players are better off voting and revoking the
certificate.

Lemma 2: In Gf
n, for (B = cs)∧ (b < v), if f(M/N) < c

then the NE are all strategy profiles s∗ that have exactly one
self-sacrifice and n-1 abstentions. If f(M/N) ≥ c, then the
strategy profile all-abstain is a NE.

In other words, if the risk of retaliation by colluding
malicious nodes is higher than the attack induced cost, then
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the benign nodes would prefer not to revoke the misbehaving
device.

Lemma 3: In Gf
n, for [(B < cs) ∧ (b < v)] ∧ [B − cs −

f(M/N) > b−v−e(M/N)], if f(M/N) < B−cs+c then the
NE are all strategy profiles that have exactly one self-sacrifice
and n − 1 abstentions. If f(M/N) > B − cs + c then the
strategy profile all-abstain is a NE.

Even though both payoffs are negative, if self-sacrificing is
still better than voting and the retaliation risk is contained,
then the revocation is performed by only one player, because
it is in the best interest of all other players to avoid wasting
certificates and thus to abstain.

Lemma 4: In Gf
n, for [(B < cs) ∧ (b < v)] ∧ [b − v −

e(M/N) > B − cs − f(M/N)], if e(M/N) < b − v + c
then the NE are all strategy profiles that have (a) one self-
sacrifice with n− 1 abstentions and (b) nv votes with n− nv
abstentions. If e(M/N) ≥ b − v + c then (b) is not anymore
a NE. The accused node is revoked by any NE.

If the risk of retaliation for a voting node is contained, the
revocation could also be performed by the strict minimum
number of voters nv , without any self-sacrifice. If the risk is
higher, then no voting strategy profile is a NE.

Most of the NE defined by the precedent lemmas guarantee
the revocation of the accused node’s certificate. However,
when costs are greater than benefits, the rational strategies
do not predict any unnecessary waste of valid certificates by
the players. Only the strict minimal number of voters nv or
exactly one self-sacrifice is selected as NE of the game. The
main drawback is, however, that in all cases we have more
than one possible NE by which the game could end. If active
players bear a positive cost, those who abstain benefit from the
effort of the others without having to pay for it. Thus, every
node would prefer to be one of the abstaining players and
enjoy the benefits without contributing to the well-being of the
community. The decision about which player should choose
which strategy is addressed in the following subsections, by
taking into account the past behavior of each node when
computing individual payoffs. We first discuss the number of
votes nv and then we focus on self-sacrifice costs cs,i.

B. Dynamic Vote

Previously, we assumed that nv was a fixed value, e.g.
the majority of players, as we did not consider reputations.
By accounting for past behavior, however, we can determine
the number of necessary votes for a successful revocation
depending on the device that actually uses the vote strategy
and the reputation of the accused node. For instance, one vote
by a node with a higher reputation than the accused might be
enough to successfully revoke the certificate (thus nv = 1),
whereas several nodes might need to vote if their counter is
not greater than the one of the accused device (nv > 1).

We now assume that a revocation is successful when (a)∑
i:si=V u

−
i ≥ u−m, i.e. if the sum of counters of the players

that vote is greater than the accused node’s counter, or when
(b) there is at least one self-sacrificing player. We see that, for
any given strategy profile s = {si}ni=1, the actual reputation

of the nodes performing the vote strategy determines nv . For
simplicity of future notation, for each strategy profile s−i =
(s1, . . . , si−1, si+1, . . . , sn), we define the sum of counters of
all players k (other than i) that choose to vote as

γ(s−i) =
∑

k 6=i:sk=V

u−k

C. Retaliation Attack Cost Functions

For each revocation game against a malicious node, there
is a risk that the accused nodes might collude and/or respond
to the revocation by accusing the benign nodes. The more
malicious nodes are present in a given area, the more costly
(or risky) it becomes for benign nodes to revoke them. Each
participant in the revocation game has two decisive actions
(vote or commit self-sacrifice) that have different strengths:
one vote is usually not sufficient for a revocation, as opposed
to one self-sacrifice which is entirely sufficient. Thus, the self-
sacrifice strategy is more risky to adopt because it is very
easy for the malicious nodes to identify the unique player that
committed self-sacrifice and retaliate against it. Therefore, we
assume that 0 < e(M/N) < f(M/N).

