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Abstract—Many sensing systems remotely monitor/measure an
environment at several sites, and then report these observations
to a central site. We propose and investigate several practical
algorithms for joint routing and compression of data files as
they are forward from remote nodes to a central site, with
the goal of minimizing the communication cost incurred. Our
algorithms are practical in that they do not assume that nodes
have a priori information about the correlation structure (and
resulting compression gains) of the individual measurements at a
given sensor or among multiple sensors. Instead, this correlation
structure is learned as pieces of the files are routed and jointly
compressed on their way to the sink, and routes are adaptively
changed as the nodes learn more about the correlation structure
of the data.

I. INTRODUCTION

Increasingly, distributed sensing systems are being devel-
oped and deployed that monitor / measure an environment
under study, and report these observations to a central site.
Examples include in-situ monitoring of natural habitats [5],
[12], [23], collaborative adaptive sensing of the atmosphere
[3], multi-camera video surveillance [4], and measurement /
monitoring of engineered systems such as transportation sys-
tems [2], and data networks [1]. Some of these systems operate
in real-time, with individual measurements being forwarded
to the central site as soon as they are taken. In other cases,
a potentially large set of measurements are first stored at the
remote sensor, and then forwarded in non-real-time as a group
(e.g., as a file) to the central site. In either case - individual
real-time measurements or bulk non-real-time measurements
in files - data is routed among the sensors, and may be jointly
compressed with locally stored data (which must also be
transferred to the central site) as it is forwarded toward the
central site.

In this paper, we propose and investigate several practical
algorithms for joint routing and compression of data files as
they are forward from remote nodes to a central site. The
goal of these algorithms is to minimize the communication
cost incurred in gathering these files at the central site. Such
a problem has been studied in information theory literature
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such as [6], [7], [20], [22], that examined the distributed
compression techniques, and [8], [14], [21] that examined
the joint routing and compression techniques. However, the
implementation of the proposed schemes in a practical setting
is still an open problem since they require the complete
knowledge of all source correlations a priori at each source.
Our algorithms are practical in that they do not assume
that a node has a priori information about the correlation
structure (and resulting compression gains) of the individual
measurements at a given sensor or among multiple sensors.
Instead, this correlation structure can only be learned as data
chunks are routed and jointly compressed on their way to the
sink, with routes adaptively changing as the nodes learn more
about the correlation structure of their data.

Our work thus differs from [8] which assumed that the
correlation structure between data files is both known and
identical for all pairs of nodes. It is also different from [14]
which assumed that the joint pdf of the neighborhood sources
data (i.e., the source data correlation between local neighbor-
hood nodes) is known. Moreover, in [19] the performance
of routing with compression in wireless sensor networks is
analyzed where the correlation structure between data sources
has been empirically approximated as a function of distances
between sources in the network. Our work is thus different,
as in [19] the correlation structure between data sources is re-
quired to be estimated before starting the communication while
our algorithms do not need such a priori information. Our
work also differs from [7], [9]–[11], [16], [22] that establish
information-theoretic bounds on the performance of any data
gathering/compression algorithm under varying assumptions
(e.g. a priori information about the correlation structure) but
do not consider any specific routing or compression algorithms
in particular.

With stored files, compression gains can arise from corre-
lation in data gathered at a single given location (which we
refer to as compression in time) and among measurements
taken at ”nearby” sensors (correlation in space). As part of
this study, we empirically evaluate the compressibility of two
specific distributed data sources - in trace files of packets
headers taken simultaneously at two measurement points in
a university network, and in synthetic radar data files taken
simultaneously at overlapping emulated radars operating in a
numerically simulated atmosphere, using specific compression
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algorithms.
Given the possibility of achieving lower data gathering

costs by jointly compressing files from multiple sites, we
present two techniques for iteratively estimating the joint
compressibility of two files by dividing one of the files into
a number of chunks, and iteratively sending these chunks
from one node to the other. We find that it is possible to
accurately estimate joint compressibility by transmitting only
a small number of data chunks (i.e., a small amount of the file)
from one site to another. This joint compressibility estimator
is then embedded in two iterative local heuristic algorithms for
joint routing and compression. We compare the performance of
these heuristic algorithms to exact solutions (which are known
to be NP-complete even in the case that the compressibility is
known and identical at all nodes) for small size problems, and
compare their performance with shortest path routing paths
(which does not take the potential joint compression gains into
account when determining the routing path, but does jointly
compress files as they are routed along the SPT path). We find
that for small problem sizes, the algorithms perform close to
optimal, and for larger problem sizes can significantly decrease
the cost of routing over shortest path routing.

The rest of this paper is structured as follows. In the follow-
ing section we describe the network setting and assumptions
for our study. In Section 3, we consider the simple case of a
three-node network in which a single sink gathers data stored
at two other nodes. We use this simple scenario to illustrate
a polynomial fitting algorithm and a prediction algorithm
for estimating joint compressibility of data “on the fly” as
progressively more data chunks are received. We empirically
study the joint compressibility of two specific data sources.
The first source is network measurement data - an internet-
scale sensing system [17], [18] in which network measurement
devices gather data (e.g., traffic traces) of network traffic.
The second source is meteorological radar data gathered from
radars sensing the lower regions of the atmosphere [3]. We
study the performance of the polynomial fitting and prediction
algorithms for estimating the joint compressibility using both
of these data sources. In section 4, we use the results from
our three-node scenario as the basis for recursive heuristic
algorithms for jointly routing and compressing data in larger
network settings. Finally, Section 5 concludes this paper and
discusses possible future research.

