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Abstract 

Tensegrity systems are spatial structures composed of tensile and compression components in a self-
equilibrated state of prestress. The tensegrity concept has already been studied by researchers in 
various fields over the past decades. A family of tensegrity modules that can offer promising solutions 
for civil engineering applications such as tensegrity domes, towers and bridges is analyzed. Research 
into tensegrity systems has resulted in reliable techniques for form finding and structural analysis. 
However, the tensegrity concept is not yet part of mainstream structural design. This paper presents a 
design study of a tensegrity-based pedestrian bridge. Structural performance of the bridge using three 
tensegrity modules is evaluated through parametric studies. Design requirements for pedestrian bridges 
and results of parametric studies are used to define a design procedure that optimizes section sizes for 
this type of structure. A structural efficiency indicator is proposed and used to compare proposals for 
feasible bridge configurations. Design results illustrate that the hollow-rope tensegrity bridge can 
efficiently meet typical design criteria. 
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1. Introduction

Tensegrity systems are a special class of spatial reticulated structures that are composed of struts and 
tendons. Tensioned and compressed components are assembled in a self-equilibrated system providing 
stability and stiffness to the structure. The word tensegrity comes from the contraction of tensile and 
integrity. It was proposed by Richard Buckminster Fuller in 1962. He described tensegrity systems as 
islands of compression in an ocean of tension. During the same period, Kenneth Snelson and David 
George Emmerich patented similar systems. A recent and widely accepted definition was proposed in 
2003 [1]: “A tensegrity is a system in stable self-equilibrated state comprising a discontinuous set of 
compressed components inside a continuum of tensioned components”. This definition includes 
systems where compressed elements are interconnected as tensegrity structures [2]. Skelton et al. [3] 
proposed the term “class k” to distinguish the different types of structures included in this broader 
definition. A “class k” tensegrity structure is then defined as a stable tensegrity with a maximum of k 
interconnected compressive members.  
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Over the last decades, the tensegrity concept has received significant interest among scientists and 
engineers throughout disciplines such as architecture, civil engineering, biology, robotics and 
aerospace [4]. The tensegrity concept offers a high level of geometrical and structural efficiency and 
results in modular and lightweight structures. However, few examples of tensegrity structures have 
been used for civil engineering purposes. Paronesso and Passera proposed a tensegrity platform for the 
2002 Swiss National Exhibition in Yverdon [5]. They also designed a tensegrity roof for the 
velodrome in Aigle (Switzerland) [6]. Designed by Schlaich, Bergermann and Partners, the Rostock 
tower (Germany) built in 2003 is probably the highest tensegrity tower (62.3 m). The tower is 
composed of a continuous assembly of six “simplex” modules [7]. Describing the conceptual and 
structural design of the tower in Rostock, Schlaich [8] concluded that despite their inherent flexibility 
the potential of tensegrities for tower and roof structures is substantial. Moreover, large tensegrity 
grids can be constructed by assembling elementary self-stressed modules [9]. Studies on double layer 
tensegrity grids were initiated by Motro and Hanaor [10].  Hanaor [11] presented design aspects of 
double layer tensegrity grids. Quirant et al [12] studied the different stages of tensegrity grid design. A 
design procedure was developed and applied to a double layer tensegrity grid covering a surface of 81 
m2.  

Research into tensegrity structures revealed that only small amounts of energy are needed to change 
the shape of such systems. Tensegrities are thus regarded as an attractive solution for controllable and 
deployable systems [13]. Tibert and Pellegrino [14] compared the stiffness of a deployable tensegrity 
mast with a conventional mast. They identified lack of stiffness during deployment and weak deployed 
bending stiffness as obstacles to practical applications. Fest et al. [15] experimentally explored 
potential of active tensegrities on a five-module tensegrity structure. A quasi-static control strategy 
based on stochastic search is first proposed to satisfy serviceability criterion [16, 17]. The control 
strategy is then extended to take into account additional robustness objectives [18, 19]. Smaili and 
Motro [20] presented a design study of curved tensegrity systems and investigated the deployment 
process requirements of such structures. Vu et al [21] investigated the basic design concept of 
deployable tension-strut structures. These tensegrity-like structures are compared with conventional 
double layer truss systems through parametric studies. Vu et al [21] concluded that deployable tension-
strut systems are structurally more efficient than double layered spatial trusses for span up to 48 m. 
Motro et al [22] proposed a new family of tensegrity cells called “tensegrity rings” that can be 
assembled in a “hollow rope” and provided a general method for creating these foldable tensegrity 
cells starting from any n-sided prism. The concept of “hollow rope” shows promise for architecture 
and civil engineering applications such as pedestrian bridges. The increasing amount of research into 
tensegrity systems has resulted in reliable techniques for form finding and structural analysis. 
However, there has been relatively little research on design strategies for structural purposes. Thus, 
there is a need to develop systematic methods for tensegrity design.  

This paper presents a tensegrity “hollow rope” pedestrian bridge designed according to Swiss civil-
engineering practice. The tensegrity pedestrian bridge is designed by assembling elementary self-
stressed modules. Three bridge configurations designed with different elementary modules are studied 
having the same span, internal space and load cases. A parametric study is performed to identify 
parameters that significantly affect the behavior of the structure. A comparison of different 
configurations and a description of the feasible configuration are included. Static analysis is conducted 
with a dynamic-relaxation algorithm. Finally, an extension of the design method is proposed for 
tensegrity bridges. 

