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Abstract

In point-to-point source-channel communication with a fidelity criterion and a
transmission cost constraint, the region of achievable cost and fidelity pairs is
completely characterized by Shannon’s separation theorem. However, this is in
general only true if coding of arbitrary complexity and delay is admitted. If
the delay is constrained, the separation theorem only provides an outer bound
to the achievable cost/distortion region, and the exact shape of this region is
in general not known.

The first part of this thesis studies source-channel communication when
neither a required average fidelity nor a cost constraint are specified, but when
the goal is to maximize the ratio of fidelity to cost. It is shown how the maximal
ratio relates to existing quantities such as the capacity per unit cost. Finally,
necessary and sufficient conditions are derived to test whether a given system op-
erates at this maximal ratio and when this is possible using a single-letter code.

The second part of the thesis studies communication of continuous-valued
sources over the additive white Gaussian noise channel when only a single
source symbol is to be encoded at a time. In particular, the case is considered
where several uses of the channel can be made for each source symbol. Inspired
by communication with feedback, a simple communication strategy combining
quantization and uncoded transmission is derived and analyzed. It is shown
that this strategy achieves a mean squared error that performs as well as any
known communication strategy that encodes a single source symbol at a time.
On the other hand, it is strictly suboptimal in the sense that the gap (in dB)
between the achievable signal-to-distortion ratio (SDR) and the best SDR
achievable without a delay limit grows with increasing signal-to-noise ratio.

The thesis turns to a more practical subject in its last part. The case is
made why object-oriented programming is particularly suited to implementing
simulations. As a proof of concept, a complete implementation of an object-
oriented simulator for source-channel coding is presented that allows for rapid
development and analysis of arbitrary communication strategies.

Keywords: discrete-time memoryless sources, discrete-time memoryless chan-
nels, joint source-channel coding, bandwidth expansion, delay, feedback, capac-
ity per unit cost, fidelity per unit cost, simulation, object-oriented programming
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Kurzfassung

Shannons Separationstheorem liefert eine exakte Charakterisierung der Region
der erreichbaren Qualität/Kosten-Paare für die Übertragung einer Informations-
quelle über einen rauschenden Kanal. Dies aber nur für den Fall, dass eine belie-
big grosse Verzögerung in Kauf genommen wird. Ist die tolerierbare Verzögerung
begrenzt, so erhält man durch das Separationstheorem lediglich eine äussere
Schranke dieser Region; ihre genaue Form ist im Allgemeinen nicht bekannt.

Der erste Teil dieser Dissertation befasst sich mit der Übertragung einer
Quelle über einen Kanal, wenn es gilt, das Verhältnis der Wiedergabequalität zu
den Übertragungskosten zu maximieren. Es wird eine Verbindung zwischen dem
höchstmöglichen solchen Verhältnis und existierenden informationstheoretischen
Grössen hergestellt. Zudem liefert dieser Teil exakte Bedingungen, unter welchen
ein Punkt-zu-Punkt-Kommunikationssystem das Maximum erreicht.

Der zweite Teil der Dissertation befasst sich mit der Übertragung einer stetig-
wertigen Quelle über einen Kanal mit additivem weissem gaussschem Rauschen,
wenn jedes Quellensymbol separat kodiert werden muss. Es geht im Speziellen
um den Fall, dass für jedes Quellensymbol mehrere Übertragungen durchgeführt
werden können. Dazu wird ein einfaches Verfahren vorgestellt, welches von
einem bekannten Rückkopplungsverfahren inspiriert ist und asymptotisch eine
mittlere quadratische Abweichung erreicht, die so gut wie die besten bekannten
Verfahren ist. Andererseits reicht die Leistung dieses Verfahrens nicht an die
theoretischen Schranken, welche ohne Beschränkung der Verzögerung erreicht
werden können, heran. Weiter wird gezeigt, dass eine Erweiterungen des Ver-
fahrens auf grössere Blocklängen derselben Leistungsbeschränkung unterliegt.

Der dritte und letzte Teil greift ein etwas handfesteres Thema auf, na-
mentlich die Computersimulation von Übertragungsverfahren. Die These, dass
sich objektorientierte Programmierung besonders für Simulationen eignet wird
aufgestellt und durch die Präsentation eines kompletten Simulators für Punkt-
zu-Punkt-Übertragung untermauert. Dieser Simulator erlaubt es, beliebige Kom-
munikationsverfahren besonders schnell zu implementieren und zu analysieren.

Stichwörter: zeitdiskrete gedächtnislose Quellen und Kanäle, kombinierte
Quellen-Kanal-Kodierung, Erweiterung der Bandbreite, Verzögerung, Rück-
kopplung, Kapazität pro Kosteneinheit, Wiedergabequalität pro Kosteneinheit,
Simulation, objektorientierte Programmierung
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Introduction

The task of the communication engineer is to process information and to
transform it such that it can be transmitted reliably across an unreliable medium.
The information can be bits from a computer file, an audio signal recorded
from a microphone, images captured by a TV camera, or any other physical
signal. The unreliable medium is for example a wire undergoing corruption by
thermal noise at the receiver, a wireless link subject to interference from other
transmitters, or a hard disk with occasional read errors.

The processing of information at the transmitter is called encoding. It is
usually done on blocks of data. For example, one kilobyte of a file is encoded at
a time, or one second of recorded voice. The more information is encoded at
once, the better the reconstruction quality one can expect at the receiver. This
is because a longer sequence of data is more likely to contain a structure that
can be efficiently exploited.

However, encoding long blocks of data at a time causes delay, as the encoder
has to wait until the source has produced enough data. Suppose your cell phone
encoded ten seconds of audio at once. This may increase the quality of your
voice at the receiver, but your conversation partner will hardly care about this
if she hears your voice only ten seconds after you have started talking.

The subject of this thesis is communication under a strict delay constraint.
In particular, the following themes are addressed.

Themes

• Minimal-Delay Source-Channel Coding. If coding delay and com-
plexity is unconstrained, the region of achievable cost and distortion pairs
for a given source, channel, cost measure and distortion measure is com-
pletely characterized by Shannon’s separation theorem. On the one hand
this theorem provides an outer bound to the achievability region; on the
other hand it shows that any point in this region can be achieved using
separate source and channel coding. Under a delay constraint, however,
only the outer bound applies, and the exact achievability region is no
longer known.

This thesis considers the strictest form of a delay constraint, where a
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2 Introduction

single source symbol is to be encoded at a time. The focus is on the
situation where the channel accepts inputs for transmission at a higher
rate than the source produces them (this is sometimes called bandwidth
expansion). The analysis is concentrated on the Gaussian channel with
an input power constraint and the squared error distortion measure.

• Optimal Cost–Fidelity Ratio. The source-channel communication
problem represents a tradeoff between cost and fidelity. Usually, the goal
is either to maximize the fidelity obtained for a fixed transmission cost
constraint, or to minimize the cost required to achieve a given fidelity
of reproduction. The bigger the cost one is willing to pay, the bigger a
fidelity one can obtain.

An alternative point of view is to look at the ratio between cost and
fidelity. This is the approach taken in Chapter 2 of this thesis, where the
question of interest is how to characterize the largest fidelity per cost.

• Simulation. For the communication engineer, simulations are a valuable
tool. For all their limitations, they not only help to quickly test new
ideas and to determine which ones deserve a more thorough theoretical
analysis, but they also allow one to perform a reality check on theoretical
derivations.

The ideas to be simulated are in most cases simple enough that an engineer
can write a complete simulator from the ground up. Over time, however,
simulation code often becomes cluttered up from countless modifications
in countless places, which gradually decreases clarity and productivity.
Sometimes the original code changes so much that it is no longer possible
to reproduce previous results.

In Chapter 5, this thesis explores how the object-oriented programming
paradigm helps to manage the complexity of simulators while at the same
time allowing rapid, undistracted implementation of new communication
strategies.

Contributions

1. Characterization of Optimal Fidelity–Cost Ratio. The three prob-
lems of source coding with a fidelity criterion, channel coding with an
input cost constraint, and reproducing a source across a noisy channel all
face a similar tradeoff between resource and performance. Of particular
interest is the operating point with the highest performance per resource.
In the case of channel coding, channel input cost is traded for rate, and
the optimal tradeoff corresponds to the capacity per unit cost, a subject
that has been well studied in the past. This thesis defines the equivalent
notions of fidelity per unit rate for the source coding problem and fidelity
per unit cost for the end-to-end source-channel communication problem
and shows how they relate.
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2. Matching Conditions for Fidelity Per Unit Cost. It is known that
when the channel transition distribution, the input distribution, and the
input cost measure are matched in a particular way then the channel
operates at capacity. Here a refined condition is provided under which
the channel operates at capacity per unit cost. The condition under
which a source operates at the rate-distortion function is refined in a
similar way. When combined, these refined conditions yield a necessary
and sufficient condition for a source-channel communication system to
operate at fidelity per unit cost.

3. Asymptotic Performance of a Minimal-Delay Communication
Strategy. A simple hybrid transmission strategy to transmit a single
continuous-valued source symbol across n uses of a Gaussian channel is
analyzed. It consists of repeatedly quantizing the source symbol, trans-
mitting the quantizer outputs in the first n− 1 channel uses, and sending
the remaining error uncoded in the nth channel use. This thesis provides
the first exact characterization of the best asymptotic behavior of this
strategy at large signal-to-noise ratios. It is shown that the asymptotic
performance (signal-to-distortion ratio) achieved by the hybrid strategy
is strictly bounded away from that achievable without a delay constraint,
and that the gap (in dB) to the optimum increases with increasing
signal-to-noise ratio.

4. Extensions of Minimal-Delay Communication Scheme. Two ex-
tensions to the hybrid scheme are provided. The first extension is to
encode several source symbols at a time using vector quantization with
lattices. The second extension is to encode not one, but k source symbols
into n channel uses, where 1 < k < n. It is found that for a fixed ratio
k/n, these extensions are subject to the same asymptotic performance
limits (at large SNR) as when a single source symbol is encoded at a
time, no matter how large k and n are.

5. Connection to Feedback. It is well known that a Gaussian source
can be communicated optimally with minimal delay across n uses of
a Gaussian channel if the encoder has access to perfect feedback from
the receiver. In this work, the use of the hybrid communication scheme
sketched above is justified by drawing on insights from the case with
feedback. Furthermore, it is shown that there are clear parallels between
this point of view and the more traditional way of analyzing minimal-delay
source-channel codes geometrically.

6. An Object-Oriented Source-Channel Coding Simulator. A full,
workable implementation of a joint source-channel coding simulator in
MATLAB is presented. It allows rapid testing of ideas, while its structure is
such that the code remains clean even when many different configurations
exist.



4 Introduction

Outline

Chapter 1 introduces the fundamentals of the source-channel communication
problem and defines the relevant performance measures as well as their theoret-
ical limits. This is followed by a review of the general conditions required for a
system to operate at these limits, i.e., on the border of the region of achievable
cost and distortion pairs. In addition, the “measure matching” perspective is
reviewed, where an optimal system is characterized in terms of a match between
the various quantities of the system.

Chapter 2 establishes an upper bound to the average fidelity per cost of a
point-to-point source-channel communication system and shows that this bound
is tight. It then extends the measure matching point of view to this problem,
yielding necessary and sufficient conditions for a communication system to
operate at the maximal fidelity per cost ratio.

Chapters 3 and 4 deal with delay-limited block codes for the Gaussian
channel. If one channel use is available per source symbol, it is well known that
uncoded transmission (with minimal delay) achieves the same performance
as the best codes with unconstrained delay. If more than one value can be
transmitted across the channel per source symbol, a similarly simple optimal
scheme exists only if the encoder has perfect feedback. These optimal schemes
are revisited in Chapter 3, and it is shown how uncoded communication
can be exploited even in the absence of feedback. This results in an alterna-
tive justification for a well known hybrid communication strategy combining
quantization and uncoded transmission.

This hybrid strategy is described in detail in Chapter 4, which then derives
asymptotic upper as well as lower bounds on the achieved mean squared error as
a function of the SNR and shows that they coincide. The hybrid communication
scheme is extended to two more general cases, and the respective asymptotic
performance is given. The last section of the chapter looks ahead and suggests
possible directions to obtain a more general characterization of the performance
of minimal-delay schemes.

Chapter 5 is of a more practical nature. It argues that object-oriented
programming is particularly suitable for implementing simulations and presents
a complete simulator for joint source-channel coding that allows for fast and
easy testing of arbitrary point-to-point communication schemes.

Lastly, Chapter 6 presents conclusions and possible directions for future
research.



Fundamentals of
Source-Channel
Communication 1
Source-channel communication under a delay constraint is a rather marginal
topic in information theory. The main reason is perhaps that two pillars of
information theory, Shannon’s source coding and channel coding theorems, are
asymptotic results and the codes they use are not allowed if one is restricted
to operate on sequences of short length.

This chapter has two goals. The first goal is to introduce the source-channel
communication problem in its generality. The second goal is to quote the
relevant previous work in order to set the stage for the chapters ahead.

Section 1.1 starts the chapter by introducing the elements that make up the
source-channel communication problem and by defining the performance criteria
of interest. The known fundamental limits for these criteria are then reviewed
in Section 1.2. Section 1.3 considers the conditions for a given communication
system to achieve the theoretical performance limits. Furthermore, this section
cites results from previous work that characterize an optimal communication
system in terms of a “match” between the quantities that make up the system.
Lastly, Section 1.4 provides a preview of the remaining chapters and positions
these chapters within the larger framework.

1.1 Problem Set-Up

This thesis is about point-to-point communication of a memoryless source
across a memoryless channel. In its most general form, this problem is made
up of the following six elements, displayed schematically in Figure 1.1.

• A discrete-time memoryless source with distribution PS, producing a
source symbol every τs seconds.

5



6 Fundamentals of Source-Channel Communication

source
PS

encoder
f(·)

channel
PY |X

decoder
g(·) destination

Sk Xn Y n Ŝk

Figure 1.1: A general memoryless point-to-point communication system.

• A discrete-time memoryless channel with transition distribution PY |X ,
accepting an input symbol for transmission every τc seconds.

• An encoder function f that maps a block of k source symbols Sk =
(S1, . . . , Sk) into n channel input symbols Xn = (X1, . . . , Xn).

• A decoder function g that maps a block of n channel output symbols
Y n = (Y1, . . . , Yn) into k source estimates Ŝk = (Ŝ1, . . . , Ŝk).

• A cost measure ρ(x) that assigns a transmission cost to each channel input
symbol, and a distortion measure d(s, ŝ) that assigns a reconstruction
“badness” to every pair of source symbol and estimate.

To match the number of channel inputs produced by the encoder to the rate
at which the channel accepts them, k and n must satisfy n/k ≤ τs/τc. The
communication consists thus of identical rounds of transmission of length kτs
(or nτc).

If the discrete-time source and channel represent an underlying continuous
bandlimited source and channel, the sampling theorem relates τs and τc to
the respective bandwidths. If τs = τc, one therefore says that the source and
channel are bandwidth matched. Correspondingly, a code is said to be bandwidth
matched if k = n, to be a bandwidth expansion code if k < n, and to be a
bandwidth compression code if k > n.

The source and the channel, together with the encoder and decoder, imply
a joint distribution of the tuple (Sk, Xn, Y n, Ŝk). Depending on the encoder,
the sequence of channel inputs Xn may not be identically distributed; similarly,
the marginal (joint) distribution of the source/estimate pairs (Si, Ŝi) may not
be the same for all i. The average cost and distortion of a communication
system are therefore defined as the empirical average over a block of channel
inputs and source symbols, respectively.

Definition 1.1. The average channel input cost incurred by a memoryless
point-to-point communication system is

P =
n∑
i=1

E[ρ(Xi)],

where the expectations are taken over the marginal distributions of the Xi.



1.2. Fundamental Limits of Performance 7

Definition 1.2. The average distortion incurred by a memoryless point-to-
point communication system is

D =
k∑
i=1

E[d(Si, Ŝi)],

where the expectation is taken over the joint distribution of Si and Ŝi.

Definition 1.3. The capacity-cost function of a channel PY |X with cost func-
tion ρ(x) is

C(P ) = max
PX :E[ρ(X)]≤P

I(X;Y ).

Definition 1.4. The rate-distortion function of a source PS with distortion
measure d(s, ŝ) is

R(D) = min
PŜ|S :E[d(S,Ŝ)]≤D

I(S; Ŝ).

1.2 Fundamental Limits of Performance

The goal of source-channel communication is to transmit a source at a low
cost of transmission and with a reconstruction at the receiver that has little
distortion from the original. The region of achievable cost and distortion pairs
is thus fundamental in establishing the best possible performance of a given
communication problem.

Definition 1.5. For a given source PS producing a symbol every τs seconds, a
channel PY |X accepting an input every τc seconds, a cost measure ρ(x) and a
distortion measure d(s, ŝ), the achievable cost/distortion region is the set of
all pairs (D,P ) for which there exists a sequence of codes that approach the
distortion D and the cost P in the limit.

The most fundamental bound on the achievable cost/distortion region is
given by the following result [33, Theorem 21].

Theorem 1.1. In any memoryless point-to-point source-channel communica-
tion system, the average cost P and the average distortion D are related by

kR(D) ≤ nC(P ). (1.1)

Proof. See Appendix 1.A.

Because R(D) is a decreasing function of D and C(P ) is an increasing
function of P , Theorem 1.1 can alternatively be written asD ≥ R−1((n/k)C(P ))
or P ≥ C−1((k/n)R(D)). It thus specifies the smallest distortion achievable for
a given cost constraint or the smallest cost required to achieve a given distortion,
respectively, and so provides an outer bound to the achievable cost/distortion
region. Regardless of how powerful an encoder and decoder are, the incurred
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P

D

achievable
region

Figure 1.2: Schematic display of the achievable cost and distortion region that
follows from Theorem 1.1.

cost and distortion always lie in the region specified by (1.1); this is illustrated
in Figure 1.2. Note also that (1.1) only depends on the ratio k/n, so that the
same bound applies to a code that encodes 1000k source symbols into 1000n
channel inputs.

This theorem is often referred to as the converse part of the separation
theorem, because it establishes that a (D,P ) pair which cannot be achieved
(or approached) using separately performed source and channel coding cannot
be achieved at all. However, the theorem should not only be seen in relation
to separation-based coding. In fact, while the forward part of the separation
theorem (given for reference in Appendix 1.B) is only valid if one allows for
codes of unrestricted delay (and complexity), Theorem 1.1 applies to all codes
and is thus in a way more general than the forward part. In particular, it also
applies to codes with limited delay, which are a central subject of this thesis.

1.3 Optimality Conditions

For the purpose of this chapter, an optimal communication system is defined
as follows.

Definition 1.6. An optimal communication system is a communication system
whose average cost and distortion satisfy (1.1) with equality.1

By going step by step through the inequalities in the proof of Theorem 1.1,
the following result can be established.

Theorem 1.2. A point-to-point memoryless communication system is optimal
according to Definition 1.6 if and only if the following conditions are all satisfied.

1This is not the strictest form of optimality, and it precludes the existence of optimal
communication systems in some situations, for example when maxD R(D) < minP C(P ). See
Gastpar [12] for a more general definition of optimality.



1.3. Optimality Conditions 9

1. For each i = 1, . . . , k, the joint distribution p(si, ŝi) achieves the rate-
distortion function of the source such that

R

(
1

k

k∑
i=1

E[d(Si, Ŝi)]

)
=

1

k

k∑
i=1

R
(
E[d(Si, Ŝi)]

)
.

2. The reverse test channel p(sk|ŝk) factors as
∏k

i=1 p(si|ŝi).

3. The encoder is information lossless in the sense that it satisfies

I(Sk;Y n) = I(Xk;Y n).

4. The estimate sequence Ŝk is a sufficient statistic for Sk given Y n. (Equiv-
alently, we can say that the decoder must be memoryless in the sense that
I(Xn;Y n) = I(Xn; Ŝk).)

5. The channel output sequence Y n consists of independent random variables.

6. The marginal distributions p(xi) all achieve the capacity of the channel
such that

1

n

n∑
i=1

C(E[ρ(Xi)]) = C

(
1

n

n∑
i=1

E[ρ(Xi)]

)
.

According to the above definition of optimality, a communication system
that uses codes based on the separation principle can only approach, but not
achieve optimality, in the sense that for any ε > 0 there exists a separation
based code for which kR(D) = nC(P )− ε, but in general not for ε = 0.

Can only codes based on the separation principle achieve (or approach)
any point of the achievable cost/distortion region? Not at all. As the next
section shows, one can construct infinitely many examples of very simple joint
source-channel codes that incur minimal delay yet whose average cost and
distortion lie on the boundary of the achievable region characterized by (1.1)
and are thus optimal.

1.3.1 Optimality through Measure Matching

In a bandwidth-matched system, where the number n of channel inputs per
second equals the number k of source symbols per second, a communication
system is optimal according to Definition 1.6 if R(D) = C(P ). Consider now a
single-letter code (f, g) that maps each source symbol S into a single channel
input symbol X and each channel output symbol Y into an estimate Ŝ. For
this case, Theorem 1.2 simplifies to the following statement.

Theorem 1.3 (Single-letter optimality [14]). A bandwidth-matched point-to-
point communication system is optimal according to Definition 1.6 if and only
if the following conditions are all satisfied.
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1. The joint distribution p(s, ŝ) achieves the rate-distortion function of the
source at average distortion D = E[d(S, Ŝ)], i.e., I(S; Ŝ) = R(D).

2. The code is information lossless in the sense that I(S; Ŝ) = I(X;Y ).

3. The channel input distribution p(x) achieves the capacity of the channel
at average cost P , i.e., I(X;Y ) = C(P ).

Proof. Apply Theorem 1.2 with k = n = 1.

One way to verify condition 1 of Theorem 1.3 is to find the conditional
distribution pŜ|S that achieves the rate-distortion function of the source given
the distortion measure d(s, ŝ) and then to compare it to the actual distribution.
Similarly, to verify condition 3 one can find the capacity achieving distribution
of the channel pY |X given the cost measure ρ(x) and then check whether it
matches the actual input distribution.

Alternatively, the following results by Gastpar et al. [14, Lemmas 2.2 and 2.3]
allow to test conditions 1 and 3 of Theorem 1.3 without solving the capacity
problem and the rate-distortion problem.

Lemma 1.4. For a fixed discrete source distribution pS, a discrete channel
conditional distribution pY |X , and a single-letter code (f, g):

1. If 0 < I(S; Ŝ), condition 1 of Theorem 1.3 is satisfied if and only if the
distortion measure satisfies

d(s, ŝ) = −c1 log2

p(ŝ|s)
p(ŝ)

+ d0(s), (1.2)

where c1 > 0 and d0(·) is an arbitrary function.

2. If I(S; Ŝ) = 0, condition 1 of Theorem 1.3 is satisfied for any distortion
measure d(s, ŝ).

Lemma 1.5. For a fixed discrete source distribution pS, a single-letter en-
coder f , and a discrete channel conditional distribution pY |X with unconstrained
capacity C0

def
= maxpX I(X;Y ):

1. If I(X;Y ) < C0, condition 3 of Theorem 1.3 is satisfied if and only if the
input cost measure satisfies

ρ(x)

{
= c2D(pY |X(·|x)‖pY (·)) + β, if p(x) > 0,

≥ c2D(pY |X(·|x)‖pY (·)) + β, otherwise,
(1.3)

where c2 > 0 and β are constants, and D(·‖·) denotes the Kullback-Leibler
divergence between two distributions.

2. If I(X;Y ) = C0, condition 3 of Theorem 1.3 is satisfied for any cost
measure ρ(x).
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(For sources and channels with continuous alphabets, the conditions are
sufficient but not necessary.)

As a consequence of these two lemmas, one can find for any source, channel,
and (information lossless) single-letter code a suitable cost measure and a
suitable distortion measure such that the resulting system satisfies R(D) =
C(P ). There is therefore an infinity of optimal single-letter communication
systems. Two well known examples of such optimal single-letter systems are the
transmission of a binary symmetric source across a binary symmetric channel
under Hamming distortion, and the transmission of a Gaussian source across an
AWGN channel under an average power constraint and squared error distortion
measure (the latter will be described in detail in Chapter 3).

1.3.2 Systems with Bandwidth Mismatch

In a communication system with k 6= n, Lemmas 1.4 and 1.5 still apply: for
each i the conditional marginal distribution of Ŝi given Si must relate to the
distortion measure according to Lemma 1.4, and the marginal distribution
of Xi must relate to the cost function according to Lemma 1.5. But this is
no longer enough, as Theorem 1.2 shows. Thus, for a given source, channel,
and code, one cannot necessarily find suitable cost and distortion measures to
make the system optimal, as opposed to the case when k = n. In particular,
even in the canonical case of transmitting a Gaussian source across a Gaussian
channel under squared error distortion and an input power constraint, for which
uncoded transmission is optimal when k = n, no simple transmission scheme
exists when k 6= n.

1.4 Two Facets of the Problem

The contributions of this thesis address two facets of the source-channel com-
munication problem. In Chapter 2 the question is: when does a communication
system maximize the ratio of fidelity per cost, rather than maximize the fidelity
(i.e., minimize the distortion) for a fixed cost or minimize the cost for a fixed
fidelity. It turns out that a simple refinement of Lemmas 1.4 and 1.5 yields new
matching conditions for this case. In particular, these new matching conditions
allow to check when uncoded transmission (with minimal delay) achieves the
maximal fidelity per cost ratio. Moreover, the problem of maximizing the fidelity
per cost can be broken down into separate problems that concern only the
source and the channel, respectively, thus providing a separation theorem.

Chapters 3 and 4 focus solely on the Gaussian channel. They consider the
problem of how to transmit an analog-valued source across multiple uses of a
Gaussian channel at minimal delay (and complexity). Chapter 3 draws insight
from a well known feedback communication scheme to obtain intuition about
how to take advantage of uncoded transmission in the absence of feedback.
These reflections lead to a tradeoff between coded and uncoded communication,
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mirroring a well studied tradeoff between the length of the signal curve and
the distance between the curve’s folds that results from a geometric analysis of
the problem.

The results of Chapter 3 give an alternative raison d’être to a well known hy-
brid communication strategy combining quantization and uncoded transmission.
Chapter 4 analyzes this strategy in detail and provides an exact characterization
of its performance in the large SNR regime, as well as several extensions to the
transmission strategy.

