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We present and discuss recent measurements of the fast imaging diagnostic in JET. We focus on wide
angle observations of few large ELM events (DWELM � 700 kJ) in plasmas with high current, magnetic field
and stored energy (�3 T, 3 MA, 8 MJ). Measurements were taken at recording speeds around 30 kHz. The
ELM-wall interaction shows a filamentary structure that appears together with the radiation increase in
the divertor, implying similar times of flight for ELM radial and parallel transport in the SOL, s|| � sr,
within a time resolution of 30 ls. Two high and low triangularity cases are compared. For high triangu-
larity the ELM-wall interaction is seen to start in the upper dump plate reaching the outer limiters some
70 ls later. In the low triangularity cases interaction generally starts in the outer wall but clear evidence
of radiation increase in the upper dump plate is seen shortly after (30 ls) or together with the first fila-
ment impact on the outer limiters. A poloidal drift of the filament strike point on the limiters is some-
times visible which allows an estimation of the perpendicular filament velocity (�1 km/s).

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Fast plasma visible imaging is becoming a common technique
for studying plasma boundary phenomena. Edge turbulence [9,1],
blob propagation in the SOL [4], L-mode filament dynamics [2]
and Edge Localised Mode structure [5] have been investigated by
means of fast visible cameras. The understanding of the ELM drive
and energy exhaust mechanisms is particularly important from an
ITER perspective as they can inflict high power densities on plasma
facing components limiting their lifetime and risking the safe oper-
ation of H-mode plasmas. Experimental validation of existing ELM
[8] and filament energy transport [3] theories is therefore neces-
sary to asses the design of mitigation techniques and first wall
materials. In particular, to predict the maximum local, transient
heat loads on the divertor plates and limiter tiles, the role of the fil-
amentary structures observed during the development of the ELM
instability, their energy content and their radial and parallel
dynamics has to be clarified.
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Fast imaging can be a useful diagnostic to help answering these
and other questions. Such efforts have very recently begun on JET
with the installation of a Photron APX fast camera viewing the full
poloidal cross-section of the vacuum vessel and covering a toroidal
extent of �90�. This wide view setup is suited for the study of large
scale instabilities. Here, we study measurements recorded in a
dedicated session designed to investigate the physics of large ELMs
using plasmas in a vertical target, low triangularity (d � 0.25) con-
figuration at high current (Ip = 3.0 MA, B/ = 3.0 T), high heating
power (PNBI = 15–20 MW) and plasma stored energy (W � 8 MJ)
(see Ref. [6] for more details and results on these experiments).
For the sake of comparison, a high triangularity (d � 0.40) case is
presented the plasma parameters being otherwise similar (see
Fig. 1).

2. Observations and estimations

A few events have been recorded with DWELM approaching 1 MJ.
Camera images have been obtained in visible unfiltered light at
30 kfps (33 ls inter-frame) and with 20 ls integration time.
Field-aligned plasma filaments are visible in the fast camera
images as bright spots on the outboard poloidal limiters and on
the upper dump plates (see Figs. 3 and 5). Timing issues in the
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Fig. 1. Magnetic configurations for the discharges in Figs. 2–6. Left: JET pulse
#70228 at 60.7 s. Right: JET pulse #69903 at 58.5 s. Fig. 2. Time traces of the evolution of two Type-I ELMs the second being a