 

2. Tensegrity pedestrian bridge 

The proposed structure is a pedestrian bridge to be built in the French speaking part of Switzerland. 
The bridge spans 20 m over a river. A distance of 3 m from the ground is considered. The structural 
system of the bridge is composed of four identical tensegrity modules (Figure 1). Symmetry about 
midspan is obtained by mirroring two modules.  
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Figure 1: The tensegrity pedestrian bridge 
 

The structure of the bridge is designed with a minimum internal space for walking. The walking area is 
a rectangular internal free space with a height of 2.5 m and a width of 1.3 m. These dimensions are 
chosen to have enough room for two persons crossing the bridge simultaneously. Pedestrians cross the 
bridge walking on a steel deck supported on the bottom nodes at both ends of each module.  

The proposed pedestrian bridge is designed as a tensegrity structure. Therefore, two different stages 
must be considered when designing this structure: a pre-stress phase and a service phase. During the 
first phase, self-stresses are applied to the tensegrity structure in order to avoid slack cables and 
excessive deflections due to dead load. During the service phase the structure is considered to be fully 
operational. The boundary conditions of the structure are identical on both stages. All nodes at both 
extremities are blocked in all directions (Figure 2). 

 

Figure 2: Boundary conditions of the tensegrity bridge 
 

3. Tensegrity modules 

Designing structurally efficient tensegrity systems for civil engineering application is a challenging 
task. A wide variety of elementary tensegrity modules can be used to develop structural systems. 
Modules can be assembled in linear, plane filling and space filling forms. The tensegrity bridge that is 
studied in this paper is composed of four tensegrity modules each having a 5 m length. A preliminary 
study involving various module topologies was conducted. Three module configurations were retained 
for the tensegrity pedestrian bridge based on superior structural performance. Retained modules are 
presented and compared in this paper. All three modules were designed and compared considering the 
bridge geometry requirements for length and minimum pedestrian space. 

Pugh [23] proposed elementary tensegrity modules of polygonal form which have important open 
spaces at their centers. In these modules, each strut end is jointed to another to create circuits of struts 
within outer cable circuits. Previous work [22] has classified them as “ring modules” because of their 
hollow tube shape. A generic construction method for ring modules based on the geometry of straight 
prisms was proposed. This method provides regularity for elementary ring module topology and is 
illustrated in Figure 3. The topology can be understood through studying the position of the struts: first 
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the diagonal struts (Figure 3a) and then the intermediate struts (Figure 3b) according to the vertices of 
a straight prism. Intermediate struts connect a chosen middle node to two base nodes, one each at the 
top and bottom faces of the prism. In this study, middle nodes are chosen on the circumscribing circle 
at mid-length of the module. There are two kinds of cables: layer cables connecting the base nodes of 
the straight prism (Figure 3c) and x-cables connecting the middle nodes with the base nodes (Figure 
3d).  

 

Figure 3: Understanding the topology of the square tensegrity ring module: a) diagonal struts, b) non-
diagonal struts, c) layer cables, d) x-cables 

 
  

The tensegrity ring modules that are studied in this paper are thus called square, pentagon and hexagon 
modules. Modules are named after the polygon defined by the cables on a module face (y-z plane). 
Figure 4 shows the cable polygons inside their rings and the corresponding modules. Topologies of the 
following three ring modules are defined using the construction method proposed in [22].  

 

Figure 4: Cable polygons inside the ring: a) square b) pentagon and c) hexagon 
 

The square is a semi-continuous module composed of four triangle strut circuits (Figure 4a). The 12 
struts in this module are connected to 24 cables by 12 nodes. The struts have lengths of 6.20 m and 
6.60 m. This module can be enclosed in a ring with an internal radius of 1.15 m and an external radius 
of 3.10 m. The pentagon module is a continuous module with a single strut circuit (Figure 4b). The 
circuit of 15 struts connects to 30 cables through 15 nodes. Its topology includes three pentagons of 
cables in three different layers. The pentagon struts have lengths of 4.30 m and 5.60 m. The assembled 
ring shape for this module has an internal radius of 1.26 m and an external radius of 2.15 m. Finally, 
the hexagon is a continuous ring module with a single strut circuit of 18 elements (Figure 4c). Three 
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hexagons of cables are created on different planes. Thirty-six cables connect to the 18 struts of the 
hexagon module in 18 nodes. The struts are 3.80 m and 5.40 m long. This module has an internal 
radius of 1.40 m and an external radius of 1.99 m. 

A main step in the characterization of a tensegrity system is the computation of the number of 
infinitesimal mechanisms and the number of independent states of self-stress for a pre-stressed 
configuration. Self-stress states are important because not only they stiffen the structure but they can 
also stabilize infinitesimal mechanisms. Static and kinematic properties of tensegrity structures can be 
determined through Singular Value Decomposition (SVD) of the equilibrium matrix [24, 25]. Table 1 
shows the results for infinitesimal mechanisms and independent states of self-stress for the ring 
modules considered in this study. Pre-stressed ring module configurations are studied considering six 
kinematical constraints so that rigid body displacements are avoided. Continuous ring modules 
(pentagon and hexagon) have no infinitesimal mechanisms and six independent states of self-stress. 
The square module has one infinitesimal mechanism with a base of seven elementary self-stress states. 