1.A Proof of the Converse Part of
Theorem 1.1

The proof results from the following chain of inequalities.

kR(D) = kR

(
1

k

k∑
i=1

E[d(Si, Ŝi)]

)
(a)

≤
k∑
i=1

R
(
E[d(Si, Ŝi)]

)
(b)

≤
k∑
i=1

I(Si; Ŝi)

=
k∑
i=1

(
H(Si)−H(Si|Ŝi)

)
= H(Sk)−

k∑
i=1

H(Si|Ŝi)

(c)

≤ H(Sk)−
k∑
i=1

H(Si|Si−1Ŝk)

= I(Sk; Ŝk)

(d)

≤ I(Sk;Y n)

(e)

≤ I(Xn;Y n)

=
n∑
i=1

(
H(Yi|Y i−1)−H(Yi|Y i−1Xn)

)
(f)

≤
n∑
i=1

(H(Yi)−H(Yi|Xi))

=
n∑
i=1

I(Xi;Yi)
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(g)

≤
n∑
i=1

C(Eρ(Xi))

(h)

≤ nC(
1

n

n∑
i=1

Eρ(Xi))

= nC(P ).

The inequalities are justified as follows. (a) follows from the convexity∪ of R(D)
and (b) from its definition. (c) is because conditioning can only decrease the
entropy. (d) and (e) follow from the data processing inequality. (f) is because
conditioning can only decrease entropy and because the channel is memoryless.
Finally, (g) applies by definition and (h) is due to the concavity∩ of C(P ).

1.B Separation Theorem, Forward Part

Theorem 1.6. Consider a memoryless source that has rate-distortion func-
tion R(D) and produces a source symbol every τs seconds, and a memoryless
channel with capacity-cost function C(P ) that accepts an input symbol for
transmission every τc seconds. Then for any (D,P ) pair satisfying

R(D)/τs ≤ C(P )/τc − ε, (1.4)

where ε > 0, there exists a source code and a channel code that, when combined
to transmit the source across the channel, result in an average distortion of at
most D and an average cost of at most P .

Proof. Assume R(D)/τs ≤ C(P )/τc−ε. According to the source coding theorem
there exists, for an arbitrary ε′ > 0, a source code that achieves distortion at
most D and produces R(D) + ε′ bits per source symbol, or (R(D) + ε′)/τs bits
per second. According to the channel coding theorem, for any ε′ > 0 there
exists a channel code that uses average input cost at most P and can reliably
transmit C(P )− ε′ bits per channel use or (C(P )− ε′)/τc bits per second.

The output of the source code can be mapped to the input of the channel
code provided that (R(D) + ε′)/τs ≤ (C(P )− ε′)/τc, or equivalently

R(D)/τs ≤ C(P )/τc − ε′
(

1

τs
+

1

τc

)
.

By choosing ε′ small enough, it follows from the assumption on D and P that
this inequality holds.





On Fidelity per Unit
Cost 2
The previous chapter mentioned the principle of measure matching to charac-
terize an optimal communication system: in an optimal communication system
(in the sense of Definition 1.6) the cost measure and the distortion measure
are matched in a specific way to the statistics of the system. The present
chapter refines the concept of an optimal communication system and looks at
the conditions necessary to maximize the ratio of fidelity per cost, where fidelity
is a quantity playing the role of the distortion but which should be maximized
rather than minimized.

Three standard communication problems are considered, namely source
coding with a fidelity criterion, channel coding with a channel input constraint,
and the combined problem of reproducing a source across a noisy channel. The
focus here is on discrete memoryless sources and channels, but the essence of
the results extends to continous alphabets.1

The chapter begins by addressing the channel coding problem in Section 2.1.
It first considers the capacity per unit cost, a concept that is traceable in
various forms as far back as Shannon [33] Reza [27] (see also references in [42])
and was more recently studied by Gallager ([11], [2, Ch. 14]) and developed by
Verdú in his influential paper [42] (see also [44]).

The capacity per unit cost for a channel with transition probabilities PY |X
and input cost measure ρ(x) is defined as

Ĉ = sup
PX

I(X;Y )

E[ρ(X)]
,

where the supremum is taken over all possible input distributions PX . Usually
PY |X and ρ(x) are given, and to compute the capacity per unit cost one
maximizes over the space of input distributions. For the case when a channel

1Up to editorial changes, this chapter is identical to [21].

15
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input symbol of zero cost exists, however, Verdú showed that the capacity per
unit cost can be obtained by a simpler maximization over the channel input
alphabet.

We look at the problem from a different angle. We show that for fixed
PX and PY |X there is a simple expression for the cost measure ρ(x) for which
PX achieves the capacity per unit cost, obtained by refining Lemma 1.5. This
criterion is applicable whether or not a zero-cost symbol exists.

We illustrate our result with a detailed example of a Gaussian channel
with Gaussian input. First we find that the cost measure for which the system
operates at capacity per unit cost is of the form ρ(x) = x2 + k for some positive
constant k (to be specified). We show that a discrete-time channel with this
cost measure relates to a continuous-time channel for which power can be
traded against bandwidth. Furthermore, the tradeoff that maximizes the rate
(in bits/second) of the continuous-time channel corresponds to the operating
point at which the discrete-time channel achieves the capacity per unit cost.

For the rate-distortion problem a similar result exists, which is explored
in Section 2.2. For reasons that will become apparent, it is more convenient
to study this result in terms of a fidelity measure, defined as the negative of
the distortion measure. Following this line of thought we define the fidelity per
unit rate of a source: it is to source coding what the capacity per unit cost is
to channel coding. Refining Lemma 1.4, we give a condition for a test channel2
to achieve the fidelity per unit rate of the source.

Section 2.3 considers the end-to-end problem of reproducing a source across
a noisy channel. Drawing on the results of Sections 2.1 and 2.2, it is shown
that the capacity per unit cost and the fidelity per unit rate can be combined
to give the fidelity per unit cost, i.e., the maximum ratio of fidelity per cost at
which a source-channel coding system can operate.

The set of communication systems that operate at fidelity per unit cost is a
subset of the set of communication systems that are optimal in the sense of
Definition 1.6 of Chapter 1 (page 8). In the last result of the present chapter
we give necessary and sufficient conditions under which a given communication
system operates at fidelity per unit cost. This can be seen in analogy to
Theorem 1.2, which gave necessary and sufficient conditions for a communication
system to be optimal according to Definition 1.6.

2In rate-distortion theory, a test channel is a conditional distribution of the reconstruction
given a source symbol.
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2.1 Achieving Capacity per Unit Cost

Let PY |X be the transition distribution of a discrete memoryless channel and
let PX and QX be two arbitrary but fixed input distributions. Let PY and QY

be the corresponding output distributions, i.e.,

PY (y) =
∑
x

PX(x)PY |X(y|x) and

QY (y) =
∑
x

QX(x)PY |X(y|x).

Define ρ0(x) through PX as

ρ0(x) = D(PY |X(·|x)||PY (·)). (2.1)

Let EP and EQ denote expectations with respect to PX and QX , respectively,
and let IP (X;Y ) and IQ(X;Y ) denote the mutual informations corresponding
to these input distributions.

Proposition 2.1. We have

IQ(X;Y )

EQ[ρ0(X)]
≤ IP (X;Y )

EP [ρ0(X)]
= 1, (2.2)

with equality if and only if QY = PY .

Proposition 2.1 implies that if the channel input cost function is as in (2.1)
(up to scaling), then PX achieves the capacity per unit cost.

Proof. First note that EP [ρ0(X)] = IP (X;Y ), i.e., IP (X;Y )/EP [ρ0(X)] = 1.
On the other hand, if the input distribution is QX then

EQ[ρ0(X)]− IQ(X;Y )

=
∑
x,y

QX(x)PY |X(y|x)

[
log

PY |X(y|x)

PY (y)
− log

PY |X(y|x)

QY (y)

]
= D(QY ‖PY ) ≥ 0.

It follows that
IQ(X;Y )

EQ[ρ0(X)]
≤ 1

with equality if and only if PY = QY .

Remark 2.1. The proposition also holds for channels with continuous alphabets.
This follows directly if the sums in the proof are replaced by integrals.

Example 2.1 (BSC). Consider a binary symmetric channel with crossover
probability ε = 0.1. Let the input distribution be such that PX(0) = 0.7 and
PX(1) = 0.3. Evaluating ρ0(x) for this situation yields

ρ0(0) ≈ 0.23 and ρ0(1) ≈ 0.99.

The corresponding capacity curve is plotted in Figure 2.1a.
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P

C(P )

E[ρ(X)]

I(X;Y )

(a) BSC

P

C(P )

E[ρ(X)]

I(X;Y )

(b) Gaussian

Figure 2.1: Capacity curves for Examples 2.1 (left) and 2.2 (right). The optimal
cost function is such that a tangent through the origin touches the the curve in
the operating point that corresponds to the given input distribution PX .

Example 2.2 (Gaussian). Consider the AWGN channel Y = X + Z, where
X ∼ N (0, σ2

X) and Z ∼ N (0, 1). Evaluating ρ0(x), we obtain

ρ0(x) = D(PY |X(·|x)||PY (·)) = ax2 + b,

where
a =

1

2 ln 2(1 + σ2
X)

and

b =
1

2

(
log2(1 + σ2

X)− 1

ln 2
+

1

ln 2(1 + σ2
X)

)
.

The cost constraint E[ρ0(x)] ≤ P can be written as E[X2] ≤ P−b
a
, so the

corresponding capacity-cost function is

C(P ) =
1

2
log2(1 +

P − b
a

), P ≥ b.

It is plotted in Figure 2.1b.

When does a cost measure of the form ρ(x) = x2 + b make sense? The
following example gives an answer to this question.

Example 2.3. Consider the problem of designing a communication system that
maximizes the communication rate across a continuous-time Gaussian channel.
We are free to trade bandwidth for power, provided that P +kB ≤ A where B is
the (two-sided) bandwidth, P is the power, and k and A are positive constants.
Using the sampling theorem at intervals of length T , BT = 1, we translate the
above problem into its discrete-time equivalent. To do so we first rewrite the
constraint as 1

T

∫ T
0
E[X2(t)]dt ≤ A− kB and use the fact that the discrete-time

equivalent of the integral is E[X2]. Hence the discrete-time constraint becomes
1
T
E[X2] ≤ A− k

T
or, equivalently, E[X2 + k] ≤ AT .
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With this constraint, the maximum rate at which we can transmit reliably
(in bits/second) is

C(AT )

T
= A

C(AT )

AT
≤ AĈ,

where Ĉ is the capacity per unit cost of the discrete-time channel. Notice that
we can choose to operate at capacity per unit cost by choosing T such that C(AT )

AT

achieves the maximum. This implies the optimal power–bandwidth tradeoff.

Example 2.4 (Exponential). Consider an additive exponential noise channel
with nonnegative input alphabet Y = X + N , where N is exponential with
mean b. Let the input distribution PX be equal to 0 with probability b

a+b
and

exponentially distributed with mean a+ b conditioned on it being positive, i.e.,

Pr[X = 0] =
b

a+ b
(2.3)

and
Pr[X > x|X > 0] = e−x/(a+b) . (2.4)

Then the input X has mean a, and the output Y is exponential with mean a+ b,
as shown by Verdú in [43].

Drawing further on results from [43] we have

ρ0(x) = D(PY |X(·|x)||PY (·))

= log2(1 +
a

b
) +

x− a
a+ b

log2 e

and

I(X;Y ) = E[D(PY |X(·|X)||PY |X(·))]

= log2(1 +
a

b
) . (2.5)

Solving the cost constraint E[ρ0(X)] ≤ P for E[X] then yields

E[X] ≤ a+ b

log2 e
(P − log2(1 +

a

b
)) + a . (2.6)

For a constraint on the mean, an input distribution in the form of (2.3) and
(2.4) (with corresponding mean a) achieves capacity on the exponential channel.
We can thus replace a in (2.5) by the right hand side of (2.6) to obtain the
cost-constrained capacity

C(P ) = log2

(
1 +

a+b
log2 e

(P − log2(1 + a/b)) + a

b

)
. (2.7)

The corresponding capacity curve is displayed in Figure 2.2.
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P

C(P )

I(X;Y )

E[ρ(X)]

Figure 2.2: Capacity curve for the exponential channel of Example 2.4.

In the next proposition we show that under a minor technical condition,
the cost function for which an input distribution achieves capacity per unit
cost is unique (up to a scaling factor).

Proposition 2.2. If PX achieves the capacity per unit cost of the channel PY |X
with cost function ρ(x) and if the derivative of the corresponding capacity-cost
function C(P ) exists at P = EP [ρ(X)], then ρ(x) = cρ0(x) for some c > 0.

Proof. Assume that PX achieves the capacity per unit cost of the channel
for some cost function ρ(x). This implies that PX also achieves the “regular”
capacity of the channel at average cost P ∗ = EP [ρ(X)], i.e.,

IP (X;Y ) = C(P ∗).

By Lemma 1.5, a necessary condition for this is that ρ(x) = cρ0(x) + β for
some β. We therefore only have to show that if β 6= 0 then PX does not achieve
the capacity per unit cost.

Assume thus that ρ(x) = cρ0(x) + β, and let C0(P ) and Cβ(P ) be the
capacity-cost functions corresponding to β = 0 and β 6= 0, respectively. C0(P )
and Cβ(P ) are related by

C0(P ) = max
PX :E[cρ0(X)]≤P

I(X;Y )

= max
PX :E[cρ0(X)+β]≤P+β

I(X;Y )

= Cβ(P + β). (2.8)

If β = 0 then PX achieves the capacity per unit cost (cf. Proposition 2.1)
and we have

d

dP

C0(P )

P

∣∣∣∣
P=P ∗

= 0,

where P ∗ = EP [ρ(X)]. This is equivalent to

C0
′(P ∗) = C0(P ∗)/P ∗, (2.9)
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P

C(P )
β = 0 β 6= 0

I(X;Y )

P ∗ P ∗ + β

Figure 2.3: A geometric interpretation of the proof of Proposition 2.2. A nonzero
β shifts the capacity-cost curve such that the tangent at the operating point no
longer goes through the origin.

which says nothing else than the tangent of C0(P ) at P ∗ goes through the
origin, as shown in Figure 2.3.

If β 6= 0 then the average cost under PX is P ∗ + β. Then,

Cβ
′(P ∗ + β)

(a)
= C0

′(P ∗)

(b)
=
C0(P ∗)

P ∗

(c)
=
Cβ(P ∗ + β)

P ∗

6= Cβ(P ∗ + β)

P ∗ + β
,

where (a) and (c) follow from (2.8) and (b) follows from (2.9). This means that
the tangent of Cβ(P ) at P = P ∗ + β does not go through the origin, and so
according to (2.9) we are not at capacity per unit cost. See Figure 2.3 for a
geometric interpretation of this proof.

The following counterexample shows that if the capacity function is not
differentiable then the cost function for which the capacity per unit cost is
achieved is not unique.

Example 2.5. Consider the ternary-input channel shown in Figure 2.4a. The
input alphabet is {0, 1, ?} and the output alphabet is {0, 1}. Let the cost be
given by ρ(?) = 1 and ρ(0) = ρ(1) = 2. If the average cost constraint P is
between 1 and 2, the capacity achieving distribution is Pr[X = 0] = Pr[X =
1] = (P − 1)/2 and Pr[X = ?] = 2 − P . Then H(Y ) = 1, H(Y |X = 0) =
H(Y |X = 1) = 0 and H(Y |X = ?) = 1, so the resulting mutual information is
I(X;Y ) = 1− (2− P ) = P − 1. If P ≥ 2, the capacity achieving distribution
is Pr[X = 0] = Pr[X = 1] = 1/2, and the mutual information is I(X;Y ) = 1.
The corresponding capacity function, shown in Figure 2.4b, has a sharp edge at
P = 2. It is thus clear that when it is moved horizontally (by changing ρ(x) by
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0 0

1 1

?
0.5

0.5

(a) Ternary input chan-
nel.

P

C(P )

(b) Capacity curve.

Figure 2.4: Ternary input channel and corresponding capacity function for Exam-
ple 2.5. If a constant is added to the cost function, the capacity curve in (b) shifts
horizontally but a tangent through the origin still touches the curve in the same
point. Hence the cost function for which capacity per unit cost is achieved is not
unique in this case.

a constant), the new operating point will still achieve the capacity per unit cost.

Propositions 2.1 and 2.2 are summarized in the following theorem.

Theorem 2.3. Under the technical condition of Proposition 2.2, the channel
input distribution PX achieves the capacity per unit cost of the DMC PY |X if
and only if the cost function satisfies

ρ(x) = cD(PY |X(·|x)||PY (·)), c > 0. (2.10)

For continuous alphabets, the condition is sufficient but not necessary.

This result shows that the extra requirement that the capacity per unit
cost be achieved restricts the cost measures allowed by Lemma 1.5 to those
with β = 0.

2.2 A Dual Result for the Source Coding
Problem

Consider a discrete memoryless source (DMS) S with distribution PS. Let
V (ŝ|s) and W (ŝ|s) be two test channels for the given source. Let PŜ and QŜ

be the corresponding unconditional distributions of Ŝ, i.e.,

PŜ(ŝ) =
∑
s

PS(s)V (ŝ|s) and

QŜ(ŝ) =
∑
s

PS(s)W (ŝ|s).
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Let d0 be defined through V (ŝ|s) as follows:

d0(s, ŝ) = − log2

V (ŝ|s)
PŜ(ŝ)

+ γ(s), (2.11)

where γ(s) is an arbitrary function of s satisfying E[γ(S)] = 0. Let EV and EW
denote expectations over S and Ŝ with respect to V and W , respectively, and
let IV (S; Ŝ) and IW (S; Ŝ) be the corresponding mutual informations.

Proposition 2.4.

EW [d0(S, Ŝ)]

IW (S; Ŝ)
≥ EV [d0(S, Ŝ)]

IV (S; Ŝ)
= −1, (2.12)

with equality if and only if V (ŝ|s) = W (ŝ|s) for all s and ŝ.

Proposition 2.4 implies that when the distortion measure is as in (2.11)
then V (ŝ|s) is the test channel that minimizes the ratio of distortion per rate.

Proof. First note that EV [d0(S, Ŝ)] = −IV (S; Ŝ), i.e., EV [d0(S, Ŝ)]/IV (S; Ŝ) =
−1. Next,

IW (S; Ŝ) + EW [d0(S, Ŝ)]

=
∑
s,ŝ

PS(s)W (ŝ|s)
[
log2

W (ŝ|s)
QŜ(ŝ)

− log2

V (ŝ|s)
PŜ(ŝ)

]
=
∑
s,ŝ

PS(s)W (ŝ|s)
[
log2

W (ŝ|s)
V (ŝ|s)

− log2

QŜ(ŝ)

PŜ(ŝ)

]
=
∑
s

PS(s)D(W (·|s)‖V (·|s))−D(QŜ‖PŜ)

≥ 0,

where the inequality follows from the convexity of the Kullback-Leibler diver-
gence (see e.g. [6, Thm 2.7.2]); it becomes an equality iff V (ŝ|s) = W (ŝ|s).
Rearranging the inequality, we obtain

EW [d0(S, Ŝ)]

IW (S; Ŝ)
≥ −1.

Remark 2.2. This proposition holds also for continuous alphabets; just replace
the sums in the proof by integrals.

The distortion as defined in (2.11) may take positive and negative values.
In fact, Proposition 2.4 shows that the smallest achievable distortion per rate
is −1. The reader may find this awkward; indeed it is hard to imagine an
application where one would define a distortion this way. The issue disappears
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if we define a fidelity measure φ0(s, ŝ) = −d0(s, ŝ) and ask for the largest
possible EW [φ0(S, Ŝ)]/IW (S; Ŝ), which will of course be 1. Hence, for the rest
of the paper we will work with the the notion of fidelity, defined as the negative
of the distortion.3

For later reference we restate Proposition 2.4 in terms of fidelity:

Proposition 2.5. If φ0(s, ŝ) = −d0(s, ŝ), then

EW [φ0(S, Ŝ)]

IW (S; Ŝ)
≤ EV [φ0(S, Ŝ)]

IV (S; Ŝ)
= 1, (2.13)

with equality if and only if V (ŝ|s) = W (ŝ|s) for all s and ŝ.

Hence, if the fidelity measure is φ0(s, ŝ) then V (ŝ|s) is the test channel that
maximizes the fidelity per rate of the source.

Analog to the rate-distortion function we can define

R(Φ) = min
p(ŝ|s):E[φ(S,Ŝ)]≥Φ

I(S; Ŝ)

as the rate-fidelity function of the source at average fidelity Φ. The rate-fidelity
function has the same operational meaning as the rate-distortion function: for
each rate larger than R(Φ) there exists a source code that achieves fidelity Φ,
and conversely no such code exists with a rate smaller than R(Φ).

Example 2.6 (Gaussian). Consider a memoryless Gaussian source S with
zero mean and unit variance, and a test channel V (ŝ|s) such that Ŝ given S = s
is distributed as4

N
(

α

α + 1
s,

α

(α + 1)2

)
for some α > 0. Then Ŝ is distributed as N (0, α/(α+1)), and φ0(s, ŝ) evaluates
to

log2

V (ŝ|s)
PŜ(ŝ)

= c
(
k1 + k2s

2 − (s− ŝ)2
)

for some postive constants c, k1, and k2.
The rate-fidelity function corresponding to φ0(s, ŝ) is

R(Φ) =
1

2
log2

σ2
S

k1 + k2σ2
S − Φ/c

.

The plot of Φ vs. R(Φ) in Figure 2.5 bears a strong resemblance to Figure 2.1b:
a tangent of slope 1 touches the curve in the operating point corresponding to
PS and V (ŝ|s).

3Of course mathematically the two notions are quivalent.
4We use N (µ, σ2) to denote a Gaussian distribution of mean µ and variance σ2.
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R(Φ)

Φ

E[φ(S, Ŝ)]

I(S; Ŝ)

Figure 2.5: Average fidelity Φ vs. minimum rate R(Φ) for Example 2.6. The
similarity to Figure 2.1b illustrates that the fidelity per rate is to a source what the
capacity per cost is to a channel.

Does the fidelity obtained in the above example make sense? The multi-
plicative constant c is unavoidable: it accounts for the fact that one is free to
choose the units. The term k2s

2 − (s− ŝ)2 indicates that the tolerance for the
error (s − ŝ)2 is relative to s2. In other words, small errors when s2 is small
are considered at the same level of satisfaction as large errors when s2 is large,
provided that k2s

2 − (s− ŝ)2 is constant. Finally, the constant k1 accounts for
the fact that the degree of satisfaction at the same value of k2s

2 − (s − ŝ)2

may vary from one application to another: a radiologist looking at an x-ray
will have a smaller error tolerance than a person listening to music in a noisy
environment.

The next proposition says that the fidelity measure φ(s, ŝ) for which a
given test channel maximizes the fidelity per rate is unique up to addition of a
function of s with zero mean.

Proposition 2.6. Let PS be a discrete memoryless source with fidelity mea-
sure φ(s, ŝ) and rate-fidelity function R(Φ). If the test channel V (ŝ|s) maximizes
the ratio

E[φ(S, Ŝ)]

I(S; Ŝ)

among all test channels and if the derivative of R(Φ) exists at Φ = EV [φ(S, Ŝ)],
then φ(s, ŝ) = cφ0(s, ŝ) for some c > 0.

The proof mimics that for Proposition 2.2. In particular, after taking
expectation over S the function γ(s) becomes a constant that plays the same
role that β plays in the proof of Proposition 2.2.

Propositions 2.5 and 2.6 are summarized in the following theorem.

Theorem 2.7. Under the technical condition of Proposition 2.6, the test chan-
nel V (ŝ|s) maximizes the fidelity per rate of a discrete memoryless source if
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and only if the fidelity measure satisfies

φ(s, ŝ) = c log2

V (ŝ|s)
PŜ

+ γ(s), c > 0 (2.14)

with E[γ(S)] = 0. For continous sources, the condition is sufficient but not
necessary.

This result shows that the extra requirement that the maximum fidelity per
rate be achieved restricts the fidelity measures allowed by Lemma 1.4 to those
with E[γ(S)] = 0.

In analogy to the capacity per unit cost we define the fidelity per unit rate
of a discrete memoryless source as

Φ̂ = sup
V (ŝ|s)

EV [φ(S, Ŝ)]

IV (S; Ŝ)
= sup

Φ

Φ

R(Φ)
.

In light of the previous observations, this quantity is to the source what the
capacity per unit cost is to the channel.

Remark 2.3. To establish a connection with the perspective offered in Section IV
of Verdú’s paper [42], let Φ0 be the maximum fidelity that can be achieved
when representing the source by a fixed symbol, i.e., Φ0 = maxŝ E[φ(S, ŝ)]. The
following applies:

• If Φ0 > 0 then Φ̂ =∞. Indeed, the positive fidelity Φ0 is achieved at zero
rate.

• If Φ0 < 0 then 0 < Φ̂ <∞.

• If Φ0 = 0 then Φ̂ = limΦ↘0 Φ/R(Φ).

The three cases are illustrated in Figure 2.6.
This differs from Verdú’s approach in that the latter – if stated in terms of

fidelity – defines the counterpart to the capacity per unit cost to be limΦ↘Φ0(Φ−
Φ0)/R(Φ) regardless of the value of Φ0.

2.3 Fidelity Per Unit Cost

The problems considered in the two previous sections are instances of a general
class of problems where resources are traded against performance. In the channel
case, we spend a cost (the resource) to achieve a high rate (the performance),
and we want to maximize the performance per unit of resource. In the source
case, we spend bits (the resource) to achieve a high fidelity (the performance),
and once again we want to maximize the performance per unit of resource.

In this section we consider the end-to-end communication problem, where
the resource is the channel input cost and the performance is the fidelity of
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R(Φ)

Φ

Φ0

(a) Φ0 > 0

R(Φ)

Φ

Φ0

Φ0

(b) Φ0 < 0

R(Φ)

Φ

Φ0

(c) Φ0 = 0

Figure 2.6: The three possible cases for Φ0 as discussed in Remark 2.3.

the source reproduction. The goal is to maximize the fidelity per cost. The aim
of this section is to find a tight bound on this ratio and to characterize the
operating point that achieves the bound.