We choose f(M/N) = M/N and e(M/N) = z ·M/N ,
0 < z � 1, to model the retaliation attack cost functions in
our games. They assure that in each revocation game, if M/N
is high, the nodes will carefully consider their actions before
committing to them.

D. Self-Sacrifice Cost Function

If we consider the self-sacrifice strategy, we know that only
one such strategy is sufficient to revoke the accused node.
Thus, the extreme power associated with its use should depend
on the past behavior of each node. We make the plausible
assumption that a node with a high counter has most likely
behaved correctly in the past and did not abuse the revocations,
whereas a node with a low counter has probably misbehaved.
The well-behaving node has a better reputation and should
be given a greater incentive to perform the self-sacrifice.
The misbehaving node should have to pay an extremely high
price for self-sacrificing, which would ultimately deplete its
counter and remove it automatically from the network. This
would limit the abuse and ensure that misbehavior is quickly
extinguished.

We model the self-sacrifice cost cs,i by a linear function
of the counter u−i , i.e. cs,i = h − g · u−i . We tested several
concave and convex functions for which the cost decreases
monotonically with the counter. We chose the linear model
because it provides a good balance between the higher costs
determined by a concave function and the lower costs dictated
by a convex one. The two parameters of cs,i to fine tune are
h > 0 and g > 0. We begin by delineating the best response
functions for a player i, assuming that b − v − e(M/N) >
−c, i.e. the payoff for a successful vote is greater than the
cost of abstaining in case the accused node is not revoked.
The NE profiles are then obtained by the set of mutual best
responses. The following lemmas define the scenarios where
1) the revocation does not succeed even if i votes, 2) the
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revocation succeeds if i votes and 3) the revocation succeeds
even if i abstains.

Lemma 5: If s−i is such that u−i + γ(s−i) < u−m and in
absence of a self-sacrifice, the best response function for any
player i is defined as

bri(s−i) = arg max
si∈{A,V,S}

ui(si, s−i) =

{
A if u−i < τ1

S otherwise

where τ1 = h−B−c+f(M/N)
g .

Lemma 6: If s−i is such that u−i + γ(s−i) ≥ u−m and in
absence of a self-sacrifice, the best response function for any
player i is defined as

bri(s−i) =

{
V if u−i < τ2

S otherwise

where τ2 = h−B−v+b−e(M/N)+f(M/N)
g .

Lemma 7: If s−i is such that γ(s−i) ≥ u−m or it has
at least one self-sacrifice, the best response function for any
player i is defined as

bri(s−i) =


A if b− v < e(M/N) ∧ u−i < τ3

V if b− v > e(M/N) ∧ u−i < τ2

S if (b− v < e(M/N) ∧ u−i ≥ τ3)
∪ (b− v > e(M/N) ∧ u−i ≥ τ2)

where τ3 = h−B+f(M/N)
g . Thanks to the best response func-

tions, we can already fine tune h such that min (τ1, τ2) > 0
as u−i ≥ 0, which yields h > B + c− f(M/N). In addition,
we are now able to impose the following three conditions on
the game parameters:

1) Positive cost. We want that cs,i + f(M/N) > 0 for all
players Pi, otherwise it would encourage the abuse of
self-sacrifice by malicious against benign nodes.

cs,i = h− g · u−i + f(M/N) > 0, ∀i = 1 . . . , n

which is equivalent to

cs,i = h− g ·max
i
u−i + f(M/N) > 0

h+ f(M/N)

maxi u
−
i

> g (1)

2) Guaranteed revocation. Considering s−i of Lemma 5, we
do not want abstain to be a best response for at least one
player, otherwise the accused node would not be revoked.
In other terms, we need that

max
i
u−i >

h−B − c+ f(M/N)

g

g >
h−B − c+ f(M/N)

maxi u
−
i

(2)

This requirement is essential if we want to protect
ourselves in case the estimation of the cost parameters
associated with the attack of the accused node is difficult
or prone to errors.