 

Table 1: Computation of the number of infinitesimal mechanisms and the number of independent self-stress 
states of the three tensegrity modules 

Module Elements, b Joints, j 
Equilibrium 
matrix rank 

Kinematical 
constraints, k 

Infinitesimal 
mechanisms, m 

Self-stress 
states, s 

Square 36 12 29 6 1 7 

Pentagon 45 15 39 6 0 6 

Hexagon 54 18 48 6 0 6 

 

4. Parametric analysis 

I. Analysis method 
 

Although the concept of tensegrity has activated interest in various fields, designing tensegrity systems 
for civil-engineering applications is not yet part of mainstream structural engineering. Additionally, 
available design codes and guidelines do not accommodate these structural systems.  

Tensegrity structures behave nonlinearly in response to external loading. Since tensegrities are self-
stressed and flexible, displacements can be large even for small deformations of critical elements. 
Therefore, the behavior of this kind of structure is complex and this is further complicated by a 
significant number of design parameters that have to be taken into consideration. Designing a 
tensegrity structure could require iterative analyses for successive modifications, such as changes to 
material properties and element self-stress. A complete analysis of a tensegrity system comprises three 
steps: form finding, implementation of self-stress and finally, the study of behavior under external 
loads.     

Form finding of a tensegrity system consists of determining a stable self-stressed state. Research into 
tensegrity form finding resulted in methods such as nonlinear programming techniques [26], dynamic 
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relaxation [27], force density [28], and stochastic search [29]. A review of these and other methods can 
be found in [30, 31]. In general, these methods require a valid topology to start the process of finding a 
stable configuration. When a stable configuration is identified, the self-stress level in the tensegrity 
system can be increased by choosing either cable lengths smaller or strut lengths longer than the 
geometrical distance between nodes according to the topology of the structure [32].    

Another important aspect of the behavior of tensegrity structures is geometric nonlinearity. Nonlinear 
modeling and iterative computational schemes are needed to design tensegrities. In this context, two 
approaches have been developed and applied in practice. The first one is a standard nonlinear 
structural analysis where the static equilibrium equation is solved incrementally using modified 
Newton-Raphson iterative procedure [32]. The second is dynamic relaxation which was first 
introduced by Day [33] and has been reliably applied to many tensile structures [27], tensegrities and 
other nonlinear problems. The dynamic relaxation method is an iterative procedure used to find the 
static equilibrium state of a structure. A fictitious dynamic model is used to trace the motion of a 
structure from the moment of loading to the moment of static equilibrium attained due to damping 
[27].  

In this study, static analyses of tensegrity bridge configurations are performed using dynamic 
relaxation with kinetic damping. The maximum kinetic energy peak, determined through the 
calculation of consecutive nodal velocity vectors at each time increment, is chosen as new reference 
state. All nodal velocities are then reset to zero and the calculations are continued until the unbalanced 
forces converge to zero. The dynamic relaxation method does not require an assembled stiffness 
matrix. Moreover, its equations are always expressed in terms of current coordinates of the structure. 
Therefore, it is particularly suitable for structures having geometrical nonlinearities. 

II. Parametric study 
 

Parametric studies help only to estimate the influence of different design parameters on the structural 
behavior of the tensegrity bridge and do not necessarily include feasible configurations. The study is 
carried out for the three elementary configurations of ring modules. These configurations have 
identical element cross-sectional areas and self-stress level. Additionally, they sustain identical service 
loads. Design loading includes the dead load of elements except joints, pedestrian loads and a 
horizontal load. Each configuration is composed of four identical modules and has the same boundary 
conditions.  

 

Figure 5: Illustration of the x-cables (left) and layer cables (right) 
 

 
Five parameters are examined: the cross-sectional area of x-cables, the cross-sectional area of layer 
cables, the cross-sectional area of struts, the rigidity ratio strut-cable and the self-stress. X-cables are 
cables that envelop the struts, while layer cables are found at the ends of every module (Figure 5). 
Following standard practice analysis, a range of values for every parameter is studied while other 
parameters are left unchanged. The analysis thus reveals the influence of each parameter assuming 
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mutual independence. Table 2 shows the values for the default configuration of the structure. All 
configurations have a 5% self-stress with respect to the tensile resistance of cables. This relatively low 
self-stress level is deliberately chosen, since a high initial self-stress may not reveal the individual 
influence of each parameter. The average vertical displacement at midspan is chosen to compare the 
structural performance of the configurations. In the next sections, results related to each design 
parameter are presented.   

 

Table 2: Default configuration for the parametric study 

Parameter Values 

Layer cable cross-section 1.5 cm2 

X-cable cross-section 1.5 cm2 

Strut cross-section 6.0 cm2 

Cable elastic modulus 115 GPa 

Strut elastic modulus 210 GPa 
 

 

a. Cross-sectional area of x-cables 
 

X-cables create a longitudinal envelop for the bridge around the struts (Figure 5). Values of cross-
sectional area for x-cables are presented in Table 3.  