From the separation theorem, the average fidelity and cost of any communi-
cation system must satisfy

kR(Φ) ≤ nC(P ), (2.15)

where k and n are the number of source symbols and channel uses per time,
respectively. Furthermore, the largest achievable Φ for a fixed P is the one for
which the above inequality is satisfied with equality. Conversely, any fidelity/cost
pair satisfying the inequality can be approached by a suitable communication
system using separate source and channel coding.

Using the definitions of Φ̂ and Ĉ,

Φ̂ = sup
Φ

Φ

R(Φ)
Ĉ = sup

P

C(P )

P
,

together with (2.15), we obtain the following tight bound on the fidelity per
cost:

Φ

P
=

Φ

R(Φ)
· R(Φ)

C(P )
· C(P )

P
≤ Φ̂

n

k
Ĉ. (2.16)

We call the right-hand side of (2.16) the fidelity per unit cost of the communi-
cation system.

A separation-based communication system achieves the fidelity per unit
cost if and only if

1. the source encoder and decoder operate at Φ̂,

2. the channel encoder and decoder operate at Ĉ, and

3. the number of bits produced by the source encoder for k source symbols
equals the number of bits transmitted on the channel in n channel uses.
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dms encoder dmc decoder receiver
Sk Xn Y n Ŝk

Figure 2.7: A point-to-point communication system consisting of a discrete
memoryless source (DMS) with distribution PS, a discrete memoryless channel
(DMC) with transition probabilities PY |X , an encoder and a decoder.

Using the converse to the source-channel coding theorem as done in [12] along
with the results of the previous two sections we can translate the conditions
for equality in (2.16) into conditions that apply to any system that achieves
the maximum fidelity per cost, regardless of whether the system relies on
the separation principle, on joint source-channel block coding, or on uncoded
communication. These general conditions are stated in the following theorem.

Theorem 2.8. A discrete point-to-point communication system of the type
shown in Figure 2.7 achieves the fidelity per unit cost if and only if all of the
following conditions are satisfied.

1. The distribution of the reproduction sequence given the source sequence
factors as

PŜk|Sk(ŝ
k|sk) =

k∏
i=1

V (ŝi|si),

where sk = (s1, . . . , sk) and where V is the test channel that achieves
fidelity per unit rate, i.e., it relates to the fidelity function according
to (2.14).

2. The channel input is iid with distribution PX that achieves capacity per
unit cost, i.e., it relates to the cost function according to (2.10).

3. The encoder and decoder are information lossless in the sense that they
satisfy kI(S; Ŝ) = nI(X;Y ).

This result is a refinement of Theorem 1.2, which gave necessary and suffi-
cient conditions for the cost P and distortion D of a point-to-point communica-
tion system to satisfy kR(D) = nC(P ). According to (2.16), a communication
system that operates at fidelity per unit cost also satisfies kR(D) = nC(P ), so
it is also optimal in the sense of Definition 1.6.

2.4 Conclusions

This chapter provides a tight upper bound to the ratio of average fidelity
per average cost of an arbitrary memoryless point-to-point communication
system. Using the conditions in Theorems 2.3 and 2.7, one can verify whether
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a given communication system does indeed operate at the maximum fidelity
per cost ratio. In particular, the conditions can be used to check when uncoded
communication performs optimally. This chapter also provides a separation
theorem for fidelity per unit cost: it shows how the problem of maximizing the
fidelity per cost corresponds to simultaneously achieving capacity per unit cost
(on the channel) and achieving fidelity per unit rate (on the source), which can
be approached arbitrarily close using appropriate sequences of source codes
and channel codes.

Why would one want to maximize the ratio of fidelity per cost, rather than
to obtain the greatest fidelity for a given cost constraint or incur the least cost
for a required fidelity? It is not trivial to find an application for which this is
indeed the case. There seems to be an important practical difference between
fidelity on one hand, and rate and cost on the other hand. Rate and cost are
naturally additive quantities. Suppose a channel is used n times per second
at cost P/n per channel use. Then the total cost per second is P , regardless
of n, and the total number of bits transmitted per second is the sum of the
bits transmitted in each of the n channel uses. This gives important practical
significance to capacity per unit cost: it determines the maximum number of
bits per second one can transmit for a cost constraint per second if the number
of channel uses is a free parameter (such as in wideband communication).

Fidelity is not obviously additive. For a given cost per second, one has the
choice to either transmit a single source symbol at high fidelity, or several
source symbols at a lower fidelity. Which one is better? In many situations the
two cases may not be comparable. One possible application is oversampling
with low-resolution quantization. For example, if a bandlimited analog source
is oversampled at a sufficiently high rate, the quantization resolution can be as
low as 1 bit per sample. Our results may yield a tradeoff between quantization
resolution and sampling frequency; we have not investigated this issue further
though. Nevertheless, it certainly presents an interesting opportunity for future
research.





Delay-Limited Block
Coding and Feedback 3
As seen in Chapter 1, the forward part of the separation theorem relies on the
source coding and channel coding theorems, which assume unrestricted block
length and delay. In a first part, this chapter looks at the consequences that
arise when only block codes causing minimal delay can be used, with particular
focus on the Gaussian channel.

If the number of channel uses per second is equal to the number of source
symbols produced per second, then uncoded transmission (i.e., a simple scaling
operation at the encoder and at the decoder) is optimal (in the sense of
Definition 1.6) to transmit a Gaussian source across a Gaussian channel. If
the number of channel uses per second is larger or smaller than the number
of channel uses per second, no such simple communication strategy exists. If
there is a perfect feedback link from the receiver to the encoder, however, there
exists a simple scheme to transmit a single source symbol in n channel uses
without any coding. The second part of the chapter discusses why such uncoded
transmission works in the feedback case and provides insight on how to exploit
the benefits of uncoded transmission even in the absence of feedback.

To be precise, we first define what we exactly mean by the delay of a code.

Definition 3.1. The delay incurred by a point-to-point source-channel com-
munication system is the largest time between the instant a source symbol is
produced and the instant the decoder produces an estimate of that symbol.

What is the delay of a block code that encodes k source symbols into n chan-
nel input symbols? Since the source produces a symbol every τs seconds it takes
kτs seconds to gather k source symbols. Assuming that the encoding process
takes place instantaneously, it takes an additional nτc seconds to transmit
the encoded source sequence across the channel. Neglecting the transmission
time of the channel, the receiver can thus decode the first source symbol after

31
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kτs + nτc seconds, or 2kτs seconds1. Consequently, the smallest delay is caused
by a code that encodes a single source symbol at a time. We call such a code a
minimal-delay code.

Codes based on the separation theorem have the advantage that separate
codes can be designed for the source and the channel. This way, the designer
of the source code does not have to know a priori over what channel the source
will be transmitted, and neither does the designer of the channel code have to
know what kind of source will be transmitted across the channel. The cost paid
for this flexibility is the large delay and complexity required by a separation
based code.

In situations where external circumstances (such as real-time communica-
tion) put a constraint on the tolerable delay, the flexibility of separate source
and channel coding must be sacrificed in favor of codes that are designed
jointly for a particular source and a particular channel. As pointed out in
Chapter 1, there exist such joint source-channel codes that perform as good as
any separation-based code, yet only cause minimal delay.

From a theoretical point of view, the drawback of codes with a delay limit is
that there exists in general no exact characterization of the achievable cost and
distortion region for such codes. While the bound of Theorem 1.1 still applies,
it only depends on the ratio k/n and therefore does not take into account delay
constraints. There have certainly been attempts to refine this bound to apply
to delay limited codes, most notably Ziv and Zakai’s observation that tighter
bounds can be obtained by replacing the logarithm in the mutual information
by a different function, as long as this function satisfies certain constraints [50].
This can result in outer bounds that become tighter for stricter delay constraints.
However, none of the bounds obtained (so far) using this method are provably
tight for a given delay constraint, not even for the canonical case of a Gaussian
source and channel, which is the subject of the next section.

Figure 3.1 summarizes the current state of knowledge. For codes without
delay limits, the achievable cost/distortion region is completely characterized
by the separation theorem. For delay limited codes, on the other hand, no
general achievability result exists, but there are some refined outer bounds.
The lower right corner of the figure is thus empty except for a few dots that
represent special cases where minimal delay codes achieve the outer bound of
Theorem 1.1. This is the region that we shall explore in this chapter and the
next.

3.1 Fundamental Limits for the Gaussian Case

The Gaussian source and channel play a special role in information theory
not only because of the significance of the Gaussian distribution due to the
central limit theorem, but also because the Gaussian case allows for analytical

1because k/n = τc/τs
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delay limited codes

delay unlimited codes

outer bound achievability

converse part of
separation theorem

forward part of
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some tighter
bounds

Figure 3.1: The current knowledge of the theoretical limits of source-channel cod-
ing. For codes without delay constraint, the outer bound and the region achievable
using separation-based codes coincide and thus characterize exactly the achievable
cost/distortion region. For delay limited codes, some bounds exist that improve on
the converse separation theorem, but no general characterization of the achievable
cost/distortion region exist. The few special cases where minimal-delay codes
achieve the separation theorem bound are represented by the dots in the lower right
corner.

solutions of many information theoretic quantities, most notably the rate-
distortion function (under squared error distortion) and the capacity (under an
average power constraint). On the search for the achievable cost and distortion
region under a delay constraint, it is therefore plausible to start by looking at
the Gaussian source and channel.

Definition 3.2 (Gaussian source and channel). A discrete-time memoryless
Gaussian source of variance σ2

S is a source whose distribution is zero-mean
Gaussian with variance σ2

S.
A discrete-time memoryless Gaussian channel (also called discrete-time

additive white Gaussian noise channel, AWGN) with noise variance σZ2 is a
channel whose transition distribution satisfies p(y|x) ∼ N (x, σZ

2), i.e., given
the input x, the output is Gaussian with mean x and variance σZ2.

The distortion measure considered in the sequel is the squared error dis-
tortion d(s, ŝ) = (s − ŝ)2, and the cost measure is the channel input power
ρ(x) = x2, such that D = 1

k

∑k
i=1 E[(Si − Ŝi)2] and P = 1

n

∑n
i=1 E[X2

i ].
Plugging in the formulas for the rate-distortion function and the capacity-

cost function for the Gaussian source and channel, the bound (1.1) becomes

σ2
S

D
≤
(

1 +
P

σZ2

)n/k
(3.1)

or equivalently
sdr ≤ (1 + snr)n/k, (3.2)

where we have defined the signal-to-distortion ratio sdr = σ2
S/D and the

signal-to-noise ratio snr = P/σZ
2. For arbitrary continuous-valued sources,

the sdr can be bounded as

sdr ≤ 2
2D(PS‖φσ2

S
)
(1 + snr)n/k, (3.3)
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where D(·‖·) is the relative entropy or Kullback-Leibler divergence between two
distributions (see e.g. [6]) and φσ2

S
is the pdf of a centered Gaussian distribution

of variance σ2
S. This bound follows directly from Shannon’s lower bound on

the rate distortion function for arbitrary sources under a difference distortion
measure2 [35]. (If PS is a Gaussian distribution, the divergence becomes zero
and (3.3) simplifies to (3.1).)

In the asymptotic case where snr→∞, the SDR for an arbitrary contin-
uous-valued source when k source symbols are mapped to n channel inputs
therefore behaves at best as snrn/k, or expressed formally,

sdr ∈ O(snrn/k),

where the “Big-O” asymptotic notation is defined in Appendix 3.A.

3.2 When Uncoded Transmission is Optimal

It is a well known fact that when τs = τc (i.e., the number of source symbols
produced per second is equal to that of channel inputs accepted per second),
plugging a Gaussian source directly into a Gaussian channel results in an
optimal communication system, as the following example, originally due to
Goblick [16], makes clear.

Example 3.1. Let the source be zero-mean Gaussian with variance σ2
S and let

the channel be AWGN with noise variance σZ2. Consider the encoder given by
X = f(S) =

√
P/σ2

SS and the decoder given by Ŝ = g(Y ) =
√
Pσ2

SY/(P+σZ
2).

Using Y = X + Z it is quickly verified that

D = E[(S − Ŝ)2] = σ2
S/(1 + P/σZ

2),

which is indeed the optimal distortion according to (3.1).

The example shows that when τs = τc, a joint source-channel code with the
smallest possible delay (a single source symbol is encoded at a time) leads to
the same region of achievable (D,P ) pairs as when the delay is unrestricted.

It is instructive to look at how this example satisfies the conditions of
Theorem 1.2. First, since k = n = 1, conditions 2 and 5 of the theorem
are trivially satisfied. Because the encoder and the decoder are invertible,
conditions 3 and 4 are satisfied as well. More interestingly, condition 6 is
satisfied because the distribution of the source is in fact the capacity achieving
distribution of the channel (up to scaling), so there is no need for coding to
achieve capacity. Similarly, the resulting joint distribution of (S, Ŝ) is the one
that achieves the rate-distortion function of the source.

Is this another particularity of the Gaussian distribution? The answer is no:
as explained in Section 1.3.1, any input distribution achieves the capacity of a

2Shannon calls a difference distortion measure a distortion measure that depends only
on the difference s− ŝ. Examples are the squared error (s− ŝ)2 or the absolute error |s− ŝ|.
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given channel for some way of measuring the channel input cost. For example,
the Gaussian distribution achieves the capacity of a Gaussian channel when
the cost measure has the form ρ(x) = ax + b (for arbitrary constants a > 0
and b), which applies to the input power measure used here. The uniform
distribution also achieves the capacity of a Gaussian channel, just for a different
cost measure. In the same way, any joint distribution of (S, Ŝ) achieves the
rate-distortion function of the source for some way of measuring the distortion.

3.3 Bandwidth Expansion

Does a similarly simple transmission scheme exist for the Gaussian case when
the channel accepts more than one input for each source symbol, i.e., when
τc < τs? Unfortunately, no. In fact, the performance of any code that encodes
a single Gaussian source symbol into n > 1 inputs to a Gaussian channel is
strictly bounded away from the optimum given by (3.1) [19] (shown using a
result by Ziv and Zakai [50]). The bound given in [19] is not necessarily tight,
however, so the region of achievable cost and distortion pairs is not known
when k = 1 and n > 1.

While conditions 1 and 6 of Theorem 1.2 can still be achieved by a simple
linear encoder and a MMSE decoder (just as in Example 3.1), condition 5 is
no longer trivially satisfied when n > 1. In fact, the difficulty in this situation
is to deterministically encode one Gaussian source symbol into n independent
Gaussian channel inputs. The result of [19] implies that not all conditions of
Theorem 1.2 can be simultaneously satisfied when k = 1 and n > 1. This
changes, however, if we modify the scenario and allow the encoder access to
perfect feedback from the receiver, as the next section shows.

3.4 Optimality Through Feedback

If a single Gaussian source symbol is communicated using n sequential trans-
missions on a Gaussian channel and if there is a causal, noiseless feedback
link from the receiver to the encoder as illustrated in Figure 3.2, then the ith
channel input symbol can depend on the past channel outputs Y1, . . . , Yi−1

as well as on the source. Because feedback does not increase the capacity of
the channel, the bound of Theorem 1.1 and thus of (3.2) still applies and so
do the conditions of Theorem 1.2. The big advantage brought by the feedback,
though, is that it permits a simple transmission scheme that has minimal delay,
yet achieves the bound (3.1) with equality, as the following example, due to
Schalkwijk and Kailath [30], demonstrates.

Example 3.2. In this example, a memoryless Gaussian source of variance σ2
S

is transmitted across n uses of a memoryless Gaussian channel with power
constraint P and noise variance σZ2. Define E0 = S. In the ith channel use
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source
PS

encoder
f(·)

channel
PY |X
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Sk Xn Y n Ŝk

feedback

Figure 3.2: A source-channel communication system where the encoder has access
to causal noiseless feedback from the receiver.

(i = 1, . . . , n), the encoder produces

Xi =

√
P

VarEi−1

Ei−1. (3.4)

Both the receiver and the sender now compute the minimum mean-squared
error (MMSE) estimator Êi−1 of Ei−1 given Yi. The sender then computes
Ei = Êi−1 − Ei−1 and proceeds to the next round.

After n rounds of transmission, the receiver has n estimates Ê0 to Ên−1.
Using these, it computes the final estimate Ŝ as

Ŝ = Ê0 − Ê1 + Ê2 − · · · ± Ên−1. (3.5)

(The sign of the last term is + if n is even and − if n is odd.)
To compute the overall distortion E[(Ŝ − S)2], note that Êi−1 = Ei−1 + Ei

by definition, so (3.5) can be written as

Ŝ = (E0 + E1)− (E1 + E2) + (E2 + E3)− · · · ± (En−1 + En)

= E0 ± En,

and since we have defined E0 = S, we have E[(Ŝ − S)2] = E[E2
n], where En is

the remaining error after the last round of transmission.
To compute E[E2

n], note that since Êi is the MMSE estimator of Ei, the
estimation error variance is given by (see e.g. [31, Section 8.3])

E[E2
i+1] = E[(Êi − Ei)2] =

E[E2
i ]

1 + P/σZ2
. (3.6)

Using E[E2
0 ] = E[S2] = σ2

S and recursively applying the above, we find that

σ2
S

E[E2
n]

=
σ2
S(1 + P/σZ

2)

E[E2
n−1]

=
σ2
S(1 + P/σZ

2)2

E[E2
n−2]

= . . .

=
σ2
S(1 + P/σZ

2)n

E[E2
0 ]

= (1 + P/σZ
2)n,

which is indeed the largest possible SDR according to (3.2).
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As we have already seen before, achieving the capacity and the rate-distor-
tion function (conditions 1 and 6 of Theorem 1.2) are just a matter of using
the “right” cost measure and distortion measure, respectively. The transmission
scheme of Example 3.2 in addition satisfies all other conditions of Theorem 1.2.
In particular, it produces a sequence of independent channel outputs.3 Again, we
may ask if this is just due to some special property of the Gaussian distribution.
And again, the answer is no: the next section explains how, using feedback, one
can design a minimal-delay encoder that produces a sequence of independent,
capacity achieving output symbols for any channel (and any cost measure).

3.4.1 Exploiting Feedback Via Posterior Matching

Example 3.2 showed how a simple transmission scheme can achieve the optimal
distortion for a Gaussian source and channel if noiseless feedback is available.
As an aside, we now show how it is possible to encode one source symbol into
n channel inputs for any channel and any cost measure (under the condition
that the source is continuous-valued). The underlying idea is well known and
was used by Gastpar and Rimoldi [13] to develop various examples of optimal
uncoded transmission with feedback (including the Gaussian example given in
this chapter). Later, it was used by Shayevitz and Feder in 2007 [36, 37] (who
baptized it posterior matching) to generalize the capacity achieving channel
coding schemes of Schalkwijk and Kailath [30] and Horstein [18] to arbitrary
channels with feedback.

Before continuing we prove some properties of cumulative distribution
functions (cdfs).

Lemma 3.1. Let X be a continuous random variable with density f(x) and
cdf FX , i.e.,

FX(x) = Pr[X ≤ x].

Then the random variable Y = FX(X) is uniformly distributed on [0, 1].

Proof. Let Y = FX(X). Then Pr[Y ≤ y] = Pr[FX(X) ≤ y]. Hence if y < 0
then Pr[Y ≤ y] = 0, and if y > 1 then Pr[Y ≤ y] = 1. If y ∈ [0, 1] then

Pr[FX(X) ≤ y] = Pr[X ≤ F−1
X (y)]

= FX(F−1
X (y)) = y

The cdf of Y is therefore that of a uniform random variable on [0, 1].

3It might not be obvious at first glance why the channel outputs are independent, given
that Yi depends on Xi, which is computed itself as a function of the past outputs. Note,
however, that the encoder (3.4) is specifically chosen such that each Xi is Gaussian with
zero mean and variance P , regardless of the past channel outputs. Thus, p(xi|y1, . . . , yi−1)
has the same distribution whatever the values of y1, . . . , yi−1. The key to understanding
this is the distinction between statistical dependence and causal dependence: Xi is causally
dependent on the past outputs, but this causal dependence is chosen such that it becomes
statistically independent of them.
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Lemma 3.2. Let Y be a uniform random variable on [0, 1] and let FX be the
cdf of an arbitrary random variable X. If FX is not invertible, define F−1

X

with a slight abuse of notation as

F−1
X (y) = sup{x : FX(x) ≤ y}. (3.7)

Then the random variable X ′ = F−1
X (Y ) has the same distribution as X.

Proof. The definition of F−1
X according to (3.7) is such that {y : F−1

X (y) ≤
x} = {y : y ≤ FX(x)}. Thus,

FX′(x) = Pr[F−1
X (Y ) ≤ x]

= Pr[Y ≤ FX(x)] = FX(x)

since Y is uniformly distributed on [0, 1].

Consider now a channel PY |X and let π(x) be the capacity achieving dis-
tribution at average cost P (or a capacity achieving distribution if there are
multiple), i.e.,

π(x) = arg max
p(x):E[ρ(X)]≤P

I(X;Y )

for an arbitrary cost measure ρ(x). The problem is to encode one source symbol
of a continuous-valued source into n channel inputs, making use of the feedback.

Let Fπ be the cdf of the distribution π(x), and let FS be the cdf of the
source. In the first channel use, the encoder produces

X1 = Fπ
−1(FS(S)), (3.8)

where Fπ−1 is the inverse of Fπ according to (3.7). By Lemma 3.1, if S is
continuous then FS(S) has uniform distribution on [0, 1], and so by Lemma 3.2,
Fπ
−1(FS(S)) is a random variable with cdf Fπ.
After i− 1 rounds of transmission, the encoder knows y1, . . . , yi−1 and can

compute the conditional cdf FS|y1,...,yi−1
. It then sends

Xi = Fπ
−1(FS|y1,...,yi−1

(S)). (3.9)

Again, since S is continuous, FS|y1,...,yi−1
(S) is uniform. For any y1, . . . , yi−1,

therefore,
p(xi|y1, . . . , yi−1) = π(x)

and so Xi is independent of Y1, . . . , Yi−1.
Using this strategy the encoder produces an iid sequence of inputs Xi

with the capacity achieving distribution π(x), satisfying conditions 5 and 6
of Theorem 1.2; condition 3 of the theorem is trivially satisfied because the
encoder is deterministic.

Let us now derive the posterior matching encoder for the communication
system of Example 3.2.



3.4. Optimality Through Feedback 39

Example 3.3. First, a few properties of Gaussian cdfs are given. Let FN (µ,σ2)

be the cdf of a Gaussian random variable of mean µ and variance σ2 and let
FN

def
= FN (0,1). Then FN (µ,σ2)(x) = FN ((x − µ)/σ). Consequently, the inverse

cdf is
F−1
N (µ,σ2)(y) = σF−1

N (y) + µ.

Let π(x) = N (0, P ). According to (3.8), the first channel input is

X1 =
√
PF−1
N (FN (S/σS)) =

√
P

σ2
S

S,

which coincides with (3.4) in Example 3.2 when i = 1.
Given Y1, S is Gaussian with mean E[S|Y1] and variance

Var(S|Y1) = E[(S − E[S|Y1])2|Y1] = Var(S − E[S|Y1]),

since the error S − E[S|Y1] is orthogonal to Y1 (according to the properties of
the conditional mean). Following (3.9), the second channel input is thus

X2 =
√
PF−1
N

(
FN

(
S − E[S|Y1]√

Var(S − E[S|Y1])

))

=
√
P

S − E[S|Y1]√
Var(S − E[S|Y1])

.

Continuing this way, the ith channel input is found to be

Xi =
√
P

S − E[S|Y i−1
1 ]√

Var(S − E[S|Y i−1
1 ])

. (3.10)

That this is equal to (3.4) can be seen as follows. In Example 3.2, write

S = E0 + (E1 − E1)− (E2 − E2) + · · · ± (Ei−2 − Ei−2)

= (E0 + E1)− (E1 + E2) + (E2 + E3)− · · · − Ei−2

= Ê0 − Ê1 + Ê2 − · · · − Ei−2.

Since E[Êj|Y i−1
1 ] = Êj for j = 1, . . . , i− 2, and E[Ei−2|Y i−1

1 ] = Êi−2,

E[S|Y i−1
1 ] = Ê0 − Ê1 + · · · − Êi−2

and so S − E[S|Y i−1
1 ] = Êi−2 − Ei−2 = Ei−1. Plugging this into (3.10) yields

exactly the encoder (3.4) of Example 3.2.

This example shows that the Gaussian example is nothing but a special case
of posterior matching, with the particular property that the posterior matching
encoder is linear.
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3.4.2 Can Posterior Matching Help for Source Coding?

Using posterior matching, one can turn an arbitrary source distribution into
the capacity achieving distribution. Can the same trick be used to make the
conditional distribution of Ŝ given S achieve the rate distortion function?

For simplicity assume n = 1 (whether there is feedback or not is irrelevant).
For a fixed D, let

Φs(ŝ) = arg min
p(ŝ|s):E[d(S,Ŝ)]≤D

I(S; Ŝ),

i.e., Φs(ŝ) is the conditional distribution of Ŝ given S that achieves the rate
distortion function at expected distortion D. Let the decoder be

g(y) = F−1
Φs

(FY |S=s(y)). (3.11)

Given S = s, g(Y ) thus has the distribution Φs, and the resulting joint
distribution of Ŝ = g(Y ) and S satisfies I(S; Ŝ) = R(D).

It is immediately clear that this approach cannot work – both cdfs needed
to implement this decoder depend on the actual value of s, which is obviously
not known at the decoder (there would not really be a communication problem
otherwise). Interestingly, though, in the Gaussian case the dependence on s
of FΦs and of FY |S=s cancel each other out, and the decoder (3.11) yields the
MMSE decoder, as the following example shows.4

Example 3.4. Let the source S be distributed as N (0, 1) and let the channel be
AWGN with noise variance 1 and input constraint E[X2] ≤ P . The distortion
is the squared error. The smallest achievable distortion is

Dmin =
1

1 + P
. (3.12)

The capacity-achieving input distribution is N (0, P ), and the conditional distri-
bution of Ŝ given S = s that achieves the rate-distortion function at distortion D
is N ((1−D)s,D(1−D)) (see e.g. [6]). Let X =

√
PS. The decoder from (3.11)

is

g(y) = F−1
Φs

(FY |S=s(y))

=
√
D(1−D)F−1

N

(
FN

(
y −
√
Ps
))

+ (1−D)s

=
√
D(1−D)

(
y −
√
Ps
)

+ (1−D)s.