II. NETWORK SETTING

In this paper we consider a network that is not constrained
in energy and thus the cost of compression in term of battery
drain is negligible. We consider a network of N nodes
connected via a set of edges (i, j), i, j, i 6= j ∈ N in some
arbitrary topology. Associated with each edge is a cost, ci,j
for sending a unit of data over the edge from node i to node j.
One of the N nodes is the designated as the destination or sink
node. Each of the other N − 1 nodes has a file, Xi, that must
be routed to the destination node over the network. Let |Xi|
be the size of file Xi. If we apply a compression algorithm
Com to file Xi, we create a compressed file com(Xi) of size

X1 X2

D

c1,d c2,d

c2,1

c1,2

A A

B C

Fig. 1. Two sources scenario

Com(Xi) = |com(Xi)|. In this paper we consider only the
loss-less compression of data where the decrease from input
rate to output rate (by compressing data) does not distort the
transmitted data.

Our goal will be to transfer (route) the N − 1 data files
to the destination at minimum cost. Costs are incurred as
follows. If node i has only a single file, Xi, and compresses
it and then sends it to direct neighbor j over link (i, j) then
a cost ci,jCom(Xi) is incurred. If node j receives file Xi

from node i (or more precisely, a compressed version of Xi

which it can then decompress), and then jointly compresses
Xi and its own file Xj and then sends the jointly compressed
file to its neighbor, k, the incurred cost is cj,kCom(Xi, Xj),
where Com(Xi, Xj) is the size of the jointly compressed
files Xi and Xj . We assume that Com(Xi, Xj)∀i, j, i 6= j is
initially unknown and consider below algorithms for iteratively
estimating Com(Xi, Xj) as pieces of the file Xi are sent from
i to j.

III. THE TWO SOURCE CASE

In order to gain some insight into the joint compression and
routing problem with unknown correlation, let’s first consider
the simple two-source case shown in Figure 1. We assume
that Com(X1) and Com(X2), the compressed sizes of files
X1 and X2, are known by the nodes, since node i can locally
calculate Com(Xi) and send this information to its neighbor.
As shown in Figure 1, there are three possible routing paths
for transferring X1 and X2 to destination d :
Path A; In this case nodes 1 and 2 each transmit their
locally compressed files com(X1) and com(X2), respectively,
directly to the receiver. The corresponding transmission cost
is equal to :

CA = c1,dCom(X1) + c2,dCom(X2). (1)

Path B; In this case X2 is first locally compressed at node 2
and sent to node 1 over link (2,1). Node 1 then jointly com-
presses X1 and X2 and sends com(X1, X2) to the destination
over link (1,d). The transmission cost is equal to :

CB = c2,1Com(X2) + c1,dCom(X1, X2). (2)

Path C; In this case, com(X1) is sent over link (1,2) to
node 2, which then jointly compresses X1 and X2 and sends
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com(X1, X2) to d over link (2,d). The transmission cost is
equal to :

CC = c1,2Com(X1) + c2,dCom(X1, X2). (3)

The optimal routing path is the path with minimum transmis-
sion cost. Therefore, for the simple scenario of two sources
nodes (illustrated in Figure 1) the problem is simplified to a
linear optimization problem and the optimal routing depends
on the value of Com(X1, X2), which is initially unknown.

Let

ρ
′
=
c1,dCom(X1) + (c2,d − c2,1)Com(X2)

c1,d

and

ρ
′′

=
c2,dCom(X2) + (c1,d − c1,2)Com(X1)

c2,d
.

ρ
′

is the value of Com(X1, X2) when the cost of routing
along paths A and B (equations 1 and 2) are equal. ρ

′′
is

the value of Com(X1, X2) when the cost of routing along
paths B and C are equal. Some simple manipulations show
that if Com(X1, X2) > max{ρ′

, ρ
′′} then A is the optimal

path. Otherwise, there are sufficient joint compression gains,
and the links costs are such that it is better to incur the cost of
transmitting a file from node 1 to node 2 (or vice versa), and
then jointly compressing X1 and X2 and sending the jointly
compressed file to d over the direct link.

Without loss of generality, assume that B is the path
corresponding to max{ρ′

, ρ
′′}, i.e., ρ

′
> ρ

′′
. Let us define

ρBC =
c1,2Com(X1)− c2,1Com(X2)

c1,d + c2,d
.

If ρBC < Com(X1, X2) < ρ
′
, B is the optimum path;

otherwise C is the optimum path, see Figure 2. Note that
both ρBC and ρ

′
can be easily calculated by the nodes since

neither involves Com(X1, X2). The challenge in evaluating
the condition, ρBC < Com(X1, X2) < ρ

′
, is that the size of

the jointly compressed file, Com(X1, X2), is unknown. Since
we make no assumptions about a priori information about
how the data in files X1 and X2 are correlated, the size of the
jointly compressed files, X1 and X2, will have to be estimated.
The following algorithm (for the simple two-node, single-
destination scenario shown in Figure 1) chooses the optimal
path by iteratively estimating a value for Com(X1, X2). The
algorithm divides the file at node 2 into M chunks and
iteratively sends these chunks to node 1, until node 1 is able
to form a sufficiently accurate estimate of Com(X1, X2) to
determine the optimal routing. We first present the algorithm,
and then discuss its three main steps.

Algorithm 2SJRC: Two-Source Joint Routing and Compres-
sion

1) Compute the shortest path tree (SPT) for the network
illustrated in Figure 1. If the SPT corresponds to routing
scenarios B or C, transmit data to the destination using
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Fig. 2. The linear optimization problem

the routing defined by the SPT, jointly compressing the
data at the intermediate node. Go to the End.