3) System-wide efficiency. Considering s−i of Lemma 7,
we do not want self-sacrifice to be a best response.
The malicious node would be revoked anyway, even if
i abstains (and thus does not incur in any costs). We can
guarantee this by setting the largest threshold of the game
lower than the maximum counter.
(a) If b− v < e(M/N):

max
i
u−i < τ3

g <
h−B + f(M/N)

maxi u
−
i

= τ4 (3)

(b) If b− v ≥ e(M/N):

max
i
u−i < τ2

g <
h−B − v + b− e(M/N) + f(M/N)

maxi u
−
i

= τ5 (4)

By merging the upper bounds (1), (3), (4) and the lower
bound (2) we have
• if b− v < e(M/N):

h−B − c+ f(M/N)

maxi u
−
i

< g < τ4

• if b− v ≥ e(M/N):

h−B − c+ f(M/N)

maxi u
−
i

< g < τ5

In addition to the conditions 1) - 3) expressed previously,
in our NE selection protocol defined in Section VI we require
the existence of at least one NE strategy profile. Thanks to
bounds on the cost parameters h and g, we state the following
Theorem for b − v < e(M/N) (when b − v > e(M/N),
the solution is trivial because there is always a unique NE,
according to Lemma 1):

Theorem 1: In Gn, for b − v < e(M/N), there is always
a pure strategy NE profile s∗ with exactly one self-sacrifice
and n−1 abstentions. Moreover, the player that commits self-
sacrifice is the one with the largest u−i .
The proof is provided in Appendix.

VI. SOCIAL WELFARE AND PROTOCOLS

In this section, we describe the method that we use to
select a single NE, in case more are present, with the related
protocols. The underlying principle is that of the price of
anarchy [20], which takes into account the utility of all players
or, in other words, the social welfare function ω. There are
different kinds of these functions and two among them are the
utilitarian and egalitarian functions:

Utilitarian: ω(s) =
n∑

i=0

ui(s)

Egalitarian: ω(s) = min
i
ui(s)
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By maximizing ω(s) over all possible strategy profiles s =
(s1, . . . , sn) ∈ S, we achieve the social optimum welfare

Social Optimum = max
s∈S

ω(s)

The price of anarchy (PoA) is then defined as the ratio of the
social optimum welfare to the welfare of the worst NE strategy
profile s∗

PoA =
Social Optimum
mins∗∈NE ω(s∗)

The idea is that it gives a measure of how well selfish players
(NE) perform compared to the social optimum. To solve the
issue and help players make consistent decisions, i.e. to select
the same NE strategy, we use the notion of social optimum
but in a slightly different way. We do not try to maximize the
welfare function ω over all possible profiles s but only over
the NE profiles s∗, because we are interested in selecting one
NE that is optimal with respect to the given ω. Consequently,
all players will be able to make independent, but mutually
consistent, decisions about a unique NE.

We now describe the unique optimal NE selection protocols
that are run during the revocation process, as described in
Section IV.

First of all, each player computes all NE as the first
step of the NESelect protocol. Knowing the optimized game
parameters, nodes can use heuristics to immediately discard
all strategy combinations that do not result in a revocation
or that are inefficient, thus reducing the time required for the
NE computations. If more than one NE exists, the second
protocol OptNE is executed and the set G of all NE satisfying
the optimality criteria (utilitarian → egalitarian or vice versa)
defined by the variable firstOptCond is determined. We choose
the utilitarian criteria first because it compares the aggregate
utilities of all players at once, as opposed to the one-to-many
comparison of each utility, for all NE, done by the egalitarian
criteria. The first protocol then looks whether this set is a
singleton or not and if so, it outputs the unique optimal NE
profile s∗, otherwise it changes the optimality criteria and
restarts. If this process ends up with G having more than one
optimal NE as well, the player that initiated the revocation
game selects one optimal NE from the set G at random and
broadcasts it to all participants. The final output of the two
protocols is the unique socially optimal NE profile s∗. By
agreeing on this NE, all players are guaranteed not to pay the
extra cost c that would result from the failed revocation and
to receive rewards from the CA.

The function getNext(.) takes the next in line element of
(.), SelectRandom(.) chooses one element of (.) at random,
Broadcast(.) sends a broadcast message with the element (.)
to all neighbors and ReceiveOpt(.) waits for the broadcasted
element sent by the node with the (.) ID.