This expression still depends on s. If we plug in the optimal distortion Dmin

from (3.12), however, the decoder becomes

g(y) =

√
P

P + 1
(y −

√
Ps) +

P

P + 1
s

=

√
Py

P + 1
,

4Simulations for other sources and channels have confirmed that the dependence on s is
really only cancelled out in the Gaussian case.
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which no longer depends on s. Furthermore, this decoder is the MMSE decoder.

3.5 Lessons for the Case Without Feedback

In the previous sections we have seen that if more than one channel use is
available per source symbol then a Gaussian source can be transmitted optimally
over a Gaussian channel at minimal delay only when the encoder has feedback
from the receiver. What lessons can we draw from the feedback case that help
us in the case without feedback?

The first observation is that if the encoder knows the state of the receiver
then it can transmit the receiver’s current estimation error without coding.
Indeed, suppose that after n− 1 channel uses the receiver has a preliminary
estimate Ŝ ′ and suppose the transmitter knows Ŝ ′ (ignore for now the question
how the transmitter comes to know this estimate). Then the transmitter can
use uncoded transmission to send the error E def

= Ŝ ′ − S in the last channel use.
Upon receiving the corresponding channel output, the receiver computes an
estimate Ê of E and sets the final estimate of S to be Ŝ = Ŝ ′− Ê. This results
in the overall error Ŝ − S = Ŝ ′ − E − S + E − Ê = E − Ê and an SDR of

sdr =
σ2
S

E[(Ŝ − S)2]
=

σ2
S

E[(Ŝ ′ − S)2]
· E[(Ŝ ′ − S)2]

E[(Ê − E)2]
.

The first term on the right hand side is sdr′, the SDR after n − 1 channel
uses. The second term, equal to E[E2]/E[(Ê − E)2], is the SDR resulting from
the uncoded transmission of E, which, as seen in Example 3.1, scales linearly
with the SNR. Hence, the overall SDR scales as sdr′ · snr and so uncoded
transmission in the last channel use boosts the SDR by a factor snr.

In Example 3.1 the transmitter trivially knows the state of the receiver
before transmitting anything (one can assume the receiver’s initial estimate
is Ŝ ′ = E[S] = 0, with a corresponding sdr′ of σ2

S). In Example 3.2, the
transmitter knows the receiver’s estimate at each step via the feedback link.

Feedback is not the only option for the transmitter to know the receiver’s
state after n− 1 transmissions, however. Using coding, one can transform an
unreliable channel into a reliable connection. Suppose a perfect source code
combined with a perfect channel code is used to transmit S across the first
n−1 channel uses. This implies a decomposition of S as S = Q+E, where Q is
transmitted error free and the associated distortion E[E2] scales as snr−(n−1)

(cf. Equation 3.2 on page 33). If E is transmitted uncoded in the nth channel
use and the receiver sets Ŝ = Q+ Ê, the overall SDR is

sdr =
σ2
S

E[(Ŝ − S)2]
=

σ2
S

E[E2]
· E[E2]

E[(Ê − E)2]
,

which scales as snrn−1 · snr = snrn.
Naturally, the constraint that a single source symbol must be encoded at

a time prevents the use of a perfect source and channel code, which would
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require large block lenghts. Suppose thus that the receiver decodes not Q
after n− 1 channel uses, but that it has only an estimate Q̂ and that it sets
Ŝ = Q̂+ Ê. In that case the overall SDR is

sdr =
σ2
S

E[(Q̂−Q)2] + E[(Ê − E)2]
=

σ2
S

E[E2]
· E[E2]

E[(Q̂−Q)2] + E[(Ê − E)2]
.

(3.13)
If now E[(Q̂−Q)2] ∈ O(E[(Ê − E)2]) as snr → ∞, i.e., if the error in es-
timating Q is dominated by that of estimating E then the SDR scales as

σ2
S

E[E2]
· E[E2]

E[(Ê − E)2]
. (3.14)

The second term is again the SDR from uncoded transmission of E and scales
as snr; overall, the SDR behaves thus as

sdr ≈ σ2
S snr
E[E2]

. (3.15)

There is a tradeoff in how Q (and E) are chosen as a function of S. If Q is
such that E[(Q̂−Q)2] decreases too slowly with increasing SNR (for example
because Q is obtained by quantizing the source with too fine a resolution), the
approximation (3.15) is not valid and (3.13) scales instead as σ2

S/E[(Q̂−Q)2],
so the SDR gain from the uncoded transmission is lost. If, on the other hand,
E[(Q̂−Q)2] decreases too fast then E[E2] decreases only slowly and the overall
SDR, snr /E[E2], grows only slowly with snr. It is clear, then, that the best
SDR scaling is obtained when E[(Q̂−Q)2] scales the same as E[(Ê − E)2].

The conclusion from all this is that to take advantage of uncoded com-
munication in the last channel use, error free communication in the first
n− 1 channel uses is not necessary. All that is needed is that the error from
the first n− 1 channel uses be dominated by that of the last channel use as
snr→∞.

The traditional way to analyze minimal-delay transmission strategies is
through a geometric analysis of the signal curve, which was first suggested by
Shannon [34] and treated in much detail by Wozencraft and Jacobs [47]. It
turns out that such a geometric analysis leads to the same tradeoff as that
represented by (3.13), as the next section shows.

3.6 Connection to the Geometric Point of
View

If f(s) is an encoding function that maps a single source symbol into n channel
inputs, one can gain insights about its performance by studying the set {f(s) :
s ∈ S} (where S is the support set of the source). This set is called the signal
curve or signal locus corresponding to f(s). A sample signal locus is shown in
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X1

X2

√
P

Figure 3.3: The signal locus corresponding to a nonlinear encoder from R to R2.
A power constraint P signifies that the signal must roughly be contained within a
sphere of radius

√
P .

Figure 3.3. This section, which is largely drawn from Wozencraft & Jacobs [47],
reviews the basics of the geometric signal curve analysis.

The estimate that minimizes the mean squared error is the conditional
mean E[S|Y n]. For nonlinear encoders, closed-form evaluation of the corre-
sponding estimation error is in general hopelessly complicated. A decoder
whose performance is easier to evaluate is the maximum likelihood (ML) de-
coder. It computes ŝ = arg maxs f(y|s), where f(y|s) is the conditional pdf
of Y = (Y1, . . . , Yn) given S. For the AWGN channel, Y = f(S) + Z, where
Z is circularly symmetric Gaussian noise whose orthogonal components have
variance σZ2. In this case f(y|s) is a decreasing function of ‖y − f(s)‖, so
the ML decoder can equivalently be described by ŝ = arg mins ‖y − f(s)‖. It
decides thus for ŝ such that f(ŝ) is the point on the signal curve closest to y.

Suppose now that the transmitted point is f(s0) and suppose further that
f(s) is differentiable in s0. Then the signal curve can be linearly approximated
in a small neighborhood around s0 as

f(s0 + ∆) ≈ f(s0) + ∆
df(s)

ds

∣∣∣∣
s=s0

. (3.16)

If the noise is small, a valid approximation of the ML estimate is therefore the
projection of the received point onto the tangent through f(s0) (see Figure 3.4).
Writing ŝ = s0 + ∆, the estimation error is ŝ− s0 = ∆ and by (3.16) satisfies

‖∆‖2 ≈ ‖f(s0 + ∆)− f(s0)‖2∥∥∥∥ df(s)
ds

∣∣∣
s=s0

∥∥∥∥2 .
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Z

Y

approximation
to f(ŝ)

f(ŝ)

f(s0)

Figure 3.4: If the noise level is small, the ML estimate can be approximated by
projecting the noise vector Z onto a tangent through f(s0).

The term ‖f(s0 + ∆)− f(s0)‖ is the length of the noise vector Z projected onto
the tangent through f(s0) (cf. Figure 3.4). It is Gaussian with variance σZ2, so
the average squared error given S = s0 is approximately

E[(Ŝ − S)2 | S = s0] ≈ σZ
2∥∥∥∥ df(s)

ds

∣∣∣
s=s0

∥∥∥∥2 . (3.17)

Expressing f(s) =
√
P f̃(s), with E[‖f̃(S)‖2] ≤ 1, its derivative is df(s)/ds =√

Pdf̃(s)/s. The quantity l(s) def
= df̃(s)/ds is called the stretch factor or simply

the stretch of the signal locus. If the stretch does not depend on s, the overall
MSE simplifies to

E[(Ŝ − S)2] ≈ (snr l2)−1 (3.18)

or equivalently
sdr ≈ σ2

S snr l2. (3.19)

As long as the noise level is small with respect to the distance between
different folds of the signal curve, (3.17) is a valid approximation for the achieved
MSE, and the latter decreases with growing stretch. It is clear, though, that
the MSE cannot decrease arbitrarily: a larger stretch implies a longer signal
curve, so the folds of the curve must be placed closer together to satisfy the
power constraint. If the stretch becomes too large, the small noise assumption
will no longer be valid. On the other hand, if the SDR is to scale more than
linearly with the SNR, then by (3.17) the stretch must increase with the SNR.

The choice of the stretch represents a tradeoff: a bigger stretch results in a
smaller error, provided that the correct fold of the signal curve is decoded, but
a bigger stretch also increases the probability that the wrong fold of the curve
is decoded. Optimally, thus, the stretch is such that the two kinds of errors
contribute equally to the overall error.

There are clear parallels to the previous point of view. In the feedback-
inspired discussion, the error from decoding Q had to be dominated by that
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X1

X2

(a) n = 2

X1

X3

X2

(b) n = 3

Figure 3.5: If uncoded transmission is used only in the last channel use, the signal
locus consists of parallel straight lines, aligned with the axis of Xn. This is shown
here for n = 2 and n = 3, respectively.

from decoding E in order for the approximation (3.15) to work. Here, the error
due to decoding the wrong fold of the curve must be dominated by that from
decoding the wrong point on the same fold, in order for the approximation (3.17)
to be valid. Note in particular the striking similarity between (3.19) and (3.15):
both equations express the SDR as the product of the SNR and a factor that
should grow with the SNR but whose growth rate is limited by the conditions
of the underlying approximation.

Remark 3.1. The geometric perspective provides a simple argument why a
linear encoder cannot achieve an MSE scaling better than snr−1, regardless
of the number of channel uses. The image of a linear function from R to Rn

is a straight line (a subspace of dimension 1). Applying invertible transforms
at the encoder and decoder, this straight line can be rotated to lie on the X1

axis without changing the performance. The resulting constellation is such that
all Xi for i = 2, . . . , n are zero. Effectively, thus, only a single transmission is
made on the channel. The same reasoning implies that a linear encoder from
Rk to Rn, where k < n, achieves a MSE scaling of only snr−k, regardless of n.

3.7 Towards a Hybrid Communication
Strategy

Translated to the geometric perspective, the principle that uncoded transmission
be used only in the last channel use means that the signal curve should consist
of parallel straight line segments, aligned along the axis of Xn. This is illustrated
in Figure 3.5.

One of the simplest ways to obtain such a signal curve is by means of
hierarchical quantization. The first channel input is obtained by passing the



46 Delay-Limited Block Coding and Feedback

source through a uniform quantizer. The resulting quantization error is scaled
up and quantized itself to yield the second channel input. This procedure is
repeated a total of n−1 steps. Finally, the remaining quantization error is again
scaled up and transmitted uncoded in the nth channel use. The next chapter
formalizes this idea and provides an exact characterization of the resulting
asymptotic performance.

3.A Asymptotic Notation

Definition 3.3. Let f(x) ≥ 0 and g(x) ≥ 0 be two functions defined on R.
The set O(g(x)) is defined as

f(x) ∈ O(g(x))

if and only if there exists an x0 and a constant c such that

f(x) ≤ cg(x)

for all x > x0. Similarly, f(x) ∈ Ω(g(x)) if ≤ is replaced by ≥ in the above
definition. Finally, Θ(g(x))

def
= O(g(x)) ∩ Ω(g(x)).



A Hybrid Com-
munication Strategy
for Gaussian Channels 4
Based on the ideas outlined in the previous chapter, this section introduces
a simple communication strategy. The strategy consists of splitting a single
source symbol into n− 1 discrete parts and a continous part (hence the term
“hybrid”), to be transmitted, respectively, in the first n − 1 and in the last
channel use. While this strategy emerged as a natural way to take advantage
of the lessons learned from the feedback case, it turns out that the method of
combining quantization and uncoded transmission as done here is not new. It
was first suggested by McRae [24] 1971; for more detailed historical references
see Section 4.7 at the end of the chapter. 1

4.1 Transmission Strategy

The communication strategy described hereafter is displayed schematically in
Figure 4.1. To encode a single source letter S into n channel input symbols
X1, . . . , Xn, it proceeds as follows. Define E0 = S and recursively compute the
pairs (Qi, Ei) as

Qi =
1

β
int(βEi−1) (4.1a)

Ei = β(Ei−1 −Qi) (4.1b)

for i = 1, . . . , n− 1 where int(x) is the unique integer i satisfying

x ∈
[
i− 1

2
, i+

1

2

)
.

1The main results of this chapter have been published in [20] and [22].

47
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Quantizer

+

β

E1

X1

−

Q1

Quantizer

+

β

E2

X2

−

Q2

Quantizer

+

β

E3

X3

−

Q3

S

X4

Figure 4.1: Schematic display of the encoder described in Section 4.1 for n = 4.
The triangles represent the scaling operations of (4.1b) and (4.4).

The equations 4.1 define a hierarchical quantization of the source. Q1 is the
quantized source symbol and E1 the associated quantization error. Q2 is the
quantized version of the previous quantization error E1, and so on. En−1 is the
remaining quantization error after n− 1 steps.

The parameter β ∈ N determines the quantization resolution; the larger β,
the finer the quantization. Equation 4.1 implies a partition of the source space
into intervals of length 1/βn−1, as illustrated in Figure 4.2 on the next page. The
Qi determine the interval that contains S, and En−1 determines the position
of S within an interval.

The following result will be useful in the sequel.

Lemma 4.1. For all i = 1, . . . , n− 1, the variance of Qi satisfies

E[Q2
i ] ≤ E[E2

i−1] +

√
E[E2

i−1]

β
+

1

4β2
.

Proof. See Appendix 4.A.

Proposition 4.2. The Qi and Ei satisfy the following properties:
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−1
2

1
2

0

β−3β−2β−1

Figure 4.2: Example partition of the source space [−1/2, 1/2] for β = 3 and
n = 4.

1. The map S 7→ (Q1, . . . , Qn−1, En−1) is one-to-one, with the inverse given
by

S =
n−1∑
i=1

1

βi−1
Qi +

1

βn−1
En−1. (4.2)

2. There exists a constant γ > 0 such that VarQi ≤ γ2 and VarEi ≤ γ2 for
all i, regardless of the value of β.

Proof. 1. From the definition (4.1b), with E0 = S,

Ei−1 =
1

β
Ei +Qi. (4.3)

Repeated use of this relationship leads to the given expression for S.

2. First, VarE0 = VarS = σ2
S, which doesn’t depend on β. For i = 1, . . . ,

n − 1, Ei ∈ [−1/2, 1/2) and so its variance is upper bounded as well.
Finally, since β ≥ 1 and by Lemma 4.1,

VarQi ≤ E[Q2
i ] ≤ E[E2

i−1] +
√
E[E2

i−1] +
1

4
.

which completes the proof.

To complete the description of the transmission strategy, the Qi and En−1

are scaled to satisfy the power constraint, resulting in the channel inputs

Xi = (
√
P/γ)Qi for i = 1, . . . , n− 1 and

Xn = (
√
P/γ)En−1. (4.4)

Following Proposition 4.2, this ensures that E[X2
i ] ≤ P for all i.

Remark 4.1. The signal locus resulting from this encoding scheme is precisely
the one illustrated in Figure 3.5. Each of the segments of length β−(n−1) of
the source (cf. Figure 4.2) is mapped into a line segment of length

√
P/γ; the

stretch of the signal curve, as defined in Section 3.6, is therefore βn−1/γ.
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4.2 Lower Bound on the Mean Squared Error

When an analog source is transmitted across a Gaussian channel using the
scheme just presented, two types of decoding errors can occur. Either the
decoded point is on the same line segment as the transmitted point (i.e., all the
Qi are decoded correctly) or it is on a different segment. Which one of these
errors dominates the overall error behavior depends on how the parameter β is
chosen as a function of the SNR: if β grows fast with the SNR the quantization
resolution quickly becomes very fine, and the line segments of the constellation
move close together fast, so the probability of decoding the wrong segment is
high. On the other hand, since the stretch of the signal curve is proportional
to βn−1 (Remark 4.1), the error decreases fast in case the correct segment is
decoded. Conversely, if β grows only slowly with the SNR then decoding the
wrong segment is unlikely. But because the stretch also only grows slowly, the
error when the correct segment is decoded decreases only slowly.

The following results make these reflections precise. The results apply to
any source; provided that there is an interval on which the source distribution
admits a density. Based on these results one can choose β as a function of the
SNR in order to optimize the MSE scaling.

Remark 4.2. Throughout this section it is assumed that β = dsnr(1−ε)/2e,
where ε = ε(snr) is a positive function of snr. This results in no loss of
generality, since for an arbitrary positive function f one can set ε(snr) =
1− 2 log(f(snr))/ log snr to get β(snr) = df(snr)e. Writing β in this form
will slightly simplify the mathematical derivations to follow. Note that one can
bound β by snr(1−ε)/2 ≤ β ≤ snr(1−ε)/2 +1, which implies β ∈ Θ(snr(1−ε)/2)
(the Θ-notation is defined in Appendix 3.A). Choosing an optimal β(snr) is
therefore equivalent to choosing an optimal ε(snr).

Remark 4.3. Note that by (4.1) the Qi are completely determined by S. With
a slight abuse of notation, Qi(s) is therefore used in the sequel to denote the
value of Qi when S = s. Ei(s) and Xi(s) are defined in an analogous manner.
Furthermore, X(s)

def
= (X1(s), . . . , Xn(s)).

To obtain a lower bound on the MSE that holds for all possible decoders,
the obvious thing to do is to assume a minimum mean squared error (MMSE)
decoder. As mentioned in this chapter’s introduction, though, the MMSE
decoder is in general hard to evaluate mathematically. This is no different for
the scheme at hand. Fortunately the following lemma, due to Ziv [48], presents
a way around the MMSE decoder. Moreover, unlike the MMSE decoder, it does
not depend on the source distribution.

Lemma 4.3. Consider a communication system where a continuous-valued
source S is encoded into an n-dimensional vector X(S), sent across n inde-
pendent parallel AWGN channels with noise variance σZ2, and decoded at the
receiver to produce an estimate Ŝ. If the density pS of the source is such that
there exists an interval [A,B] and a number pmin > 0 such that pS(s) ≥ pmin
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whenever s ∈ [A,B], then for any ∆ ∈ [0, B − A) the mean squared error
incurred by the communication system satisfies

E[(Ŝ − S)2] ≥ pmin

(
∆

2

)2 ∫ B−∆

A

Q(d(s,∆)/2σZ)ds, (4.5)

where d(s,∆)
def
= ‖X(s)−X(s+ ∆)‖ and

Q(x) =

∫ ∞
x

(1/
√

2π) exp{−ξ2/2}dξ.

Proof. See Appendix 4.B.

The next two lemmas provide two different asymptotic lower bounds on the
mean squared error of the hybrid transmission strategy considered. They hold
regardless of the decoder used. (The Ω-notation is defined in Appendix 3.A.)

Lemma 4.4. Given a hybrid transmission strategy characterized by ε(snr) ≥ 0,
the mean squared error satisfies

E[(Ŝ − S)2] ∈ Ω(snr−n+(n−1)ε).

Lemma 4.5. Given a hybrid transmission strategy characterized by ε(snr) ≥ 0,
the mean squared error satisfies

E[(Ŝ − S)2] ∈ Ω(snr−1+ε/2 exp{−c snrε}),

where c > 0 does not depend on snr.

Discussion: An immediate consequence of the lemmas is that the scaling
snr−n is not achievable with the given encoding strategy: by Lemma 4.4 this
would require ε = 0, but following Lemma 4.5 the scaling is at best snr−1 if
ε = 0. More generally, which one of the two lower bounds decays more slowly
and is therefore tighter depends on the scaling of ε(snr). How to choose ε(snr)
optimally will be the subject of Theorem 4.7.

Proof of Lemma 4.4. Assume ∆ ∈ [0, β−(n−1)) and define for j ∈ Z

I∆
j =

[
(j − 1

2
)β−(n−1), (j +

1

2
)β−(n−1) −∆

)
.

These intervals will be used to partition the source space, as illustrated in
Figure 4.3.

It can be verified from (4.1) that if s ∈ I∆
j for some j, the following properties

hold: 1) Qi(s) = Qi(s+∆) for i = 1, . . . , n−1, and 2) En−1(s+∆)−En−1(s) =
βn−1∆. Geometrically this means that s and s+ ∆ are mapped to the same
straight line segment; see Figure 4.4a. From (4.4) it follows that s ∈ I∆

j implies

d(s,∆) = ‖X(s)−X(s+ ∆)‖ =
√
P/γ2βn−1∆.
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β−(n−1)

∆I∆
j−1 I∆

j I∆
j+1 I∆

j+2

Figure 4.3: Illustration of the intervals I∆
j in the proof of Lemma 4.4. The

horizontal line represents a subset of the source space. The length of each I∆
j is

β−(n−1) −∆, and they are placed such that within an interval of length ` there are
approximately `βn−1 of them.

Now apply Lemma 4.3 and restrict the integral to the set ψ(∆)
def
= [A,B −

∆) ∩
⋃
j∈Z I∆

j . The lower bound is then relaxed to give

E[(Ŝ − S)2] ≥ pmin

4
∆2Q(

√
snr /γ2βn−1∆/2)

∫
ψ(∆)

ds.

Letting ∆ = 1/(
√

snrβn−1) and using β2 ∈ Θ(snr1−ε) (see Remark 4.2) yields
(for sufficiently large snr)

E[(Ŝ − S)2] ≥ c snr−n+(n−1)εQ (1/2γ)

∫
ψ(∆)

ds.

The proof is almost complete; it only remains to show that
∫
ψ(∆)

ds can be
lower bounded by a constant for large SNR. The length of a single interval I∆

j

is β−(n−1) −∆. Within [A,B −∆) there are (B − A−∆)βn−1 such intervals
(see Figure 4.3). The total length of all intervals I∆

j in [A,B −∆) is therefore∫
ψ(∆)

ds = (B − A−∆)(1− βn−1∆),

which, for the given values of β and ∆, converges to B − A for snr → ∞
and thus can be lower bounded by a constant for snr greater than some snr0.
With this, the proof is complete.

Proof of Lemma 4.5. Observe first that (4.1) implies Q1(s+β−1) = Q1(s)+β−1

and E1(s+β−1) = E1(s). Since allQi and Ei for i ≥ 2 are by recursion a function
of E1 only,Qi(s) = Qi(s+β

−1) for i = 2, . . . , n−1, and En−1(s) = En−1(s+β−1).
Consequently, Xi(s) = Xi(s+β−1) for all i = 2, . . . , n. Geometrically speaking,
s and s+β−1 are mapped to the same position on two adjacent segments of the
signal locus; see Figure 4.4b. By (4.4) and the above, the Euclidean distance
between X(s) and X(s+ β−1) is therefore

d(s, β−1) =

√
P

γ
|Q1(s)−Q1(s+ β−1)| =

√
P

γβ
. (4.6)



4.2. Lower Bound on the Mean Squared Error 53

f(s)

f(s+ ∆)

√ P/
γ

2
β
n
−

1
∆

(a) ∆ ∈ [0, β−(n−1)) and s ∈ I∆
j

f(s) f(s+ ∆)

√
P/γβ

(b) ∆ = β−1

Figure 4.4: Geometric view of the proofs of Lemma 4.4 (left) and Lemma 4.5
(right) for n = 2. In the former case, s and s+ ∆ are mapped to the same segment
of the signal locus, whereas in the latter case they are mapped to adjacent segments
but at the same “height”.

Apply now Lemma 4.3 with ∆ = β−1. The parameter β will be chosen to
increase with the SNR, therefore ∆ ∈ [0, B − A) holds for sufficiently large
values of snr. Using (4.6), the resulting bound on the mean squared error is

E[(Ŝ − S)2] ≥ pmin

4
β−2Q

(√
snr

2γβ

)
(B − A− β−1).

Because β2 ∈ Θ(snr1−ε) (see Remark 4.2),
√

snr/β ∈ Θ(snrε/2). If ε(snr)
is such that limsnr→∞ snrε(snr) = ∞, use the fact that Q(x) converges to
e−x

2/2/
√

2πx (cf. [1, §26.2.12]). Otherwise snrε(snr) is upper bounded by a
constant, in which case Q(x) is bounded above and below by constants for
x = snrε(snr), and e−x2/2/x is equally upper and lower bounded. In any case,
for sufficiently large values of snr,

E[(Ŝ − S)2] ≥ c1 snr−1+ε/2 exp{−c2 snrε},

with c1 and c2 positive constants that do not depend on snr, thus proving the
lemma.

Remark 4.4. Figure 4.4 illustrates the connection to the geometric argument
given in Section 3.6. The MSE is lower bounded by Lemma 4.4 in case the
correct fold of the signal curve is decoded and by Lemma 4.5 in case the wrong
fold is decoded. The parameter ε represents the tradeoff between the two kinds
of errors.

The following lemma will be used to prove Theorem 4.7, the main result of
this section.
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Lemma 4.6. For snr > 1 and arbitrary real constants a, b > 0, and c > 0, it
holds that

snra+bε = exp{−c snrε}, (4.7)

if and only if
snrε = (b/c)W (c snr−a/b /b), (4.8)

where W (x) is the function that satisfies W (x)eW (x) = x for x > 0. This
function is well defined and is sometimes called the Lambert W -function [5].

Proof. Let snr > 1. Since snra+bε is strictly increasing and exp{−c snrε}
is strictly decreasing in snrε, there is at most one solution to (4.7) in snrε.
Assume now snrε is as in (4.8). Then

exp{−c snrε} = exp{−bW (c snr−a/b /b)}.