2) Divide X2 into M partitions X2 = {X1
2 , · · · , XM

2 }. Set
i = 1.
While i ≤M .
Node 2 sends the ith partition of file X2, com(Xi

2), to
node 1. Node 1 then estimates Com(X1, X2) based on
Com(X1) and the partitions {Com(Xj

2); j = 1 : i} that
have been received from node 2 so far. Let ρ̂i denote
node 1’s estimated value for Com(X1, X2) at step i.
If the corresponding estimation error (εi) is lower than
a required threshold (εT ) go to 3; otherwise increase i
by one. We will shortly explain how ρ̂i and εi can be
calculated for a set of data.
End while.

3) If ρBC ≤ ρ̂i ≤ ρ
′

go to (a), If ρ̂i > ρ
′

go to (b), and if
ρ̂i ≤ ρBC go to (c). In the substeps below, A,B, and
C refer to the three different possible routings shown
in Figure 1.
a) B is the optimal routing. By “optimal routing”
here, we mean that configuration B minimizes
the costs among routing configurations A,B, and
C, defined in equations 1, 2 and 3. In this case,
send com(Xi+1

2 , · · · , XM
2 ) from S2 to S1 and

com(X1, X2) from S1 to the destination. Note that
Com(X2) ≤

∑M
j=1 Com(Xj

2). Go to the End.
b) A is the optimal routing. Let us denote
the prefix of X2 consisting of the first i
chunks of X2 asX i2 = {X1

2 , · · · , Xi
2}. If

c2,dCom(Xi+1
2 , · · · , XM

2 ) + c1,dCom(X1,X i2) ≤
c1,dCom(X1) + c2,dCom(X2) we send com(X1,X i2)
from node 1 to the destination, and send the remainder
of the file, com(Xi+1

2 , · · · , XM
2 ), which is at node 2

but has not yet been sent to node 1 directly from node
2 to the destination via link (2,d). Otherwise, we send
the entire file com(X1) from node 1 directly to the
destination, and the entire file com(X2) from node 2 to
the destination. Go to the End.
c) C is the optimal routing. If
c2,1Com(Xi+1

2 , · · · , XM
2 ) + c1,dCom(X1, X2) ≤
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c1,2Com(X1) + c2,dCom(X1, X2) we still continue
to send over B by sending com(Xi+1

2 , · · · , XM
2 ) from

node 2 to node 1 and com(X1, X2) from node 1
to the destination. Otherwise we transmit over path
C by sending com(X1) from node 1 to node 2 and
com(X1, X2) from node 2 to the destination. Go to the
End.

4) End of Algorithm 2SJRC
In the first step of the algorithm, we compute the shortest

(least cost) path tree, e.g., using Dijkstra’s algorithm, for the
network shown in Figure 1. Since the SPT provides the least
cost paths (on the basis of link weights alone, not taking into
account the size of compressed data files) from each node
to the destination, then if SPT path corresponds to routing
scenario B, that routing scenario also has less cost than routing
scenario A when taking compressed file sizes into account
when determining cost in equations 1 - 3. This is true since
c2,1+c1,d ≤ c2,d and Com(X1, X2) ≤ Com(X1)+Com(X2)
and thus CB ≤ CA. Let us next compare CB and CC . We have:

CB = c2,1Com(X2) + c1,dCom(X1, X2)
a
≤ c2,1Com(X1, X2) + c1,dCom(X1, X2)
b
≤ c2,dCom(X1, X2)
≤ c1,2Com(X1) + c2,dCom(X1, X2) = CC

where (a) comes from the fact that Com(X2) ≤
Com(X1, X2) and (b) follows from c2,1 + c1,d ≤ c2,d.
Therefore B is the optimal routing scenario in the sense of
minimizing the costs among configurations A, B ad C, as
specified in equations 1 - 3. Following similar arguments, if the
SPT corresponds to the routing scenario C then C would be
the optimal routing scenario. Thus in the situation that the SPT
tree (which is based only on link costs, and does not consider
compressed file sizes) corresponds to routing scenarios B or
C, the SPT is also the optimal routing for the costs specified
in equations 1 through 3 for CA, CB and CC .

In the second step of the algorithm, we iteratively estimate
ρ̂i, the size of jointly compressed files X1 and X2 using one
of the two estimation algorithms discussed below.

By step 3, we have an estimated value of ρ̂i, having already
sent i chunks from node 2 to node 1. In step 3a, the optimal
routing is B (i.e., node 2 routing to the destination via node
1). In this case, node 2 compresses the remaining chunks of its
file and sends this over link (2,1) to node 1, which then sends
the jointly compressed file com(X1, X2) to the destination
over link (1, d). Step 3b is the case that the optimal path is
configuration A, where nodes 1 and 2 send directly to the
destination. Note, however, that node 2 has already sent the
prefix X i2 to node 1, and so it may now be more cost effective
for node 1 to jointly compress the prefix with its own local file,
X1 and send the jointly compressed quantity com(X1,X i2) to
the destination, rather than having nodes 1 and 2 send their
entire files directly to the destination.

Step 3c is the case that C is the optimal routing path. Once
again, however, node 1 has already received the prefix X i2 . We
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thus test whether it may be advantageous for node 1 to make
use of the prefix (given that is has already incurred the cost
of receiving this prefix from node 2 as part of the estimation
process for ρ̂i).

Let us now turn our attention to the problem of estimating
ρ̂i, the estimated value for Com(X1, X2) at step i, and how
εi (the error associated with the estimated value) can be
calculated.