VII. PERFORMANCE EVALUATION

We implemented and simulated the optimal NE selection
protocols in Matlab, assuming a single attacker, although there
could be as many attackers as revocation games running in

Protocol 1 NESelect.
1: AllNE = {s|s ∈ NE}
2: if |AllNE| = 1 then
3: s∗ = getNext(AllNE)
4: else
5: G = OptNE(utilitarian, AllNE)
6: if |G| = 1 then
7: s∗ = getNext(G)
8: else
9: G = OptNE(egalitarian, AllNE)

10: if |G| = 1 then
11: s∗ = getNext(G)
12: else
13: if thisNodeID = initiatorID then
14: s∗ = SelectRandom(G)
15: Broadcast(s∗)
16: else
17: s∗ = ReceiveOpt(initiatorID)

Protocol 2 OptNE(firstOptCond, AllNE).
1: if firstOptCond = “utilitarian” then
2: ω1(s) =

∑n
i=0 ui(s)

3: ω2(s) = mini ui(s)
4: else
5: ω1(s) = mini ui(s)
6: ω2(s) =

∑n
i=0 ui(s)

7: G1 = {s|s = argmaxs∈AllNE[ω1(s)]
8: if |G1| = 1 then
9: G = G1

10: else
11: G2 = {s|s = argmaxs∈G1

[ω2(s)]
12: G = G2

13: return G

parallel. We run 10 iterations for each number of players
between 2 and 15, as we assume a highly mobile environment
and short-range communications. The confidence interval is
95%. As in Section V-D for the system-wise efficiency of the
self-sacrifice cost cs,i, we assume here that b− v < e(M/N)
in order to avoid any unnecessary effort due to the use of the
vote strategy as well. The exact game parameters are:
• u−i ∈ [0 10] uniformly at random, where we use the

same maximum value through all subsequent simulations.
• h = 4.5 > B = 1 > c = 0.5 > v = 0.3 > b = 0.2

[certificates], z = 0.25.
• g = 2(h−B+f(M/N))−c

2·maxi u
−
i

is the middle point between the
lower (2) and upper bounds (3) to the slope of cs,i. The
ratio of malicious/total nodes is M/N = 0 and M/N =
0.3.

The main results are discussed in the following subsections.

A. Number of Nash Equilibria

In Figure 2 we see that by using the dynamic vote, the
number of vote NE is only 1/25 of the number obtained
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when using the majority vote for 15 players. This comes
from the fact that there are fewer combinations of players
whose aggregate votes would result in a successful revocation,
compared to any combination of the majority of players in the
other case. The impact of the presence of colluding malicious
nodes that could retaliate against the players is negligible.

We notice that the number of self-sacrifice NE is the same
in both systems, because the self-sacrifice strategy is limited
to the one or two players that have the highest counter and
does not depend on the voting scheme being used.

B. Number of Votes for Revocation

Figure 3 shows the number of players that are required to
vote in order to revoke the accused node’s certificate. For the
majority vote, the number of votes increases with the total
number of players, irrespective of their reputations.

With the dynamic vote, on the contrary, we see that the
number of votes tends to decrease as the number of players
increases. Thanks to the greater diversity of counters as the
number of players increases, it becomes easier to find few
players with high counters (or reputations), such that the vote
NE becomes socially less costly. If the game were to end by
voting, only these few players would need to vote, compared
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Figure 4. Percentage of vote Nash equilibrium selections.

to the greater number of players needed by the majority and
the consequently higher social cost.

C. Type of Selected Nash Equilibrium

Figure 4 shows the percentage of vote NE that have been
selected as the unique optimal NE by the protocols for,
respectively, majority and dynamic votes. The percentage of
selected optimal self-sacrifice NE is simply the difference
between 100% and the vote NE selection percentage.

With majority votes, the vote NE is dominant in games with
less than 4 players, whereas with 4 players and more, the self-
sacrifice takes over. This is justified by the social optimality
criteria as the vote NE will be less socially costly than the
sacrifice if and only if (b−v)·nv > −c/2. For our parameters,
we have that the inequality holds if nv ≤ 2, meaning that up
to three players, a vote is less costly as the majority is nv = 2,
and afterwards it becomes more costly and therefore the self-
sacrifice strategy is selected.

With dynamic votes, we see that for relatively low u−m, the
vote NE is dominant with respect to the self-sacrifice because
very few players are needed to vote and, as explained earlier,
the vote is more socially optimal if and only if the two most
wealthy players are sufficient to revoke the accused node.
When u−m increases, more players would be needed for the
revocation by vote and if most of them have a relatively low
u−i , it might not even be feasible. In this case, the self-sacrifice
strategy would be the only option. Finally, we see that by
increasing the number of players, there are more chances of
finding players with relatively high u−i and thus revocation by
vote would be less costly than self-sacrifice.