On the other hand,

snra+bε = snra
(
(b/c)W (c snr−a/b /b)

)b
=
(
W (c snr−a/b /b)/(c snr−a/b /b)

)b
.

By definition, W (x)/x = e−W (x), so the above is equal to

snra+bε = exp{−bW (c snr−a/b /b)},

which proves the claim.

Lemmas 4.4 and 4.5 provide conflicting objectives for the choice of ε:
according to Lemma 4.4, ε should be small for the MSE to decay fast, but
according to Lemma 4.5 it should be large to have a fast exponential decay of
the error. The following theorem, which is the main result of this section, is
obtained by finding the ε for which the two lower bounds scale the same.

Theorem 4.7. For any parameter β and for any decoder, the mean squared
error of the hybrid transmission strategy described in this section satisfies

E[(Ŝ − S)2] ∈ Ω(snr−n(log snr)n−1).

Proof. For notational simplicity define

l1(snr, ε) = snr−n+(n−1)ε and

l2(snr, ε) = snr−1+ε/2 exp{−c snrε}.

By Lemmas 4.4 and 4.5,

E[(Ŝ − S)2] ∈ Ω
(

max (l1(snr, ε), l2(snr, ε))
)
.

The optimal parameter ε(snr) is therefore such that for any snr

max (l1(snr, ε), l2(snr, ε)) (4.9)
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is minimized. Now for any fixed snr, l1(snr, ε) is increasing in ε and l2(snr, ε) is
increasing in ε for 0 ≤ ε < ξ = log(1/2c)/ log snr and decreasing in ε for ε ≥ ξ.
The maximum in (4.9) is therefore minimized either for ε = 0 or for ε ≥ ξ such
that l1(ε) = l2(ε). As remarked before, ε = 0 leads to E[(Ŝ − S)2] ∈ Ω(snr−1).
In the following, let thus ε(snr) be such that l1(snr, ε) = l2(snr, ε), to see
whether this gives a better lower bound. Inserting the definitions of l1 and l2
and rearranging the terms yields

snr−(n−1)+(n−3/2)ε = exp{−c snrε},

which is of the form (4.7) with a = −(n− 1) and b = n− 3/2. By Lemma 4.6,
for snr > 1,

snrε =
n− 3/2

c
W

(
c snr

2(n−1)
2n−3

n− 3/2

)
.

Using L’Hôpital’s rule and because the derivative ofW (x) isW (x)/[x(1+W (x))]
(cf. [5]), it is straightforward to check thatW (x)/ log x converges to 1 for x→∞.
For sufficiently large snr, therefore, there exists a constant c1 > 0 such that

snrε ≥ c1
n− 3/2

c

[
2(n− 1)

2n− 3
log snr− log

(
n− 3/2

c

)]
,

and so snrε ∈ Ω(log snr). Plugging this into the bound of Lemma 4.4 finally
results in2

E[(Ŝ − S)2] ∈ Ω(snr−n(log snr)n−1),

and no choice of ε(snr) can improve this bound.

4.3 Asymptotic Achievability of Lower Bound

The previous section showed that the hybrid transmission strategy achieves an
SDR scaling of at best snrn /(log snr)n−1. Using a simple decoder this scaling
is in fact achievable, as will now be shown.

4.3.1 A Suboptimal Decoder

The Xi are transmitted across the channel, producing at the channel output
the symbols

Yi = Xi + Zi, i = 1, . . . , n,

where the Zi are iid Gaussian random variables of variance σZ2. To estimate S
from Y1, . . . , Yn, the decoder first computes separate estimates Q̂1, . . . , Q̂n−1

and Ên−1, and then combines them to obtain the final estimate Ŝ. While this
strategy is suboptimal in terms of achieving a small MSE, it will turn out to
be good enough to achieve the desired SDR scaling.

2If a(x) ∈ Ω(f(x)) and b(x) ∈ Ω(g(x)), then a(x)b(x)m ∈ Ω(f(x)g(x)m).
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The Qi are estimated using a maximum likelihood (ML) decoder, which
yields the minimum distance estimate

Q̂i =
1

β
arg min

j∈Z

∣∣∣∣∣j
√
P

γβ
− Yi

∣∣∣∣∣ . (4.10)

To estimate En−1, a linear minimum mean-square error (LMMSE) estimator is
used (see e.g. [31, Section 8.3]), which computes

Ên−1 =
E[En−1Yn]

E[Y 2
n ]

Yn. (4.11)

Finally, using (4.2), the estimate of S is computed as

Ŝ =
n−1∑
i=1

1

βi−1
Q̂i +

1

βn−1
Ên−1. (4.12)

4.3.2 Error Analysis

The overall MSE E[(Ŝ − S)2] can be broken up into contributions due to the
errors in decoding Qi and En−1 as follows. From (4.2) and (4.12), the difference
between Ŝ and S is

Ŝ − S =
n−1∑
i=1

1

βi−1
(Q̂i −Qi) +

1

βn−1
(Ên−1 − En−1).

The error terms Q̂i − Qi depend only on the noise of the respective channel
uses and are therefore independent of each other and of Ên−1 − En−1, so the
error variance can be written componentwise as

E[(Ŝ − S)2] =
n−1∑
i=1

1

β2(i−1)
EQ,i +

1

β2(n−1)
EE, (4.13)

where EQ,i
def
= E[(Q̂i −Qi)

2] and EE
def
= E[(Ên−1 − En−1)2].

Lemma 4.8. For each i = 1, . . . , n− 1,

EQ,i ∈ O
(
exp{−c snr /β2}

)
, (4.14)

where c > 0 is a constant. (The O-notation is defined in Appendix 3.A.)

Proof. Define the interval

Ij =

[
(j − 1

2
)
√
P

γβ
,
(j + 1

2
)
√
P

γβ

)
.
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According to the minimum distance decoder (4.10), Q̂i −Qi = j/β whenever
Zi ∈ Ij. The error EQ,i satisfies thus

E[(Q̂i −Qi)
2] =

1

β2

∑
j∈Z

j2 Pr[Zi ∈ Ij]

=
2

β2

∞∑
j=1

j2 Pr[Zi ∈ Ij], (4.15)

where the second equality follows from the symmetry of the distribution of Zi.
Now,

Pr[Zi ∈ Ij] = Q

(
(j − 1

2
)
√

snr
γβ

)
−Q

(
(j + 1

2
)
√

snr
γβ

)
,

where
Q(x) =

1√
2π

∫ ∞
x

e−ξ
2/2dξ,

which can be bounded from above for x ≥ 0 as

Q(x) ≤ 1

2
e−x

2/2.

Since β ≥ 1, (4.15) is then upper bounded by

EQ,i ≤
∞∑
j=1

j2 exp

{
−(j − 1/2)2 snr

2γ2β2

}
.

Note that for j ≥ 2, (j − 1/2)2 > j. Thus

EQ,i ≤ exp

{
− snr

8γ2β2

}
+
∞∑
j=2

j2 exp

{
− j snr

2γ2β2

}
. (4.16)

To bound the infinite sum, use

∞∑
j=2

j2pj ≤
∞∑
j=1

j2pj =
p2 + p

(1− p)3
(4.17)

with p = exp{− snr /2γ2β2}. The first term of (4.16) thus dominates for large
values of snr /β2 and

EQ,i ≤ c1 exp

{
− snr
c2β2

}
for some c1 > 0 and c2 = 8γ2, which completes the proof.

Lemma 4.9. EE ∈ O(snr−1).
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Proof. The mean-squared error that results from the LMMSE estimation (4.11)
is

EE = σE
2 − (E[En−1Yn])2

E[Y 2
n ]

. (4.18)

Since

Yn = Xn + Zn =

√
P

γ
En−1 + Zn,

E[En−1Yn] =
√
PσE

2/γ. Moreover, E[Y 2
n ] = E[X2] + E[Z2] = PσE

2/γ2 + σZ
2.

Inserting this into (4.18) yields

EE = σE
2 − PσE

4/γ2

PσE2/γ2 + σZ2

= σE
2

(
1− PσE

2/γ2

PσE2/γ2 + σZ2

)
=

σE
2

1 + snrσE2/γ2

<
γ2

snr
.

Since γ is independent of the SNR (cf. Proposition 4.2), EE ∈ O(snr−1) as
claimed.

4.3.3 Optimizing the Quantization Resolution

Recall the formula for the overall error

E[(S − Ŝ)2] =
n−1∑
i=1

1

β2(i−1)
EQ,i +

1

β2(n−1)
EE.

According to Lemma 4.8, EQ,i decreases exponentially when snr /β2 goes to
infinity. This happens for increasing SNR if β is set e.g. to

β = dsnr(1−ε)/2e

for some ε > 0, in which case EQ,i ∈ O (exp(−c snrε)). From this and Lemma 4.9,
the overall error satisfies

E[(S − Ŝ)2] ∈ O(snr−(n−ε′)), (4.19)

where ε′ = (n− 1)ε can be made as small as desired.
As already mentioned in Remark 4.4, the choice of ε represents a tradeoff:

for small ε the error due to the “discrete” part vanishes only slowly, but the
scaling exponent in the limit is larger. For larger ε, EQ vanishes quickly but the
resulting exponent is smaller. This is illustrated by the simulation results in
Figure 4.5. The remainder of this section shows how to choose ε as a function
of snr in order to achieve the SDR scaling upper bound of Theorem 4.7.
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Figure 4.5: Simulation results illustrating the tradeoff represented by the choice
of ε for n = 3. For larger ε, the error from decoding the discrete signal part decays
quickly but the final scaling is worse, while for smaller ε the opposite holds. If ε is
chosen optimally as a function of snr, the resulting performance is the convex hull
of the collection of all curves.

Let

ε = ε(snr) =
log(n log snr /c)

log snr
, (4.20)

where c is the constant indicating the decay of EQ,i in (4.14). With this choice
of ε,

EQ,i ∈ O (exp (−c snrε))
= O(snr−n),

hence the overall error is still dominated as in (4.19). Inserting (4.20) in (4.19)
leads to the following achievability result, which coincides with the converse
result of Theorem 4.7, asserting that separately decoding the Qi and En−1 is
asymptotically optimal.
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Theorem 4.10. Setting β = dsnr(1−ε)/2e with ε as in (4.20), the decoder
described by (4.10)–(4.12) achieves a mean squared error that scales as

E[(Ŝ − S)2] ∈ O(snr−n(log snr)n−1).

4.4 Encoding Blocks of Source Symbols using
Lattices

The scalar quantizer scheme described in the previous section can be extended
quite easily to treat blocks ofm source symbols using lattices for the hierarchical
quantization. For the reader unfamiliar with lattices or in need of a refresher,
a concise presentation of the necessary concepts and results is provided in
Appendix 4.C.

To anticipate the conclusion of this section, it turns out that the SDR
scaling achieved for m = 1 cannot be improved upon by choosing a larger m.
Choosing a larger m and thus a lattice of larger dimension can however result
in faster convergence to the asymptotic scaling and thus increase the SDR for
low SNR values (see Figure 4.6 for a preview).

4.4.1 Transmission Strategy

The procedure to encode a vector S of m source symbols into mn channel input
vectors X1, . . . , Xn using an m-dimensional lattice for quantization is analog to
that in Section 4.1, except that now all involved quantities are m-dimensional
vectors.

Let Λ be some fixed lattice of dimension m and define E0 = S. For i = 1,
. . . , n− 1 define

Qi = QΛ/β(Ei−1)

Ei = β(Ei−1 −Qi), (4.21)

where β ∈ N and where QΛ/β(·) denotes quantization with respect to the
lattice Λ/β. According to Lemma 4.18 (in the appendix), E[‖Qi‖2] is upper
bounded by a constant independent of β. Moreover, Ei is contained within
the Voronoi region of Λ around the origin, so by Lemma 4.19 E[‖Ei‖2] is also
upper bounded independent of β. Let γ denote the common upper bound
on E[‖Qi‖2]/m and E[‖Ei‖2]/m. The channel inputs are then computed as

Xi =

√
P

γ
Qi for i = 1, . . . , n− 1 and

Xn =

√
P

γ
En−1.

By the above argument, this ensures that E[‖Xi‖2]/m ≤ P for all i.
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4.4.2 Error Lower Bound

Ziv’s lower bound on the mean squared error introduced in Section 4.2 allows
a straightforward extension to vector sources. With this, essentially the same
argument sequence as in Section 4.2 can be used to lower bound the mean
squared error, independent of the particular decoder used. (Again, the quanti-
zation resolution in terms of snr is assumed to be β = dsnr(1−ε)/2e without
loss of generality (cf. Remark 4.2).)

Lemma 4.11 (Extension of Lemma 4.3 to vector sources). Consider a com-
munication system where a continuous-valued source vector S is encoded into
a vector X(S), sent across independent parallel scalar AWGN channels with
noise variance σZ2, and decoded at the receiver to produce an estimate Ŝ. If
the density fS(s) of the source is such that there exists a set Ξ and a number
pmin > 0 such that fS(s) ≥ pmin whenever s ∈ Ξ, then for any vector ∆ the
mean squared error incurred by the communication system satisfies

E[‖Ŝ− S‖2] ≥ pmin

(
‖∆‖

2

)2 ∫
Ξ∩(Ξ−∆)

Q(d(s,∆)/2σZ)ds,

where d(s,∆) = ‖X(s)−X(s + ∆)‖. (The addition of a set A and a vector x
is defined as A+ x = {a + x : a ∈ A}.)

Remark 4.5. The set Ξ∩ (Ξ−∆) is the equivalent of the interval [A,B−∆] in
the scalar case of Lemma 4.3. It has the property that for every s ∈ Ξ∩ (Ξ−∆),
s + ∆ ∈ Ξ. To get a meaningful lower bound, ∆ should of course be chosen
such that Ξ∩ (Ξ−∆) is nonempty. Note also that when ‖∆‖ → 0, the volume
(or area) of Ξ ∩ (Ξ−∆) converges to the volume of Ξ.

Proof of Lemma 4.11. The proof is essentially the same as that for the scalar
case (Lemma 4.3). The only difference is that the integrals

∫ B−∆

A
and

∫ B
A+∆

are
replaced, respectively, with

∫
Ξ∩(Ξ−∆)

and
∫

Ξ∩(Ξ+∆)
.

Using Lemma 4.11, Lemmas 4.4 and 4.5 can be rederived for the case of
lattices; the statements are in fact identical to the scalar case.

Lemma 4.12. For an arbitrary function ε(snr) ≥ 0, the mean squared error
of the lattice communication scheme characterized by this function satisfies

E[‖Ŝ− S‖2] ∈ Ω(snr−n+(n−1)ε).

Proof. See Appendix 4.D.

Lemma 4.13. For an arbitrary function ε(snr) ≥ 0, the mean squared error
of the lattice communication scheme characterized by this function satisfies

E[‖Ŝ− S‖2] ∈ Ω(snr−1+ε/2 exp{−c snrε}),

where c > 0 does not depend on snr.
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Proof. See Appendix 4.D.

Since Lemmas 4.12 and 4.13 are identical to Lemmas 4.4 and 4.5, it is a
direct consequence that Theorem 4.7 also applies to lattice quantizers. It is
restated here for completeness.

Theorem 4.14. For any choice of the parameter β (as a function of the SNR)
and for any decoder, the mean squared error of the lattice quantizer transmission
strategy of Section 4.4 satisfies

E[‖Ŝ− S‖2] ∈ Ω(snr−n(log snr)n−1).

Proof. The proof is identical to that of Theorem 4.7.

4.4.3 Achievability

The MSE scaling lower bound of Theorem 4.14 is trivially achievable with the
integer lattice Z: quantization with this lattice can be performed independently
in each dimension and is equivalent to repeated application of the scalar scheme
of Section 4.1. Hence Theorem 4.10 applies to lattice quantizers as well.

Figure 4.6 compares SDR curves achieved with a scalar quantizer with those
achieved using the 24-dimensional Leech lattice for quantization. While the
scaling at high SNR is indeed the same, confirming the results of this section,
the error due to decoding the discrete part of the signal decreases faster if the
quantizing lattice has higher dimension. The following calculations can be used
to quantify the performance.

Like in Section 4.3, a combination of ML decoder (for the lattice points)
and LMMSE decoder (for the quantization error) may be used to estimate S.
Consider first the ML decoder. Since Qi ∈ Λ/β and Xi =

√
P/γ2Qi, the ML

decoder divides Yi by
√
P/γ2 and then sets Q̂i to be the closest point in Λ/β.

The resulting error therefore satisfies Q̂i −Qi = p ∈ Λ/β if
√
γ2/PZi ∈ V (p),

where V (p) is the Voronoi region of p (with respect to Λ/β). Averaging over
the noise, the average squared error is then

E[‖Q̂i −Qi‖2] =
∑

p∈(Λ/β)\{0}

‖p‖2

∫
V (p)

ξ(z)dz,

where ξ(z) is the pdf of
√
γ2/PZi. Since z ∈ V (p) implies ‖p‖ ≤ ‖z‖+R/β,

where R/β is the covering radius of Λ/β, E[‖Q̂i −Qi‖2] can be upper bounded
by

E[‖Q̂i −Qi‖2] ≤
∑

p∈(Λ/β)\{0}

∫
V (p)

(‖z‖+R/β)2ξ(z)dz

≤
∫
Rm\B(0,ρ/β)

(‖z‖+R/β)2ξ(z)dz,
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Figure 4.6: If the 24-dimensional Leech lattice is used for quantization, the scaling
at large SNR remains the same but the MSE decreases quicker. This is useful for
applications at low SNR. (Here n = 3.)

where B(0, r) denotes a ball of radius r around the origin and ρ/β is the packing
radius of Λ/β.

Transforming the above integral to spherical coordinates, one obtains ‖z‖ =
r and dz = rm−1S(m−1)(1)dr, where S(m−1)(1) is the surface of a unit sphere
in Rm. With this,

E[‖Q̂i −Qi‖2] ≤ S(m−1)(1)

∫ ∞
ρ/β

(r +R/β)2rm−1φ(r)dr, (4.22)

where φ(r) is the pdf of a real Gaussian random variable with variance
(γ2/P )σZ

2 = γ2/ snr. To get explicit bounds for finite SNR that depend
on R and ρ (and thus on the particular lattice used), this integral can be
evaluated using the formula∫ ∞

µ

rne−cr
2

dr =
1

2
c−(n+1)/2Γ

(
1 + n

2
, cµ2

)
, (4.23)

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function.3

3This can be shown using the formula αn(z) = z−(n+1)Γ(n + 1, z), where αn(z) =
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As snr→∞, the bound (4.22) behaves as4

E[‖Q̂i −Qi‖2] ∈ O
(

1

β2

∫ ∞
ρ/β

φ(r)dr

)
= O

(
1

β2
Q

(√
snrρ
βγ

))
= O

(
1

β
√

snr
exp

{
−snr ρ2

2β2γ2

})
,

where the last equality is because of the approximation

Q(x) ≈ exp{−x2/2}/2πx

(see [1, §26.2.12]). Letting β = dsnr(1−ε)/2e yields

E[‖Q̂i −Qi‖2] ∈ O(snr−1+ε/2 exp{−c snrε}),

which is the same scaling as the lower bound of Lemma 4.13.
As for the LMMSE decoder, it is a straightforward consequence of (4.21)

that E[‖Ên−1 − En−1‖]/β2(n−1) scales as snr−n+(n−1)ε. Together, these two
results again confirm that Theorem 4.7 applies to lattices as well.

4.5 General Bandwidth Expansion

If the source S has bounded support, the transmission strategy of Section 4.1
can easily be adapted to encode not one but k source symbols into n channel
inputs (where k < n). For simplicity it is first assumed that the source support
is contained in the interval [−1/2, 1/2]; a generalization follows at the end of
this section.

4.5.1 Transmission Strategy

The strategy used to encode the source symbols S1, . . . , Sk into the channel
inputs X1, . . . , Xn is displayed schematically on Figure 4.7 on the facing page
for k = 3 and n = 5. The encoder consists of k parallel scalar encoders that
encode each Si into n−k quantizer outputs Qi,1, . . . , Qi,n−k and a quantization
error Ei,n−k, just like for the case k = 1. The quantizer outputs at each level
are then combined into a single value Qtot,j (cf. Figure 4.7). More precisely,∫∞

1
tne−ztdt [1, §5.1.5, §5.1.56] and using variable substitution to find that

∫∞
µ
rme−cr

2

dr =
1
2µ

m+1α(m−1)/2(cµ2).
4An exact derivation of this statement fell victim to the delay constraints of thesis writing.

For now, the author puts his trust in Mathematica; a rigorous proof is left to the investigative
reader (Chapter 5 of [1] may be of help).
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Figure 4.7: Schematic display of the transmission strategy of Section 4.5 for k = 3
and n = 5. The boxes labeled Q are uniform scalar quantizers with resolution β as
described in (4.24). The boxes marked “combine” implement the operation (4.25).
The part marked in thick lines corresponds exactly to the encoding scheme described
in Section 4.1 to encode one source symbol into three channel uses; compare this
with Figure 4.1.
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letting i ∈ {1, . . . , k} be the index of the source symbol, the encoder defines
Ei,0 = Si for each i and computes

Qi,j =
1

β
int(βEi,j−1) and

Ei,j = β(Ei,j−1 −Qi,j) (4.24)

for j = 1, . . . , n−k. (This is exactly the same as (4.1), except for the addition of
the subscript i.) For each quantization level j, the k parallel quantizer outputs
are combined into

Qtot,j =
k∑
i=1

1

βi−1
Qi,j. (4.25)

Since each Qi,j is a multiple of 1/β and is assumed to lie in [−1/2, 1/2], the
mapping from the Qi,j into Qtot,j is invertible, and the inverse can be recursively
computed as

Qk,j = βk−1Qtot,j mod 1

Qk−i,j = βk−1−iQtot,j −
i∑
l=1

β−lQk−i+l mod 1, i = 1, . . . , k − 1, (4.26)

where x mod 1
def
= x− int(x).

Point 2 of Proposition 4.2 from Section 4.1 applies here as well, so there
exists a constant γ2 that upper bounds the variances of all Qi,j and Ei,j for
all β. The channel inputs are thus

Xj = (
√
P/γ)Qtot,j for j = 1, . . . , n− k and

Xj = (
√
P/γ)Ej−n+k,n−k for j = n− k + 1, . . . , n.

4.5.2 Decoder

Just like when k = 1, the decoder first computes separate estimates Q̂i,j

and Ei,n−k for i = 1, . . . , k and then combines them into the estimates Ŝi. The
Q̂i,j are obtained using a maximum likelihood (minimum distance) estimate
of Qtot,j and then by breaking it down according to (4.26). The estimate of
Qtot,j is

Q̂tot,j =
1

βk
arg min

l∈Z

∣∣∣∣∣ l
√
P

γβk
− Yj

∣∣∣∣∣ ,
and the quantization errors Ei,n−k are estimated as

Ei,n−k =
E[Ei,n−kYn−k+i]

E[Y 2
n−k+i]

.

Using (4.2) and (4.26), the final estimate for i = 1, . . . , k is

Ŝi =
n−k∑
j=1

1

βj−1
Q̂i,j +

1

βn−k
Êi,n−k.
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4.5.3 Error Analysis

As in the case k = 1, the overall mean squared error can be written as

E[(Ŝ − S)2] =
n−k∑
j=1

1

β2(j−1)
EQ,i,j +

1

β2(n−k)
EE,i

where EQ,i,j
def
= E[(Q̂i,j −Qi,j)

2] and EE,i
def
= E[(Êi,n−k − Ei,n−k)2]. The behavior

of the EE,i is exactly the same as when k = 1; the following lemma is therefore
given without proof.

Lemma 4.15. The estimation error of the Ei,n−k satisfies

EE,i ∈ O(snr−1)

for all i = 1, . . . , k.

The main difference to the case k = 1 concerns the behavior of EQ,i,j.
Because k quantizer outputs are packed into a single channel input as described
by (4.25), β2 is raised to the exponent k in the following lemma (compare with
Lemma 4.8).

Lemma 4.16. For each i = 1, . . . , k and for each j = 1, . . . , n− k,

EQ,i,j ∈ O(exp{−c snr /β2k})

where c > 0 is a constant.

Proof. For any i and j, |Q̂i,j −Qi,j| 6= 0 only if |Zj| ≥
√
P/2γβk. Furthermore,

since Q̂i,j, Qi,j ∈ [−1/2, 1/2), |Q̂i,j − Qi,j| ≤ 1. The error EQ,i,j is therefore
upper bounded by

E[(Q̂i,j −Qi,j)
2] ≤ Pr

[
|Zj| ≥

√
P

2γβk

]

= 2Q

(√
snr

2γβk

)
≤ exp{−c snr /β2k}

with c = 1/8γ.

Let now β = dsnr(1−ε)/2ke. Then β2k ∈ O(snr1−ε), and the bound from
Lemma 4.16 becomes

EQ,i,j ∈ O(exp{−c snrε}) (4.27)

(where c > 0 is not necessarily the same constant as in Lemma 4.16). Moreover,
using Lemma 4.15,

EE,i
β2(n−k)

∈ O(snr
n
k
−εn−k

k ). (4.28)
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The final step is to choose ε as a function of snr (again just like for k = 1).
Let

ε(snr) =
log(n log snr /c)

log snr
.

Inserting this in (4.27) and (4.28),

EQ,i,j ∈ O(snr−n) and

EE,i ∈ O(snr−n/k(log snr)(n−k)/k).

The overall MSE scales thus as

E[(Ŝ − S)2] ∈ O(snr−n/k(log snr)(n−k)/k).

4.5.4 Extension to General Sources

The assumption in Section 4.5 has so far been that the support of the source is
limited to [−1/2, 1/2]. If a source S has support outside this interval but its
support still lies within a bounded set, just define S ′ = S/α, with α > 1 such
that S ′ ∈ [−1/2, 1/2]. Then use the described scheme to transmit S ′ and let
Ŝ = αŜ ′. The incurred distortion is E[(S − Ŝ)2] = α2E[(S ′ − Ŝ ′)2]; the SDR
therefore still scales in the same way as when S ∈ [−1/2, 1/2].

For sources with unbounded support, some form of compander must be
used to bring them into a bounded interval; this problem is left as future work.