Estimation of ρ̂i with a Fitting approach
Recall that our goal is to estimate Com(X1, X2) at

node 1, having received X i2 , i chunks of the prefix
of X2. Consider the sequence of compressed file sizes
{Com(X1,X 1

2 ), Com(X1,X 2
2 ), . . . Com(X1,X i2)}, for pre-

fix sizes of 1, 2, . . . , i. We define Com(X1, X
0
2 = φ) =

Com(X1). The fitting approach we present to estimate ρ̂i
fits polynomial, P (x) of degree n at these i + 1 points in
a least squares sense [13]. ρ̂i is then taken as the value of
the fitted polynomial at point k = M , i.e., ρ̂i = P (x =
M). The estimation error, εi, is calculated as the mean-
square value of the distance between the computed values
{Com(X1,X j2 ); j = 0 : i} and the fitted polynomial divided

by ρ̂i, i.e., εi = 1
iρ̂i

∑i
j=1

∣∣∣P (x = j)− Com(X1,X j2 )
∣∣∣2. In

this paper we consider that n = 1, however, higher degree can
be used as well.

To illustrate the fitting approach, we show here the proceed-
ing steps for two files containing a traces of packet headers,
X1 and X2, with compression sizes Com(X1) = 1 Mbytes
and Com(X2) = 2 Mbyte. These two trace files were col-
lected simultaneously at a university-wide and a departmental
gateway in a large university network. We expect there to
be some correlation in these contents of these traces, since
packets sourced in the departmental network and destined to
the larger Internet may pass through the gateway and thus
appear in both the departmental trace as well as the gateway
trace. However, since the university has connections into the
Internet via multiple providers, an Internet-bound packet from
the department may not appear in the gateway trace.
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We divide X2 into 12 chunks in such a way that
Com(Xj

2) = 2
12 = 0.1667 Mbyte for j ∈ {1, 12}. In Figure

3, the starred values plot the sequence of compressed file sizes
{Com(X1), Com(X1,X 1

2 ), . . . Com(X1,X 12
2 )}. The trend il-

lustrated in Figure 3 is clearly linear. As explained be-
fore, in step i we have the first i + 1 points and the fit-
ting approach in this step consists of fitting a first degree
polynomial P (x) to these points in a least square sense.
For example for i = 7 the polynomial fitted to points
{Com(X1), Com(X1,X 1

2 ), · · · , Com(X1,X 7
2 )} has the form

P (k) = 0.077k+ 1.004. ρ̂7 = 1.931 Mbyte is the polynomial
value at point k = 12 and ε7 = 1

7ρ7

∑7
j=1 |P (k = j) −

Com(X1,X j2 )|2 = 0.0174 is the error associated with this
estimation. In Figure 4 we show ρ̂i and the norm of its
associated residual error ρ̂i × εi for i ∈ {1, 12}.

Estimation of ρ̂i with a Predicting approach
In the second approach we estimate Com(X1, X2) by

predicting the average value of Com(X2|X1) based on the
sequence Com(Xj

2 |X1), j ∈ {1, i}, where Com(Xj
2 |X1) ≈

Com(X2
j , X1) − Com(X1). For this purpose we define the

random process S as S(i) = 1
i

∑i
j=1 Com(Xj

2 |X1). There-
fore Com(X1, X2) is bounded by Com(X1) + M.S(M).
This comes from the fact that Com(X1, X2) ≈ Com(X1) +
Com(X2|X1) and Com(X2|X1) ≤

∑M
k=1 Com(Xk

2 |X1).
As S is a stationary process, classical prediction algo-

rithms can be used to predict S(M) from the time series
of {S(1), S(2), · · · , S(i)} and the value of ρ̂i is taken to be
Com(X1)+MS̃i(M), where S̃i(M) is the predicted value for
S(M) at step i. In this paper we use the stochastic least-mean-
square (LMS) estimator which is a stochastic counterpart of
the least-square-estimator used in the fitting approach (inter-
ested readers are encouraged to see [13] for more details about
LMS estimators).

In Figure 3 we show the sequence of compressed file
sizes Com(X1, X

1
2 ), Com(X1, X

2
2 ), . . . Com(X1, X

12
2 ) and

the time sequence S(i) for the two packet header trace
files described earlier. At any step i, the series S(1), S(2),

..., S(i) is used to predict S(M) and consequently ρ̂i. For
example if i = 7 we have S̃i(M) = 0.0852 and therefore
ρ̂7 = 1 + 12 × 0.0852 = 2.022 with an associated error ε7
bounded by 0.0426. The values of ρ̂i and ρ̂iεi, for i ∈ {1, 12},
are presented in Figure 4.

A. Evaluating Algorithm 2SJRC with fitting and predicting
with real data.

In the previous section, we presented the 2SJRC algorithm
for optimally routing data files from two sources to a common
sink. At the heart of this algorithm was a process for iteratively
estimating the joint compression size of these two files; we
presented both a fitting approach and a predicting approach
for estimating ρ̂i. We illustrated the operation of the algorithm
using two packet header trace files. In this section, we perform
a more extensive study of 2SJRC and its fitting and prediction
approaches for estimating ρ̂i. We consider two different types
of correlated data.

Our first source of spatially and temporally correlated data
is radar data, which contains the reflectivity (a measure of the
amount of scattering matter) in small unit volumes (“voxels”)
in the atmosphere over a period of time. These files were
made available to us by the Center for Collaborative Adaptive
Sensing of the Atmosphere [3]. Specifically, we consider
the reflectivity data gathered at two radars with partially
overlapping footprints. The radars themselves are emulated,
operating in a numerically simulated atmosphere [15].