When the number of colluding malicious nodes increases,
the revocation is done by self-sacrifice. Given our parameters,
it is socially less costly to risk the revocation of one benign
node that committed self-sacrifice than two devices that voted.

VIII. CONCLUSION

In this paper, we have designed a game-theoretic framework
for local certificate revocation in ephemeral networks. First, we
have provided incentives in order to guarantee the revocation
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of the malicious node even in presence of inaccurate estima-
tion of the attack-induced cost. Second, we have considered
reputations, based on each node’s past behavior, and we
have optimized the game model such that the adapted cost
parameters guarantee a successful revocation of the malicious
node in the most socially efficient way.

Based on the analytical results, we then designed a novel
reputation-based on-the-fly local revocation scheme that es-
tablishes a unique optimal Nash equilibrium in a distributed
fashion. Simulation results illustrated that, by considering
the past behavior of all parties involved in the process, our
revocation protocols are effective in determining the unique
most efficient outcome that is also socially optimal, i.e. that
generates the least costs for the community of players.

As part of future work, we intend to extend our game-
theoretic model to other breeds of networks with similar
characteristics, and to include role attribution to a subset of
players, where hierarchy and past behavior will be considered
while determining the outcome of the revocation games.
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APPENDIX

Proofs of Lemmas 1 - 7 and Theorem 1.
Lemma 1: By definition, we know that a strategy profile

s is a NE iff no single player has incentive to unilaterally
deviate from his equilibrium strategy s∗i , given the strategies
of other players s−i. If we consider the payoff for any player
i corresponding to the strategy profile s∗ = (V, . . . , V ) we
have that

si = A ui(V, . . . , A, V, . . . , V ) = 0

s∗i = V ui(V, . . . , V, . . . , V ) = b− v − e(M/N)

si = S ui(V, . . . , S, V, . . . , V ) = B − cs − f(M/N)

Given the conditions of the Lemma, b− v − e(M/N) > 0−
f(M/N) and thus for any si 6= s∗i , the corresponding payoff
is lower than if si = s∗i .

Lemma 2: We consider the strategy profile s∗ with one
self-sacrifice and n − 1 abstentions. In this case, the payoffs
are u = (B− cs− f(M/N), 0, . . . , 0) = (−f(M/N), . . . , 0),
where the self-sacrificing player i could be any of the n
players. The payoffs are

if s∗i = S :ui(A, . . . , s
∗
i , A, . . . , A) = 0− f(M/N)

ui(A, . . . , A, . . . , A) = −c
ui(A, . . . , V,A, . . . , A) = −v − e(M/N)− c

if s∗i = A :ui(s
∗
1, . . . , s

∗
i , . . . , s

∗
n) = 0

ui(s
∗
1, . . . , V, s

∗
i+1, . . . , s

∗
n) = b− v − e(M/N)

ui(s
∗
1, . . . , S, s

∗
i+1, . . . , s

∗
n) = 0− f(M/N)

For s∗i = S, ui(A, . . . , A) = −c < ui(s
∗
i , A, . . . , A) =

−f(M/N) if and only if f(M/N) < c. For s∗i =
A, ui(S,A, . . . , A) = 0 > ui(S,A, . . . , S,A, . . . , A) =
−f(M/N) for all f(M/N) > 0.

We see that if player i is the only sacrificing participant,
he has no incentive to deviate from this strategy if the risk of
retaliation is low (f(M/N) < c). In this case, any strategy
profile s∗ with exactly one self-sacrifice and n−1 abstentions
is a NE. If, on the other hand, the risk of retaliation is high,
he would prefer to abstain and thus the all-abstain strategy
profile would be a NE.

Lemma 3: The proof is analog to the one of Lemma 2.
Lemma 4: For the case (a), the proof is analog to the one

of Lemma 2. For the case (b), we consider the strategy profile
s∗ that has exactly nv votes and n− nv abstentions. Without
loss of generality, we assume that the first nv players vote and
the remaining players abstain. We refer to a voting player as
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i and to an abstaining player as j.

