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Abstract. Prefrontal cortex (PFC) has been implicated in the ability
to switch behavioral strategies in response to changes in reward contin-
gencies. A recent experimental study has shown that separate subpop-
ulations of neurons in the prefrontal cortex were activated when rats
switched between allocentric place strategies and egocentric response
strategies in the plus maze. In this paper we propose a simple neural-
network model of strategy switching, in which the learning of the two
strategies as well as learning to select between those strategies is gov-
erned by the same temporal-difference (TD) learning algorithm. We show
that the model reproduces the experimental data on both behavioral and
neural levels. On the basis of our results we derive testable prediction
concerning a spatial dynamics of the phasic dopamine signal in the PFC,
which is thought to encode reward-prediction error in the TD-learning
theory.

1 Introduction

The ability to switch between different navigational strategies for reaching the
goal is crucial for adaptive spatial behavior. Large body of animal studies sug-
gest a large variety of navigational strategies, which depend on sensory input of
different modalities [1]. Existing lines of experimental research focus on (i) how
the different strategies are implemented in the brain and what memory systems
support them [2–5]; and (ii) what is the mechanism of selection between different
strategies and corresponding memory systems during ongoing behavior [6–8]. In
particular, a series of animal studies in the plus maze (Fig. 1A) provided an
insight into the role of hippocampus (HPC), dorsolateral striatum (DLS) and
prefrontal cortex (PFC) in learning the tasks in which changing reward contin-
gency forced the animals to use either a place strategy or a response strategy. In
the plus maze, the place strategies can be defined as approaching a particular
place associated with reward, e.g. the end of the East arm in the case of strategy
’go East’ (Fig. 1C). The response strategies can be defined as making a particu-
lar egocentric turn at the center, e.g. ’turn left’ strategy (Fig. 1D). Note that if
animals start their trial in the North position, both strategies lead to the same
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location. In contrast, the two strategies lead to different locations if the starting
position is South, permitting the dissociation between the two strategies.
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Fig. 1. Experimental setup in the plus-maze task [8]. A. Plus maze. B-E. Learning
tasks testing response strategies (B,D) and place strategies (C,E). In (B,C) and (D,E)
lower paths are consistent, while upper paths are inconsistent.

Experimental studies in the plus maze have shown that rats with inacti-
vated HPC were strongly biased towards response strategies, while they were
biased towards place strategies when DLS was inactivated [4, 5]. In other ex-
perimental environments a double dissociation between HPC and DLS has been
demonstrated in place-learning and response-learning tasks, respectively [2, 3].
Moreover, recent electrophysiological recordings of PFC neurons while rats were
navigating in the plus maze have demonstrated that different neuronal popula-
tions were active depending on which strategy is currently in use [8]. When rats
had learned that the correct strategy was a place-based one, a subpopulation
of neurons were highly active. When the reward contingency changed so that
the response-based behavior was the only valid strategy, another subpopulation
became active, while neurons in the first subpopulation became silent. In addi-
tion to being a suitable experimental setup for studying strategy learning and
switching, the plus maze is also attractive from the modeling point of view. This
is because the analysis of strategy switching and its neural correlates can be per-
formed at a well defined location (the cross point) where behavior is crucial for
successful performance (in contrast to, e.g., water maze where no such location
can be identified).

The experimental data reviewed above suggest a two-level hierarchical orga-
nization of spatial behavior in the plus maze. On the first level, different neuronal
networks (located in e.g. HPC or DLS) learn corresponding navigational strate-
gies taking a particular sensory modality as an input. On the second level, a
neural network (located in the PFC) learns to choose which strategy is more
successful and gives the control of the behavior to that strategy [9]. In a simple
way, a behavioral strategy can be considered as a rule that determines which of



the available motor actions should be performed when a particular sensory in-
put is observed. Similarly, the strategy switching can be described as the choice
of one of the available strategies, given the sensory input. From a theoretical
point of view, these two learning tasks are identical, assuming that available
motor actions (first level) or available strategies (second level) are encoded by
the activities of neural populations.

Here we were interested to see how far we can go in explaining the behavioral
and neural data by suggesting the learning algorithm is identical on both levels.
The learning algorithm we use is a standard temporal-difference (TD) learning
rule called Q-learning [10]. At the core of TD-learning algorithms is the mini-
mization of a so-called reward-prediction error which is proposed to be coded by
the phasic activity of dopaminergic (DA) neurons in the ventral tegmental area
(VTA) [11]. We have analyzed the learning dynamics of the reward-prediction
error in our model and compared the error propagation on the two levels. Our re-
sults suggest that a two-level organization of behavioral control with TD-learning
on each level is compatible with principal experimental results [4, 8]. In addition,
our model generated testable predictions concerning differences in DA signaling
between HPC and PFC.