We choose the reflectivity trace files of two neighboring
radar nodes, X1 and X2, collected during identical intervals
of time with the respective size of |X1| = 455 Kbyte and
|X2| = 505 Kbyte. We first apply the .gzip compression
algorithm to compress each individual file and also jointly
compress X1 and X2. The results show that using a gzip
compression algorithm, we will not gain from the joint corre-
lation between the data in the two files, as Com(X1) = 363
Kbyte, Com(X2) = 253 Kbyte, and Com(X1, X2) = 616
Kbyte, i.e. Com(X1, X2) = Com(X1) +Com(X2). We also
examined the reflectivity trace files collected during other
time intervals and found similar conclusions - minimal or no
gain was obtained using joint compression over the case of
local compression. We then considered different compression
algorithms (including zip, rar, and LZ7) to see if one of these
compression algorithms might be able to gain from the joint
correlation structure, but found similar results. For example
for the trace file described above and using .rar compression,
we have Com(X1) = 259 Kbyte, Com(X2) = 179 Kbyte,
and Com(X1, X2) = 438 Kbyte.

We conjecture that the compression algorithms we have
studied achieve significant local compression gains because the
reflectivity data at an individual radar already has significant
correlation in both time and space - an individual radar
measures reflectivity in neighboring voxels (correlation in
space) and sweeps through the same set of voxels over time
(correlation in time). Jointly compressing files from two sites
offers the possibility of taking advantage of correlated data due
to overlap in the radar footprints (both radars are observing
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the exact same voxel in space), or proximity of the measured
voxels (the voxels are different, but are physically close to
each other). Joint compression gains clearly are possible;
for example, the jointly compressed size of 616 Kbyte is
significantly smaller than the sum of the two original file sizes.
However, the joint compression of radar reflectivity data from
two partially overlapping radars using generic compression
algorithms does not appear to offer any significant advantage
over simple local compression of the files.

Several generic compression algorithms, such as .rar and
.gzip, have small coding memories and thus are not able
to track the joint correlation structure in large-sized data
sets. To see if we could overcome this drawback, we di-
vided the trace files into smaller chunks and jointly com-
pressed these smaller chunk files. We then computed gi =
E{ Com(Xj

1 ,X
j
2)

Com(Xj
1)+Com(Xj

2)
, j ∈ {1, i}} as a metric indicating the

relative joint compression size of the chunked files, when
files are divided into i partitions. Figure 5 plots the values
of gi as a function of the number of partitions, i, using rar
and gzip formats (we performed the same process for gzip
and LZ7, but since the results lay between the cases of .rar
and .gzip, we do not discuss them here). Note that the x-
axis is in logarithmic scale. We see that there is indeed a
small gain of jointly compressing data (using .rar format)
when we divide the files into small chunks (i.e., a large
number of partitions), meaning that for smaller chunk sizes
this compression algorithm is able to track and exploit the
correlation between data. However, we also see that for very
small partition sizes (e.g., i > 160) the gain again disappears.
While we believe it may indeed be possible to develop
application-specific compression algorithms for exploiting the
joint correlation among radar reflectivity estimates stored at
different locations - algorithms that may offer additional gains
over simple local compression - we have found that generic,
application-oblivious compression algorithms have not been
able to realize this additional gain, i.e. ”having” a priori
information about the overlapping area between radar nodes
will not provide any useful knowledge about the achievable
gain of jointly compressing data. While the development
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Fig. 6. Joint compression size for two individual header trace files.

of application-specific compression techniques is clearly of
interest, it is well beyond the scope of this paper. Because of
the limited or non-existent additional joint compression gains
achievable with radar reflectivity data, we did not pursue an
analysis of 2SJRC or the fitting and predicting approaches with
this type of data.

Our second source of spatially and temporally correlated
data is are trace files of packet headers captured during
identical time intervals in a university network. One trace file
(X1) was taken at one of the universities two main gateways
to the public Internet; the second trace file (X2) was taken at
the gateway to the Computer Science department. We apply
different compression algorithms to examine the gain of jointly
compressing X1 and X2. The results show that we will not
gain from the joint correlation between the data in the two files
using generic compression algorithms. We also computed gi

as depicted in figure 6. We see that there is a small gain of
jointly compressing data when we divide the files into a large
number of partitions however this gain is not considerable.

Note that any packet that exits the CS gateway and enters the
public Internet via the monitored university gateway (or vice
versa) will result in a packet header that is essentially identical,
except for a timestamp, being recorded in both locations.
Specifically, the recorded packet headers at the CS gateway
and university gateway will only differ in the hop count and IP
header checksum, and thus differ in a known and deterministic
(and hence reconstructable) manner. For example; from 4-hour
long packets traces taken over several days during July 2006,
we observed that the fraction of redundant traffic recorded in
the department and university traces files, which we will refer
to by parameter α, over the 4 hour period was approximately
0.16. At finer time scales the amount of redundant traffic
varied, generally remaining within 25% of α, as discussed
below.