4.6 Towards a General SDR Upper Bound

None of the communication strategies studied in this chapter achieve the
SDR scaling of snrn/k that is achievable without a delay limit. Instead, in
each case the scaling is divided by (log snr)(n−k)/k, i.e., there is a “penalty
factor” of (log snr)1/k for each of the n−k channel inputs that carry quantized
information about the source.

At first sight this may just be due to the particular nature of the constella-
tions used here. Because a significant fraction of channel inputs is from discrete
alphabets, a certain decrease from the theoretically optimal performance is
likely to result. On the other hand, the arguments brought forward in Chapter 3
make the use of discrete channel inputs plausible for a good minimal-delay
code. What is more, there seems to be no known minimal-delay code that has
been shown to achieve a better scaling than the one found here. The obvious
question to ask, then, is whether the upper bounds found in this chapter do
not only apply to the type of schemes studied, but may be of a more general
nature.
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Lower Bounding the Mean Squared Error for More General
Constellations

To evaluate the best achievable SDR for a given transmission strategy, one has
to assume that the best possible decoder is used. The decoder that minimizes
the mean squared error is the posterior mean decoder, which computes Ŝk =
E[Sk|Y n]. As mentioned earlier in this chapter, the error resulting from this
decoder is in general hard to evaluate mathematically.

This chapter uses a trick by Ziv to lower bound the MSE by the error
probability of binary decoding, regardless of the particular decoder used, thus
avoiding the need to analyze the posterior mean decoder. However, Ziv’s bound
can only be applied to a signal constellation that has some regularity: there
must be a ∆ such that for any source value s (in an interval with strictly
positive probability density), the source points s and s+ ∆ are mapped to two
channel inputs whose Euclidean distance is upper bounded. For example, in
the proof of Lemma 4.5 we found that when ∆ = β−1, the distance between
X(s) and X(s+ ∆) is always

√
P/γβ. If there does not exist such a ∆, then

the MSE cannot be bounded as in Equation 4.29 in the proof of Ziv’s lemma
(see page 73).

This does not mean that less regular constellations necessarily perform better.
It only means that Ziv’s bound cannot be readily applied to constellations that
do not have the same regularity properties. One direction for future work is
thus to extend Ziv’s result such that the MSE resulting from more general
constellations can be upper bounded.

Properties of a Scheme With Optimal SDR Scaling

Assuming that there exists a minimal-delay code that achieves the optimal
SDR scaling snrn/k, such a code should have good minimal distance properties
in the following intuitive sense. In conventional channel coding, a code has
good minimum distance properties if every codeword is not too close to another
codeword. In joint source-channel coding with a mean squared error criterion
for a Gaussian channel, not all constellation points must be far from each other.
In fact, two constellation points may be close to each other provided that the
corresponding points in the source are close (except possibly for a set of source
points of vanishing probability). Conversely, the farther two points of the source
are from each other, the farther away the corresponding constellation points
should be. This ensures that decoding errors resulting in a large squared error
occur less frequently than those resulting in a smaller squared error.

In order to find bounds on the performance of minimal-delay source-channel
codes, one could thus try to characterize the “best” minimum distance behavior
that an arbitrary map from Rk to Rn (under a power constraint on its image)
can have.

Essentially, a map f : Rk → Rn is good for joint source-channel coding if its
inverse f−1 is “almost surely” continuous. A map from Rn to Rk is continuous,
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roughly speaking, if any two points close in Rn are mapped to points close in
Rk. Here we say “almost surely” continuous, meaning that there may be pairs
of points in Rn that violate the continuity property, as long as a decoding error
between these points occurs almost never.

The preceding reflections are admittedly quite vague. The problem is that
as long as it is not clear how one can bound the MSE for an arbitrary map
(cf. above), it is also not clear how to formally specify the properties that such
a map should have. In any case, how to formulate an exact problem and come
up with good answers is definitely a topic that should be investigated further.

Piecewise Continuous Maps from R to Rn

Of particular interest are maps that are (at least piecewise) continuous, since
they can be implemented more easily than less structured maps. We can make a
few general observations about such maps. First note that no loss of performance
is incurred by using a constant stretch. The argumentation is similar to the
“minimax considerations” by Wozencraft and Jacobs [47, p. 620]: using Ziv’s
bound, we can obtain a lower bound on the MSE by choosing the interval [A,B]
such that it contains the source section corresponding to the smallest stretch.
It is therefore the minimum stretch that determines the MSE scaling, and by
making the stretch constant (while preserving the shape of the constellation)
this minimum can only be increased, leading to a better MSE scaling.

On the other hand, by a similar argument as that used in the proof of
Lemma 4.4, if the stretch is constant and has value `, then the SDR scales at
most as `2 snr. Thus, if the squared stretch is less than snrn−1, the optimal
scaling cannot be achieved.

This implies that to achieve the optimal SDR scaling, a piecewise continuous
map must have a constant squared stretch of at least snrn−1. For the example
of a uniform source with support [−1/2, 1/2], the problem of designing a good
encoder then becomes the problem of how to arrange segments of a line of total
length snr(n−1)/2 in Rn such that the resulting signal locus has good minimum
distance properties (as explained before) while simultaneously satisfying the
power constraint. The maps presented in this chapter are one such way; they
arrange the line as parallel segments. Another possibility is e.g. the Archimedes
spiral [26].

Summary

Summarizing the above considerations, the problem of upper bounding the
performance of minimal-delay codes can be broken down into two aspects. On
one hand, it is about finding maps with good minimum distance properties,
i.e., maps whose inverse is “almost surely” continuous (see above). On the other
hand, a way must be found to lower bound the MSE for general maps. As we
have seen, Ziv’s bound only works if the constellation fulfills certain regularity
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(a) Shannon’s original propo-
sition.

X1

X2

(b) The mapping proposed in
Section 4.1 (for n = 2).

Figure 4.8: A minimum-delay source-channel code for n = 2 can be visualized as a
curve in R2 parametrized by the source. Here the mapping presented in Section 4.1
is compared to Shannon’s original suggestion (left).

properties. For more general bounds, either Ziv’s bound must be extended or a
wholly different bounding method must be found.

4.7 Historical Remarks

Schemes similar to the ones proposed here have been considered before. Indeed,
one of the first schemes to transmit an analog source across two uses of a Gaus-
sian channel was suggested by Shannon [34]. In fact, such joint source-channel
mappings are sometimes called Shannon mappings or Shannon-Kotel’nikov
mappings after Shannon and V. E. Kotel’nikov, who studied the problem
independently of Shannon in his 1947 doctoral dissertation [23]. Notice the
resemblance of the constellation resulting from the communication scheme of
Section 4.1 to Shannon’s original suggestion, both shown in Figure 4.8. The
contribution of this thesis is to specify exactly how the distance between the
segments must behave as the SNR increases in order to optimize the SDR
scaling.

Wozencraft and Jacobs devoted a whole section of their 1965 textbook to
the study of minimal-delay source-channel codes as curves in n-dimensional
space [47, Section 8.2]. Sakrison’s monograph [29] derived the optimal compan-
der for sources with unbounded support (such as Gaussian sources) under the
low noise assumption.

The particular communication strategy introduced in Section 4.1 was first
explicitly mentioned by McRae in 1971 [24] as a modulation technique for
bandspreading communication. Much of the more recent work on minimal-delay
joint source-channel codes is due to Ramstad and his coauthors (see [26], [10],
[9, 7], [45], [17]). For n = 2, the scheme of Section 4.1 is almost identical to the
HSQLC scheme by Coward [8], which uses a numerically optimized quantizer,
transmitter and receiver to minimize the mean-squared error (MSE) for finite
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values of the SNR. Coward conjectured that the right strategy for n > 2 would
be to repeatedly quantize the quantization error from the previous step, which
is exactly what we do here.

Another closely related communication scheme is the shift-map scheme due
to Chen and Wornell [3]. Vaishampayan and Costa [41] showed in their analysis
that it achieves an SDR that scales as snrn−ε for any ε > 0 if the relevant
parameters are chosen correctly as a function of the SNR. Up to rotation
and a different constellation shaping, the shift-map scheme is in fact virtually
identical to the one presented here, a fact that was pointed out recently by
Taherzadeh and Khandani [40]. In their own paper they develop a scheme that
achieves almost the same SDR scaling the scheme presented here and is in
addition robust to SNR estimation errors; their scheme, however, is based on
rearranging the digits of the binary expansion of the source and requires greater
implementation complexity.

Shamai, Verdú and Zamir [32] used Wyner-Ziv coding to extend an existing
analog system with a digital code when additional bandwidth is available. Mittal
and Phamdo [25] (see also the paper by Skoglund, Phamdo and Alajaji [38])
split up the source into a quantized part and a quantization error, much like we
do here, but they use a separation-based code (or “tandem” code) to transmit
the quantization symbols. Reznic et al. [28] use both quantization and Wyner-
Ziv coding, and their scheme includes Shamai et al. and Mittal & Phamdo
as extreme cases. All three schemes, however, use long block codes for the
digital phase and incur correspondingly large delays, so they are not directly
comparable with minimum delay schemes.

The bound used to lower bound the MSE scaling in Section 4.2 first occurred
in a simpler form in a paper by Ziv and Zakai [49]. The version used here is
based on the version that Ziv developped for his 1970 paper [48]. In that paper,
Ziv found important theoretical limitations of source-channel mappings if the
encoder can depend on the SNR only through a scaling factor.
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4.A Proof of Lemma 4.1

Proof. Let f(ξ) be the probability density function of Ei−1. Then

E[Q2
i ] =

1

β2

∫
R

int(βEi−1)2f(ξ)dξ

=
1

β2

∑
i∈Z

i2
∫ i+1/2

β

i−1/2
β

f(ξ)dξ.

Now, |i| ≤ β|ξ|+ 1/2 whenever ξ ∈ [(i− 1/2)/β, (i+ 1/2)/β), so

E[Q2
i ] ≤

1

β2

∑
i∈Z

∫ i+1/2
β

i−1/2
β

(β|ξ|+ 1/2)2f(ξ)dξ

=
1

β2

∫
R
(β|ξ|+ 1/2)2f(ξ)dξ

= E[E2
i−1] +

1

4β2
+

1

β

∫
R
|ξ|f(ξ)dξ.

To bound the last integral, use the fact that E[|Ei−1|] ≤
√

E[E2
i−1] to finally

obtain

E[Q2
i ] ≤ E[E2

i−1] +

√
E[E2

i−1]

β
+

1

4β2
.

4.B Proof of Ziv’s Lower Bound (Lemma 4.3)

Conditioning the mean squared error on S and using the assumption on pS one
obtains

E[(Ŝ − S)2] ≥ pmin

∫ B

A

E[(Ŝ − S)2|s]ds.

For ∆ ∈ [0, B − A] one can further bound this in two ways:

E[(Ŝ − S)2] ≥ pmin

∫ B−∆

A

E[(Ŝ − S)2|s]ds

E[(Ŝ − S)2] ≥ pmin

∫ B

A+∆

E[(Ŝ − S)2|s]ds

= pmin

∫ B−∆

A

E[(Ŝ − S)2|s+ ∆]ds.

Averaging the two lower bounds yields

E[(Ŝ − S)2] ≥ pmin

2

∫ B−∆

A

(
E[(Ŝ − S)2|s] + E[(Ŝ − S)2|s+ ∆]

)
ds, (4.29)
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and applying Markov’s inequality to the expectation terms leads to

E[(Ŝ − S)2|s] ≥
(

∆

2

)2

Pr[|Ŝ − S| ≥ ∆/2 | s] (4.30)

and

E[(Ŝ − S)2|s+ ∆] ≥
(

∆

2

)2

Pr[|Ŝ − S| ≥ ∆/2 | s+ ∆]. (4.31)

Now suppose that the communication system in question is used for binary
signaling. One wants to send either s or s+ ∆; at the decoder the estimate Ŝ is
used to decide for s or s+ ∆ depending on which one Ŝ is closer to. When s is
sent, the decoder makes an error only if |Ŝ − s| ≥ ∆/2; when s+ ∆ is sent, it
makes an error only if |Ŝ − s−∆| ≥ ∆/2. The conditional error probabilities
therefore satisfy Pr[error|s] ≤ Pr[|Ŝ − S| ≥ ∆/2 | s] and Pr[error|s + ∆] ≤
Pr[|Ŝ−S−∆| ≥ ∆/2 | s+ ∆]. Applying this to (4.30) and (4.31) and inserting
the result in (4.29) yields

E[(Ŝ − S)2] ≥ pmin

(
∆

2

)2∫ B−∆

A

Pe(s,∆)ds, (4.32)

where Pe(s,∆) = (Pr[error|s] + Pr[error|s+ ∆]) /2 is the average error proba-
bility.

If s and s + ∆ are picked with equal probability and transmitted across
n parallel Gaussian channels as X(s) and X(s+ ∆), and if d(s,∆) = ‖X(s)−
X(s+ ∆)‖, then the error probability of the MAP decoder is Q(d(s,∆)/2σZ),
a standard result of communication theory (see e.g. [47, Section 4.5]). Because
the MAP decoder minimizes the error probability, Q(d(s,∆)/2σZ) ≤ Pe(s,∆),
which, when inserted into (4.32), completes the proof.

4.C Lattice Basics

This appendix contains the very basics on lattices and lattice quantization
needed in Section 4.4. For a comprehensive treatment of lattices and/or quan-
tization the reader is referred to the books by Conway and Sloane [4] and by
Gersho and Gray [15].

Definition 4.1. An n-dimensional lattice Λ is a discrete subgroup of Rn that
spans Rn. A sublattice of Λ is a subset Λ′ ⊆ Λ that is itself a lattice.

Example 4.1. In R there exists only a single lattice (up to scaling), the scalar
lattice Z. Two examples of lattices in R2 are displayed in Figure 4.9.

Proposition 4.17. If Λ is a lattice and β ∈ N, then βΛ is a sublattice of Λ.
(The set βΛ is defined as {βx : x ∈ Λ}.)
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(a) Rectangular lattice. (b) Hexagonal lattice.

Figure 4.9: Two lattices in R2 and the corresponding partition into Voronoi
regions.

Proof. By definition of a lattice, βΛ ⊆ Λ. Moreover, if x,y ∈ βΛ, then x = βx′

and y = βy′ with x′,y′ ∈ Λ. It follows that x + y = β(x′ + y′) ∈ βΛ, so βΛ is
itself a lattice.

Definition 4.2. The Voronoi region V (p) of a lattice point p ∈ Λ is defined
as

V (p) = {x ∈ Rn : ‖x− p‖ ≤ ‖x− q‖,∀q ∈ Λ},
i.e., V (p) is the set of points in Rn that at least as close to p as to any other
lattice point.

See Figure 4.9 for an illustration of the Voronoi region.

Definition 4.3. The packing radius ρ of a lattice is half the minimal distance
between lattice points. Thus, ρ is the largest radius of spheres that can be packed
in Rn by placing them at the lattice points.

Definition 4.4. The covering radius R of a lattice Λ is the least upper bound
for the distance from any point of Rn to the closest point x ∈ Λ. Thus, spheres
of radius ρ around each lattice point will cover Rn, and no smaller radius will
do. [4]

The packing radius and the covering radius are illustrated on Figure 4.10.

Definition 4.5. A lattice quantizer QΛ : Rn → Λ maps each point of Rn to
the closest lattice point. Thus, for any x ∈ Rn, y ∈ Λ,

‖x−QΛ(x)‖ ≤ ‖x− y‖.

Remark 4.6. Definition 4.5 does not unambiguously specify QΛ(x) if x lies
on the boundary between the Voronoi regions of two adjacent lattice points.
Since quantization is only applied to continuous-valued random variables in this
chapter, however, the probability of this happening is zero, and this ambiguity
can be left alone without causing any trouble.

Example 4.2. Let Λ = Z/β for some β > 0. The associated quantizer QΛ maps
each real number to the closest multiple of 1/β. This is exactly the quantizer
used in Section 4.1.
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ρ

R

R

ρ

Figure 4.10: The packing radius ρ and the covering radius R for the rectangular
lattice and the hexagonal lattice.

The next two lemmas are useful to bound the transmit power when trans-
mitting a quantized random vector.

Lemma 4.18. Let X be a random vector satisfying E[‖X‖2] = σ2 < ∞. Let
Y = QΛ(X). Then E[‖Y‖2] ≤ σ2 + 2Rσ +R2, where R is the covering radius
of Λ.

Proof. The power of Y is given by

E[‖QΛ(X)‖2] =

∫
Rn
‖QΛ(x)‖2fX(x)dx =

∑
p∈Λ

‖p‖2

∫
V (p)

fX(x)dx.

By definition of the covering radius, ‖p‖ ≤ ‖x‖+R for all x ∈ V (p). Thus,

E[‖QΛ(X)‖2] ≤
∑
p∈Λ

∫
V (p)

(‖x‖+R)2fX(x)dx

=

∫
Rn

(‖x‖+R)2fX(x)dx.

By assumption,
∫
Rn ‖x‖

2fX(x)dx = σ2. Moreover, by the positivity of the
variance, E[ξ] ≤ (E[ξ2])1/2, and so

∫
Rn ‖x‖fX(x)dx ≤ σ. Applying this to the

above yields
E[‖QΛ(X)‖2] ≤ σ2 + 2Rσ +R2,

thus completing the proof.

Example 4.3. Lemma 4.18 can be used to derive Lemma 4.1. Indeed, let X
be a scalar zero-mean random variable of variance σ2 and let Λ = Z/β, for
some β > 0. The covering radius of this lattice is R = 1/2β, so E[QΛ(X)2] ≤
σ2 + β−1σ + β−2/4.
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Lemma 4.19. Let X be a random vector whose support is limited to the Voronoi
region V (0) of a lattice Λ. Then E[‖X‖2] ≤ R2, where R is the covering radius
of Λ.

Proof.

E[‖X‖2] =

∫
V (0)

‖x‖2fX(x)dx

≤ R2

∫
V (0)

fX(x)dx = R2.

4.D Proof of Lemmas 4.12 and 4.13

The following auxiliary result and its corollary will be useful for the proofs to
come. See Figure 4.11 for an illustration.

Lemma 4.20. Let Λ be an arbitrary m-dimensional lattice and let Λ′ = Λ/β,
where β ∈ N. (By Proposition 4.17, Λ is a sublattice of Λ′.) Then the fraction
of Voronoi cells of Λ that do not lie on the boundary between two Voronoi cells
of Λ′ is bounded away from zero as β grows large.

Proof. Let V (Λ) be a Voronoi region of Λ and let V (Λ′) be a Voronoi region
of Λ′. Consider a sphere of radius ρ− 2R′ around the center of V (Λ), where
ρ is the packing radius of Λ and R′ = R/β is the covering radius of Λ′. By
definition of the packing radius, this sphere is completely contained within
V (Λ). Furthermore, the distance from the border of the sphere to the border of
V (Λ) is at least 2R′. Any Voronoi cell of Λ′ that intersects with the boundary
of V (Λ) lies therefore outside the sphere.

The fraction of Voronoi cells of Λ′ that do not lie on the boundary of V (Λ)
is therefore lower bounded by

(ρ− 2R′)mV (m)(1)

VolV (Λ)
=

(ρ− 2R/β)nV (m)(1)

VolV (Λ)
,

where V (m)(1) is the volume of the m-dimensional unit sphere. As beta grows
large, this converges to ρV (n)(1)/VolV (Λ) > 0, and the proof is complete.

Corollary. Let Λ be a fixed lattice and consider the sequence of lattices Λ/β,
Λ/β2, . . . , Λ/βn−1, where β ∈ N. Then the fraction of Voronoi regions of
Λ/βn−1 that do not lie on the boundary between two Voronoi regions of any of
its sublattices Λ/βi is bounded away from zero as β grows large.

Proof. Apply Lemma 4.20 successively to the pairs Λ/βi, Λ/βi+1, for i = 1,
. . . , n− 2.
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(a) β = 3 (b) β = 4

Figure 4.11: Illustration for Lemma 4.20 and the corollary thereof. Note how in
the right picture the fraction of small Voronoi cells that are not “cut” by a Voronoi
boundary of the sublattice is larger.

Proof of Lemma 4.12. Consider the lattice Λn−1
def
= Λ/βn−1. For p ∈ Λn−1, let

V (p) be the Voronoi region of p. For some ξ ∈ V (0) define ∆ = ∆ξ for some
∆ ≤ 1 and define V∆(p) = V (p) ∩ (V (p)−∆). This set has the property that
x + ∆ ∈ V (p) whenever x ∈ V∆(p).5

If p is such that V (p) does not lie on the boundary of the Voronoi region of
a sublattice, then V∆(p) defined this way has the property that if s ∈ V∆(p),

d(s,∆) =

√
mP

γ
‖En−1(s)− En−1(s + ∆)‖

=

√
mP

γ
‖ξ‖βn−1∆.

In other words, the lattice quantizers at each level map s and s + ∆ to the
same lattice point.

One can now apply Lemma 4.11 and restrict the integral to the set

Ψ(∆)
def
= Ξ ∩ (Ξ−∆) ∩

⋃
p∈Λn−1

′

V∆(p),

where Λn−1
′ is defined to be the subset of those points in Λn−1 whose Voronoi

region does not lie on the boundary between Voronoi regions of a sublattice.
By the corollary to Lemma 4.20 this set has positive probability.

The lower bound of Lemma 4.11 is then relaxed to give

E[‖Ŝ− S‖2] ≥ c1∆2Q(c2

√
snrβn−1∆)

∫
Ψ(∆)

ds

for some positive constants c1 and c2. Letting ∆ = 1/(
√

snrβn−1) and β2 =
snr1−ε yields

E[‖Ŝ− S‖2] ≥ c3 snr−n+(n−1)ε

∫
Ψ(∆)

ds,

5For reference, the sets V∆(p) are the equivalent of the intervals I∆
j in the proof of

Lemma 4.4.
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with c3 > 0 a constant independent of snr.
It remains to prove the convergence of

∫
Ψ(∆)

ds to a constant. Since ∆ goes
to zero as snr → ∞, the set Ψ(∆) converges to the set Ξ ∩

⋃
p∈Λn−1

′ V (p).
Since both Ξ and

⋃
p∈Λn−1

′ V (p) have positive volume and because the points
of Λn−1

′ grow closer and closer as snr and thus β increases, the overall set also
has positive volume.

Proof of Lemma 4.13. Let Λ be the normalized lattice used for quantization.
Let ξ ∈ Λ be arbitrary but fixed. Let ∆ = β−1ξ. Using the same reasoning
as in the proof of Lemma 4.5, it follows that Q1(s + ∆) = Q1(s) + ∆, and
also Qi(s + ∆) = Qi(s) for i = 2, . . . , n − 1, and En−1(s + ∆) = En−1(s).
Consequently,

‖X(s)−X(s + ∆)‖ =

√
mP

γ
‖ξ‖β−1.

According to Lemma 4.11, therefore,

E[‖Ŝ− S‖2] ≥ c1β
−2Q(c2

√
snrβ−1)

∫
Ξ∩(Ξ−∆)

ds,

where c1 and c2 are positive constants independent of snr. The rest of the
proof is essentially identical to that of Lemma 4.5.





JSCsim: A Joint
Source–Channel Coding
Simulator 5
For a communication engineer, simulations are an invaluable tool. They can
not only help to verify the correctness of a theoretical result, they can also
produce results about systems far too complex to be modeled mathematically.

Simulations are often seen as not more than ad-hoc tools. They are quick-
and-dirty programming jobs that have served their purpose once the desired
result has been obtained. According to the rule that the more a program
is likely to change the better it should be structured, however, simulations
should instead be among the most well-structured and thought through pieces
of software. It takes time to plan and write well-structured code, but if the
simulation is seen merely as a means to an end, communication engineers rarely
take this time. As a result, most simulation code will eventually become so
ugly that it is easier to write a new simulation from scratch rather than to
modify the existing one.

This chapter presents JSCsim, an object-oriented simulator for joint source-
channel coding schemes.1 Its main design goal is to allow rapid testing of new
ideas while simultaneously keeping the code free of redundancies.

JSCsim is implemented in MATLAB but could easily be translated to
other languages that support object-oriented programming. Its power lies in
its structure, which relies heavily on the twin paradigms of inheritance and
polymorphism2. Moreover, this structure can be translated to communication
problems other than joint source-channel coding.

This chapter is organized as follows. Section 5.2 makes the reader familiar
with JSCsim by leading him through a series of hands-on examples and giving

1http://ipg.epfl.ch/~kleiner/jscsim/
2Inheritance is the capability of a class to “inherit” the properties and methods of another

class while adding its own functionality. Polymorphism is the capability of a class to appear
as and be used like another class.
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1 function mse = run_simulation()
2 snr = 10.^(0:.1:5); % SNR range: 0 to 50 dB
3 sv = 1; % Source variance
4 N = 100000; % Sample size
5

6 s = get_source_samples(N, sv);
7 for k = 1:length(snr)
8 x = encode(s);
9 y = x + gaussian_noise(snr(k));

10 sh = decode(y);
11

12 mse(k) = mean((s - sh).^2);
13 end
14 end

Listing 5.1: A hypothetical simulation of a joint source-channel communication
scheme.

an overview of the implementation. Thereafter, Section 5.3 provides a detailed
reference and usage manual.

Before introducing JSCsim, the chapter starts with a short example that
illustrates why object oriented programming is so well suited for writing simu-
lations.

Remark 5.1. The reader is assumed to be familiar with the fundamentals
of object-oriented programming (classes, methods, encapsulation, etc.). For
those unfamiliar with the subject, the Wikipedia article on object-oriented
programming [46] provides a good introduction; otherwise there are numerous
good language-specific introductions around. The examples throughout this
chapter are in MATLAB’s programming language.

5.1 Object Oriented Programming and
Simulation: A Great Match

Imagine that you have written the MATLAB code in Listing 5.1 to simulate
your freshly devised communication scheme. The function run_simulation()
first defines a few relevant parameters and creates a vector of random source
samples. Then, for each SNR value in the defined range, it calls encode() to
encode the source symbols into the channel input x, adds noise, decodes the
result y to produce an estimate sh. Finally it computes the empirical MSE and
stores it in the vector mse.