2 Model

Our neural network model of navigation consists of three interconnected subnet-
works responsible for response strategy, place strategy and strategy selection,
respectively (Fig. 2). The response-strategy subnetwork learns egocentric move-
ments such as, e.g., turning left, while the place-strategy subnetwork learns to
enter a particular arm. The strategy-selection network learns to choose which
strategy will take control of behavior on each time step. In our model, the three
subnetworks functionally correspond to different neural structures in the rat
brain that are implicated in spatial learning. Namely, the response subnetwork
corresponds to the DLS, the place network corresponds to the HPC, while the
selection network corresponds to the PFC.

Each of the three subnetworks has the same simple architecture of a single-
layer perceptron in which learning occurs according to a TD learning rule. The
input layer encodes sensory input to the network, while the output layer rep-
resents actions that this network generates. The subnetworks are hierarchically
organized in two levels: the two subnetworks of the lower level learn the place
and response strategies, while a single subnetwork of the upper level (strategy
selection network) learns to select which of the two subnetworks of the lower
level will take control over behavior. The selection is assumed to occur by in-
hibiting the motor output of the non-winner strategy. Below we describe the
inputs, outputs, and learning in the different subnetworks.

2.1 Place learning

Place strategy was implemented as follows. Input to the network was represented
by the activities of Npc place cells with Gaussian spatial receptive fields, centers
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Fig. 2. The architecture of the model. SC – sensory cells, PC – place cells, RAC –
response-action cells, PAC – place-action cells. Open (filled) circles denote inactive
(active) cells; the large open arrows denote all to all feed-forward projections between
corresponding neural structures; the large filled arrows denote motor output of the
model; small filled arrows denote preferred direction of the action cells in these struc-
tures; ball-arrows denote inhibition.

of which were distributed uniformly over the environment. More precisely, the
activity of place cell j was calculated as rP

j = exp(−d2
j/2σ2), where σ is the

width of animal in the maze and the center of the j-th receptive field. Place cells
projected to place-action cells aP

i with weights wP
ij . Four place-action cells coded

for movements in allocentric directions East, West, North and South. Activities
of the place-action cells were calculated according to Eq. 1, and the weights were
updated using Eq. 2 on each time step. An allocentric movement, proposed to
be performed on the next time step by the place strategy, was chosen on the
basis of response-action cell activities according to Eq. 4 on each time step.

2.2 Response learning

In the response strategy network, input cells were Nsc sensory cells that coded
for the presence of walls around the simulated rat. All sensory cells were divided
into four subpopulations coding for the space in front of the rat, left from the
rat, right from the rat and behind the rat, respectively. Presence or absence of
a wall at a specified egocentric direction from the rat (and hence the ability to
move in this direction) was encoded by setting activities rsc

j of the corresponding
sensory cells to 0 or 1, respectively. Sensory cells projected to response-action
cells aR

i with weights wR
ij . Four response-action cells coded for movements in

egocentric directions Forward, Leftward, Rightward and Backward. Activities of
the response-action cells were calculated according to Eq. 1, and weights were



updated using Eq. 2 on each time step. An egocentric movement, proposed to be
performed on the next time step by the place strategy, was chosen on the basis
of response-action cell activities according to Eq. 4 on each time step.

2.3 Strategy-selection learning

In the strategy selection network, input was represented by the combined ac-
tivities of Npc + Nsc input cells from place and response strategy networks. An
intuition for this particular choice of input is the following: given all available
information at the current state, the selection network decides which strategy
should be chosen to take control over behavior. Input cells projected to strategy-
selective (action) cells aS

i with weights wS
ij . Two strategy-selective cells coded

for place and response strategies, respectively. Activities of the strategy-selective
cells were calculated according to Eq. 1, and the weights were updated using Eq. 2
on each time step. One of the strategies (the winner strategy) was selected on
the basis of activities of the strategy-selective cells according to Eq. 4 on each
time step. The next movement actually performed by the simulated rat was the
one proposed by the winner strategy.

2.4 Experimental setup and simulation procedure

All simulations were performed in a simulated plus-maze environment (Fig. 1A)
with length L between the ends of the opposite arms (in arbitrary units, see all
parameter values in Table 1). All results were averaged over 100 simulated rats.
The noise in the model comes from (i) pseudo-random choice in starting position
and (ii) stochastic action choice, see Section 2.5 below.