Given that a fraction α of the packet headers in the two trace
files are redundant (and can thus be removed and replaced with
a small has value for the packet header), and that there are no
redundant packets within a single local trace file (since a given
packet never passes the same measurement point twice), we
approximate the relationship between the jointly compressed
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Fig. 7. Applying the predicting and fitting approaches for collected trace
files at 12.07

file size and the individually compressed file sizes as:

Com(X1, X2) = Com(X1) + (1− α)Com(X2)

That is, when jointly compressed, the redundant packet head-
ers can be removed, yielding compression gains above and
beyond what is achieved by individual compression alone. The
expression above should be valid regardless of the particular
compression algorithm used. Thus, in our numerical examples
below, we used the uncompressed file sizes X1 and X2 for
Com(X1) and Com(X2), respectively, but use our measured
value for α for the file as a whole, and measured values
for αi for file chunk i in our analysis below. Note that αi
is not known a priori at nodes but only after receiving file
chunk i. For the trace files collected at 12.07.2006, we have
Com(X1) = 9.2 Gbyte and Com(X2) = 1.73 Gbyte and also
files collected at 24.07.2006 with Com(X1) = 8.3 Gbyte and
Com(X2) = 1.997 Gbyte.
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Fig. 8. Applying the predicting and fitting approaches for collected trace
files at 24.07

We divide the department trace file into M chunks
and we compute the sequence of compressed file sizes
{Com(X1,X j2 ); j = 0 : M} and the time series {S(1), S(2)
, · · · , S(M)} where the empirically observed values of αi
are used to determine the joint compressibility/redundancy in
the ith block of packet header trace data. These sequence
values are then used to estimate ρ̂i in the fitting and predicting
approaches. The evaluation results are shown in figures 7 and
8 for the trace files collected at 12.07.2006 and 24.07.2006
for different chunk sizes of M = 6, 12, 24. Note that after
receiving the first partition we can estimate ρ̂i with an error not
higher than 0.5%. This confirms in some way our partitioning
assumption, since a single partition of X2 carry enough
information for estimating the correlation structure between
these two separated source data. In practice, we make our
decision when the estimation error (εi) is lower than a required
threshold εT . For example we can successfully estimate ρ̂i
with an estimation error of less than 0.1% (εT = 0.1%) if



8

we receive at the university gateway about 30% of the data
measured at the department gateway. Therefore, in the worst
case the cost of applying the step 2 of algorithm 2SJRC is
not higher than 30% of the cost of transmitting X2 through
(2, 1) link. This property will be later used in evaluating
our heuristics in the general case of larger scale networks.
Note also that the predicting and the fitting approaches show
equivalent performance.

IV. GENERAL CASE

In this section we consider the general scenario of a
network with N data sources. As shown in [8], even with a
known, identical correlation structure among all nodes, the op-
timal joint routing and compression problem is NP-hard. The
problem becomes even more complex when the correlation
structure is unknown by the sources. In this section, we thus
propose and evaluate two approximate heuristic algorithms
for solving the joint compression and routing problem in the
general network setting. Our algorithms are extensions of the
two-source, single-destination 2SJRC algorithm we examined
in section 3, used together with the idea of recursive ”leaf dele-
tion” first proposed in [8]. An important difference between for
N-source Joint Routing and Compression (NSJRC) algorithms
we propose here and that in [8], is that [8] assumes that the
correlation structure is both known a priori and is the same
for any pair of network nodes. As in section 3, we assume that
the correlation structure is unknown, can be different between
any pairs of nodes, and will thus be estimated on the fly by
the NSJRC algorithms, similar to how this was accomplished
in our two-source 2SJRC algorithm.

We begin by having all nodes perform an SPT calculation
over the network, e.g., using the Bellman-Ford algorithm. Each
node thus knows the cost of the best path from any other node
to the destination via this SPT. We’ll also assume that each
node i knows the communication costs, {cij} for all of its links
to all directly-attached neighbors j. A node i can thus compute
the cost of sending com(Xi) directly to the distination via the
SPT path, a cost we will approximate as cidCom(Xi), where
cid is the sum of the link costs along the SPT path from i
to d. Note that this cost is approximate as it assumes that no
joint compression gains will be realized on the SPT path from
i to d. Node i can also compute the cost of sending its file
to neighboring node j, jointly compressing files Xi and Xj

at j and then forwarding the compressed files from j to d as
cijCom(Xi) + ci,dCom(Xi, Xj).

Following similar arguments as in the previous section, it is
preferable for node i to route through node j if cijCom(Xi)+
cjdCom(Xi, Xj) ≤ cidCom(Xi) + cjdCom(Xj) or

ρij ≤
(cid − cij)Com(Xi) + cjdCom(Xj)

cid
(4)

where ρij = Com(Xi, Xj). We refer to ρij as the joint
compression threshold for routing from i via j, since as long
as the jointly compressed file size satisfies this threshold, we
estimate that it is preferable for i to route to d via j.

We define Ti, the maximum joint compression threshold for
node i as the maximum value of ρij for all nodes j that are
directly attached neighbors of i and also a leaf node in the SPT.
We denote the neighbor j for which this joint compression
threshold is maximized as Ni. Let also par(i) denotes parent
node of i in the SPT and L denotes the set of initial leaf
nodes of the SPT. With this notation, we can now describe
the NSJRC1 algorithm. We first present the algorithm and then
discuss its operation.

Algorithm NSJRC1
• Initialize by computing the SPT. Find L for the SPT.
• While L is not empty :

– For each leaf node i ∈ L; find Ti, Ni, and par(i).
Distribute Ti to all other leaves in the SPT (we will
see shortly that this information can also be dis-
tributed locally, allowing some of the computations
below to proceed in parallel). Find the leaf node k
that has the largest value, Tk = maxi∈L Ti.

– Divide Xk into M partition Xk = {X1
k , · · · , XM

k }.
Set j = 1.
While j ≤M .
Send jth partition (com(Xj

k)) to Nk and find ρ̂j (the
estimated value for Com(XNk

, Xk) at step j) and εj
(the error associated to this estimation). If εj is larger
than the required threshold εT increase j by one; else
go to the End while.
End while.