      

Table 3: Parametric values of cables 

Parameter Cross-sectional area 

A [cm2] 0.28 0.75 1.50 3.00 6.00 
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Figure 6: Parametric analysis on the cross-sectional area of x-cables  

 

The evolution of the average vertical displacement at mid-span with respect to the cross-sectional area 
of x-cables is illustrated in Figure 6 for all three configurations. Results illustrated in this figure show a 
common trend for the three modules: increasing the cross-sectional area of x-cables decreases the 
average vertical displacement at mid-span. An increment of the cross-sectional area of the x-cables 
results in an increased stiffness of the structure without significantly increasing dead loads. An 
observation emerging from the parametric analysis of the cross-sectional area of x-cables is that there 
is a difference in the magnitude of displacements between the three modules. This difference can be 
attributed to the additional weight that is introduced by the presence of additional elements. 

 

b. Cross-sectional area of layer cables 
 

Layer cables are positioned on the two polygonal faces of every module. Thus, the tensegrity bridge 
composed of four modules contains layer cables that form five polygons along its longitudinal axis 
(Figure 5). The values of cross-sectional area considered for layer cables are identical to x-cable values 
(Table 2).  
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Figure 7: Parametric analysis on the cross-sectional area of layer cables 
 

Average vertical displacement at the mid-span section of the bridge is illustrated with respect to the 
cross-sectional area of layer cables in Figure 7. Once again there is a difference in the magnitude of 
displacements between the three modules. For the three configurations of the bridge, the behavior of 
the structure suggests that increasing the cross-sectional area of layer cables marginally decreases the 
vertical displacement until reaching a limit. In this case, the reduction on the displacement magnitude 
due to an increment of the cross-sectional area of layer cables is smaller than the one observed due to 
x-cables. 

 

c. Cross-sectional area of struts 
 

Ring modules have a continuous strut circuit and therefore have a higher bending stiffness compared 
to modules that do not have a continuous strut circuit. Struts are placed respecting a rotational 
regularity around the longitudinal axis of the module. However, there is no symmetry in any y-z plan 
(Figure 8). The three configurations of the bridge are analyzed using different values for strut cross-
sectional areas. Five values are considered in this parametric study and are displayed in Table 4.  

 

Figure 8: Illustration of struts for the four pentagon module bridge 
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Table 4: Parametric values of struts 

Parameter Cross-sectional area 

A [cm2] 1.50 3.00 6.00 12.00 24.00 
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Figure 9: Parametric analysis on the cross-sectional area of struts 
 

 

Displacement results in relation with the cross-sectional area of struts are shown in Figure 9. 
Differences in the magnitude of displacements between the three modules are again observed. 
Increasing the cross-sectional area of the struts decreases the vertical displacement at mid-span until 
reaching a cross-sectional area of approximately 12 cm2. For all configurations the reduction in 
displacement becomes insignificant beyond this value. In fact, increasing the cross-section of the struts 
higher than this value induces a small increment in the vertical displacement at midspan. This suggests 
that the increase in the stiffness of the structure is counter-balanced by an equivalent increase in dead 
loads.  

 

d. Rigidity ratio cables – struts 
 

The structural elements of a tensegrity system experience only axial loading. Tensioned and 
compressed elements are assembled in a self-equilibrated system providing stability and stiffness to 
the structure. Cable and strut characteristics were studied separately in previous sections. Since the 
stiffness of a tensegrity is made by the contribution of both cable and strut stiffness, the influence of 
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the rigidity ratio between tensioned and compressed members on the behavior of the tensegrity 
structure was studied. The rigidity ratio includes the elastic axial rigidity expressed in Eq. (1). 

 EAk
L

=  (1) 

  
where E is the modulus of elasticity, A is the cross-sectional area and L is the length of the element. 
Cross-sectional areas are identical for all three configurations. Consequently, the ratio depends on the 
modulus of elasticity and the length of the elements. The rigidity ratio is defined in Eq. (2).  

 Rigidity ratio cables

struts

k
k

=  (2) 

 
In order to study the influence of the rigidity ratio on the average vertical displacement, five modulus 
of elasticity are taken into account for cables while the modulus of elasticity is kept constant for struts. 
Table 5 shows values considered for cable modulus of elasticity. 
 

Table 5: Parametric values of modulus of elasticity of cables 

Parameter Modulus of elasticity 

E [GPa] 10 50 115 150 210 
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Figure 10: Parametric analysis on the rigidity ratio of steel struts and cables 
 

 



Rhode-Barbarigos, L., Bel Hadj Ali, N., Motro, R. and Smith, I.F.C. "Designing tensegrity modules for pedestrian bridges" 
Engineering Structures, Vol.32, No.4, 2010, pp 1158-1167. 

  12

For the three configurations of the bridge, the average displacement at midspan is calculated for a 
range of rigidity ratios (Figure 10). The evolution of midspan displacement with respect to the ratio of 
rigidity between cables and struts reveals a common tendency for the three modules. In all three 
configurations increasing the rigidity ratio results in a decrease in the average vertical displacement at 
midspan. However, the reduction in displacement becomes small beyond a certain value for the 
rigidity ratio. Consequently, an optimal rigidity ratio between tensile and compressive elements can be 
identified for each configuration. This optimal value can be used to guide the design of a tensegrity 
structure. For a given configuration identifying a reference rigidity ratio can lead to a good choice for 
element cross-sectional areas. For example, if design values for cross-sectional areas of struts and 
cables lead to a smaller rigidity ratio compared with the reference ratio, this leads to a flexible 
structure having large deflections. Similarly, a rigidity ratio that is higher than the reference ratio 
provides extra stiffness without a significant reduction in deflection. 

e. Self-stress 

Another important parameter of tensegrity structures is self-stress. The self-stress state is responsible 
for the stability and the high resistance of tensegrity structures. Self-stress can be created in many 
ways. In this study, cables are assumed to be pre-tensioned. Consequently, tensile stresses are induced 
in cables while compression occurs in the struts. Pre-stress is specified in terms of tensile ratio: a ratio 
between the pre-stressing internal force and the tensile strength of the cable (Table 6). From a global 
point of view, element self-stresses contribute to the overall rigidity of the structure. However, self-
stress acting on structural elements reduces their local capacity. 