At the start of a trial, each simulated rat was put in one of the starting
positions (either N or S in Fig. 1A) and allowed to reach one of the goal arms
(either E or W in Fig. 1A). Starting positions were chosen in a pseudo random
order, while the goal position on each trial was chosen depending on the reward
contingency (see Fig. 1B). For example, if the task was ‘response right’ and the
starting position was S, then the goal position was set to be E. If a simulated
rat started from position S (N), the entrance to northern (southern) arm from
the center was blocked.

The simulated rats were tested in either strategy switches or strategy re-
versals. During strategy switches, different simulated rats were first trained in
either place or response task (see Fig. 1B). After 200 trials of training the task
was changed to the task of the other type (if it was a response task in the first
phase, it changed to a place task for the second phase, and vice versa). During
strategy reversals, the first phase of training was the same as during strategy
switches; however, in the second phase the task was of the same type but with
a different reward contingency (if it was, e.g., a ‘response left’ task in the first
phase, it changed to ‘response right’ for the second phase).

Upon reaching the goal arm, the rat was given reward Rt = R (see Eq. 3
below and Table 1) and a new trial started. All other actions resulted in Rt = 0.



An attempt to backtrack, or reaching the arm opposite to the goal arm resulted
in starting a new trial (backtracks were not counted as trials).

2.5 Learning equations

Basic learning equations implemented a standard Q-learning algorithm [10] in
which states and actions were encoded in the firing rates of activities of artificial
neurons [12, 13]. More precisely, a state st at time t was represented by the
activities of input units rstate

i (t), which projected via connections with weights
wij to action units with activities raction

i :

raction
i (t) =

∑

j

wijr
state
j (t) (1)

Each action unit i represented an action ai available in the state st. Activity of an
action cell (Eq. 1) was interpreted as the Q-value Q(st, at) of performing action
at at state st. In the present notation, symbol ai denotes i-th action available
at the current state, while at denotes the action actually chosen at time t from
the available actions, thus ∀t ∃i : at = ai.

During learning, weights wij were adjusted on each time step according to a
TD-learning rule:

∆wij(t) = ηδ(t)eij(t) (2)

where η is the learning rate,

δ(t) = Rt + γQ∗(st, at) − Q(st−1, at−1) (3)

is the reward prediction error and eij(t) is the eligibility trace that represents the
memory of past actions. The eligibility trace of a synapse [10] was increased each
time the synapse had participated in generating a movement, i.e. eij(t + 1) =
eij(t) + rstate

j if action ai was performed at time t. All eligibility traces decayed
with time according to eij(t + 1) = γλeij(t), where 0 < γ, λ < 1. In Eq. 3,
Q∗(st, at) = maxi Q(st, ai) is the Q-value of the optimal action at state st.

Outcomes of different actions at different states need to be explored in order
to learn action values. Exploration was ensured by choosing actions stochastically
in each state using softmax algorithm, i.e. the probability of choosing action ai

at time t was calculated according to

p(at = ai) = exp(βai)/
∑

i

exp(βai) (4)

with β as a constant parameter. We also tested ǫ-greedy criterion for action
selection, in which an optimal action is chosen with probability 1-ǫ and a random
action is chosen otherwise. Results were similar to those reported here (we used
ǫ = 0.1).



Maze length L 7.0
Size of input populations Npc, Nac 13
Q-learning parameters γ, λ 0.9
Reward for reaching the goal R 10.0
Learning rate η 0.05
Softmax parameter β (selection network/strategy networks) 1.0 / 4.0
Place field width σ 0.4

Table 1. Model parameters.

3 Results

3.1 Learning switches and reversals

Learning performance was estimated by calculating a mean number of failures
across training trials, for strategy switches and for reversals (Fig. 3). An outcome
of a trial was defined as a failure if the simulated rat reached the arm opposite
to the goal arm at the end of the trial, and a success when the rewarded arm was
reached. Criterion of 80% of correct trials in the last 40 trials [8] was reached
within less than 100 trials for switches and reversals (red solid lines in Fig. 3),
similarly to rats. For the purposes of subsequent analysis, we defined a ‘before’
phase as the period between the trial in which the criterion was reached for
the first time and the trial where task contingencies changed; an ‘after’ phase
corresponded to the period after the trial when the criterion was reached after
the contingency change and until the end of training (see Fig. 3A).