– If ρ̂j ≤ Tk route Xk to Nk; otherwise route Xk to
par(k).

– Recompute a “trimmed” SPT by removing node
k and link (k, par(k)) from the tree. (Note that
trimming does not require recalculation of the SPT,
but only a removal of one leaf node and one link.)
Remove k from L as well. If par(k) becomes a
leaf node once the link (k, par(k)) is removed, add
par(k) to the leaf set L.

• End.
• End of Algorithm NSJRC1.
The key idea behind the heuristic algorithm can be explained

by first examining equation 4. Here, ρij is the threshold value
for the unknown quantity Com(Xi, Xj) at which routing from
i to j, jointly compressing Xi and Xj and then sending the
jointly compressed files to d is estimated to be more cost
effective than sending the two files directly from i and j
with no joint compression. By taking the maximum over all
neighbors, node i makes this threshold as less stringent a
requirement as possible (i.e., allowing Com(Xi, Xj) as large
as possible).

We also note that the step of distributing Ti among all leaf
nodes can be replaced by a local computation where each node
distributes its value of Ti to its directly attached neighbors. A
node receiving values of Tj from its neighbors can compare its
own value of Ti with the received values of Tj and select itself
for trimming if its value is larger than all received values. As
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Fig. 9. Split parents, split children and leaf nodes in a SPT

the length of the paths over the SPT are typically less that 5,
this algorithm involves at most 3− 4 supplementary iterations
after the SPT is computed. Also note that this algorithm is
fully distributed.

The following algorithm is a simplified version of algorithm
NSJRC1 with less iterations. We once again build the SPT
for a network of N nodes and each node again maintain its
best path to the destination. Let’s denote by Sp the set of
nodes corresponding to splitting points in the SPT tree. We
also define Sc as the set of nodes that are the direct children
of nodes in Sp. L is the set of leaf nodes in SPT.

For example for the SPT illustrated in figure
9; L = {1, 2, 6, 7, 8, 10, 11, 13, 14, 15, 19, 23, 24},
Sc = {1, 3, 5, 6, 7, 8, 9, 12, 16, 17, 18, 20}, and
Sp = {4, 9, 12, 16, 17, 18, 20, d}. The main idea is to
apply algorithm NSJRC1 just to nodes in Sc; nodes that are
in L but not in Sc will be routed over the SPT.

Algorithm NSJRC2
• Compute the initial SPT. Find L, Sp, and Sc for the built

SPT.
• While Sc is not empty :

– While there exist i in which i ∈ L but not in Sc
Route Xi to par(i) and compute a trimmed SPT by
removing node i and link (i, par(i)). Find L for the
trimmed SPT.

– End.
– For each j ∈ Sc; find Tj , Nj , and par(j). Choose

the node with maximum compression threshold (let’s
say node k) as the best leaf node to be trimmed
from the SPT. Divide Xk into M partitions Xk =
{X1

k , · · · , XM
k }. Set h = 1.

While h ≤M .
Send hth partition (com(Xh

k )) to Nk and find ρ̂h and
εh. If εh > εT increase h by one; else go to the End
while.
End while.

– If ρ̂h ≤ Tk rout Xk to Nk; else route Xk to
par(k). Trim the SPT by removing node k and link
(k, par(k)). Find Sc, Sp, and L for the refreshed
SPT.

• End while.
• End of Algorithm NSJRC2.

A. Comparing NSJRC1, NSJRC2, SPT and an optimal algo-
rithm

In this section we first compare the performance of the
NSJRC1 and NSJRC2 heuristic algorithms with the optimum
algorithm for small problem sizes. We then investigate the
performance of our algorithms for larger scale networks. We
perform this comparison over a series of simulated network
topologies, with synthetically generated link costs, and corre-
lation structure, as discussed below.

We generate network scenarios as follows. We generate a
network of N source nodes randomly (uniformly) distributed
in a D×D square grid with a unique destination node in the
middle point of the square. Each of the N source nodes in
the network has a file of unit size (after local compression)
to send to the destination. The cost of a link connecting two
nodes is a random function of distance between the two nodes;
there is no link between nodes at a distance larger than 100m.
Specifically, the link cost between two nodes is taken to be
the distance between the two nodes divided by 100 multiplied
by a random variable whose value is uniformly distributed in
[0,1]. If a generated graph is not connected, it is discarded and
another graph is generated.

The correlation between data sources is also chosen ran-
domly based on the distances between nodes, with correlation
decreasing with increasing distance. Specifically, the degree
of correlation between two files at nodes i and j is taken to
be 1 −min{distance(i,j)100 , 1} multiplied by a random variable
whose value is uniformly distributed in [0,1]. If two data
files, Xi and Xj have a degree of correlation zi,j , then
Com(Xi, Xj) = Com(Xi) + (1 − zi,j)Com(Xj) (note that
zi,j = zj,i). This model is relative to the specific compression
algorithm proposed in section 3.1 for collected trace data at
the university and department gateways.

In our simulations, when node i determines that there is a
potential gain in sending a file to node j (for joint compression
of Xi and Xj) if the value of Com(Xi, Xj) is sufficiently
small, we assume that it must send 30% of its file to node
j in order to make the decision of whether or not it indeed
the correct choice to send the file to the destination via i. We
chose this value of 30 % based on our analysis in Section 3
that showed that generally a node can accurately estimate ρ̂i
by the time 30 % of the file has been sent from one node to
another. Whether or not this turns out to be a good decision
will depend, of course, on the correlation structure of the data,
as discussed above.