 

Table 6: Parametric values of self-stress 

Parameter Self-stress (% of cable tensile strength) 

α [%] 0 25 50 75 100 
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Figure 11: Parametric analysis on the self-stress 
 

Average displacement at the mid-span section of the bridge is illustrated with respect to the self-stress 
level in relation with the tensile strength in Figure 11. In this case, differences in the magnitude of 
displacements between the three modules are observed only for values of self-stress smaller than 25%. 
The evolution of midspan displacement with respect to the level of self-stress reveals also a common 
tendency: increasing self-stress has a positive influence on the displacement until reaching a plateau. 
The plateau starts at a self-stress level of approximately 25 % of cable tensile strength for the three 
modules.  

 

5. Design procedure 

I. Design criteria 
 

The parametric study showed that a number of design parameters influence the behavior of the 
pedestrian bridge. Designing a tensegrity bridge could require repeated analyses followed by 
modifications. Material properties, self-stress level and rigidity ratio have to be chosen to ensure safety 
and serviceability of the structure.  

Most modern structural codes, such as the SIA Swiss codes, define safety and serviceability criteria as 
well as load combinations for footbridge design. Safety criteria ensure overall stability and include 
verifications of element resistance and stability. Element-resistance checks include tensile strength for 
tension elements and buckling strength for compression elements (Appendix B). A slenderness limit is 
also specified for compressive elements in order to avoid local instabilities. The serviceability limit-
state requirements for a pedestrian bridge involve limiting vertical displacement at mid-span to satisfy 
functionality and user comfort as well as appearance criteria. All three criteria are related to the bridge 
span and should be satisfied simultaneously (Appendix B). Pedestrian bridges should be checked for 
vibration serviceability if the fundamental frequencies for vertical modes are between 1.6 and 4.5 Hz. 
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Analytical studies on these structures have shown that fundamental frequencies are not in this range. 
Therefore, dynamic aspects are not considered here; this study is limited to static design criteria. Load 
combination and limit-state checks are given in Appendix B. 

 
 

II. Design procedure 
 

In a study of tensegrity-structure design, Quirant [12] proposed a design procedure that was applied in 
the case of a double layer tensegrity grid. In a similar approach and based on the conclusions of the 
parametric study presented in previous sections, a design procedure is proposed and tested for the 
tensegrity bridge (Figure 12). In this procedure, the design task is guided by the rigidity ratio between 
tensile and compressive elements. For a fixed geometry with a given choice of constructional 
materials, member lengths are fixed so that the rigidity ratio depends only on element cross-sectional 
areas. Once the rigidity ratio is fixed, cross-sectional areas of structural elements are determined 
iteratively. 

The design procedure starts with a pre-defined topology for a tensegrity ring module. Once the 
topology and nodal positions are known, constitutive materials need to be chosen. The material choice 
influences the self-weight and the rigidity of the structure. Thus, it is also important for the rigidity 
ratio between tensile elements and compressive elements. The design rigidity ratio is a reference ratio 
and it has to be defined for a peculiar topology. This ratio can be estimated from a parametric analysis 
on the Young modulus of either cables or struts. A rigidity ratio below the design ratio leads to a 
flexible structure with large deflections. On the other hand, a higher rigidity ratio provides high 
stiffness with a slight gain in deflections. The next step in the design procedure is to choose a value for 
the cross-sectional area of struts. Strut area is governed by the slenderness limit of 200. The reference 
rigidity ratio permits the calculation of the corresponding cross-sectional area for cables. Thus, the 
geometry of the structure is defined according to the design rigidity ratio. 

Self-stress requires a particular attention during the design due to its dual action as a load for the 
elements and a rigidity amplifier for the entire structure. A homogeneous self-stress is preferred in this 
study. When self-stresses are equally distributed on a structure, there is only a minor variation in 
internal tensile forces when changing the rigidity ratio. First, an analysis under self-weight is 
conducted in order to verify if both sections and self-stress state need to be modified. If deflection is 
over the allowable limits then there are two scenarios. High deflection may require the definition of 
higher sections for the elements. On the other hand, if the difference between calculations and the 
allowable deflection is small then an increase in self-stress may be enough to satisfy criteria. In cases 
where deflection is below allowable values, the design can continue to the next stage. 