3.2 Activity of modeled prefrontal neurons during behavior

Next, we analyzed the activity of strategy-selective neurons during behavior. The
focus was on the activity at the choice point of the simulated maze, since only at
this position a difference in the activities is crucial for successful performance.
During switches from a response to a place strategy, the response-strategy neu-
ron was significantly more active than the place-strategy neuron during ‘before’
phase, while the activity pattern reversed during the ‘after’ phase (Fig. 4A).
In the model, this is a consequence of the fact that for a reward contingency
corresponding to response strategy, place strategy is able to correctly predict
reward only in approximately half of the trials. Conversely, when the contin-
gency corresponds to the place strategy, reward predictability of the response
strategy is only about half of that of the place strategy. The activity of the
strategy selective neurons in our model resembled the persistently changing cells
recorded by Rich & Shapiro (2009) [8] (≈24% of all cells recorded from PFC
during strategy switches). Persistently changing cells were defined as cells that
fired at significantly different rates during the ‘before’ and ‘after’ phases.

The advantage of the experimental setup used by Rich & Shapiro (2009)
is that the selectivity of neural activity to a particular strategy can be disso-
ciated from the selectivity to other behavioral variables. To clarify this idea,
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Fig. 3. Model performance during strategy switches (A,B) and reversals (C,D). Black
lines show the mean number of failures as a function of trials. Red solid and dotted
lines show mean trial number ± SD at which the criterion was reached (see text).

consider all trials started in e.g., North position (see Fig. 1). When switching
from, e.g., response strategy ‘turn left’ to place strategy ‘go east’, the ‘north-to-
east’ path remains to be a valid (or consistent) path, in spite of being controlled
by another strategy. In contrast, the ‘south-to-west’ path which was a valid path
before the switch, becomes invalid (or inconsistent) after the switch. Therefore,
in order to show that putative strategy-selective neurons respond specifically to
strategy switches, but not to other behavioral and motor variables, one has to
demonstrate that these neurons change their activity while the rat runs along
the consistent path before and after the switch. This is true for strategy-selective
cells in our model. In spite of the fact that on the consistent paths the simulated
rats made the same turns before and after the switch, these turns were controlled
by the response strategy before the switch and by the place strategy after the
switch. The change in strategy is reflected by the corresponding change in the
firing rate of strategy-selective cells in our model (Fig. 4B).

Conversely, putative strategy-selective neurons should fire with similar rates
when strategy remains the same but behavior changes (e.g. when starting from
the opposite arms of the maze). This is so in our model, as demonstrated by
similar rates of response-strategy cell before the switch, when starting from dif-
ferent starting positions (Fig. 4C). The same is true for the place-strategy cell
after the switch (Fig. 4D).

Finally, putative strategy-selective neurons should be sensitive to changes in
strategy, but not to changes in reward contingency when the strategy remains the
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Fig. 4. Activity of the response-strategy (blue) and place-strategy (red) cells during
switches (A-D) and reversals (E,F). A. Cell activity during reversal from response
(‘left’) to place (‘east’) task. B. The same data as in A, but only successful trials from
position N are shown (i.e., only for consistent paths). C,D. Activity of the response-
strategy neuron during the ‘before’ phase (C) and of the place strategy neuron during
the ‘after’ phase (D). The neural activities are grouped according to starting positions.
E,F. Cell activity during response (E) and place (F) reversal.

same (as in reversals, [8]). Thus, if paths and contingency change, but strategy
remains the same, as in reversals, strategy-selective neurons should fire with
similar rates after the change in contingency. This is indeed so in our model,
since the response-strategy cell fired with similar rates during the ‘before’ and
‘after’ phases in response reversal (Fig. 4E); similarly, the place-strategy cell fired
with similar rates before and after spatial reversal (Fig. 4F). This is in contrast
to the case when contingency, paths and strategy change, where neurons change
significantly their rates as shown in Fig. 4A (the figure is similar in the case of
switch from place to response strategy, not shown).