Suppose now that you want to test an alternative decoding method. For
example, you want to see how a maximum likelihood decoder compares to
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an MMSE decoder. To this end you implement the alternative decoder in the
function alt_decode(). How do you test this function? You have essentially
four possibilities:

1. You replace the call to decode() in run_simulation() by a call to
alt_decode(). The change to the existing code is only minimal. In doing
so, however, you give up the old version of your code; this is not very
good since you’ll probably want to compare the performance of the new
decoder to that of the old one and thus keep both versions around.

2. You copy the contents of run_simulation() into a new function called
run_alt_simulation(), replacing the call to decode() with a call to
alt_decode(). While this approach leaves the old code unchanged and
again only requires little programming effort, it results in a lot of duplicate
code, which makes your program error prone.

3. You do as in point 2, but then you eliminate duplicate code by putting
all the common code into separate functions that will be called by both
run_simulation() and run_alt_simulation(). This does indeed re-
move the redundancies, but it also requires significant programming
effort. Moreover, if one day you decide to change the encoder as well, this
will probably again require a similar amount of effort.

4. You add an argument to run_simulation() that specifies whether the
old or the new decoding function should be used, and then you add a
test as in

1 if decode_mode == 0
2 sh = decode(y);
3 elseif decode_mode == 1
4 sh = decode_alt(y);
5 end

In the example given, decode() is called directly from run_simulation(),
so the changes to the code are small (and no redundant code is created).
However, in a practical simulator the decoding function may be under
many layers of nested functions, and then all these functions would have
to be modified to pass on the new parameter.

A similar but more sophisticated way would be to set up a way for the
simulator to read in configuration files and then add a configuration
option for the decoding method used. This would require a (one-time)
programming effort but it eliminates the need for options to be passed
down from function to function.

While this fourth method may be better than the first three, it still has
the drawback that existing simulator code needs to be rewritten. After
adding many such options and corresponding conditionals, the code may
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well become difficult to read. Moreover, if someone else is the author
of the original simulator and he or she releases a new version, all your
changes will have to be merged into the new version.

As you can see, none of these options is quite satisfactory. You either lose
old functionality, are left with a lot of duplicate code, or face a significant
restructuring effort.

The Power of Inheritance

Suppose now that your programming language supports object-oriented pro-
gramming (as MATLAB does3) and that you have implemented run_simula-
tion(), along with the functions it calls, as methods of the class Simulation,
as shown in Listing 5.2. Creating a new simulation with an alternative decode()
function now couldn’t be easier: just create a derived class4 of Simulation and
override the decode() method, as shown in Listing 5.3.

The two versions of the simulation can then be run as follows.

1 s = Simulation(); % Create class instance
2 mse1 = s.run_simulation(); % Call class method
3 as = AlternativeSimulation(); % Create class instance
4 mse2 = as.run_simulation(); % Call class method

Because the new class AlternativeSimulation inherits everything from Sim-
ulation except the overridden method decode(), it can be used just like the
original simulation.

The object-oriented approach has none of the drawbacks of the previous
example:

• The original simulation remains completely unchanged.

• There is no programming effort other than implementing the new method.

• There is no redundant code whatsoever.

The concept we have exploited here is called inheritance, since Alternative-
Simulation inherits all those methods from Simulation which it doesn’t
explicitly redefine. The power of inheritance is that it allows old code to
call new code: if as is an instance of AlternativeSimulation then a call to
as.run_simulation() calls the “old” method run_simulation() (defined in
Simulation), which in turn calls the new decode() method, without the need
to make any changes to run_simulation().

3at least the more recent releases
4In many object oriented programming languages, most notably Java, derived classes are

called subclasses and base classes are called superclasses. As pointed out by Stroustrup [39,
§12.2], this is somewhat confusing because the capabilities of a subclass form a superset of
those of its superclass (and vice versa). Hence in this text we shall stick to the terms base
class and derived class.
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1 classdef Simulation
2 methods
3 function mse = run_simulation()
4 ... % as before
5 end
6

7 function x = encode(s)
8 ...
9 end

10

11 function sh = decode(y)
12 ...
13 end
14 end
15 end

Listing 5.2: Object-oriented version of the simulator of Listing 5.1.

1 classdef AlternativeSimulation < Simulation
2 methods
3 function sh = decode(y)
4 % Alternative decoder implementation goes here ...
5 end
6 end
7 end

Listing 5.3: A new simulation with an alternative decoder is easily implemented
by deriving a new class from Simulation and overriding the decode() method.

In procedural programming5, on the other hand, it is only possible for new
code to call old code: a new function can call an existing one, but the opposite
is not possible without changing the existing function. Furthermore, if you want
two versions of an existing function to coexist such that one of them calls a
new function (which is what we tried in our introductory example), this either
requires code duplication (which leads to bugs) or significant programming
effort.

To summarize: one can create two simulations that are identical except for
a single function by the simple act of embedding the functions making up the
simulation in a class and creating a derived class that overrides one of these
functions.

5Procedural programming is programming using functions or procedures, as opposed to
object-oriented programming.
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5.2 A Short Overview of JSCsim

This section has two subsections. The first one is for those readers who just
want to see how to use JSCsim and care less about what goes on behind the
scenes. The second subsection, starting on page 94, presents JSCsim from the
developer’s point of view by explaining the architecture in a top-down fashion.
Depending on the reader’s interests, he or she may safely skip one or the other
subsection.

The best way to read this section may be to read both parts in parallel.
Start by going through the first example of the tutorial, then switch to reading
about the implementation, and continue alternating between the two parts.

5.2.1 A Step-By-Step Tutorial

To demonstrate how JSCsim helps defining communication schemes and simu-
lating them, this section presents a number of small hands-on examples.

Implementing a Communication Scheme

Example 3.1 of Chapter 1 showed that uncoded transmission is optimal to
transmit a Gaussian source across a Gaussian channel if the source and channel
bandwidths are matched. To verify this claim experimentally, let us implement
uncoded transmission in JSCsim.

The code for this is shown in Listing 5.4 on the facing page. One can make
the following observations.

1. The communication scheme is implemented as a class called Uncoded-
Scheme (line 1). It is derived from the class PracticalScheme. This is
the class that all “practical” communication schemes are derived from, i.e.,
communication schemes that can be implemented in practice as opposed
to merely “theoretical” schemes. The so called theoretical schemes, of
which we will see an example shortly, compute a MSE from a mathematical
formula (such as σ2

S/(1 + snr)n) without simulating transmission.

2. The constructor of UncodedScheme receives two parameters (line 4). sv
is the source variance and s is the sequence of source symbols that are to
be transmitted.6

The constructor of the base class PracticalScheme has two additional
arguments. They are, respectively, the number k of source symbols en-
coded at a time and the number n of channel inputs produced from every
k source symbols. The scheme at hand is for k = n = 1, which is why the
last two parameters passed to PracticalScheme() are both 1 (line 5).

6If you wonder why the constructor returns something called obj: this is simply how
MATLAB’s syntax specifies the constructor; the returned value is the object just created.
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1 classdef UncodedScheme < PracticalScheme
2 % UNCODEDSCHEME Implementation of uncoded transmission.
3 % This scheme implements uncoded transmission for the 1:1 case
4 % (no bandwidth expansion). The encoder scales the source
5 % symbol to satisfy the power constraint and the decoder is the
6 % LMMSE decoder.
7

8 % $Id: UncodedScheme.m 812 2010-06-22 08:05:49Z kleiner $
9

10 methods (Access = ’public’)
11 function obj = UncodedScheme(sv, s)
12 obj@PracticalScheme(sv, s, 1, 1);
13 end
14 end
15

16 methods (Access = ’protected’)
17 function x = encode(obj, s)
18 x = sqrt(obj.P / obj.sv) * s;
19 end
20

21 function sh = decode(obj, y)
22 sh = sqrt(obj.P * obj.sv) / (obj.P + obj.nv) * y;
23 end
24 end
25

26 end

Listing 5.4: Implementation of uncoded transmission.

3. Actual computation is only performed in two methods: encode() and
decode()7. This makes sense, since a communication scheme is completely
specified by its encoder and decoder. For the scheme at hand, these
methods simply compute X =

√
P/σ2

SS and Ŝ =
√
Pσ2

SY/(P + σZ
2).

Performance Analysis

Having implemented the class UncodedScheme, we would now like to plot
its performance. For this, JSCsim has a class called PerformanceProcessor,
which is used as follows.

7Again, the reason why the first argument to both encode() and decode() is obj has
to do with MATLAB’s syntax. All (non-static) methods of a class must have a first argument
that refers to the object instance. Here we call it obj by convention, but it could in principle
be given any other name. An object’s properties are accessed from within its methods by
prefixing them with ‘obj.’ (cf. Listing 5.4). This is similar to the this pointer in C++ or
Java, except that the latter doesn’t have to be explicitly given as a method argument.
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1 schemes = {’UncodedScheme’};
2 parameters = {[]};
3 pp = PerformanceProcessor();
4 pp.process(schemes, parameters);

The first two lines define two cell arrays8 with a single entry each. The first
contains the class names of the schemes to plot, and the second contains a list of
parameters for each scheme. Here we only have a single scheme, UncodedScheme.
It does not have any parameters, so the corresponding entry in the parameter
list is an empty vector.

The third line creates an instance of the class PerformanceProcessor,
whose process() method we invoke in the fourth line, passing the list of
schemes and parameters. Figure 5.1 on the next page contains the resulting
plot.

This was not much work at all. Behind the scenes, however, a lot more was
going on:

1. A long sequence of random source symbols was generated.

2. For a range of SNR values and for each communication scheme, the
source sequence was encoded using the encode() method of our new
class, Gaussian noise of the appropriate variance was added, and the
result was decoded using our new decode() method.

3. The average difference between the source sequence and the estimate
sequence was computed, again for each scheme and for each value of SNR.

4. The resulting performance curves were plotted by the Performance-
Processor.

All this work was done by PerformanceProcessor and the base class Practi-
calScheme, leaving us free to focus on the essential stuff. (Section 5.2.2 explains
in detail how the above steps are performed.)

Theoretical Performance

At this point we have implemented uncoded communication, but we have not
yet verified that it performs indeed optimally. From Chapter 1 we know that if
there are n channel uses per source symbol then the optimal SDR is (1 + snr)n.
In JSCsim we can implement this as a “theoretical” communication scheme: this
is a communication scheme that doesn’t actually do any encoding or decoding,
but simply computes a theoretical MSE for a given SNR.

8In MATLAB, cell arrays are special arrays whose elements can be of arbitrary types
(scalars, vectors, matrices, strings, other cell arrays, etc.). Cell arrays are specified by listing
their elements in curly braces, as in {1, [2,3], ’foo’}.
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Figure 5.1: Plot of the SDR resulting from the UncodedScheme class, obtained
using a PerformanceProcessor.

The resulting MATLAB code is given in Listing 5.5 on the following page.
We can make the following observations.

1. The class ShannonScheme is derived from TheoreticalScheme rather
than from PracticalScheme as in the previous example (line 1). This
is because unlike practical schemes, theoretical schemes do not have
encode() or decode() methods.

2. ShannonScheme has a single parameter n, the number of channel uses
per source symbol, which it receives as an argument of its constructor
(line 7).

3. The method update_mse(obj) (line 20) is the heart of this class. This
method is called by the base class whenever the SNR is changed. Here it
computes σ2

S/(1 + snr)n, which is the theoretically optimal MSE for the
given SNR (cf. Chapter 1).
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1 classdef ShannonScheme < TheoreticalScheme
2 properties
3 n % The number of channel uses per source symbol.
4 end
5

6 methods (Access = ’public’)
7 function obj = ShannonScheme(sv, s, n)
8

9 % Call base class constructor.
10 obj = obj@TheoreticalScheme(sv, s);
11

12 % Set class-specific parameters.
13 obj.n = n;
14 end
15 end
16

17 methods (Access = ’protected’)
18 % This function is called whenever the SNR is changed and so
19 % the MSE needs to be recomputed.
20 function update_mse(obj)
21 obj.mse = obj.sv / (1 + obj.snr)^obj.n;
22 end
23 end
24 end

Listing 5.5: A “theoretical” communication scheme does not perform any actual
encoding or decoding, but rather computes the theoretically optimal MSE for a
given SNR.

4. update_mse() accesses the snr property (line 21), even though we never
defined this property. This is because the property is set by the base class,
so that all derived classes have access to the SNR.

To plot the performance of both UncodedScheme and ShannonScheme on
the same plot, we can use the PerformanceProcessor as before:

1 schemes = {’UncodedScheme’, ’ShannonScheme’};
2 parameters = {[], [1]};
3 pp = PerformanceProcessor();
4 pp.process(schemes, parameters);

The only difference to the previous example is that the schemes array now
has two elements and that we need to specify the parameter n = 1 for
ShannonScheme. This parameter will be passed to the constructor of Shannon-
Scheme as its third argument.
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Figure 5.2: Comparing the theoretically optimal performance and the performance
of uncoded transmission. The two curves coincide, experimentally confirming that
uncoded transmission is optimal for the transmission of a Gaussian source across a
Gaussian channel.

The resulting plot is shown on Figure 5.2 and confirms that uncoded
transmission is indeed optimal. Note that a legend has automatically been
added because we are plotting the performance of more than one communication
scheme.

Alternative Output Formats

In the examples we saw so far, the performance processor just launched a
standard MATLAB figure window with the performance plot. Often, you may
not only want to look at the plot on the screen but also use it in a report or
in a paper. For this, JSCsim has the concept of output modules. An output
module is a class that implements a rudimentary set of plot capabilities.

The default output module is called MatlabPlotModule and uses MATLAB’s
plot command to display a figure window. Alternatively, to save the performance
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plot in a PDF file, for instance, the default output module can be replaced
by a MatlabFilePlotModule. Instead of displaying the plot in a window, this
output module saves it in a file. Continuing our previous example, we can use
it as follows.

1 ... % Define list of schemes and parameters.
2 pp = PerformanceProcessor();
3 pp.output_module = MatlabFilePlotModule();
4 pp.output_module.fn = ’myplot.pdf’;
5 pp.process(schemes, parameters); % Saved to myplot.pdf.

In line 3 a new output module of type MatlabFilePlotModule is created and
attached to the performance processor. Since this output module writes its
output to a file, we have to specify a file name in line 4. Afterwards, we can
call process() just as before.9

There is another output module, called PGFPlotsOutputModule. It pro-
duces a file containing LATEX code to be used with the pgfplots pack-
age10. To use it, just replace MatlabFilePlotModule in the above example by
PGFPlotsOutputModule and set e.g.

1 pp.output_module.fn = ’myplot.tex’;

The resulting file can then be included in a LATEX file, provided that the
pgfplots package has been loaded. The result is shown in Figure 5.3. Plots
created by pgfplots fit in nicer with the LATEX layout, and their labels are
more readable than those of Figures 5.1 and 5.2.

Analysis Using Scheme Processors

The performance processor we have used to plot the performance in the previous
examples is a particular type of scheme processor. The idea behind scheme pro-
cessors is to separate the implementation and the simulation of communication
schemes.

A scheme processor takes a list of schemes along with the corresponding
parameters, simulates these for a range of SNR values, and gathers data from
each simulation run.

Each scheme processor is derived from the class SchemeProcessor. It must
implement three methods:

• initialize() to allocate space for the data gathered;

• save_scheme_data() to collect data after each simulation run; and

9Unsurprisingly, Figures 5.1 and 5.2 have in fact been created using MatlabFilePlot-
Module.

10http://pgfplots.sourceforge.net/

http://pgfplots.sourceforge.net/
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Figure 5.3: Using the PGFPlotsOutputModule, one can save the simulation
output as TEX commands for the pgfplots package, which can then be included
in a LATEX source file.

• post_process() to post-process the gathered data, which usually just
means to plot it.

This is illustrated by the simplified implementation of PerformanceProcessor
in Listing 5.6 on the following page. This class has a single property, mse
(line 4), where it stores the mean squared errors gathered in each simulation
run. In its initialize() method, mse is initialized to a big all-zero matrix
of the right size. In the method save_scheme_data(), the communication
scheme just simulated (passed as the argument scheme) is queried by calling
its compute_mse() method (line 13) and the result is stored in the matrix mse.
Finally, post_process() plots the MSE of all processed schemes.

For another example of a performance processor, consider the hybrid com-
munication scheme implemented as Hybrid2DScheme in Listing 5.7. In this
communication scheme, each source symbol S is split into a discrete part Q
and a continuous part E (lines 10–11), which are then transmitted across
two channel uses (lines 13–14). The decoder computes the source estimate Ŝ
from the separate estimates Q̂ and Ê (lines 18–20). (This is similar to the
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1 classdef PerformanceProcessor < SchemeProcessor
2

3 properties
4 mse
5 end
6

7 methods (Access = ’protected’)
8 function initialize(obj)
9 obj.mse = zeros(nb_schemes(obj), length(obj.snr));

10 end
11

12 function save_scheme_data(obj, scheme, j, k)
13 obj.mse(j, k) = scheme.compute_mse();
14 end
15

16 function post_process(obj)
17 % Create the performance plot.
18 % ...
19 end
20 end
21 end

Listing 5.6: Simplified implementation of the PerformanceProcessor class.

communication schemes introduced in Chapter 4.)
A question of interest is the behavior of the average error E[(Q− Q̂)2] as a

function of the SNR. The scheme processor Hybrid2DProcessor in Listing 5.8
solves this task in a few small steps. It is very similar to the Performance-
Processor of Listing 5.6, except that different variables are accessed in line 13.
Since the corresponding communication scheme class, Hybrid2DScheme, saves q
and qh as class properties and implements public compute_* methods for these
properties, the save_scheme_data() method of the new scheme processor can
easily access these and compute the corresponding error.

5.2.2 Implementation Overview

Design Philosophy

The design philosophy behind JSCsim is to separate the implementation of
a communication strategy and the simulation thereof. The end user should
be able to concentrate either on implementing the communication scheme or
writing the code that processes it during simulation, but shouldn’t have to
think about both tasks at the same time. For this reason, the core classes
that make up JSCsim are divided into two categories. In the first category
are the scheme classes (or simply ’schemes’), which are classes that implement
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1 classdef Hybrid2DScheme < PracticalScheme
2

3 properties (Access = ’protected’)
4 q
5 qh
6 end
7

8 methods (Access = ’protected’)
9 function x = encode(obj, s)

10 obj.q = discrete_part(s);
11 e = continuous_part(s);
12

13 x(1, :) = scale_to_power_constraint(obj.q);
14 x(2, :) = scale_to_power_constraint(e);
15 end
16

17 function sh = decode(obj, y)
18 obj.qh = estimate_qh(y);
19 eh = estimate_eh(y);
20 sh = combine_estimates(obj.qh, eh);
21 end
22

23 % Other methods here ...
24 end
25

26 % Methods for scheme processors to access simulation data.
27 methods (Access = ’public’)
28 function q = compute_q(obj)
29 q = obj.q;
30 end
31

32 function qh = compute_qh(obj)
33 qh = obj.qh;
34 end
35 end
36 end

Listing 5.7: Simplified implementation of a hybrid communication scheme. Note
how qh and eh are saved as class properties, so that they can be accessed by a
scheme processor through the respective compute_* methods.
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1 classdef Hybrid2DProcessor < SchemeProcessor
2

3 properties (Access = ’protected’)
4 qe
5 end
6

7 methods (Access = ’protected’)
8 function initialize(obj)
9 obj.qe = zeros(obj.nb_schemes(), length(obj.snr));

10 end
11

12 function save_scheme_data(obj, scheme, j, k)
13 obj.qe(j, k) = mean((scheme.compute_q() - ...
14 scheme.compute_qh()).^2);
15 end
16

17 function post_process(obj)
18 % Plot qe vs. SNR ...
19 end
20 end
21 end

Listing 5.8: A scheme processor to plot the estimation error of the discrete part
in a hybrid communication scheme.

communication schemes and have the class Scheme as their common ancestor.
Section 5.1 already covered why it makes sense to implement communication
schemes as classes.

The second category consists of scheme processors, which are classes that
implement the processing of a particular quantity (such as the MSE) during
the simulation of a single or of a family of communication schemes. Scheme
processors derive from the common ancestor class SchemeProcessor. What
is the motivation behind organizing the processing code in this way? The
“processing” of a communication scheme consists of two steps:

1. simulating the scheme by feeding the encoder with randomly generated
source samples, transforming the encoder output by simulating a noisy
channel (e.g., by adding Gaussian noise), and passing the channel output
to the decoder

2. gathering relevant data, e.g., the mean squared error or other performance
criteria, after the simulation has run, and displaying it

The base class SchemeProcessor essentially implements the first step. The
second step is implemented in derived classes such as PerformanceProcessor



5.2. A Short Overview of JSCsim 97

(which computes and plots the achieved SDR). This structure makes it possible
to quickly implement new processor classes to analyze arbitrary quantities of a
communication scheme or of a set of schemes, as the examples in the previous
section show.

Based on the reasonable assumption that you implement a particular com-
munication scheme in JSCsim because you eventually want to simulate it,
you never directly instantiate a scheme class. Rather, you create a particular
scheme processor (by instantiating a class derived – directly or indirectly –
from SchemeProcessor) and call its process() method. Note that you cannot
create an instance of the base class SchemeProcessor since the latter contains
abstract methods11 and serves only as a template for scheme processors. The
example on page 87 shows how a performance processor, which is a particular
type of scheme processor, is used to plot the SDR achieved by a communication
scheme.

The interaction between scheme processors and scheme classes is illustrated
in Figure 5.4 on the next page. When you first create an instance of a scheme
processor, it generates and saves a random source sequence of a default vari-
ance.12 Next you call the process() method of the scheme processor, passing
a list of schemes (i.e., names of scheme classes) and a list of parameters for
each scheme (cf. the example on page 87). (A scheme can have any number
of parameters; for instance the number of channel input symbols produced
per source symbol.) Internally, the scheme processor then creates an instance
of each specified scheme, passing the source sample sequence to each one’s
constructor. Because all schemes operate on the same source sequence, a fair
comparison is guaranteed.

A scheme processor has a list of SNR values for which each scheme is to be
processed. By default, it runs from 0dB to 40dB with increments of 1dB. For
each SNR value and for each scheme, the scheme processor calls the scheme’s
set_snr() method, passing the SNR value as an argument (cf. line 13 in
Listing 5.9 on page 99).

When a scheme’s set_snr() method is called, it stores the new SNR in its
snr property and calls the snr_updated() method. The job of this method is
to update the state of the scheme object to reflect the new SNR. For example,
after a call to a scheme object’s set_snr() method, its mse property should
be set to the mean square error that the scheme achieves with the given SNR.
How exactly a scheme updates its state when snr_updated() is called is up to
the implementation. As we will see below, though, the procedure is very similar
for a large class of schemes, of which JSCsim takes advantage.

After calling a scheme’s set_snr() method, a scheme processor can access

11An abstract method is a method that is declared in a class but not implemented. For
example, a class Shape might declare an abstract method compute_area(), which must be
implemented by the derived classes Circle, Square, and Triangle. A class that has abstract
methods cannot be instantiated.

12By default, the source samples are normally distributed, but this behavior may easily
be changed by a derived class.



98 JSCsim: A Joint Source–Channel Coding Simulator

instantiate

sc
he
m
e
pr
oc
es
so
r

process() instantiate

sc
he
m
e

set_snr()

gather data

..
.

set_snr()

gather data

Figure 5.4: Interaction between a scheme processor and scheme classes. For each
scheme, the scheme processor repeatedly calls the scheme’s set_snr() method
with different SNR values and then gathers the resulting simulation data.

the scheme’s mse property (for instance) via the scheme’s compute_mse()
method (which we will see shortly). A scheme processor whose purpose it is
to track the MSE achieved by a particular scheme thus alternatingly calls
set_snr() and compute_mse() and stores the MSE for each SNR. This is
precisely what the class PerformanceProcessor does.

Other scheme processors collect different data. For instance, the Hybrid-
2DProcessor in Listing 5.8 on page 96 separately computes and stores the
errors from the discrete and the continuous transmission rounds for the hybrid
scheme in Listing 5.7.

The remainder of this section looks in detail at the implementation of the
scheme classes and of the performance processors.

Scheme Classes

The common ancestor of all scheme classes is called Scheme and is shown in
Listing 5.9 on the facing page. It defines the most rudimentary features that
all communication scheme implementations must have.

The class definition starts in line 1. It is a MATLAB convention that any
class whose internal state can change over time (as is the case for all classes
considered here) must be derived from the handle class, but this is only a
technical detail and of no importance in the sequel.

As we will shortly see in detail, JSCsim divides communication schemes
into two types: theoretical schemes and practical schemes. Schemes of both
types are (indirectly) derived from Scheme, so Scheme defines only the behavior
common to both types, which consists essentially of the methods to set the
SNR and to retrieve the MSE.

Every communication scheme has access to the three properties defined in
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1 classdef Scheme < handle
2 properties (Access = ’protected’)
3 sv % Source variance.
4 snr % SNR (power per channel input symbol).
5 mse % Mean squared error resulting from the simulation.
6 end
7

8 methods (Access = ’public’)
9 function obj = Scheme(sv, s)

10 obj.sv = sv;
11 end
12

13 function set_snr(obj, snr)
14 obj.snr = snr;
15 snr_updated(obj);
16 end
17

18 function mse = compute_mse(obj)
19 mse = obj.mse;
20 end
21 end
22

23 methods (Access = ’protected’, Abstract = true)
24 snr_updated(obj)
25 end
26 end

Listing 5.9: The Scheme class is the base class from which all communication
scheme classes are derived.

lines 2 to 6: the source variance, the SNR, and the incurred mean squared error.
The source variance is passed via the constructor whenever a class derived from
Scheme is instantiated (line 9). The SNR is set by set_snr() (line 13). The
MSE property is not set by any of the class’ methods; it will be the job of the
derived classes to update this property in their snr_updated() method.

You may wonder why the constructor in line 9 receives an argument s but
ignores it. The reason is that a scheme processor always passes the list of source
symbols to a scheme it processes, even if it is a theoretical scheme that does
not use the source symbols. More about this is explained further below.

We have already mentioned the method set_snr() (line 13). It is called by
a scheme processor whenever the communication scheme is to be simulated for
a new SNR. This method first saves the new SNR in its snr property (line 14)
and then calls the abstract method snr_updated() to inform derived classes
about the changed SNR.
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The method compute_mse() allows scheme processors to access a scheme’s
mse property. (Because the property is declared as protected (cf. line 2), it
cannot be directly accessed from outside the class, only through a method.)