The structure is then analyzed according to serviceability and ultimate limit-state criteria. If one of the 
criteria is violated, then new cross-sectional areas have to be defined. A sensitivity study should also 
be conducted in order to evaluate the consequences of slight variations and manufacturing errors [12]. 
Although, this study may provide additional information on the procedure and the accuracy required, a 
sensitivity study is not within the scope of this paper. 
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FOR A GIVEN TENSEGRITY RING MODULE TOPOLOGY

CHOOSE MATERIALS FOR STRUTS AND CABLES

END

CHOOSE A SELF-STRESS REPARTITION

Def lection < L/700
AND

Struts: No Buckling
AND

Cables: Elastic limit 
not reached

ANALYSIS FOR SERVICEABILITY 
AND ULTIMATE LIMIT STATES

DEFINE THE REFERENCE RIGIDITY RATIO WITH 
RESPECT TO MATERIALS

CHOOSE A STRUT SECTION

Slenderness : λk < 200  AND D / t < 50

FIND THE CABLE SECTION CORRESPONDING TO THE RIGIDITY RATIO

Def lection < L/700
AND

No slack cables

ANALYSIS UNDER SELF-WEIGHT

YES

YES

NO

NO

 

Figure 12: Design procedure for tensegrity ring structures 
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III. Feasible configurations 
 

The design procedure provides feasible configurations using the three tensegrity ring modules. For the 
three configurations, steel cables with a Young modulus of 115 GPa are used. Hollow tubes having a 
Young modulus of 210 GPa are used for compressive components. Required levels of self-stress (10% 
with respect to the tensile resistance of cables) for the different configurations are similar. Feasible 
configurations obtained using the proposed design procedure are presented in Table 7 where D is the 
strut diameter, t is the strut thickness,  I is the strut moment of inertia, i is the strut radius of gyration 
and A is the cross-sectional area for each element. Buckling strength is the critical design criterion for 
all three configurations. 

 

Table 7: Feasible configurations of the tensegrity bridge 

 
D×t   

[mm×mm] 

Astruts  

[mm2] 

I  

[mm4] 

i  

[mm] 

Ax-cables  

[mm2] 

Alayer cables  

[mm2] 

Square 114.3 × 3.6 1250 1.920 × 106 39.20 300 100 

Pentagon 101.6 × 3.6 1110 1.330 × 106 34.70 300 100 

Hexagon 95.0 × 3.2 923 0.973 × 106 32.50 300 100 

 

 

6. Structural efficiency 

The structural efficiency of tensegrity ring modules is compared in order to identify the best design of 
the tensegrity pedestrian bridge. Although all three ring modules studied in this paper have some 
similarities, they also have differences, such as the number of elements and the length of elements. 
Therefore, in order to have a fair comparison, the bridge configurations are designed using the same 
procedure and under similar conditions (self-stress, loads, boundary conditions, etc.).   

A Structural Efficiency Index (SEI) is used for the comparison of the proposed tensegrity ring 
modules. This index is inspired from work conducted by Vu et al. [21]. The index is composed of 
three parts and takes into account design loads, self-weight, span and maximum deflection: 

 SEI α β γ= × ×  (3) 
 

where     
L W

W
α +
= ,   

S
D

β =    and   
L
D

γ =          (4) 

L is the sum of design loads without their corresponding partial factors, W the self-weight, S the span 
of the bridge and D the maximum deflection at midspan. A high SEI corresponds to a high structural 
efficiency. For the studied case, design loads are calculated according to the span and the internal 
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space of the bridge that are identical for every configuration. Consequently, design loads are also the 
same. 

The first part of SEI reflects the efficiency according to the self-weight of the structure. It includes 
only the self-weight and loads applied to the structure. These parameters are significant especially for 
short span structures. In this case, design is usually guided by strength requirements (ULS) rather than 
serviceability constrains (SLS). The second part of SEI is a common criterion for serviceability 
including span over deflection. The serviceability limit for this bridge is set to S/D = 700. The last part 
of the proposed index involves the overall rigidity of the structure through relating “pay load” and 
deflection. The values for the pentagon module are used to normalize values of SEI (Table 8). 

 

Table 8: Structural Efficiency Index, normalized by values for the pentagon module 

 
pentagon

α
α

 
pentagon

β
β

 
pentagon

γ
γ

 
pentagon

SEI
SEI

 

Square 1.00 0.45 0.45 0.20 

Pentagon 1.00 1.00 1.00 1.00 

Hexagon 1.30 0.54 0.54 0.38 

 

Results presented in Table 8 show that the pentagon bridge presents the highest SEI. The pentagon 
module offers the highest structural efficiency regarding two of the three SEI components. Compared 
to square and hexagon configurations, the pentagon has a better serviceability performance (β) and a 
higher overall rigidity (γ). The square configuration presents a self-weight efficiency (α) that is almost 
as high as the pentagon, while the hexagon is the most self-weight efficient configuration. However, 
the serviceability performance and overall rigidity of the hexagon are low. Finally, the square is the 
less efficient configuration.  