Figure 10 compares the performance of the NSJRC1 and
NSJRC2 heuristic algorithms, SPT routing, and optimal rout-
ing (computed via brute force enumeration) for small-size
networks of up to 10 source nodes distributed in a 20m×20m
square grid (D = 20m). Since the transmission range of
nodes is fixed to be 100m, we have fully connected networks
in which each node has a link to every other node, with
a cost that depends on distance, as described above. Every
point on a curve in Figure 10 corresponds to the average cost
over at least 200 randomly-generated scenarios, and shows the
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95% confidence intervals. Generally, we find that our heuristic
algorithms perform close to optimal for these small problem
sizes, and offer better performance than routing over the SPT
tree.

Figure 11 compares the performance of the NSJRC1 and
NSJRC2 algorithms and SPT routing, for larger network sizes
of up to 250 nodes. Here, the y-axis value represents the
ratio of the cost of routing via the NSJRC1- or JSNRC2-
computed paths versus SPT routing. The results show that
the proposed heuristics clearly outperform traditional SPT
routing (which does not take the potential joint compression
gains into account when determining the SPT path, but does
jointly compress files as they are routed along the SPT path),
especially when the number of source nodes in the network
increases. This is because the average correlation between
nodes increases as number of nodes in the network increase,
while for lower density networks (when we have a smaller
number of nodes in the network) we have less correlation
among network nodes. This also explains the negative gain
for sparse networks when N < 50, since there will be an
incurred penalty for routing the initial file prefix to another
node, only to find that the direct SPT path was indeed the best
path to use. Finally, comparing the performance of algorithms
NSJRC1 and NSJRC2, one can see that for dense networks,
NSJRC1 provides better performance. This results from the

fact that |Sc| increases more slowly than the number of source
nodes in the network and NSJRC2 is a simplified version of
NSJRC1 that applies the leaf deletion heuristic improvement
only to nodes in Sc, with leaf nodes that are not in Sc being
routed over SPT.

V. CONCLUSION

In this paper, we have proposed and evaluated several
practical algorithms for joint routing and compression of data
files as they are forward from remote nodes to a central site,
with the goal of minimizing the communication cost incurred.
The simulation results showed that for small network sizes,
our algorithms perform close to optimal, and for larger net-
work sizes can significantly decrease the cost of routing over
shortest path routing where paths are chosen independently of
the correlation structure of data.

REFERENCES

[1] http://ipmon.sprint.com/index.php.
[2] http://thth.berkeley.edu/tab-db/committeeinfo.php?tcid=10.
[3] http://www.casa.umass.edu/.
[4] http://www.cs.cmu.edu/ vsam/index.html.
[5] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.

Habitat monitoring: Application driver for wireless communications
technology. ACM Sigcomm Workshop, April 2001.

[6] T. P. Coleman, A. H. Lee, M. Medard, and M. Effros. Low complexity
approaches to slepian-wolf near-lossless distributed data compression.
IEEE. Trans. Inform. Theory, 52:3546–3561, August 2006.

[7] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley Sons, New York, 1991.

[8] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated
data gathering. IEEE Infocom, 2004.

[9] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. Networked slepian-
wolf: Theory, algorithms and scaling laws. IEEE. Trans. Inform. Theory,
51:4057– 4073, Dec. 2005.

[10] T. Han. Slepian-wolf-cover theorem for networks of channels. Informa-
tion and Control, 47:67–83, 1980.

[11] T. Ho, M. Medard, M. Effros, and D. R. Karger. Network coding for
correlated sources. CISS, 2004.

[12] W. Hu, V. N. Tran, N. Bulusu, C. tung Chou, S. Jha, and A. Taylor.
The design and evaluation of a hybrid sensor network for cane-toad
monitoring. Information Processing in Sensor Networks, April 2005.

[13] T. Kailath, A. Sayed, and B. Hassibi. Linear Estimation. Prentice-Hall,
2000.

[14] J. Liu, M. Adler, D. Towsley, and C. Zhang. On optimal communication
cost for gathering correlated data through wireless sensor networks.
International Conference on Mobile Computing and Networking, 2006.

[15] S. J. Lord, E. Kalnay, R. Daley, G. D. Emmitt, and R. Atlas. Using osses
in the design of the future generation of integrated observing systems.
Symposium on Integrated Observation Systems, pages 45–47, 1977.

[16] D. S. Lun, M. Mdard, T. Ho, , and R. Koetter. Network coding with a
cost criterion. ISITA, 2004.

[17] R. N. Murty and M. Welsh. Towards a dependable architecture for
internet-scale sensing. Workshop on Hot Topics in Dependability, 2006.

[18] S. Nath, A. Deshpande, Y. Ke, P. B. Gibbons, B. Karp, and S. Seshan.
Irisnet: An architecture for internet-scale sensing services. VLDB, ’03.

[19] S. Pattem, B. Krishnmachari, and R. Govindan. The impact of spatial
correlation on routing with compression in wireless sensor networks.
Symposium on Information Processing in Sensor Networks, 2004.

[20] S. S. Pradhan and K. Ramchandran. Distributed source coding using
syndromes (discus): design and construction. IEEE. Trans. Inform.
Theory, 49:626–643, March 2003.

[21] A. Scaglione and S. D. Servetto. On the interdependence of routing and
data compression in multi-hop sensor networks. ACM MobiCom, 2002.

[22] D. Slepian and J. K. Wolf. Noiseles coding of correlated information
sources. IEEE. Trans. Inform. Theory, 19:471–480, 1973.

[23] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring,
and D. Estrin. Habitat monitoring with sensor networks. Communication
of the ACM, 47(6):34–40, 2004.