If s∗1 = V :u1(s
∗
1, . . . , V, A, . . . , A) = b− v − e(M/N)

u1(A, V, . . . , V, A, . . . , A) = −c
u1(S, V, . . . , V, A, . . . , A) = B − cs − f(M/N)

If s∗n = A :u1(V, . . . , V, A, . . . , s
∗
n) = 0

un(V, . . . , V, A, . . . , V ) = b− v − e(M/N)

un(V, . . . , V, A, . . . , S) = B − cs − f(M/N)

According to the conditions of the Lemma, we have that si =
V is better than si = S for any voting player i. Similarly,
we see that si = V is also better than si = A if and only if
b− v− e(M/N) > −c, or if e(M/N) < b− v+ c. Moreover,
sj = A is better than sj = V or sj = S for any abstaining
player j. Therefore, the strategy profile s∗ with exactly nv
votes and n−nv abstentions is a NE if and only if e(M/N) <
b− v − c, otherwise s∗ is not a NE.

Lemma 5: We look at the payoff functions for the
different possible si, given all s−i that respect the condition
of the lemma.

si = A ui(A, s−i) = −c
si = V ui(V, s−i) = −c− v − e(M/N)

si = S ui(S, s−i) = B − h+ g · u−i − f(M/N)

From the above equations we know that the strategy vote will
never be a best response since the associated payoff is always
lower than the one given by abstain. The only choice is then
between the strategy S and A. Solving the inequality B−h+g·
u−i −f(M/N) > −c we have that the best response of player
i is to abstain if u−i < h−c−B+f(M/N)

g and to self-sacrifice
otherwise.

Lemmas 6, 7: The proof is analog to that of Lemma 5.

Theorem 1: Let us consider the strategy profile s∗ =
(A, . . . , A, S,A, . . . , A), where the only S strategy is adopted
by the player with the largest u−i (we call him PS) and all
the remaining n − 1 players adopt the strategy abstain (we
refer to any of these players as PA). Using the bounds found
in Section V-D for h and g, we show that s∗ is always a NE.

First, let us analyze the individual payoffs for each player
and for all his possible strategies, given the strategies of the
other n− 1 players.

(a) For any PA:

uPA,(A, s−i) = uPA,(A,s−i) = 0

uPA,(V, s−i) = uPA,(V,s−i) = b− v − e(M/N)

uPA,(S, s−i) = uPA,(S,s−i) = B − cs,PA
− f(M/N)

Here, we can already exclude the second possibility as the
corresponding payoff is always smaller than the other two.

Moreover, we can see that

uPA,(S,s−i) − uPA,(A,s−i) = B − cs,PA
− f(M/N)

(a)
< B − h+

h−B + f(M/N)

maxi ui
· u−PA

− f(M/N)

= (1−
u−PA

maxi ui
)(B − h− f(M/N))

(b)
< (1−

u−PA

maxi ui
)︸ ︷︷ ︸

>0

(B −B − c+ f(M/N)− f(M/N))

= (1−
u−PA

maxi ui
)(−c) < 0

→ uPA,(S,s−i) < uPA,(A,s−i)

where (a) follows from the lower bound (3) and (b) from
the fine tuning of h, i.e. h > B+c−f(M/N). Therefore,
no player PA has incentive to unilaterally deviate from his
equilibrium strategy abstain.

(b) For PS , where u−PS
= maxi u

−
i :

uPS ,(A, s−i) = uPS ,(A,s−i) = −c
uPS ,(V, s−i) = uPS ,(V,s−i) = −c− v − e(M/N)

uPS ,(S, s−i) = uPS ,(S,s−i) = B − cs,PS
− f(M/N)

Again, to vote is not an option for PS since the strategy
abstain would always give him a better payoff. Further-
more, we have

uPS ,(S,s−i) − uPS ,(A,s−i) = B − cs,PS
− f(M/N) + c

= B − h+ g · u−PS
− f(M/N) + c

(c)
> B − h+

h−B − c+ f(M/N)

maxi u
−
i

· u−PS
− f(M/N) + c

(d)
= B − h+

h−B − c+ f(M/N)

u−PS

· u−PS
− f(M/N) + c

= 0

where (c) follows from the lower bound (2) and (d) from
u−PS

= maxi u
−
i . Summing up, we have that

uPS ,(S,s−i) − uPS ,(A,s−i) > 0 or
uPS ,(S,s−i) > uPS ,(A,s−i)

Therefore, PS has no incentive to unilaterally deviate from
his equilibrium strategy S.

In the end, no player is better off deviating from his equilib-
rium strategy and thus s∗ is a Nash equilibrium in any n-player
revocation game Gn.