 

7. Discussion 

I. Differential displacements: torsion 
 
The analysis revealed similar trends on the average vertical displacement at mid-span for the three 
modules. However, vertical displacements at the mid-span pentagon are not equally distributed. Figure 
13 shows the vertical displacements of the nodes on the mid-span polygon for the parametric analysis 
of the cross-sectional area of x-cables of the pentagon configuration (Figure 5). The torsional effect on 
the mid-span pentagon is also illustrated. A common trend for all nodes can be identified: increasing 
the cross-sectional area decreases the average vertical displacement at mid-span. However, the 
magnitude of the displacements is not the same for the five nodes. Differential displacements at mid-
span reveal the presence of a torsional effect on the structure. The tensegrity pedestrian bridge is 
composed of cables and struts. While elements do not experience torsion, the structure of the 
tensegrity bridge sustains torsion when studied as a whole.  
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Figure 13: Torsional effect on the mid-span pentagon with respect to the cross-sectional area of x-cables  
 

Ultimate limit-state loads applied to the structure are symmetric. Consequently, the torsional effect is 
only caused by the non-symmetric geometry of the structure. The structure is built according to a 
method which positions the struts in the shape of a helix. Although there is a symmetry about the 
longitudinal axis of the bridge (x axis) at midspan, there is a lack of symmetry about the y-z plane. 
Struts rotate around the longitudinal axis of the structure (Figure 14). This rotation make the module 
behave like a helix. When a load is applied on a helix, the helix has the tendency to twist. This 
explains the difference of vertical displacements observed on the bridge. The parametric study showed 
that torsion effects can be avoided with an appropriate sizing of the structural elements. For a given 
cross-sectional area of x-cables, increasing layer cable and/or strut cross-sectional area can lead to 
configurations with a lower difference in nodal displacements. However, there are other potential 
solutions to decrease torsion effects such as non-uniform self-stress or the use of an active control 
system. 

 

Figure 14: Struts rotating around the longitudinal axis of the bridge 
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The effect of torsion can also be a criterion for choosing the best module. Rotation trends increase as 
the geometry goes from a pentagon structure to a hexagon structure. Thus, the hexagon bridge presents 
higher differential displacements (higher torsion). This is a supplementary reason to select the 
pentagon module as the best module for this application. 

II. Rigidity ratio design for the pentagonal bridge 
 

The rigidity ratio between tensile elements and compressive elements was identified as an important 
parameter that can guide the design of a tensegrity structure. Therefore, an additional study with three 
materials for struts was conducted for the pentagonal configuration. Three modulus of elasticity were 
considered for steel (Es = 210 GPa), composite (Fiberline with EF = 100 GPa) and a third material with 
an intermediate value (Ei = 23 GPa). For cables, five elastic modulus values were taken (Table 5). 
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Figure 15: Parametric analysis on the rigidity ratio of struts and cables for the pentagon geometry 
 

It was found that the evolution of average vertical displacement at mid-span with respect to the ratio of 
rigidity between cables and struts reveals a common trend for the three materials (Figure 15). An 
increment of the rigidity ratio results in a decrease in the average vertical displacement at mid-span. 
However, beyond a certain value for the rigidity ratio the reduction in displacement becomes 
insignificant. Consequently, an optimal rigidity ratio between tensile and compressive elements can be 
identified not only for each configuration but additionally for every material.  

III. Other criteria for module selection 
 

The structural analysis of proposed structures revealed that the pentagon is the most suitable module 
for the bridge application. The pentagon bridge has the overall highest structural efficiency including 
criteria such as self-weight, serviceability and rigidity. This is due to its topology and to the continuity 
in its strut circuit.  
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The rotation rhythm of struts around the longitudinal axis increases as n increases for any n-gone ring 
module geometry. Thus, the pentagon bridge has the lowest differential displacements.  

Cost is a common criterion in civil engineering. The tensegrity bridge is a steel structure. The cost in 
steel construction is defined mostly by the joints. The pentagon module has the lowest number of 
joints compared with other continuous ring modules. Therefore, it is not only the best performing 
module but it is likely to be the most economical configuration. 

 

8. Conclusions 

Tensegrity-structure design is a challenging task due to geometrical complexity and closely coupled 
behavior. For applications of tensegrity ring modules in large-scale construction such as bridges, this 
work results in the following conclusions. 
 

• A novel tensegrity bridge has been developed through a parametric design study of three 
potential module configurations: square, pentagon and hexagon. All modules were designed 
under similar criteria related to span, internal pedestrian space and loading. A structural 
efficiency index takes into account self-weight and deflection to assess the ability of these 
modules to satisfy design criteria. It was shown that the most efficient module is the pentagon 
ring and the least efficient is the hexagon. 

 
• The existence of helical strut topologies in the ring configuration and the observation of 

differential vertical displacements confirm that there is torsion within the structure. The cause 
of torsion is the lack of symmetry about the y-z plane (x: longitudinal axis and z: vertical 
axis). However, feasible configurations with negligible effects of torsion can be found. 

 
• A useful extension of the tensegrity grid design guideline includes the ratio of rigidity between 

cables and struts as well as material properties. Increasing this ratio decreases vertical 
displacements until reaching a limit that varies with material properties.  