Line 24 declares the abstract method snr_updated(). Because Scheme
itself does not implement this method, the class cannot be instantiated directly.
Instead, any class derived from Scheme must implement snr_updated().13

Theoretical Schemes

Theoretical schemes could also be called “virtual” schemes. They are not actual
communication strategies, they rather compute theoretical values for a given
SNR. The purpose of a theoretical scheme is to compare the behavior of a
communication scheme to a theoretically expected behavior. For an example,
see the class ShannonScheme in Listing 5.5 on page 90.

The implementation of TheoreticalScheme is given in Listing 5.10 on the
facing page. The class directly derives from Scheme (line 1); its constructor
does nothing except call the base class constructor, passing on the arguments
(line 4).

As mentioned before, classes derived from Scheme must implement the
method snr_updated(). The implementation in TheoreticalScheme is quite
simple: snr_updated() just calls update_mse(). The latter is itself an abstract
method of TheoreticalScheme. This way of structuring the class is just a
programmatical way of saying “the only thing a theoretical scheme needs to
do when a new SNR is set is to compute the MSE as a function of the SNR”.
Listing 5.5 provides a sample implementation of compute_mse().

Practical Schemes

As opposed to theoretical schemes, practical schemes are classes that actually
implement a communication scheme. When the SNR is updated, a practical
scheme must simulate encoding, transmission, and decoding of the source
symbols. Since this procedure (except the particularities of encoding and de-
coding) is the same for all practical schemes, it is implemented in the class
PracticalScheme, from which implementations of particular communication
schemes can then be derived. The actual encoding and decoding functions are
declared abstract in PracticalScheme, i.e., classes that implement communi-
cation strategies need only implement these two methods.

A simplified version of PracticalScheme is shown in Listing 5.11. Its
snr_updated() method performs exactly the steps mentioned above: the source

13It is not quite true to say that any class derived from Scheme must implement the
abstract method snr_updated(). A derived class is free not to implement the method; if it
does not implement it, however, it remains itself an abstract class and cannot be instantiated
either. A class can only be instantiated if it implements all abstract methods defined by any
of its ancestors. Of course, if a class X has already implemented an abstract class declared in
one of its ancestors, then classes derived from X no longer need to implement the abstract
method themselves because they inherit the implementation from X.
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1 classdef TheoreticalScheme < Scheme
2

3 methods (Access = ’public’)
4 function obj = TheoreticalScheme(sv, s)
5 obj@Scheme(sv, s);
6 end
7 end
8

9 methods (Access = ’protected’)
10 function snr_updated(obj)
11 update_mse(obj);
12 end
13 end
14

15 methods (Access = ’protected’, Abstract = true)
16 update_mse(obj)
17 end
18

19 end

Listing 5.10: Simplified implementation of the class TheoreticalScheme.

sequence s is encoded into a channel input sequence x (line 5), transmission
is simulated by adding Gaussian noise to x (line 8), and the channel output y
is decoded to yield the estimate sequence sh (line 11). Finally, the MSE is
computed and stored in the mse property (line 14). This is the precisely the
property that a performance processor accesses when it calls the scheme’s
compute_mse() method (which we saw in the base class Scheme).

The methods encode() and decode() are the defining feature of a commu-
nication scheme. There is no “default” encoder and decoder, hence Practical-
Scheme does not provide an implementation of them but declares them as ab-
stract. They must be implemented by derived classes (such as UncodedScheme
in Listing 5.4).

Scheme Processors

Scheme processors instantiate a list of scheme classes and process them for a
range of SNR values. All scheme processors derive from SchemeProcessor, a
simplified implementation of which is given in Listing 5.12.

All scheme processors have at the three properties defined in lines 3–5. The
vector s stores the source sequence, which is created in the constructor upon
instantiation (line 16). The other two properties, schemes and parameters, hold
the list of schemes to process and the corresponding parameters, respectively.

SchemeProcessor also has three public properties. Because they are declared
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1 classdef PracticalScheme < Scheme
2 methods (Access = ’protected’, Sealed = true)
3 function snr_updated(obj)
4 % Encode the source.
5 obj.x = encode(obj, obj.s);
6

7 % Transmit across AWGN channel.
8 obj.y = transmit(obj, obj.x);
9

10 % Decode the channel output.
11 obj.sh = decode(obj, obj.y);
12

13 % And compute the empirical MSE.
14 obj.mse = mean((obj.s - obj.sh).^2);
15 end
16 end
17

18 methods (Access = ’protected’, Abstract = true)
19 x = encode(obj, s)
20 sh = decode(obj, y)
21 end
22

23 end

Listing 5.11: A simplified implementation of PracticalScheme. The methods
encode() and decode() are declared abstract and must be implemented by derived
classes.

public, they can be changed from outside the class; they allow the user of a
scheme processor to control the latter’s behavior. The meaning of these three
properties should be self-evident from the code; for details see Section 5.3.

A scheme processor is launched by calling its process() method. This
method has two arguments, schemes and parameters. Both are cell arrays
that specify the schemes to be processed (i.e., the names of the respective
classes) and the parameters for each scheme, respectively. See page 87 for an
example of how to call process().

process() first saves the schemes and parameters in the respective class
properties (line 20 resp. lines 4–5). Then it calls the initialize() method
(line 21). This abstract method allows scheme processor implementations to
do things before the actual processing starts. The most common use of this
function is to allocate a data structure that will hold the data gathered from the
schemes (for an example, see the implementation of PerformanceProcessor
in Listing 5.6 on page 94). The do_processing() method (line 22 resp. 28)
then performs the actual processing of the schemes, we will look at it in detail
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1 classdef SchemeProcessor < handle
2 properties (Access = ’protected’)
3 s % Source sample sequence.
4 schemes % Cell array of schemes to process.
5 parameters % Parameters for each scheme (if any).
6 end
7 properties (Access = ’public’)
8 sv = 1; % Source variance.
9 snr = 10.^(0:.1:4); % SNR range.

10 N = 100000; % Sample size.
11 end
12

13 methods (Access = ’public’)
14 function obj = SchemeProcessor()
15 obj.s = create_source_samples(obj);
16 end
17

18 function process(obj, schemes, parameters)
19 set_schemes(obj, schemes, parameters);
20 initialize(obj);
21 do_processing(obj);
22 post_process(obj);
23 end
24 end
25 methods (Access = ’protected’)
26 function do_processing(obj)
27 for j = 1:length(obj.schemes)
28 scheme = create_scheme(obj, j);
29 % Run the scheme for all SNR values and save data for
30 % each run.
31 for k = 1:length(obj.snr)
32 scheme.set_snr(obj.snr(k));
33 save_scheme_data(obj, scheme, j, k);
34 end
35 end
36 end
37 end
38

39 methods (Access = ’protected’, Abstract = true)
40 initialize(obj);
41 save_scheme_data(obj, scheme, j, k)
42 post_process(obj)
43 end
44 end

Listing 5.12: Simplified implementation of the SchemeProcessor class.
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shortly. Finally, the abstract method post_process() is called (line 23). In
this method, derived classes can for example display the data gathered from
the schemes, or save it in a file, etc.

The function do_processing(), which starts in line 28, is the core of
SchemeProcessor. In two nested for loops it traverses the list of schemes
and the range of SNR values. For each scheme and for each SNR it first
calls set_snr() (we have already seen above what this method does), and
then it calls the abstract method save_scheme_data() (line 35). In their
implementation of this key method, derived classes determine which data to
save about the scheme. For example, the performance processor on page 87 uses
it to store the MSE. (The arguments of save_scheme_data() are described in
detail in Section 5.3.)

Summary

The preceding paragraphs have hopefully given the reader a good overview of
how JSCsim is implemented. Naturally, some details have been swept under
the rug. For instance, PracticalScheme also helps in arranging the source
sequence in blocks of k source symbols if a scheme encodes more than one
source symbol at once, and scheme processors use a slightly more involved
method to store schemes and their parameters internally than the one shown.
For these details, the reader so inclined is invited to peruse the source code,
available at http://ipg.epfl.ch/~kleiner/jscsim/.

5.3 Reference

This reference section explains in detail how to use JSCsim to implement
new communication schemes, how to simulate them, and how to build custom
scheme processors.

5.3.1 Communication Schemes

There are two kinds of communication schemes in JSCsim: theoretical schemes
and practical schemes. Theoretical schemes compute the MSE for a given SNR
by computing some function of it without simulating anything. They allow
you to compare the performance of a particular communication scheme with
a theoretical value, as for example the ShannonScheme in Listing 5.5. On the
other hand, practical schemes (like the one in Listing 5.4) determine the MSE
by actually simulating communication.

Theoretical Schemes

Theoretical communication schemes are implemented as classes derived from
TheoreticalScheme. Any class derived from TheoreticalScheme must imple-
ment the following methods.

http://ipg.epfl.ch/~kleiner/jscsim/
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〈class name〉(sv, s [, 〈parameters〉]) (public)
This is the constructor of the class. The first two arguments are the source
variance sv and the source sample sequence sv, which must be passed on
to the base class constructor, i.e., by calling

1 obj@TheoreticalScheme(sv, s);

If a theoretical scheme has parameters, such as the bandwidth expansion
factor n of ShannonScheme (cf. Listing 5.5), they must be specified as
additional arguments to the constructor.

update_mse(〈obj 〉) (protected)
This method is called by the base class whenever the SNR is changed.
It must update the mse property based on the value of the snr property.
For example, the update_mse() method of ShannonScheme sets mse to be
σ2
S/(1 + snr)n.

Practical Schemes

Practical communication schemes are implemented as classes derived from
PracticalScheme. Any class derived from PracticalScheme must implement
the following methods.

〈class name〉(sv, s [, 〈parameters〉]) (public)
This is the constructor of the class. The first two arguments are the source
variance sv and the source sample sequence s, which must be passed on
to the base class constructor. The base class constructor has two more
arguments, which are the number k of source symbols encoded at a time,
and the number n of channel symbols produced for every k source symbols.
Depending on the scheme, these can be fixed values (as in UncodedScheme
in Listing 5.4) or variable parameters of the scheme itself.

Example: A scheme that only works for 1:2 bandwidth expansion would
have a constructor similar to the following.

1 function obj = MyScheme1(sv, s)
2 obj@PracticalScheme(sv, s, 1, 2);
3 % rest of constructor ...
4 end

On the other hand, a scheme that encodes one source symbol into n channel
inputs, where n is arbitrary, would define a constructor like this.

1 function obj = MyScheme2(sv, s, n)
2 obj@PracticalScheme(sv, s, 1, n);
3 % rest of constructor ...
4 end
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x = encode(〈obj 〉, s) (protected)
This method receives s, a matrix of source samples with k rows, and must
return a matrix x with n rows and the same number of columns as s.

sh = decode(〈obj 〉, y) (protected)
This method receives the channel output y as a matrix with n rows and
must return a matrix sh with k rows of source estimates

In addition, derived classes may want to override update_variable_param-
eters().

update_variable_parameters(〈obj 〉) (protected)
In this method, which is called whenever the SNR changes, derived classes
can update any of their own properties that depend on the SNR. It is
important that if a derived class overrides this method, it must first call
the base class method, i.e.,

1 function update_variable_parameters_(obj)
2 % Call base class version.
3 update_variable_parameters@PracticalScheme(obj);
4 % Your code here ...
5 end

To allow a scheme processor to track a particular property of a communi-
cation scheme, the property must be made accessible. This is normally done
by writing a compute_* method. We have already seen the example of the
compute_mse() function, which is defined by the class Scheme. The class
PracticalScheme in addition implements the following such methods.

x = compute_x(〈obj 〉) (public)
Returns the channel input sequence.

y = compute_y(〈obj 〉) (public)
Returns the channel output sequence.

sh = compute_sh(〈obj 〉) (public)
Returns the sequence of source estimates.

Any derived class must thus implement a compute_* function for each
property it wants to make accessible to a scheme processor.

5.3.2 Scheme Processors

Scheme classes are usually not handled directly; rather, they are processed by a
scheme processor. Scheme processors evaluate a set of communication schemes
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for a range of SNR values and store and process the data gathered during the
simulations.

All scheme processors are implemented as classes derived from SchemeProc-
essor. To process a communication scheme (or a set of schemes) you never
directly use a SchemeProcessor object. Instead, you either use an existing
derived class such as PerformanceProcessor, or you implement a custom
scheme processor.

General Aspects

The behavior of all scheme processors can be controlled through the following
properties, defined in the class SchemeProcessor.

snr (public; default 10.^(0:.1:4))
A vector that specifies the SNR range over which the communication
schemes are simulated. By default it is set to the range 0dB to 40dB with
increments of 1dB.

N (public; default 100000)
The length of the random source sample sequence.

verbose (public; default false)
If this parameter is set to true, various status and debugging messages are
displayed during the simulations.

output_module (public)
This is the output module used by the scheme processor to display its
results (see the section on output modules). The default output module is
MatlabPlotModule.

legendmode (public, default ’auto’)
This property determines the behavior of the plot_vs_csnr() and plot_-
vs_csnr_db() functions (cf. the definition of post_process() below). If
legendmode is set to ’on’, a legend is always displayed. If it is set to
’off’, a legend is never displayed. If it is set to ’auto’, a legend is only
displayed if more than one scheme is plotted.

All scheme processors are launched using the process() method.

process(〈obj 〉, schemes, parameters) (public)
Process the specified schemes for the specified parameters. The cell array
schemes lists the schemes to be processed; each of its elements is a string
equal to the name of a scheme class.
The cell array parameters has the same number of elements as schemes.
For a scheme that does not have any parameters, the corresponding entry
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of parameters must be an empty matrix. For a scheme that accepts
m parameters (i.e., its constructor has m arguments other than sv and
s), the corresponding entry of parameters must be a matrix with m rows;
the scheme is then processed once for each column of the matrix, using
the parameters from the respective column. This makes it easy to use
MATLAB’s colon operator (:) to specify a range of parameters.

Example: Suppose process() is called as follows.

1 pp = PerformanceProcessor();
2 pp.process({’MyScheme’}, {[1:4; 0.1:0.1:0.4]});

Then MyScheme will be processed 4 times: once with the parameters 1
and 0.1, once with the parameters 2 and 0.2, and so on. I.e., line 2 above
has the same effect as

1 pp.process({’MyScheme’, ’MyScheme’, ’MyScheme’, ’MyScheme’}, ...
2 {[1;0.1], [2;0.2], [3;0.3], [4;0.4]});

Internally, a scheme is counted as many number of times as its parameter
matrix has columns. This means that for the above example, nb_schemes()
(cf. below) returns 4.

The Performance Processor

This is the only scheme processor that is already implemented in JSCsim. It
works for all communication schemes derived from Scheme. It simply plots the
SDR vs SNR curve of the specified communication scheme, as illustrated by
the examples in Section 5.2.1.

To have fine grained control over the plot of the simulation results, the
plot functionality of a performance processor can be disabled by setting its
output_module property to the empty matrix14. The simulation results can
then be read from the performance processor’s mse property, which is declared
public, and plotted with a custom output module. This is the recommended
strategy if you want to manually specify say the plot legend or the axis
labels, as illustrated by the example in Listing 5.13. For this reason, it is also
recommended that custom scheme processors (see the following paragraph)
declare their simulation results data as public.

Section 5.3.3 has a detailed description of output modules.

Implementing a New Scheme Processor

Custom scheme processors are implemented by creating a new class derived from
SchemeProcessor. Such a class must implement the three following methods.

14or any other value for which MATLAB’s isempty() function returns true, such as the
empty string ”, the empty cell {}, etc.
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1 pp = PerformanceProcessor();
2 pp.output_module = []; % Disable built-in output module.
3 pp.process({’ShannonScheme’, ’UncodedScheme’}, {1, []});
4

5 % Create own output module.
6 om = MatlabPlotModule();
7

8 % Access SNR and simulation result from PerformanceProcessor object.
9 om.x = 10*log10(pp.snr); % converted to dB

10 om.y = 10*log10(pp.sv ./ pp.mse); % SDR = source variance / mse
11

12 % Set custom labels, legend, etc.
13 om.legend = {’theoretical limit’, ’uncoded communication’};
14 % ...
15

16 % Display plot.
17 om.do_plot();

Listing 5.13: This example shows how the internal output module of a performance
processor can be disabled and the simulation results can be plotted on a custom
plot.

initialize(〈obj 〉) (protected)
This method is called before the actual processing starts. It can be used
e.g. to allocate data structures to save simulation data.
SchemeProcessor provides useful helper function, nb_schemes(), which
returns the number of schemes that have been passed to process(). In
addition, length(obj.snr) gives you the number of values in the SNR
range.

save_scheme_data(〈obj 〉, scheme, j, k) (protected)
This method is called each time a scheme has been processed for a particular
SNR and gives you the opportunity to save data about the simulation run.
scheme is the scheme object that was just run; you can gather data about
it by calling its public methods. For example, the save_scheme_data()
method of PerformanceProcessor calls the compute_mse() method of
scheme to store the MSE.
j is a number between 1 and nb_schemes() and k is a number between 1
and length(obj.snr); they refer to the current scheme and the current
SNR value, respectively. Listing 5.6 shows a typical example of how they
are used.

post_process(〈obj 〉) (protected)
This method is called after all schemes have been processed. Here you can
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post process the data gathered by save_scheme_data(), for instance by
plotting it.
SchemeProcessor provides the helper function plot_vs_snr(obj, m),
which plots the data in the vector m against the SNR in dB. (The SNR is
in dB, not the data; if you also want the data to be plotted on a dB scale,
use plot_vs_snr_db() instead.)

To change the default output module, override the following method.

om = default_output_module(〈obj 〉) (protected)
This method is called by the constructor of SchemeProcessor to install
the default output module.

In addition, a custom scheme processor can override create_source_-
samples() to change the source distribution.

s = create_source_samples(〈obj 〉) (protected)
This method must return a sequence of N independent random source
samples of variance sv. The default implementation in SchemeProcessor
creates Gaussian source samples.

5.3.3 Output Modules

In some cases you might just want to see the results of a simulation on screen;
in other cases you might want to save them in a file that you can include in
a paper or report. In JSCsim it is easy to change the default behavior by
changing the output module.

Output modules provide an abstraction of basic plot functionalities. You
can think of them as a kind of output “plugins”. The functionality they offer
is rather orthogonal to the task of simulating; they may well be used in other
programs as well.

In JSCsim, each class derived from SchemeProcessor has an output module
associated to it. By default this is the MatlabPlotModule, which displays the
plots in a regular MATLAB figure window, but it is easy to change the plot
module in order to save the plot in a PDF file rather than on screen, for
instance:

1 pp = PerformanceProcessor();
2 pp.output_module = MatlabFilePlotModule();
3 pp.output_module.fn = ’myplot.pdf’;

The behavior of output modules is controlled by a set of parameters. Some
of these, such as the axis labels or the legend entries, apply to all output
modules. Other parameters apply only to certain categories of output modules:
the fn property, for instance, which determines the name of the file in which to
save a plot, only applies to those output modules that can save plots in a file.
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General Parameters

All output modules support the following properties and methods.

x (public)
The range of x values. This must be a row vector.

y (public)
The data to plot against the x values. This must be either a row vector or a
matrix with the same number of columns as x; each row then corresponds
to a separate data series to plot.

xlabel (public)
The label of the x-axis. This is a string; it can also contain (limited) LATEX
code depending on the actual output module used.

ylabel (public)
The label of the y-axis. This is a string; it can also contain (limited) LATEX
code depending on the actual output module used.

plottitle (public)
The plot title. This is a string; it can also contain (limited) LATEX code
depending on the actual output module used.

legend (public)
The legend entries. This must be a cell array of strings. If the number of
legend entries is smaller than the number of data series in y, a warning is
issued.

legendpos (public)
A string determining where in the plot the legend is placed. The possible val-
ues are NorthEast, NorthWest, SouthEast, SouthWest, and NorthEast-
Outside. If legendpos is set to the empty string, no legend is created.

grid (public; default false)
This boolean parameter determines whether a grid is drawn (if set to true)
or not (if set to false).

set_color_mode(〈obj 〉, c) (public)
Set the color mode of the plot. c can either be ’color’, in which case a
line of a different color is drawn for each data series, or ’bw’, in which
case the plot uses black lines with a different marker for each data series.

To use an output module on its own, i.e., outside of a scheme processor,
call the do_plot() method.

do_plot(〈obj 〉) (public)
Plots the data set specified by x and y.
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The MatlabPlotModule Output Module

This output module creates a standard MATLAB plot. It is the default output
module for scheme processors. It has a single public property.

ah (public)
A handle to the axes that will contain the plot. By default, MatlabPlot-
Module creates a new figure window and sets ah to point to the axes of
the new windows. You can have MatlabPlotModule to plot on an existing
set of axes by changing the ah property.

Example: To create the plot in a subplot of an existing figure window:

1 figure;
2 ah1 = subplot(2,1,1);
3 pp = PerformanceProcessor();
4 pp.output_module.ah = ah1;

Subsequent plots now appear in the specified subplot.

The MatlabFilePlotModule Output Module

The MatlabFilePlotModule works just like the MatlabPlotModule, except
that the plot is not displayed in a window but saved in a file. The result is the
same as if you had selected “File/Save as...” in a figure window.

The behavior of MatlabFilePlotModule is controlled by the following
properties.

fn (public)
The name of the file in which to save the figure. By default an error occurs
if a file of the given name already exist; this can be changed using the
force property (see below).
When a file name is set, the class tries to determine the file type from the
extension. The following extensions are recognized: ps, eps, jpg, jpeg, png,
and pdf. If the file name has one of these extensions, it is not necessary to
set the type property manually.

type (public)
A string denoting the file type. The set of valid file types is the same as for
the MATLAB function print; see the help for that function for a complete
list.

pdfres (public; default 600)
An integer denoting the resolution (in dpi) of the created file if the file type
is pdf. The default value is 600 dpi, which is a typical value for production
quality.
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force (public; default false)
If this option is set to true, existing files are overwritten; if it is set to
false then an error occurs if a file of the given name already exists.

The PGFPlotsOutputModule Output Module

This output module writes the plot to a file in a format suitable for the
pgfplots package for LATEX. A file generated by PGFPlotsOutputModule can
be included in a LATEX source file, provided that the pgfplots package has
been loaded.

The behavior of this module is controlled by the following properties.

fn (public)
The name of the file in which to save the figure. By default an error occurs
if a file of the given name already exist; this can be changed using the
force property (see below).

force (public; default false)
If this option is set to true, existing files are overwritten; if it is set to
false then an error occurs if a file of the given name already exists.

Implementing Custom Output Modules

A new output module is implemented by creating a class derived from Output-
Module (or from one of its derived classes). Any class derived from OutputMod-
ule must implement the following two methods.

do_actual_plot(〈obj 〉) (protected)
This method creates the actual plot using the data set in the class properties.
Before this method is called, it has already been verified by the base class
that the data properties x and y have been set, that they have the right
format, etc.

set_color_mode(〈obj 〉, c) (public)
This method is called with the parameter c being either ’color’ or ’bw’.
Its task is to set up the state of the class such that the plot created by
do_actual_plot() is in color or readable on black/white, respectively.

If an output module has other properties whose validity should be checked
before plotting is done then it can override check_parameters().

check_parameters(〈obj 〉) (protected)
This method is called just before do_actual_plot(). If it is overriden by
a derived class, the overriding function must call the base class version of
method, since otherwise important checking is not done.
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Example: MatlabFilePlotModule and PGFPlotsOutputModule both over-
ride this method to check whether the file to write the plot to already
exists.



Conclusions and
Outlook 6
The characterization of the achievable cost and distortion region of point-
to-point communication systems under a delay constraint is an important
unsolved problem in information theory. In this thesis we have looked at
the particular case of minimal-delay transmission with bandwidth expansion
across Gaussian channels. We have analyzed a hybrid transmission strategy
based on quantization and uncoded transmission. This strategy is by no means
new; it has appeared previously in various shapes (see the historical notes
section in Chapter 4). Here we have established a justification for this strategy,
inspired by the case with feedback, arguing that any minimal-delay bandwidth
expansion scheme with uncoded components should use uncoded transmission
only in the last channel use. Furthermore, we have exactly characterized the
scaling behavior of the signal-to-distortion ratio (SDR) achieved when the
signal-to-noise ratio (SNR) goes to infinity.

To date there is no known minimal-delay communication scheme for the
Gaussian channel with bandwidth expansion that achieves an SDR that scales
better than the hybrid strategy presented here, namely snrn /(log snr)n−1.
Where does the log snr factor come from? Can it be explained by the particular
nature of our hybrid scheme, or is there something more fundamental to it?
Can the optimal SDR scaling of snrn be achieved at all with minimal delay
for n > 1? These are open questions that should be investigated in the future,
the ultimate goal being to completely characterize the achievable cost and
distortion region.

A communication system achieves an optimal fidelity–cost tradeoff if the
elements making up the system are properly matched, which requires that the
cost and distortion measures are related in a certain way to the statistics of the
communication system. This has been known before [14]. We have shown here
that the set of cost and distortion measures for which a given communication
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system is thus matched has a subset of measures for which the ratio of fidelity
per cost is maximized, in the sense that no alternative encoder or decoder can
increase this ratio. The set of communication systems operating at maximal
fidelity per cost is thus a subset of those communication systems that achieve
an optimal fidelity–cost tradeoff.

Whether achieving the maximal ratio of fidelity per cost is of practical
value is not conclusively clear. The challenge lies in finding a fidelity measure
for which one can quantitatively compare the performance of encoding many
source symbols at low fidelity with encoding few source symbols at high fidelity.
The conclusion to Chapter 2 mentions one potential application; it might be
interesting to search for others.

The chapter on simulation was written with two goals in mind. The first was
to show how object-oriented techniques are particularly helpful for simulations.
The second goal was to make the JSCsim simulator freely available to the
public. The author hopes that it may save at least some students from the
frustrating experience of simulator code gone chaotic.

It may yet take a long time until the fundamental results of information
theory are extended to completely take into account delay constraints. Mean-
while, it is the author’s hope that the results contained in this thesis indicate
some of the avenues to follow and some of the questions to investigate. If one
day a complete answer has been found, notify him – without delay!
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