3.3 Prediction about DA activity in the PFC during strategy

switches

The results above suggest that different strategies are indeed encoded in the
activities of the strategy-selective cells in our model, in a manner resembling
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Fig. 5. A. Evolution of the distance between peak δ location and the goal across trials
for place-strategy network (red) and strategy-selection network (black). The distance
is measured by fractions of total distance L of the maze: 0 corresponds to reward site,
while 1 corresponds to start position. The starting positions were either N or S in
pseudo-random order, the goal warm was fixed (E). B. Evolution of Q-values of the
response strategy (blue) and place strategy (red) across trials. For this simulation, we
decreased the learning rate to η = 0.001 in order to minimize the influence of noise.
The starting position (south) and goal location (north) were constant for all trials.

the strategy encoding by the rat PFC neurons [8]. It is interesting to see what
predictions can be derived from this simple model. The principal feature of the
TD learning algorithm that is used in our model to learn strategies and strat-
egy selection is the reliance on the reward-prediction error δ (Eq. 3). It has
been hypothesized that activities of dopaminergic neurons in the VTA encode
the reward-prediction error [11]. This hypothesis is supported by experimental
data from conditioning experiments showing that DA activity is increased im-
mediately after reward delivery in the beginning of learning, while after learning
the increase in DA activity occurs upon the presentation of a reward predicting
stimulus, i.e. before the reward is received [14]. If this hypothesis is true, then
reward propagation dynamics in our model may suggest how DA activity should
change during goal learning in our plus-maze navigation task

In order to describe the reward propagation dynamics, we measured the evo-
lution across trials of the mean distance between the location where δ was max-
imal and the goal location for the place-strategy network and strategy selection
network during a stable performance session (i.e., 400 trials with pseudo-random
starting positions and a fixed goal arm). Similarly to what has been observed in
the conditioning experiments [14], the peak of δ propagated from the reward site
to locations closer to the starting position (Fig. 5A). In terms of DA signaling,
this corresponds to the shift of a peak in DA activity away from the reward site
with training. Moreover, in our simulation the peak of δ shifted further from
the goal in the place strategy network than in the strategy selection network (as
shown by the difference between the red and black lines in Fig. 5A). Thus, the
general testable prediction derived from our model is that propagation of the
peak DA signal in the prefrontal cortex will be limited by the choice point of the
maze.



4 Discussion

We presented a simple model of strategy switching in the plus maze in which
place and response strategies, as well as selection between those strategies, were
learned using a standard Q-learning TD algorithm. The architecture of the model
can be directly mapped to the architecture of neuronal networks implicated in
navigation. In spite of its simplicity, the model has been able to learn success-
fully spatial reversals, response reversals and strategy switches in the simulated
plus maze task. The learning time was comparable to the learning time of real
rats in behavioral experiments [8]. Moreover, activities of strategy-selective cells
in the selection model were similar to those of strategy-selective biological neu-
rons recorded from the PFC of behaving rats. In addition, a testable prediction
concerning DA signaling in the PFC has been derived from our modeling results.

There are several limitations of the presented model in relation to available
experimental data concerning the role of prefrontal cortex in behavior. First, it is
known that strategy switches and reversals in the plus maze are mediated by dif-
ferent subareas of the prefrontal cortex, medial PFC (mPFC) and orbito-frontal
(OFC) cortex, respectively [6, 7]. Moreover, there is experimental evidence sug-
gesting hierarchical organization of these two subareas [15]. In our model, both
switches and reversals are learned within a single network which can be consid-
ered as a combined model of mPFC/OFC. We will address the differential roles
of mPFC and OFC in future versions of the model. Second, it has been shown
that when rats were trained to perform multiple strategy switches, lesions to
mPFC did not impair switching performance after the third switch. These data
suggest that by the third switch rats acquired a mPFC-independent strategy
(possibly depending on reactive or habitual mechanisms) which allowed them
to immediately switch strategy when reward was not obtained in the predicted
location. Our model can not explain these data, since from the point of view of
the selection network all switches are identical. Finally, our model is only par-
tially consistent with the data suggesting that place strategy is preferred early in
training, while this preference shifts towards response strategy with prolonged
training [4]. In Fig. 5B, we plot the evolution of the Q-values for the response
and place strategies (which are equal to the activities of strategy-selective cells
in the selection network) across trials. The Q-value for the response strategy at
the asymptote of training is higher than that for the place strategy, consistent
with the preference for the response strategy after overtraining. However, this
result is the consequence of the particular model of the sensory input that we
chosen for the response-strategy network and hence is not general enough to
provide a valid explanation for the experimental data. A more detailed model of
sensory input (see, e.g. [13]) may be required to make a stronger claim.

The architecture of the model presented here is similar to a model proposed
previously [16, 17]. However, the learning algorithm is substantially simplified
and is identical in the strategy learning networks and in strategy selection net-
work, greatly simplifying the analysis of the model. In addition, we provide a
comparison between strategy selective neurons in our model with new data from
experimentally recorded mPFC neurons. Finally, we note that the number of



input cells in the model can be increased without decreasing the model’s per-
formance. We used a small number of cells to speed up simulations, but any
number of input cells can be used.
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