 
Tensegrity structures are efficient when properly designed.  Further work involves construction and 
testing a prototype of the pentagon tensegrity bridge. 
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10. Appendix 

A. Topology of the modules 

Table 9 presents the nodal coordinates for a single module of the configurations studied based on the 
construction method of Section 3.  
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Table 9: Nodal coordinates of single ring modules 

 Square Pentagon Hexagon 

Node  x [cm] y [cm] z [cm] x [cm] y [cm] z [cm] x [cm] y [cm] z [cm] 

1 0.00 0.00 0.00 0.00 0.00 389.40 0.00 -327.42 -67.04 

2 0.00 520.00 0.00 0.00 370.30 120.30 0.00 -128.72 -67.04 

3 0.00 520.00 520.00 0.00 228.90 -315.00 0.00 -29.37 105.03 

4 0.00 0.00 520.00 0.00 -228.90 -315.00 0.00 -128.72 277.11 

5 250.00 260.00 -107.70 0.00 -370.30 120.30 0.00 -327.42 277.11 

6 250.00 627.70 260.00 250.00 0.00 -389.40 0.00 -426.77 105.03 

7 250.00 260.00 627.70 250.00 -370.30 -120.30 250.00 -228.07 -93.66 

8 250.00 -107.70 260.00 250.00 -228.90 315.00 250.00 -55.99 5.68 

9 500.00 0.00 0.00 250.00 228.90 315.00 250.00 -400.15 5.68 

10 500.00 520.00 0.00 250.00 370.30 -120.30 250.00 -55.99 204.38 

11 500.00 520.00 520.00 500.00 0.00 389.40 250.00 -400.15 204.38 

12 500.00 0.00 520.00 500.00 370.30 120.30 250.00 -228.07 303.73 

13 - - - 500.00 228.90 -315.00 500.00 -327.42 -67.04 

14 - - - 500.00 -228.90 -315.00 500.00 -128.72 -67.04 

15 - - - 500.00 -370.30 120.30 500.00 -29.37 105.03 

16 - - - - - - 500.00 -128.72 277.11 

17 - - - - - - 500.00 -327.42 277.11 

18 - - - - - - 500.00 -426.77 105.03 

 

 

Table 10: Connectivity of single ring modules 

 Square Pentagon Hexagon 

Element Node Node Node Node Node Node 

1 1 2 1 2 1 2 
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2 2 3 2 3 2 3 

3 3 4 3 4 3 4 

4 4 1 4 5 4 5 

5 9 5 5 1 5 6 

6 10 5 11 12 6 1 

7 2 5 12 13 7 2 

8 1 5 13 14 7 1 

9 2 6 14 15 8 2 

10 10 6 15 11 8 3 

11 11 6 1 9 9 1 

12 3 6 11 9 9 6 

13 4 7 2 9 10 3 

14 3 7 12 9 10 4 

15 11 7 2 10 11 6 

16 12 7 12 10 11 5 

17 9 8 3 10 12 4 

18 1 8 13 10 12 5 

19 4 8 3 6 14 7 

20 12 8 13 6 13 7 

21 9 10 4 6 14 8 

22 10 11 14 6 15 8 

23 11 12 4 7 13 9 

24 12 9 14 7 18 9 

25 1 6 5 7 15 10 

26 6 12 15 7 16 10 

27 12 1 5 8 18 11 

28 2 7 15 8 17 11 

29 7 9 1 8 16 12 

30 9 2 11 8 17 12 
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31 3 8 1 12 13 14 

32 8 10 2 13 14 15 

33 10 3 3 14 15 16 

34 4 5 4 15 16 17 

35 5 11 5 11 17 18 

36 11 4 15 9 18 13 

37 - - 9 3 6 7 

38 - - 11 10 4 11 

39 - - 10 4 5 9 

40 - - 12 6 1 8 

41 - - 6 5 2 10 

42 - - 13 7 3 12 

43 - - 7 1 16 8 

44 - - 14 8 15 7 

45 - - 8 2 14 9 

46 - - - - 13 11 

47 - - - - 18 12 

48 - - - - 17 10 

49 - - - - 13 2 

50 - - - - 14 3 

51 - - - - 15 4 

52 - - - - 16 5 

53 - - - - 18 1 

54 - - - - 17 6 

 

 

B. Load combinations and limit-state checks  

Table 11 contains the load combinations for the tensegrity footbridge according to Swiss SIA codes 
for the ultimate limit state and the service limit state.  Table 12 and 13 contain the ultimate limit-state 
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checks and  the serviceability limit-state requirements resepectively for the tensegrity footbridge 
according to Swiss SIA. 

 

Table 11: Loads factors of the critical load model 

 Ultimate limit state Service limit state 

Load Safety factor Base value Safety factor Base value 

Dead load 1.35 78.5 kN/m3 1.0 78.5 kN/m3 

Vertical service load 1.5 4 kN/m2 1.0 4 kN/m2 

Horizontal service 
load 1.5 10% of the vertical 

service load 1.0 10% of the vertical 
service load 

 

The wind load is not considered as this study is limited to static design criteria.  

 

Table 12: Ultimate limit-state checks 

Ultimate limit state: Ed≤Rd 

Tension components Compression components 

Tensile resistance 

1.05
y

d

f A
E ≤  

Buckling resistance 

1.05
y

d k

f A
E χ≤  

 

where Ed is the design value of an action effect, Rd is the design value of the ultimate resistance, fy the 
yield strength, A the cross-sectional area of the element and χk the reduction factor for buckling. For 
serviceability reasons compression structural components is also verified as follows:  

 
min

200kl
r

≤  (5) 

where lk  is the effective length of strut and rmin the minimum radius of gyration. 

 

Table 13: Serviceability limit-state requirements (SIA-260) 

Criterion Limit Value for a 20 m span 
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Functionality w ≤ L/700 2.85 cm 

Comfort w ≤ L/600 3.33 cm 

Appearance w ≤ L/700 2.85 cm 

 

where L is the footbridge span. 
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