compound ELM. Vertical red lines mark the time lapse of the image sequences in
Fig. 3. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article).
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hardware prevented absolute comparison of the new camera data
on a fast timescale with other diagnostic signals but, as the camera
observes both regions simultaneously, it is clear (Fig. 3) that the fil-
ament interaction with the main chamber surfaces is coincident
with the very start of radiation increase in the lower divertor re-
gion. If one assumes that filaments were born at the very beginning
of the transport barrier breakdown coincident with the start of the
parallel streaming of energy and particles from somewhere near
the outer mid plane to the divertor, this observation implies a com-
parable radial and parallel characteristic transport times and there-
fore of a radial velocity of the order vr/cs � Dr/L||, where Dr is the
plasma-wall clearance distance. Interestingly, for the two ELMs
in Figs. 2 and 3 interaction with the upper dump plate (Dr = 20 cm;
Fig. 3. Image sequences for the times in Fig. 2. S1 and S2 correspond to the ELM in
4 cm mapped at the outer mid plane) and outer limiters (Dr = 2–
3 cm) start at the same time casting a radial velocity in the range
of few 100 m/s, consistent with the effective velocity of Langmuir
probe ExB flux measurements [7]. From our measurements and
after inspecting the magnetic equilibrium we cannot confidently
say whether the early interaction with the upper dump plate is
due to the radial (upwards) propagation of a filament or to the par-
allel flux of the energy transported to the far SOL by the filaments
observed in the outer mid-plane. The subsequent energy drops and
Da spikes of the second compound ELM in Fig. 2 are seen to be
itial development. S3 and S4 show the aftershock activity of a compound ELM.



Fig. 4. Time traces of the evolution of one Type-I ELM. Vertical red lines mark the
time lapse of the image sequences in Fig. 5. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).
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associated with a radiating belt in the inner divertor and filaments
appearing on the outer mid plane and close to the upper plate (see
Fig. 3). For these ELMs, filaments are evident in the images for a
fraction (�400 ls) of the diamagnetic energy drop period (�2–
3 ms). IR thermography reports on energy deposition in the out-
board limiter of about 10% of the ELM energy for these large ELM
discharges [6].

Figs. 4 and 5 show a Type-I ELM (DWELM � 400 kJ) observed in a
high triangularity configuration. ELM-wall interaction is observed
first at the upper dump plate and at the lower part of the outer wall
(although this can be due to the higher neutral particle density
near the divertor). Two frames (70 ls) later, filaments are found
in the outer mid plane. MARFE-like phenomena are commonly ob-
served in high triangularity discharges. The high parallel energy
fluxes reaching the upper plates increase recycling and neutral
desorption (Fig. 5). A highly radiating neutral cloud is then dragged
along the field lines around the central column until it reaches the
Fig. 5. Image sequences for the times in Fig. 4. S1 corresponds to the ELM initial developm
plate by the ELM energy flux and S3 shows an ELM aftershock with the same interactio
inner divertor region where a radiating belt is also observed. It is
there where most of the ELM radiation power fraction is localised.
As shown in Fig. 5, the ELM aftershocks present an interaction pat-
tern similar to the first ELM strike. For these ELM events, filament
interaction with the wall is observed for most of the energy release
time and their footprints on the limiters are seen to drift poloidaly
(Fig. 6). As the parallel motion of the particles in the filament is
unobservable one can only speak about the perpendicular (i.e. in
the diamagnetic direction) motion of the filament. Using the aver-
age safety factor value in the sepatratrix (q = 5) as the filament tilt-
ing one obtains a perpendicular velocity of 1 km/s. Estimates of
toroidal or poloidal velocities can only be obtained under particu-
lar assumptions on the neat filament velocity.

3. Conclusions

First fast camera measurements of large ELM events on JET have
been presented. We have reported on the observation of clear, field
aligned plasma filaments visible on the images as aligned bright
spots on the outer limiters and upper dump plate. The interaction
with the later is remarkable not only in the high triangularity case
studied but also in some large ELM instances in low triangularity
configurations where it is observed shortly after or together with
the first filament impacts on the outer limiters. For the shots stud-
ied here, the ELM filament radial velocity was estimated to be a
few 100 m/s. In a few cases, the ELM filaments could be tracked
along the surface of the outer limiters, allowing the estimation of
their perpendicular velocity, found to be �1000 m/s. The observa-
tion of compound ELM aftershocks also revealed filamentary struc-
tures. In high triangularity configurations the high fluxes on the
upper dump plate are seen to cause the desorbtion of neutral gas
seen as a highly radiating MARFE-like cloud that is dragged along
the field line around the central column until the inner divertor
region.
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Fig. 6. Evolution of filament impacts on the outer limiters. The poloidal drift of the strike point is attributed mainly to the toroidal rotation of the filament. The interframe
separation is 71 ls (displaying one every two frames). The circles are fixed on the initial position of the interaction point.
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